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616 The Learnability of Unknown Quantum Measurements

In this work, we provide an elegant framework to analyze learning matrices in the
Schatten class by taking advantage of a recently developed methodology—matrix concen-

tration inequalities. We establish the fat-shattering dimension, Rademacher/Gaussian

complexity, and the entropy number of learning bounded operators and trace class opera-
tors. By characterising the tasks of learning quantum states and two-outcome quantum

measurements into learning matrices in the Schatten-1 and ∞ classes, our proposed

approach directly solves the sample complexity problems of learning quantum states and
quantum measurements.

Our main result in the paper is that, for learning an unknown quantum measure-

ment, the upper bound, given by the fat-shattering dimension, is linearly proportional
to the dimension of the underlying Hilbert space. Learning an unknown quantum state

becomes a dual problem to ours, and as a byproduct, we can recover Aaronson’s famous

result [Proc. R. Soc. A 463, 3089–3144 (2007)] solely using a classical machine learning
technique. In addition, other famous complexity measures like covering numbers and

Rademacher/Gaussian complexities are derived explicitly under the same framework.

We are able to connect measures of sample complexity with various areas in quantum
information science, e.g. quantum state/measurement tomography, quantum state dis-

crimination and quantum random access codes, which may be of independent interest.
Lastly, with the assistance of general Bloch-sphere representation, we show that learning

quantum measurements/states can be mathematically formulated as a neural network.

Consequently, classical ML algorithms can be applied to efficiently accomplish the two
quantum learning tasks.

Keywords: Quantum Machine Learning, Sample Complexity, Quantum Tomography,

Matrix Concentration Inequalities

Communicated by: R Cleve & A Harrow

1. Introduction

Statistical learning theory [1, 2] or Machine Learning (ML) [3] is a branch of artificial intelli-

gence which aims to devise algorithms for machines to systematically learn from historic data.

Typically, ML has been separated into unsupervised learning and supervised learning. In un-

supervised learning, the machine is most useful for finding the hidden structure, e.g. clustering

or density estimation, within unlabeled data. In supervised learning, the machine is equipped

with more power to predict the class or to infer the characteristics from the structured data.

The figures of merit for a learning machine include: (i) computational complexity which mea-

sures the run-time efficiency of a learning algorithm; (ii) sample complexity which determines

the number of queries to a membership made by the learning algorithm such that the hy-

pothesis function is Probably Approximately Correct (PAC) [4]; and (iii) model complexity

(otherwise called the generalisation error [5]) which is defined as the discrepancy between the

out-of-sample error and the in-sample error. Note that the model complexity is closely related

to the sample complexity in the sense that a learning machine with large model complexity

requires more samples to accurately approximate the target function, which results in high

sample complexity. Current research trends include the reduction of computational complex-

ity due a large volume data set (big data) as well as the high dimensional features of each

data point, and how to balance the model complexity with the in-sample error such that the

training data set can be trained well without the occurrence of overfitting.

To appropriately estimate the sample complexity of the hypothesis space, the most plau-

sible quantity to measure the sample complexity of learning Boolean functions is the Vapnik-

http://dx.doi.org/10.1098/rspa.2007.0113


Hao-Chung Cheng, Min-Hsiu Hsieh, and Ping-Cheng Yeh 617

Chervonenkis (VC) dimension [6]. Later on, complexity measures such as fat-shattering

dimensions [7], covering numbers [8], and Rademacher complexities [9] are introduced to

generalise the VC dimension for real-valued functions. To appropriately upper bound the

complexity measures, Gurvits et al. [10, 11, 12] proposed a probabilistic approach for the

class of linear functionals defined on Euclidean space:

F =
{
x 7→ w · x : ‖w‖ ≤ 1, x, w ∈ Rd

}
.

This method has been successfully applied to analyze sample complexities of the celebrated

support vector machines (SVM) and large-margin classifiers in ML.

In this work, we extend Gurvits’ work to consider learning linear functionals defined on

matrix spaces:

F =
{
X 7→ 〈W,X〉 : ‖W‖ ≤ 1, X,W ∈ Cd×d

}
,

where 〈·, ·〉 denotes the Hilbert-Schmidt inner product. Our novelty is that we adopt a power-

ful methodology—matrix concentration inequalities (MCIs) [13]—to derive sample complexity

measures for learning matrices with norm constraints. The major advantage of using MCIs

is that the method generalises standard statistical tools of learning real-valued functions

defined on Euclidean space Rd so that we can directly generalise Gurvits’ probabilistic appr-

oach to matrix spaces. Hence, complexity measures, such as the fat-shattering dimensions,

Rademacher/Gaussian complexities, and entropy numbers, can be derived in a simple and

elegant way.

The matrix learning problem has a strong connection with quantum information science.

Quantum information science (QIS) is an active field that studies the computational ca-

pability in quantum systems. In recent years, QIS has achieved significant breakthroughs:

factorizing large prime integers with an exponential speed-up and searching an unstructured

database with a quadratic speed-up are the two most famous examples. Owing to the success-

ful achievements of QIS, researchers have begun to explore whether QIS can advance other

subjects of classical computer science. Consequently, the interdisciplinary area of quantum

machine learning has attracted substantial interest lately. For example, quantum tomography

is an essential task in physics for inferring the state of a quantum system or the measurement

apparatus. When the target is to identify the preparation of a quantum system (resp. mea-

surement instrument), it is called quantum state (resp. measurement) tomography. In large

quantum systems, tomography is fundamentally difficult and practically infeasible because

the number of parameters for describing the quantum system grows exponentially with the

size of the system. Aaronson first pointed out that performing quantum state tomography

in the ML setting can be exponentially efficient in the number of measurements [14] (we

compare these two schemes in Section 1.2). Aaronson’s method mainly relies on the entropic

inequalities in quantum random access coding [15]. In this work, the proposed matrix learning

framework covers Aaronson’s result and shows that the problem of learning quantum states

can be embedded into learning matrices with Schatten 1-norms (i.e. trace-class operators).

Moreover, we push further to investigate learning quantum measurements and the connections

with other areas of QIS.

The key to a successful development of efficient learning algorithms for a certain hypothesis

class relies on finding an efficient representation for it. In this paper, we consider learning

hypothesis classes that consist of normalized or subnormalized positive semi-definite matrices
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of finite dimensions. Using the Bloch sphere representations [16, 17], we can transform the

Hilbert-Schmidt inner product of two matrices into a standard inner product of two vectors

in Euclidean space, and show that its resulting form has the structure of a neural network.

This not only allows us to apply existing neural network algorithms to efficiently learn the

hypothesis class, but also provides an elegant paradigm for the problems of matrix recovering.

1.1. Contributions of this work

Let Sdp = {M ∈ Cd×d : ‖M‖p ≤ 1}, where ‖ · ‖p is the Schatten p-norm, be a unit

ball. We aim to learn an unknown matrix element W ∈ Sdq given the training data set

{Xi, 〈W,Xi〉}Xi∈Sd
p
, where 1/p+ 1/q = 1.

Our results are

• We obtain major complexity measures for learning Schatten 1-norm and Schatten ∞-

norm matrices in Table 1 (see Section 3). We show that the sample complexity of

learning matrices in Sd∞ is proportional to the dimension d, while the sample complexity

of learning elements in Sd1 is logarithmically proportional to d.

Table 1. Complexity Measures of Matrix Learning with Norm Constraints.

Learning X = Sd1 Learning X = Sd∞

Pseudo-Dimension d2 d2 − 1
Fat-Shattering Dimension d/ε2 log d/ε2

Uniform Entropy Number d/ε2 log d/ε2

Rademacher/Gaussian Complexity
√
d

√
log d

Sample Complexity mF (ε, δ) max{d, log(1/δ)}/ε2 max{log d, log(1/δ)}/ε2

• We show that the theoretical outcomes of matrix learning problems can answer im-

portant questions in quantum information science in Section 4 and 5. Firstly, learn-

ing Schatten 1-norm and Schatten ∞-norm matrices correspond to quantum state and

measurement tomography. Thus the sample complexities derived in Table 1 provide

theoretical upper bounds for these quantum tomographic tasks. Moreover, some of the

complexity measures are directly related to problems in quantum set discrimination and

quantum random access coding.

• We propose an efficient neural network formulation for learning matrices with norm

constraints based on the Bloch sphere representations, and present numerical studies

for several cases in Section 6.

There are several fields that may relate to or benefit from our work.

Quantum State/Measurement Tomography. Quantum state tomography is a difficult

task in physics because the number of unknown parameters in a multi-partite quantum system

grows exponentially. Aaronson pointed out that quantum ML can serve as an alternative

approach to quantum state tomography [14]. Surprisingly, learning an unknown target state

within a given accuracy requires only the number of measurements that grows logarithmically

with the dimension d. In this work, we push Aaronson’s result one step further and consider
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the application of machine learning framework to study quantum measurement tomography.

To the best of our knowledge, there are very few results in this direction. We hope that

our result in learning quantum measurements will stimulate further investigation into this

problem.

Quantum State Discrimination. The goal of quantum state discrimination is to iden-

tify a state in an ensemble. Whenever states are not mutually orthogonal, they cannot be

perfectly discriminated. Therefore, a possible way is ambiguous state discrimination with the

goal of minimizing the error probability. Given an ε > 0, we show that the fat-shattering

dimension guarantees the maximum number of quantum states that can be discriminated

into two subsets with the worst error probability no greater than 1/2 − ε. Following the

same reasoning, the quantum states in the hypothesis set can be used to distinguish between

two-outcome measurements.

Quantum Random Access Coding. The (n,m, p)-quantum random access (QRA)

coding stands for encoding an n-bit sequence into m-qubit so that the receiver can recover any

one of the bits with successful probability at least p. The information-theoretic inequalities

of n and m provide an upper bound for the fat-shattering dimension of learning quantum

states. Alternatively, we can use the complexity measure—pseudo dimension—to show that

there exists no (n,m, p)-QRA coding scheme, with n ≥ 22m. The result coincides with the

work of Hayashi et al. [18]. See Section 5.4 for further discussions.

1.2. Comparisons between the Learning Setup and Quantum Tomography

In the paradigm of learning an unknown quantum state ρ, the set of two-outcome mea-

surements (E1, . . . , En) are generated from an unknown distribution µ with the corresponding

outcome statistics (Tr(E1ρ), . . . ,Tr(Enρ)). The learning algorithm will produce a hypothesis

state σ such that the in-sample error

L̂n(σ) =
1

n

n∑
i=1

(|Tr(Eiσ)− Tr(Eiρ)|)

is minimized. The sample complexity of learning quantum states is the smallest number

satisfying:

Pr

{
sup
σ

∣∣∣L(σ)− L̂n(σ)
∣∣∣ ≥ ε} ≤ δ,

where L(σ) = E|Tr(Eσ) − Tr(Eρ)| is the out-sample error, and ε, δ are the accuracy and

confidence respectively.

On the other hand, in the scheme of quantum state tomography, a series of quantum

measurements (e.g. Pauli matrices) are designed and then performed on the unknown state

ρ. Hence the hypothesis state σ is determined according to the measurement outcomes such

that the distance measure, e.g. the trace distance 1
2‖σ − ρ‖1 ≤ ε, is within a certain level.

We list the differences between the quantum learning setup and quantum state tomography

in Table 2.

1.3. Related Works
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Table 2. The comparison between learning quantum states and quantum state tomography.

Learning Quantum States Quantum State Tomography

Measurements randomly generated designed and deterministic

Distortion Measure |L(σ)− L̂n(σ)| e.g. 1
2‖σ − ρ‖1

Other Assumptions outcome statistics finite copies of the unknown state

Our work is closely related with the problems of matrix recovering and learning matrices

with norm constraints. This research topic has recently attracted substantial attention in ML

with an increasing number of statistical tasks that organize data into matrices. The sample

complexity of the matrix learning problem was addressed by [19], where the authors derive

the Rademacher complexities of learning Schatten p-norm matrices using the techniques of

strong convexity duality. In this paper, the proposed method with MCIs not only recovers the

Rademacher complexities, but also solves fat-shattering dimensions and entropy numbers in

the same framework. Furthermore, our approach is more general and can attack problems of

the matrix space with certain structures. For example, our upper bound will be improved if

the considering matrix is low rank or has small intrinsic dimensions [20]. The subset of the

matrices with norm constraints such as positive partial transpose (PPT) states and separable

states might also be treated in the same way. We leave this problem as future work.

The interdisciplinary area of quantum machine learning [21, 22] has attracted substantial

interest lately. The central problems are two-fold. The first kind of problem investigates how

quantum information processing can improve or accelerate classical ML tasks by converting

classical algorithms into quantum regime [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41]. On the other hand, certain fundamental quantum problems, such as

inferencing an unknown quantum states or operations, or discovering the hidden structure of

the underlying quantum system, can be assisted with ML techniques [42, 14, 43, 44, 45, 46,

47, 48, 49, 50, 51, 52, 53, 37, 40, 54, 55, 56, 57, 58, 59, 60]. In this work, we start from a

machine learning point of view to formalize the problems of learning quantum measurements

and quantum states as learning real-valued functions on matrix spaces. Hence, the sample

complexities of these two learning problems are solved.

1.4. Notation

In this paper, we denote a Hilbert space by H. The trace of an operator M on H is calculated

as

Tr(M) :=
∑
k

ekMek,

where {ek} is any orthonormal basis on H. Let Md denote the set of all self-adjoint operators

on Cd. The Hilbert-Schmidt inner product on Md can be defined as 〈A,B〉HS := Tr(AB),

where the subscript ‘HS’ will be omitted when the context is clear. For p ∈ [1,∞), we denote

the Schatten p-norm of an self-adjoint operator M as

‖M‖p :=

∑
i≥1

|λi(M)|p
1/p

,
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where λi(M) is the eigenvalue of M . We denote by ‖M‖∞ := supi |λi(M)| the operator

norm. Clearly, ‖ · ‖1 and ‖ · ‖2 correspond to the trace norm and the Hilbert-Schmidt norm

‖ · ‖HS respectively. Slightly abusing the notation, we also denote the conventional `p norm

on Rd by ‖ · ‖p for p ∈ [1,∞]. We define the unit ball associated with the Schatten norms as

Sdp = {M ∈Md : ‖M‖p ≤ 1}. The set of bounded operators on H is denoted as B(H), which

is the set operators with finite Schatten ∞-norm. Likewise, the set of operators with finite

Schatten 1-norm is called the set of trace class operators, T (H).

A quantum state (also called density operators) on the Hilbert space H is a positive semi-

definite operator with unit trace. We identify the state space as the set of all quantum states

on H, i.e.

Q(H) := {ρ ∈ T (H) : ρ � 0, Tr(ρ) = 1}.

A positive operator-valued measure (POVM) on H is a finite set of positive semi-definite

operators {Πi}i∈I such that ∑
i∈I

Πi = I,

where I denotes the identity operator on H. Each POVM element Πi is called a quantum

effect, which serves as an instrument to perform a yes-no measurement. We denote the set of

all effects as an effect space:

E(H) := {E ∈ B(H) : O � E � I}.

All constants are denoted as C or c and are independent from other parameters. Their values

may change from line to line. The notation A . B means there is a constant c such that

A ≤ cB and A ' B means both A . B and A & B. We summarise all the notation in table

A.1 in Appendix 1.

The paper is organized as follows. In Section 2 we introduce the background of statis-

tical learning theory (especially on supervised learning) and describe important complexity

measures. In Section 3, we formalize a unified framework to relate the problems of learning

quantum measurements and learning quantum states with the learning real-valued functions.

Based on the proposed approach, we prove the main results of learning quantum measurements

in Section 4. In addition, we discuss the interpretations of the learning tasks to ambiguous

set discrimination and also derive the covering numbers and the Rademacher complexity. In

Section 5, we consider the problem of learning quantum states and describe its relationship

with QRA codes. In Section 6, we formulate the learning problem into Bloch-sphere repre-

sentation and propose possible algorithms (e.g. neural networks) to implement the quantum

learning tasks. We conclude this paper in Section 7.

2. Background of Statistical Learning Theory

The starting point of this section is the mathematical formalism of the supervised machine

learning. We describe the efficiency of a learning machine and examine the number of samples

required to produce an almost optimal function with an error rate below the desired accuracy.

As will be shown later, the bound of the sample complexity is closely related to the complexity

measures which characterise the “effective size” of a function class.
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2.1. Supervised Machine Learning

Generally speaking, supervised learning is a ML task that infers a function (or a learning

model) by observing the data and the response to the data. In this work, we focus on the

definitions of agnostic PAC learnability and the sample complexity for supervised machine

learning. For more comprehensive introduction to ML, we refer the readers to literature such

as Refs. [61, 2, 62, 63, 64, 65, 66].

Consider a probability space (Z, µ), where Z := X × Y with X (called the input space)

a measurable space and Y (called the output space) a closed subset of real line R. The

probability distribution µ over Z is assumed to be fixed but known only through the training

data set, i.e. Zn = {(X1, Y1), . . . , (Xn, Yn)} ∈ Zn sampled independently and identically

according to the measure µ. Supervised learning aims to construct a function f : X → Y
which approximates the functional relationship between the input variable X ∈ X and the

output variable Y ∈ Y from the observed training data set. To evaluate the performance of

the approximation, we define the loss function as a measurable map `f : Z → [0,+∞) and

the expected risk (also called the out-of-sample error):

L(f) = Eµ`f (X,Y ).

The loss function is usually taken as the absolute error or square error, i.e.

`f (X,Y ) = |f(X)− Y | or `f (X,Y ) = (f(X)− Y )2.

For convenience, we only consider the square error in this work. Other loss functions that

satisfy the Lipschitz condition can be easily generalised∗.

Since we are interested in minimizing the expected risk, hence the target function (or

Bayes function) as t(x) = E[Y |X = x] can be defined to achieve the minimum expected risk

(called the Bayes risk), i.e.

LBayes := L(t) = inf
f
L(f), (1)

where the infimum is taken over all possible measurable functions from X to Y. When y is a

deterministic function of X, then Y = t(X) almost surely and L(t) = 0.

The goal of the learner is to identify the target function t from a collection of functions

F , called the hypothesis set†, which is a set of real-valued functions defined on the input space

∗ A loss function `f : Z → (0,∞) is a Lipschitz function if it satisfies the Lipschitz condition

|`f (X,Y )− `g(X,Y )| ≤ L|f(X)− g(X)|

for all possible (X,Y ) ∈ Z and the quantity L ∈ R is called the Lipschitz constant. Denote by `F the set
{`f : f ∈ F}. Then the complexity measures (e.g. the covering number and Rademacher complexity; see
Definition 6, 7, and 8) of the class `F are different from that of the hypothesis set F by the Lipschitz constant
L [67, 9], i.e.

Np(ε, `F ,m) ≤ Np(ε/L,F ,m) for p ≥ 1, m ∈ N
and

Rn(`F ) ≤ LRn(F).

Therefore, by homogeneity we may assume the loss function is the absolute error with L = 1 or the square
error L = 2 for deriving the sample complexity problems.
†Note that we use the term ‘hypothesis set’ and ‘function class’ interchangeably throughout the paper.
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X . A learning algorithm A for hypothesis set F is a mapping that assigns to every training

data Zn some candidate function A(Zn) ∈ F , i.e.

A : ∪∞n=1Z
n → F .

The effectiveness of the learning algorithm is measured by the number of data required to

produce an optimal function with the minimum expected risk, see Eq. (1). Therefore, we

introduce one of the most fundamental concepts in supervised machine learning—Agnostic

Probably Approximately Correct (PAC) learning model [4, 68]:

Definition 1 (Agnostic PAC Learnability [66], Def. 3.3) A hypothesis set F is agnos-

tic PAC learnable if there exist a function mF : R × R → N and a learning algorithm with

the following property: For every ε, δ ∈ (0, 1) and for every distribution µ over Z, when run-

ning the learning algorithm on n ≥ mF (ε, δ) samples generated by µ, the algorithm returns

a hypothesis f̂ such that, with probability of at least 1 − δ (over the choice of the n training

examples),

L(f̂) ≤ inf
f∈F

L(f) + ε.

However, the expected risk L(f) = Eµ[`f (X,Y )] cannot be calculated since the measure

µ is unknown. We can only evaluate the agreement of a candidate function over the training

data set, which is called the empirical risk (also called the in-sample error):

L̂n(f) =
1

n

n∑
i=1

`f (Xi, Yi).

For example, one of the most well-known learning algorithms is the Empirical Risk Minimiza-

tion (ERM) principle [2] that assigns a function fn ∈ F to each training data set which is

“almost optimal” on the data, i.e.

fn = arg min
f∈F

L̂n(f). (2)

One way to evaluate the performance of the learning algorithm is to relate the risk L(fn)

to the empirical risk L̂n(fn). Following the reasoning of agnostic PAC model, our goal is

hence to estimate the generalisation error ε:

L(fn) ≤ L̂n(fn) + ε(n,F).

For any algorithm that outputs a fn ∈ F , we have

L(fn)− L̂n(fn) ≤ sup
f∈F
{L(f)− L̂n(f)},

which leads to the definition of uniform Glivenko-Cantelli class (uGC class).

Definition 2 We say that the hypothesis set F is a uniform Glivenko-Cantelli class if for

every ε > 0,

lim
n→∞

sup
µ

Pr

{
sup
f∈F

∣∣∣L(f)− L̂n(f)
∣∣∣ ≥ ε} = 0.
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The uniformity is with respect to all members of F and over all possible probability measures

µ on the domain Z. In addition to the conditions of the learnability, we also consider the

bound on the rate of uniform convergence. For every 0 < ε, δ < 1, let mF (ε, δ) be the first

integer such that for every n ≥ mF (ε, δ) and any probability measure µ,

Pr

{
sup
f∈F

∣∣∣L(f)− L̂n(f)
∣∣∣ ≥ ε} ≤ δ. (3)

The quantity mF (ε, δ) satisfied Eq. (3) is called the (Glivenko-Cantelli) sample complexity of

the hypothesis set F with accuracy ε and confidence δ. The sample complexity encapsulates

the number of samples required to learn a set of functions.

Vapnik studied the relation between the uGC class and learnability [69, 1, 2] and showed

that if a hypothesis set F is a uGC class, then it is sufficient for the agnostic PAC learnability‡.

Theorem 1 (Uniform Convergence [66, Corollary 4.4]) A training data set Zn is called

ε-representative (with respect to domain Z, hypothesis set F , loss function `, and distribution

µ) if

∀f ∈ F ,
∣∣∣L̂n(f)− L(f)

∣∣∣ ≤ ε.
Then, for every ε, δ ∈ (0, 1) and every probability distribution µ over Z, a uGC class F that

guarantees an ε/2-representative set with probability of at least 1−δ is agnostic PAC learnable.

Furthermore, the ERM algorithm is an agnostic PAC learner for F .

As a result, we consider the generalisation error ε(n,F) and the sample complexity

mF (ε, δ) of the hypothesis set F as the performance criterion to investigate whether the

underlying learning problem is agnostic PAC learnability.

In summary, the fundamental problems in ML are two-fold. The first is under what con-

ditions the machine is agnostic PAC learnable. Secondly, the sample complexity determines

the rate of the uniform convergence and the information-theoretic efficiency of the hypothesis

set F . In the next subsection, several complexity measures are introduced to characterise the

“richness” or “effective size” of the hypothesis set. In Section 2.3, we show that the sample

complexity can be further expressed in terms of the complexity measures.

2.2. Measures of Sample Complexity

As discussed before, we are interested in the parameters which effectively measure the size of

a given hypothesis set. There are some well-known measures of the (information) complexity§

of function classes: combinatorial parameters, covering numbers, and Rademacher complexity.

The first combinatorial parameter—Vapnik-Chervonenkis (VC) dimension—was intro-

duced by Vapnik and Chervonenkis [6] for learning Boolean functions.

‡Agnostic PAC learnable is also called learnable with ERM, or we can say that the ERM algorithm is consistent.
Recent works consider the stability issues of the learning algorithm as one of the criterion of learnability.
However, in this paper we do not deal with issues of stability and hence refer interested readers to Refs. [70, 71]
and the references therein.
§The complexity measures introduced in this section and the generalisation bounds derived in Section 2.3 are
information-theoretic in the sense that the learning algorithms are based on the agnostic PAC model regardless
of the computational resources.
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Definition 3 (VC Dimension) Let F be a set of {0, 1}-valued functions on a domain X .

We say that F shatters a set {x1, . . . , xn} ⊆ X if for every subset B ⊆ {1, . . . , n} there exists

a function fB ∈ F for which fB(xi) = 1 if i ∈ B, and fB(xi) = 0 if i /∈ B. Let

VCdim(F) = sup {|S| : S ⊆ X , S is shattered by F} .

The VC dimension of F (on the domain X ) is denoted as VCdim(F).

Pollard [72] generalised the concept of VC dimension and introduced the pseudo dimension

to quantify the sample complexity of a real-valued function class. The parameterised version

of Pollard’s pseudo-dimension is the scale-sensitive dimension (also called the fat-shattering

dimension) introduced by Kearns and Schapire [73].

Definition 4 (Pseudo Dimension) Let F be a set of real-valued functions on a domain

X . We say a set S = {x1, . . . , xn} ⊆ X is pseudo-shattered by F if there exists a set {αi}ni=1

such that for every B ⊆ {1, . . . , n} there is some function fB ∈ F for which fB(xi) ≥ αi if

i ∈ B, and fB(xi) < αi if i /∈ B. Define the pseudo dimension of F as

Pdim(F) = sup {|S| : S ⊆ X , S is pseudo-shattered by F} .

fB is called the shattering function of the set S.

There is a desirable property of the pseudo dimension that will be useful in our main

theorems.

Theorem 2 (Pollard [72])

(i) If F is a vector space of real-valued functions then Pdim(F) = dim(F).

(ii) If F is a subset of a vector space F ′ of real-valued functions then Pdim(F) ≤ dim(F ′).

Definition 5 (Fat-Shattering Dimension) Let F be a set of real-valued functions on a

domain X . For every ε > 0, a set S = {x1, . . . , xn} ⊆ X is said to be ε-shattered by the F
if there exists a set {αi}ni=1 ⊂ R such that for every B ⊆ {1, . . . , n} there is some function

fB ∈ F for which fB(xi) ≥ αi + ε if i ∈ B, and fB(xi) < αi − ε if i /∈ B. Define the

fat-shattering dimension of F on the domain X as

fatF (ε,X ) = sup {|S| : S ⊆ X , S is ε-shattered by F} .

fB is called the shattering function of the set B and the set {αi}ni=1 is called a witness to the

ε-shattering. When the underlying space is clear, we denote it by fatF (ε). If the witness set

{αi} are all equal to a constant, we call it as the level fat-shattering dimension, fatF (ε).

In Ref. [62], a relationship between the fat-shattering dimension and the pseudo-dimension

can be given.

Theorem 3 (Anthony and Bartlett [62, Theorem 11.13]) Let F be a set of real-valued

functions. Then:

(i) For all ε > 0, fatF (ε) ≤ Pdim(F).

(ii) If a finite set S is pseudo-shattered then there is ε0 such that for all ε < ε0, S is

ε-shattered.
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(iii) The function fatF (ε) is non-increasing with ε.

(iv) Pdim(F) = limε↓0 fatF (ε) (where both sides may be infinite).

Note that it is possible for the pseudo-dimension to be infinite, even when the fat-shattering

dimension is finite for all positive ε.

In addition to the combinatorial parameters bounding the sample complexity, there are

other quantities called covering number which measure the size of the function class by the

finite approximating set. The concept of covering number dates back to Kolmogorov et al.

[8] and has been used in many areas of mathematics.

Definition 6 (Covering Number) Let (M, d) be a metric space and let F ⊂M. For every

ε > 0, the set {y1, . . . , yn} is called an ε-cover of F if every f ∈ F has some yi such that

d(f, yi) < ε. The covering number N (ε,F , τ) is the minimum cardinality of a ε-covering set

for F with respect to the metric τ .

To characterise the size of the function class F in machine learning, we are interested in the

metrics endowed by the samples; for every sample {x1, . . . , xn} ∈ X , let µn = n−1
∑n
i=1 δxi

be the empirical measure supported on that sample. For 1 ≤ p <∞ and a function f , denote

‖f‖Lp(µn) =
(
n−1

∑n
i=1 |f(xi)|p

)1/p
and ‖f‖∞ = max1≤i≤n |f(xi)|. Then, N (ε,F , Lp(µn)) is

the covering number of F at scale ε with respect to the Lp(µn) norm.

Definition 7 (Entropy Number) For every class F , 1 ≤ p ≤ ∞ and ε > 0, let

Np(ε,F , n) = sup
µn

N (ε,F , Lp(µn)) ,

and

Np(ε,F) = sup
n

sup
µn

N (ε,F , Lp(µn)) .

We call logNp(ε,F , n) the entropy number of F with respect to Lp(µn) and logNp(ε,F) the

uniform entropy number.

Bartlett and Mendelson [9] considered the techniques of concentration of measures for

empirical processes and proposed a random average quantity—Rademacher complexity, which

capture the size of the uGC class more directly and leads to sharp complexity bounds.

Definition 8 (Rademacher Complexity¶[73, 9, 74]) Let µ be a probability measure on X
and F be a set of uniformly bounded functions on X . For every positive integer n, define

Rn(F) = E sup
f∈F

1√
n

∣∣∣∣∣
n∑
i=1

γif(xi)

∣∣∣∣∣ ,
where {xi}ni=1 are independent random variables distributed according to µ and {γi}ni=1 in-

dependently takes values in {−1,+1} with equal probability (which are also independent of

{xi}ni=1). The quantity Rn(F) is called the Rademacher complexity associated with the class

F .

¶ Some authors define the Rademacher complexity with the normalization term as n rather than
√
n. Here we

follow the notation used in Ref. [74], which is more convenient to bound the sample complexity (e.g. Eq. (7)).
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We remark that the complexity measures can be related among each other [75, 76, 77]:

fatF (ε) . logN2(ε,F , n) .
R2
n(F)

ε2
. fatF (ε) · log

(
1

ε

)
.

To sum up the results we have presented so far, the complexity measures, such as the

combinatorial parameters (e.g. VC dimension and fat-shattering dimension), covering numbers

and the Rademacher complexity of the hypothesis set control the rate of uniform convergence.

By computing those quantities of the given hypothesis set and according to Eqs. (4), (5), (6)

and (7) in Section 2.3, we can estimate the bounds on the sample complexity of the learning

problems.

2.3. Sample Complexity in Terms of Complexity Measure

Previously, we introduce several complexity measures. In this section, we list some well-known

deviation formula to express the generalisation error and sample complexity in terms of those

complexity measures.

It has been established that any set of Boolean functions is a uGC class (i.e. PAC learnable)

if and only if it has a finite VC dimension [78, 79]. Additionally, the finite VC dimension

provides an upper bound for the sample complexity of the Boolean function class.

Theorem 4 (Vapnik et al. [78, 79, 9]) Let C be an absolute constant and F be a class of

Boolean functions which has a finite VC dimension d. Then, for every 0 < ε, δ < 1,

sup
µ

Pr

{
sup
f∈F

∣∣∣L(f)− L̂n(f)
∣∣∣ ≥ ε} ≤ δ,

provided that n ≥ C
ε2 (d log(2/ε) + log(2/δ)).

Therefore, the sample complexity is bounded by

mF (ε, δ) ≤ C

ε2
max

{
d log

1

ε
, log

1

δ

}
. (4)

Following the same reasoning as in Theorem 4, the analogous results can be drawn: the

hypothesis set F is a uGC class if and only if it has a finite fat-shattering dimension for every

ε > 0 [80, 7, 77]. We have the following theorem:

Theorem 5 (Bartlett et al. [80, 7, 77]) There is an absolute constant C such that for

every F consisting of bounded functions and every 0 < ε, δ < 1,

sup
µ

Pr

{
sup
f∈F

∣∣∣L(f)− L̂n(f)
∣∣∣ ≥ ε} ≤ δ,

provided that n ≥ C
ε2 (fatF (ε/8) · log(2/ε) + log(8/δ)).

Therefore, the sample complexity is bounded by

mF (ε, δ) ≤ C

ε2
max

{
fatF (ε) · log

1

ε
, log

1

δ

}
. (5)
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The entropy number is distribution-independent and is closely related to the learnability

of the function class. Dudley et al. [81] showed that a class F consisting of bounded functions

is a uGC class if and only if that there is some 1 ≤ p ≤ ∞ such that for every ε > 0,

lim
n→∞

logNp(ε,F , n)

n
= 0.

In addition, we have the following theorem:

Theorem 6 (Polland [72]) Let F be a set of bounded functions.

(i) For every 0 < ε < 1, any n ≥ 8/ε2, and any probability measure µ,

Pr

{
sup
f∈F

∣∣∣L(f)− L̂n(f)
∣∣∣ ≥ ε} ≤ 8N1(ε/8,F , n) exp

(
−nε

2

128

)
.

(ii) For every 0 < ε, δ < 1,

sup
µ

Pr

{
sup
f∈F

∣∣∣L(f)− L̂n(f)
∣∣∣ ≥ ε} ≤ δ,

provided that n ≥ C
ε2 (logN1(ε,F) + log(2/δ)).

Therefore, the sample complexity is bounded by

mF (ε, δ) ≤ C

ε2
max

{
N1(ε,F), log

1

δ

}
. (6)

Theorem 7 (Bartlett and Mendelson [9]) For any 0 < δ < 1, with probability at least

1− δ and for all f ∈ F we have,

Pr

{
sup
f∈F

∣∣∣L(f)− L̂n(f)
∣∣∣ ≥ ε} ≤ δ,

provided that n ≥ C
ε2 max {Rn(F), log(1/δ)}.

Therefore, the sample complexity is bounded by

mF (ε, δ) ≤ C

ε2
max

{
Rn(F), log

1

δ

}
(7)

3. The Framework for Learning Matrices in Schatten Class and the Quantum

Learning Model

This section proposes a framework of learning unknown matrix elements in the Schatten

classes. Specifically, for every 1/p + 1/q = 1, we aim to learn a target matrix W ∈ Sdq with

the input X ∈ Sdp and the corresponding label

fW : X 7→ 〈W,X〉 .
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We connect the problem of learning matrices in the Schatten class with learning (real-valued)

linear functionals on the input space in Section 3.1. Afterwards, we unify the two quantum

learning problems at hand into learning linear functionals in Section 3.2. We also provide

a justification of the the proposed quantum learning model in practical situations. The

interested readers can refer to Appendix B.

3.1. Learning Linear Functionals on Banach Space

According to the duality theorem between bounded operators and trace class operators

(see Theorem 8 below), we can identify the element in the Banach space as the membership

in the dual space of the input space, i.e. linear functionals on the input space. For example,

assume the input space is the unit ball of the Schatten p-class, i.e. X = Sdp . Then the

hypothesis set can be represented as the linear functionals that are polar‖to Sdp , i.e. for all

x ∈ Sdp and 1/p+ 1/q = 1,

F =
{
x 7→ 〈E, x〉 : E ∈ Sdq

}
=
(
Sdp
)◦
.

Under this duality formalism, the problems of estimating the complexity measures of the

subset in a Banach space can be transformed into the following question: Whether a set of

linear functionals is agnostic PAC learnable?

Theorem 8 (Duality of Bounded Operator and Trace class [82, Thm. 19.1 & 19.2])

Fix a Hilbert space H. The map E 7→ fE is an isometric isomorphism from the space of

bounded operators, B(H), to the dual space of the set of trace classes operators, T (H)∗. Con-

versely, the map ρ 7→ fρ is an isometric isomorphism from T (H) to B(H)∗.

Mendelson and Schechtman [83] first investigated the fat-shattering dimension of sets of

linear functionals on Banach space and proposed the following useful result.

Lemma 1 (Mendelson and Schechtman [83, Coro. 3.2]) The set S = {x1, . . . , xn} ⊂
BX is ε-shattered by BX∗ if and only if {xi}ni=1 are linearly independent and for every

a1, . . . , an ∈ R,

ε

n∑
i=1

|ai| ≤

∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥
X

,

where BX is the unit ball of some Banach space X and BX∗ is its dual unit ball.

By restricting the values of the set {ai}ni=1 to {+1,−1}, the core idea of Lemma 1 is to

calculate the Rademacher series on the Banach space, where the n points Rademacher series

‖In convex analysis, a convex body K ⊂ Rn is a convex compact set with nonempty interior. The gauge of a
convex body K, also known as the Minkowski functional, is defined by ‖x‖K := inf{t ≥ 0 : x ∈ tK}. If K is
symmetric with respect to the origin (−K = K), then K is a unit ball associated with the norm ‖ · ‖K and
the inner product 〈·, ·〉. We define the polar of K as

K◦ =

{
x ∈ Rn : sup

k∈K
〈k, x〉 ≤ 1

}
.

In the symmetric case, K◦ is the unit ball of the dual space of (Rn, ‖ · ‖K). Here, Sd
1 is a unit ball of Schatten

1-class and Sd
∞ is a unit ball of Schatten ∞-class. Considering the Hilbert-Schmidt inner product, Sd

1 and
Sd
∞ are polar to each other.
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on X is defined as
∑n
i=1 γixi, where {γi}ni=1 are the symmetric {+1,−1}-valued random

variables. Additionally, with the following duality formula for the Schatten p-norm, we can

estimate the range of the linear functional, which is helpful to further derive the complexity

measures.

Theorem 9 (Duality Formula for ‖A‖p [84, Theorem 7.1]) For all p ≥ 1, define q by

1/q + 1/p = 1. Then for all A ∈Md,

‖A‖p = sup
B∈Md

{Tr(BA) : ‖B‖q = 1} .

The techniques from Mendelson and Schechtman (Lemma 1) and the duality formula

(Theorem 9) can be used to upper bound the fat-shattering dimension and the Rademacher

complexity via the Rademacher series. What remains is to compute the Rademacher series

on the Banach space for both complexity measures, and we leave the details to Sections 4 and

5.

3.2. The Quantum Learning Problem as learning Linear Functional on Matrices

Recall that a physical theory aims to predict events observed in the experiments by de-

scribing three types of apparatus: preparation, transformation, and measurement. The prepa-

ration process of a system can be embodied by a state, while an effect is a measurement that

produces either ‘yes’ or ‘no’ outcomes in order to observe the physical experiment. However,

according to the statistical nature of Quantum Theory, only probabilities of the occurrence

can be predicted (counting multiple measurements). More precisely, assume that a system

is prepared in the state ρ ∈ Q(H). Then the outcome of every two-outcome measurement

E ∈ E(H) takes the form of the probability distribution:

fE(ρ) = Tr(Eρ) = 〈E, ρ〉 ∈ [0, 1].

Note that it is indeed a linear functional on the state space, i.e. fE : Q(H)→ R. In ML, such

[0, 1]-valued functions are called probabilistic concepts [73].

The following proposition establishes the one-to-one correspondence between fE ↔ E.

Proposition 1 ([85, Prop. 2.30]) Given a Hilbert space H, let fE be an effect, i.e. a linear

map from Q(H) to the interval [0, 1]. Then there exists a bounded operator E ∈ E(H) such

that

fE(ρ) = Tr(Eρ) = 〈E, ρ〉 ∀ρ ∈ Q(H).

Furthermore, the operator E is unique in the following sense. Let E1, E2 ∈ E(H). If

〈ϕ,E1ϕ〉 = 〈ϕ,E2ϕ〉 for every |ϕ〉 ∈ H, then E1 = E2.

The proposition states that every two-outcome measurement can be identified as a linear

functional on the state space. Consequently, the problem of learning an unknown (two-

outcome) quantum measurement is equivalent to learning a real-valued linear functional on

quantum states. Here and subsequently, we call an effect to represent either the linear func-

tionals on Q(H) or the two-outcome measurement E ∈ E(H).

Conversely, if the measurement apparatus is chosen as some E ∈ E(H), then the measure-

ment outcome of every state ρ is distributed as

fρ(E) = Tr(ρE) = 〈ρ,E〉 ∈ [0, 1].
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Therefore, we take the state space as the set of linear functionals on the effect space by the

following proposition:

Proposition 2 ([86]) Given a Hilbert space H, let fρ be probability measure on E(H). Then

there exists a quantum state ρ ∈ Q(H) such that

fρ(E) = Tr(ρE) = 〈ρ,E〉 ∀E ∈ E(H).

Furthermore, different ρ1, ρ2 ∈ Q(H) determines different probability measures, i.e. there

exists an operator E ∈ E(H) such that Tr(Eρ1) 6= Tr(Eρ2).

Similarly, according to the one-to-one correspondence between ρ↔ fρ, learning an unknown

quantum state coincides with learning a real-valued linear functional on the effect space.

4. Learning Quantum Measurements

In this section, we follow the quantum learning framework presented in Section 3 and

explicitly show how to derive the upper bound for the fat-shattering dimension, Rademacher

complexity and the covering/entropy number. We then discuss how the relation of the com-

plexity measures and quantum state discrimination.

Recall that, in the problem of learning an unknown quantum measurement, the goal

is to learn a fixed but unknown effect Π ∈ E(Cd) through the training data set is Zn =

{(ρi,Tr(Πρi))}ni=1, where {ρi}ni=1 ∈ Q(Cd) ≡ X distribute independently according to the

unknown measure µ. Note that learning Π is equivalent to learning a two-outcome POVM

{Π, I − Π}. Due to the correspondence between a quantum effect E ∈ E(Cd) and the linear

functional fE : ρ 7→ 〈E, ρ〉 on the input space X (Proposition 1), we consider the hypothesis

set that consists of all quantum effects∗∗; that is,

F = {fE : E ∈ E(Cd)}.

In the following, we present our main result to the question: “how many quantum states

are needed to learn a quantum measurement?” This is exactly the sample complexity problem

introduced in Section 2.1. To tackle this problem, we have to estimate the complexity measures

that characterise the size of the hypothesis set.

4.1. The Fat-Shattering Dimension for Learning Quantum Measurements

Our first step is to use a common trick in convex analysis; namely, “symmetrisation” of the

state space and the effect space, to embed them into a subset of the Banach space. In other

words, the symmetric convex hull of the state space is contained in a unit ball of Schatten

1-class:

Sd1 ⊂ conv(−Q(Cd) ∪Q(Cd)),

where conv(·) denotes the convex hull operation. Similarly, we have

Sd∞ ⊂ conv(−E(Cd) ∪ E(Cd)).
∗∗The hypothesis set can be chosen as a subset of the effects space, to which the target effect Π may not
belong. Then the goal is to choose an effect in the hypothesis set that approximates the target well. We
discuss this issue in Section 6. Also note that we sometimes denote F as the subset of E(Cd) and sometimes
denote it as the linear functionals formed by that subset.
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Now the input space X ⊂ Sd1 and the hypothesis set F consists of linear functionals which

can be paremeterised by the elements in Sd∞. That is,

F = {fE : E ∈ Sd∞}.

The main reason for introducing Sd1 and Sd∞ is that they are unit balls which are polar to

each other (through the Hilbert-Schmidt inner product). Thus, we can apply Mendelson and

Schechtman’s result (Lemma 1) to estimate the fat-shattering dimension.

The following is our main result in this section.

Theorem 10 (Fat-Shattering Dimension for Learning Quantum Measurements)

For all 0 < ε < 1/2, and integer d ≥ 2, we have

Pdim(E(Cd)) ≤ d2,

and

fatE(Cd)(ε,Q(Cd)) = min{O(d/ε2), d2}.
The operational meaning of the two quantities in Theorem 10 will become clear in Sections

4.4 and 5.4, where the pseudo-dimension and fat-shattering dimension are related to tasks of

the quantum set discrimination and quantum random access codes, respectively.

Proof: We first present the outline of the proof. According to the definition of the fat-

shattering dimension, it follows that the function fatF (ε) is non-increasing in ε. Hence, our

first objective is to check whether the fat-shattering dimension is unbounded for arbitrarily

small ε. Equivalently, it suffices to find the pseudo dimension which bounds the fat-shattering

dimension (Theorem 3). Second, assume there is a set of n points that can be ε-shattered;

we will find an inequality to relate n with ε, which proves our claim.

(i) Pseudo Dimension: Since Md is a vector space with dimension d2 and Sd∞ is a subset

of Md, we can embed Sd∞ into a real vector space of dimension d2. Hence, by Theorem 2 we

obtain Pdim(F) ≤ d2.

(ii) Fat-Shattering Dimension: Consider any set S = {x1, . . . , xn} ⊂ Sd1 is ε-shattered by

Sd∞, where n ≤ d2. Denote a Rademacher series as
∑n
i=1 γixi, where {γi}ni=1 are independent

and uniform {+1,−1} random variables (also called Rademacher random variables). By

selecting ai = γi in Lemma 1, we have

εn ≤

∥∥∥∥∥
n∑
i=1

γixi

∥∥∥∥∥
1

. (8)

We adopt a probabilistic method to upper bound the right-hand side of Eq. (8). If we can find

a quantity C(n, d) that upper bounds E ‖
∑n
i=1 γixi‖1, then there is a realization of {γi}ni=1

such that ‖
∑n
i=1 γixi‖1 ≤ C(n, d). As a result, it remains to find an upper bound for the

expected norm of the Rademacher series E ‖
∑n
i=1 γixi‖1.

In order to upper bound the Rademacher series, we need the powerful Noncommutative

Khintchine Inequalities [87]:

Proposition 3 (Noncommutative Khintchine Inequalities [87, 88]) Let {xi}ni=1 be de-

terministic d× d matrices, {γi}ni=1 be independent Rademacher random variables. Then

E

∥∥∥∥∥
n∑
i=1

γixi

∥∥∥∥∥
p

≈p


(
‖(
∑n
i=1 xix

†
i )

1/2‖pp + ‖(
∑n
i=1 x

†
ixi)

1/2‖pp
)1/p

, if 2 ≤ p <∞

infxi=ai+bi

(
‖(
∑n
i=1 aia

†
i )

1/2‖pp + ‖(
∑n
i=1 b

†
i bi)

1/2‖pp
)1/p

, if 1 ≤ p ≤ 2.
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where ≈p means that the equality holds up to an absolute constant depending on p, and †

denotes the complex conjugate operation.

Note that Haagerup and Musat [88] proved that the result also holds as {γi}ni=1 are inde-

pendent standard complex Gaussian random variables

By Proposition 3, it is not hard to obtain the following inequality:

E

∥∥∥∥∥
n∑
i=1

γixi

∥∥∥∥∥
1

.

∥∥∥∥∥∥
(

n∑
i=1

x2
i

)1/2
∥∥∥∥∥∥

1

.

Since the square operation preserves Sd1 , i.e. x2
i ∈ Sd1 , for all xi ∈ Sd1 , by the convexity of Sd1 ,

we have 1
n

∑n
i=1 x

2
i ∈ Sd1 . Then the problem is reduced to finding

max
{xi}∈Sd

1

√
n

∥∥∥∥∥∥
(

1

n

n∑
i=1

x2
i

)1/2
∥∥∥∥∥∥

1

= max
x∈Sd

1

√
n‖
√
x‖1,

which is essentially a convex optimization problem

max
x∈Sd

1

√
n

d∑
j=1

√
|λi|, subject to

d∑
j=1

|λj | = 1.

Since the square root is concave, we attain the maximum when |λj | = 1/d, for j = 1, . . . , d.

That is,

E

∥∥∥∥∥
n∑
i=1

γixi

∥∥∥∥∥
1

. max
x∈Sd

1

√
n

d∑
i=1

√
λi =

√
nd. (9)

Consequently, there is a realization of {γi}ni=1 such that ‖
∑n
i=1 γixi‖1 ≤

√
nd, ∀xi ∈ Sd1 .

Combined with Eq. (8), we have n ≤ d/ε2 which proves our claim.

In the following proposition, we will demonstrate that the upper bound of the fat-shattering

dimension in Theorem 10 is tight.

Proposition 4 Considering a Hilbert space Cd, there exist infinitely many sets of d quantum

states that can be 1/2-shattered by the effect space.

Proof: Consider arbitrary dmutually orthogonal rank-1 projection operators (i.e. pure states)

{ρi}di=1 on Cd as the input states. Now for every B ⊆ {1, . . . , d}, denote fB : ρ→ 〈
∑
i∈B ρi, ρ〉,

for some ρ ∈ Q(Cd). Note that one can easily check
∑
i∈B ρi ∈ E(Cd). Then for i ∈ B, we

have

fB(ρi) =

〈∑
i∈B

ρi, ρ

〉
= 〈ρi, ρi〉
= 1.

Similarly, fB(ρi) = 0 if i /∈ B. As a result, {ρi}di=1 is 1/2-shattered by {fB}.



634 The Learnability of Unknown Quantum Measurements

4.2. The Rademacher Complexity

Following the paradigm in Section 4.1, we calculate the Rademacher complexity of the ef-

fect space E(Cd) via the duality formula, Theorem 9, and the noncommutative Khintchine

inequality, Proposition 3.

Theorem 11 (Rademacher Complexity for Learning Quantum Measurements)

Assume the input space is the state space X = Q(Cd) and the hypothesis set F = {fE : ∀E ∈
E(Cd)}. Then the Rademacher complexity is

Rn(E(Cd)) = O
(√

d
)
.

Proof:

Recall the definition of the Rademacher complexity (Definition 8). We have

√
nRn(Sd∞) = E sup

E∈Sd
∞

∣∣∣∣∣
n∑
i=1

γifE(xi)

∣∣∣∣∣
= E sup

E∈Sd
∞

∣∣∣∣∣
n∑
i=1

γi〈E, xi〉

∣∣∣∣∣
= E sup

E∈Sd
∞

∣∣∣∣∣
〈
E,

n∑
i=1

γixi

〉∣∣∣∣∣
≤ E

∥∥∥∥∥
n∑
i=1

γixi

∥∥∥∥∥
1

.
√
nd.

The third line is due to the duality formula (Theorem 9), and the last relation follows from

Eq. (9). This completes the proof.

4.3. The Entropy Number

The covering number (and the related entropy number) follows directly from the Rademacher

complexity by the Sudakov’s minoration theorm (see e.g. [19]).

Corollary 1 (Entropy Number for Learning Quantum Measurements) Assume the

input space is the state space X = Q(Cd) and the hypothesis set F = {fE : ∀E ∈ E(Cd)}.
Then for each ε > 0, the covering number of the function class is

logN2(ε, E(Cd), n) = O(d/ε2)

for all positive integers n.

Proof: The upper bound of the empirical L2 entropy number by the Rademacher complexity

follows directly from the Sudakov’s minoration theorem:

Theorem 12 (Sudakov’s Minoration Theorem [76, 89, 90]) Let T be an index set. Let

X = (Xt)t∈T be a sub-Gaussian process††with L2-metric dX (i.e. dX(s, t) = ‖Xs −Xt‖2) for

††A stochastic process is called sub-Guassian if there exists σ > 0 such that E exp(θXt) ≤ exp(σ2θ2/2) for all
θ ∈ R and t ∈ T . Note that both Gaussian process and Rademacher process belong to sub-Gaussian process.
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s, t ∈ T ). Then for each ε > 0,

ε(logN (ε, T , dX))1/2 ≤ CE sup
t∈T
‖Xt‖1,

for some constant C.

Denote the (vector-valued) stochastic process by

Xf :=
1√
n

(γ1f(x1), . . . , γnf(xn)),

where x1, . . . , xn are independently drawn from X according to some distribution µ. Then

the distance measure can be calculated as

dX(f, g) = ‖Xf −Xg‖2 =
1√
n

(
n∑
i=1

|f(xi)− g(xi)|2
)1/2

= ‖f − g‖L2(µn) .

Invoke Theorem 12 and 11 to obtain

logN (ε,F , L2(µn)) = logN (ε,F , dX)

≤ C2

(
E supf∈F ‖Xf‖1

)2
ε2

= C2Rn(F)2

ε2

≤ C2 d

ε2
.

Note that the right-hand side in the last line does not depend on the distribution µ. Hence

the entropy number logN2(ε,F , n) = supµn
logN (ε,F , L2(µn)) = O(d/ε2) follows.

Remark. The pseudo dimension of the effect space Pdim(Cd) = d2 means that we need d2

parameters to exactly determine a POVM element. Note that it coincides with the number of

measurements in the quantum measurement tomography (since E(Cd) lies in a d2-dimensional

real vector space).

On the other hand, the covering number provides a geometric perspective in the learning

problem. That is, if we relax the criterion by tolerating an ε accuracy, then the effect space

can be covered by N2(ε, E(Cd)) = exp(d/ε2) balls each with radius ε. In other words, we

need logN2(ε, E(Cd)) ≤ d/ε2 samples to identify which ball the target POVM element lies in.

Consequently, the entropy number guarantees that we can specify a POVM element, satisfying

the “PAC” criterion with accuracy ε and confidence δ, with only d/ε2 samples. This provides

a quadratical speed-up over conventional quantum tomography.

4.4. The Relationship to Quantum State Discrimination

Quantum State Discrimination studies how to optimally distinguish a set of quantum

states according to a figure of merit [91, 92].

There are nevertheless some limitations in quantum state discrimination because the states

cannot always be perfectly discriminated. Moreover, it may not be necessary to find the exact
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state in some scenario. Therefore, Zhang and Ying [93] considered quantum set discrimination,

where the goal is to identify which set the given state belongs to. Now we relate the concepts

of the fat-shattering dimension to quantum set discrimination.

Definition 9 (ε-separable Set) A set S = {x1, . . . , xn} ⊂Md is ε-(linearly) separable with

respect to the set W ⊆ Md if and only if for any subset B ⊆ S there exists an ε-strip which

separates B from its complement S \ B. In other words, there exist w ∈ W and a ∈ R such

that 〈w, x〉 ≥ a+ ε/2 when x ∈ B and 〈w, x〉 ≤ a− ε/2 when x ∈ S \B.

It is not difficult to see that an 2ε-separable set correspond to the task of quantum set

discrimination with ensemble S = {x1, . . . , xn}, where the error probability that a given state

can be classified to a set is no greater than (1− ε)/2. One interesting question to ask is what

the maximum cardinality of the 2ε-separable set is. The following proposition shows that the

fat-shattering dimension equals this quantity.

Proposition 5 Denote the function class F = {ρ → 〈E, ρ〉 : E ∈ E(Cd)}. Assume there

exists a set S = {x1, . . . , xn} ⊂ Q(Cd) that is 2ε-separable with respect to E(Cd). Then the

maximum cardinality of the set S is fatF (ε).

Proof: Recall from Definition 5 that the set S = {x1, . . . , xn} is 2ε-separable with respect

to E(Cd) if and only if fatε(F) ≥ n. Then the proposition is equivalent to show that fatε(F) =

fatε(F).

Because fatε(F) ≤ fatε(F) by definition, it suffices to show fatε(F) ≥ fatε(F). Given

ε > 0, choose a set S = {x1, . . . , xn} with the largest integer n such that S is ε-shattered

by F (with {si}ni=1 witnessing the shattering). Without loss of generality, we assume some

si 6= 1/2. We then choose an arbitrary subset B ⊆ {1, . . . , n} that contains i. By the definition

of fat-shattering dimension, there exists si := s(xi) such that there is some function EB ∈ F
for each set B ⊂ S so that 〈EB , xi〉 ≥ si + ε, if i ∈ B. Also, we have 〈EB̄ , xi〉 ≤ si − ε, where

B̄ = S \B. Now denote EB̄ := I − EB̄ such that

〈EB̄ , xi〉 = 1− 〈EB̄ , xi〉 ≥ 1− si + ε.

Since F is convex, set E′B := 1
2 (EB + EB̄) ∈ F which satisfies

〈E′B , xi〉 ≥ 1/2 + ε.

Similarly, let E′
B̄

:= I − E′B , we have

〈E′B̄ , xi〉 ≤ 1/2− ε.

The same argument holds for other si 6= 1/2. It follows that the level fat-shattering dimension

(witnessed by 1/2) also achieves the cardinality n of the ε-shattered set, which completes the

proof.

5. Learning Quantum States

In this section, we consider the problem of learning an unknown quantum state ρ′ ∈ Q(Cd)
through the training data set Zn = {(Ei,Tr(ρ′Ei))}ni=1, where {Ei}ni=1 ∈ X = E(Cd) are

independently sampled according to an unknown distribution µ′. By Proposition 2, the

hypothesis set consists of the linear functional fρ : E 7→ 〈E, ρ〉 on E(Cd):

F ′ = {fρ : ∀ρ ∈ Q(Cd)}.
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Similarly, we embed the input space into the unit ball of Schatten ∞-class, i.e. X = Sd∞.

Then the hypothesis set is the collection of linear functionals on the input space, i.e. Sd1 .

In the following, we aim to calculate the complexity measures of Sd1 , which characterise the

sample complexity of learning quantum states. It is interesting to see that the proofs derived

in this section (i.e. the complexity measures of learning quantum states) parallel with that in

the previous section (i.e. the complexity measures of learning quantum measurements) due to

the duality relation in Theorem 8. Finally, we discuss the relationship of the fat-shattering

dimension with quantum random access codes.

5.1. The Fat-Shattering Dimension for Learning Quantum States

Under the framework presented in Section 3, we characterising the input space X ⊂ Sd∞ and

the hypothesis set F ′ consisting of the linear functionals with elements in Sd1 . That is,

F ′ = {fρ : ρ ∈ Sd1}.

Therefore, we have the main result of deriving the fat-shattering dimension of the state

space.

Theorem 13 (Fat-Shattering Dimension for Learning Quantum States) For all 0 <

ε < 1/2 and integer d ≥ 2, we have

Pdim(Q(Cd)) ≤ d2 − 1,

and

fatQ(Cd)(ε, E(Cd)) = min{O(log d/ε2), d2 − 1}.
Proof: Following the same fashion as in the proof of Theorem 10, we first estimate the pseudo

dimension and then the fat-shattering dimension.

(i) Pseudo Dimension: The state space lies in the set {x ∈ Md : ‖x‖1 = 1}, which is

the sphere of Sd1 , i.e. Q(Cd) ⊂ ∂Sd1 . Since ∂Sd1 can be embedded into a real vector space of

dimension d2 − 1, we have Pdim(Q(Cd)) ≤ d2 − 1.

(ii) Fat-Shattering Dimension: For every {xi}ni=1 ∈ Sd∞, we have to calculate the Rademacher

series E ‖
∑n
i=1 γixi‖∞. However, in the scenario of learning quantum states the input space

lies in the Schatten ∞-class. We have to estimate the spectral norm of the Rademacher se-

ries. Benefiting from the recent development of matrix concentration inequalities, Tropp [20]

proved the following results:

Proposition 6 (Upper Bound for Rademacher Series [20]) Consider a finite sequence

{xi} of deterministic Hermitian matrices with dimension d, and let {γi} be independent

Rademacher variables. Form the matrix Rademacher series

Y =
∑
i

γixi.

Compute the variance parameter

σ2 = σ2(Y ) = ‖E
(
Y 2
)
‖∞.

Then

E‖Y ‖∞ ≤
√

2σ2 log d.

Note that the result also holds for the case {γi} being standard complex Gaussian variables.
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Invoking Tropp’s development of matrix concentration inequalities (see Proposition 6), we

have

E

∥∥∥∥∥
n∑
i=1

γixi

∥∥∥∥∥
∞

≤
√

2σ2 log d, (10)

where σ2 :=
∥∥∥E (

∑n
i=1 γixi)

2
∥∥∥
∞

. Straightforward computation shows that

σ2 =

∥∥∥∥∥∥E
(

n∑
i=1

γixi

)2
∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥E
∑

i,j

γiγjxixj

∥∥∥∥∥∥
∞

=

∥∥∥∥∥
n∑
i=1

x2
i

∥∥∥∥∥
∞

≤ n.

We get

E

∥∥∥∥∥
n∑
i=1

γixi

∥∥∥∥∥
∞

≤
√

2n log d.

Then there is a realization of {γi}ni=1 such that ‖
∑n
i=1 γixi‖∞ ≤

√
2n log d, ∀xi ∈ Sd∞.

From Lemma 1, by selecting ai = γi, εn ≤ ‖
∑n
i=1 γixi‖∞. Combining the inequalities, we

have n ≤ O(log d/ε2) completing the proof.

5.2. The Rademacher Complexity

By repeating the procedure introduced in Section 4.2, we can compute the Rademacher com-

plexity of the state space.

Theorem 14 (Rademacher Complexity for Learning Quantum States) Assume the

input space is the effect space X = E(Cd). The hypothesis set F defined on X is the state

space Q(Cd). Then the Rademacher complexity of hypothesis set is

Rn(Q(Cd)) = O
(√

log d
)
.

Proof: Recall from the definition of the Rademacher complexity. We have

√
nRn(Sd1 ) = E sup

ρ∈Sd
1

∣∣∣∣∣
n∑
i=1

γifρ(Ei)

∣∣∣∣∣
= E sup

ρ∈Sd
1

∣∣∣∣∣
n∑
i=1

γi 〈Ei, ρ〉

∣∣∣∣∣
= E sup

ρ∈Sd
1

∣∣∣∣∣
〈

n∑
i=1

γiEi, ρ

〉∣∣∣∣∣
≤ E

∥∥∥∥∥
n∑
i=1

γiEi

∥∥∥∥∥
∞

.
√
n log d.

The forth line is due to the duality formula, Theorem 9. The last relation follows from

Eq. (10), which completes the proof.
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5.3. The Entropy Number

Corollary 2 (Entropy Number for Learning Quantum States) Assume the input space

is X = E(Cd). The function class F defined on X is the state space Q(Cd). Then for each

ε > 0, the covering number of the function class is

logN2(ε,Q(Cd), n) = O(log d/ε2).

for all positive integers n.

Compared with the entropy number of the effect space, the result of the state space is

proportional to the logarithmic dimension. The intuition behind this is that the unit ball

of Schatten ∞-class is much larger than the unit ball of Schatten 1-class. Thus, it requires

more ε-radius ball to cover the whole effect space than the state space. From the volumetric

perspective, the fact will be more evident. Denote | · | as the Lebesgue measure on the

Banach space of the Schatten class. The volume of the Schatten balls are estimated to be

|Sdp | ' d−1/2−1/p for 0 < p ≤ ∞ [94]. Hence, it can be calculated that (see also [95]):

|E(Cd)|1/d2

|Q(Cd)|1/(d2−1)
'
(
|Sd∞|
|Sd1 |

)1/d2

' d,

which shows that the volume of the effect space is essentially exponential (in the dimension

d) to the state space. Recall that the complexity measures are the quantity to estimate the

effective size of the hypothesis set. Accordingly, it is reasonable that the complexity measures

of the effect space are exponentially compared with that of the state space. In other words,

the results of Theorem 10 demonstrate the richness of the effect space.

5.4. The Relationship to Quantum Random Access Coding

The learnability of quantum states was first addressed by Aaronson [14]. Ingeniously, he

applied the results of Quantum Random Access coding [15] to provide an information-theoretic

upper bound on the fat-shattering dimension for learning m-qubit quantum states. We first

give the definitions of QRA coding then discuss Aaronson’s result.

Definition 10 (Quantum Random Access Coding) An (n,m, p)-QRA coding is a func-

tion that maps n-bit strings x ∈ {0, 1}n to m-qubit states ρx satisfying the following: For every

i ∈ {1, . . . , n} there exists a POVM Ei = {Ei0, Ei1} such that Tr(Eixi
ρx) ≥ p for all x ∈ {0, 1}n,

where xi is the i-th bit of x.

If there exists an (n,m, p)-QRA coding, we have the fact that the sets {Ei}ni=1 are (p−1/2)-

shattered by {ρy} and the constant value 1/2 witnesses the shattering. That is,

m ≥ (1−H(ε+ 1/2))n ≥ c · ε2n. (11)

Therefore, the inequality gives an upper bound on the level fat-shattering dimension, i.e.

fatQ(Cd)(p − 1/2) = O(m/ε2). Conversely, the fat-shattering dimension with scale (p − 1/2)

does not guarantee the existence of an (n,m, p)-QRA coding (since there may be some αi <

1/2), while provide an upper bound on the success probability p if it exists.
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However, in the case that functions in F have a bounded range of [0, 1], Gurvits [10] utilized

the Pigeonhole principle to relate the level fat-shattering dimension with the fat-shattering

dimension.

Theorem 15 (Gurvits [10]) For any hypothesis set F consisting of [0, 1]-valued functions,

we have

(2(1− 2ε)/ε)−1fatF (2ε) ≤ fatF (ε/2) ≤ fatF (ε/2). (12)

By definition, fatF (ε) ≤ fatF (ε). However, from the above theorem, the dependencies on

the dimension d are of the same order for both the level fat-shattering dimension and the fat-

shattering dimension. Consequently, from Eq. (11) we have fatF (ε) = O(m/ε2), which leads

to fatF (ε) = O(m/ε2) according to the inequalities in Eq. (12). Thus we recover Aaronson’s

result.

Theorem 16 (Aaronson [14]) The fat-shattering dimension for learning the class of all

m-qubits, F , is fatF (ε) = O(m/ε2).

We remark that it is unknown whether fatF (ε) = fatF (ε) for F = Q(Cd).
Proposition 7 There is no (22m,m, p)-QRA coding for 1/2 < p ≤ 1 and positive integer m.

Hayashi et al. [18] showed that there is no (22m,m, p)-QRA coding for 1/2 < p ≤ 1. This

result can be directly derived from Theorem 13, which shows that Pdim(Q(Cd)) ≤ d2 − 1.

The dimension d of m-qubit is 2m. Then the upper bound of the pseudo dimension shows

that there is no d2 = 22m two-outcome POVMs that can be shattered (by the function class

of the state space), which coincides with Hayashi et al’s result.

6. The Algorithms for Quantum Machine Learning

In the previous sections, we demonstrate the information-theoretical analysis of the quan-

tum learning problems. In this section, provide a constructive way to implement quantum

ML tasks by representing the learning framework in Bloch space.

We gather all the materials and derivations concerning the Bloch-sphere representation

into Appendix C. Recall from Eq. (C.5) that the function class of rank-k effects and their

mixture can be represented as the following affine functional:

Fk = conv

(
{r 7→ k

d

(
1 + (d− 1)r · n(k)

)
}
)
,

where r is the Bloch vector of the quantum state; n(k) (see Eq. (C.2)) parameterises the

function in the hypothesis set Fk. Moreover, it can in turn be written as

Fk = σ(v · r + v0),

where σ : R → R is called the activation function. The Bloch vector r ∈ Rd2−1 is the input

vector; [v0,v] ∈ Rd2 is the input weights. Each map r 7→ σ(v · r + v0) can be thought of

as a function computed by the linear perceptron. Using the terminology from the theory of

neural network [62], each Fk is called the single-layer neural network (see Appendix D for

more details).
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Considering the function class of the whole effect space, we exploit the convexity of the

effect space, and obtain the following result:

F =

d∑
k=0

wk · k
d

(
1 + (d− 1)r · n(k)

)
=:

1

d
(n0 + (d− 1)r · n) , (13)

where
∑d
k=0 wk = 1. This is called the two-layer neural network (also called the single-hidden

layer net). Based on this formulation, the task of learning Schatten ∞-norm matrices is

equivalent to learning the weighted coefficients [n0,n] of a neural network, and a corresponding

neural network algorithm can be given (see Algorithm 1). Therefore, the matrix learning

problem can be implemented by existing neural network algorithms or other multivariate

regression techniques. We note that the neural network formulation for learning quantum

states follows in the same way by virtue of the duality.

Additionally, the fat-shattering dimension for Fk can easily be bounded from the classical

results in neural networks. We have the following corollary.

Corollary 3 Suppose the hypothesis set Fk consists of rank-k projection operators and their

mixture. We have

fatFk
(ε) ≤ k(d− 1)(d− k)

(dε)
2 , k = {0, 1, . . . , d}.

Proof: Since Fk is a linear function class on Rd−1, invoking the classical results from Anthony

and Bartlett [62]:

fatF (ε) ≤ a2b2

ε2
,

where F = {w 7→ 〈w,x〉 : ‖x‖2 ≤ b, ‖w‖2 ≤ a, x,w ∈ Rd2−1}.
Therefore, it remains to calculate the coefficients in Eq. (C.3). Since ‖r‖2 ≤ 1, and∥∥∥∥∥k(d− 1)

d

√
d− k
k(d− 1)

∥∥∥∥∥
2

=

√
k(d− 1)(d− k)

d2
,

the result follows.

We can see from the corollary that the fat-shattering dimension increases when the the

rank k approaches a half of the Hilbert space dimension d, which means that the classes {Fk}
form a hierarchical structure. Operationally, the hypothesis set F1 can be chosen at first.

It can then be enlarged into conv(F0 ∪ F1 ∪ F2) and so forth until the whole effect space is

considered. This is called the structural risk minimization (SRM [2]), and is usually adopted

in classical ML to avoid overfitting. Here we give two examples to illustrate the concepts in

Corollary 3.

Example 1 (Learning rank-1 Projection Valued Measures (PVMs): Qubit system

attains the upper bound): The fat-shattering dimension of rank-1 projection operators

and their mixture in a qubit system can be bounded by

fatF1
(ε) ≤ (N − 1)2

(Nε)2
=

1

4ε2
.
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Consider two quantum states ρr1 = |1〉〈1|, ρr2 = |−〉〈−| with corresponding Bloch vectors

r1 = (0, 0,−1), r2 = (−1, 0, 0). To shatter these two quantum states, we construct four

quantum effects with the Bloch vectors:

n00 =
1√
2

(1, 0, 1), n10 =
1√
2

(1, 0,−1),

n11 =
1√
2

(−1, 0,−1), n01 =
1√
2

(−1, 0, 1).

Since the angles between the states and effects are either π/4 or 3π/4, we have

(Tr(En00ρr1),Tr(En00ρr2)) = (
1

2
(1− 1√

2
),

1

2
(1− 1√

2
)),

(Tr(En10
ρr1),Tr(En10

ρr2)) = (
1

2
(1 +

1√
2

),
1

2
(1− 1√

2
)),

(Tr(En11
ρr1),Tr(En11

ρr2)) = (
1

2
(1 +

1√
2

),
1

2
(1 +

1√
2

)),

(Tr(En01ρr1),Tr(En01ρr2)) = (
1

2
(1− 1√

2
),

1

2
(1 +

1√
2

)).

Clearly these four quantum effects 1
2
√

2
-shatter (r1, r2) and achieve the fat-shattering dimen-

sion fatF1( 1
2
√

2
) = 2.

The case of three quantum states follows similarly. Consider r1 = (1, 0, 0), r2 = (0, 1, 0),

r3 = (0, 0, 1), and nijk = (i, j, k) for i, j, k ∈ {0, 1}. With some calculations, the eight quantum

effects 1
2
√

3
-shatter (r1, r2, r3) and achieve the fat-shattering dimension fatF1

( 1
2
√

3
) = 3.

It is worth emphasising that the dual problem of learning quantum states is equivalent

to learning quantum measurements when the hypothesis set consists of rank-1 projections

and their mixture. The reason is that the two mathematical objects are exactly the same,

i.e. conv(F1) = Q(Cd). In this scenario, the dual problem has the same results, which is

optimal in the sense of Quantum Random Access coding (i.e. (2,1,0.85)-QRA coding [96]).

Furthermore, we note that the measurements in the (2,1,0.85)-QRA coding and the input

states (ρr1 , ρ
⊥
r1), (ρr2 , ρ

⊥
r2) in this example are mutually unbiased bases (MUB) which attain

the upper bound of the qubit system.

Example 2 (Rank equals a half the Hilbert space dimension): Consider a quater-

nary Hilbert space, i.e. C4. First, we show that there exist no two quantum states that can

be 1/2-shattered by the convex hull of rank-1 projection operators. Consider two arbitrary

different quantum states S = {ρi}2i=1. If the function class F1 can 1/2-shatter the set S, then

there must be an effect E ∈ F1 such that Tr(Eρ1) = Tr(Eρ2) = 1. Clearly, it can be achieved

only when E is a rank-1 projection and the two quantum states are both equal to E, which

contradicts the assumption.

Second, we show there exist two quantum states that can be 1/2-shattered by the rank-2

projection operators. Assume ρi = |i− 1〉〈i− 1|, i = 1, 2. We construct four quantum effects

as follows:

E11 =


1

1
0

0

 , E01 =


0

1
1

0

 , E10 =


1

0
1

0

 , E00 =


0

0
1

1





Hao-Chung Cheng, Min-Hsiu Hsieh, and Ping-Cheng Yeh 643

in the computational basis. The two quantum states can then be 1/2-shattered by these four

quantum effects. This example demonstrates that the set of rank-2 projections is richer than

the set of rank-1 projections in terms of the complexity measures.

Remark. The readers may contemplate the pros and cons of Bloch-sphere representation

when analysing the fat-shattering dimension. Indeed, Bloch-sphere representation provides a

geometric picture so that we have more concrete ideas of the linear relation between quan-

tum measurements and states. Furthermore, in Example 1 we see how the extreme points

(projection operators) and MUB play the role in the fat-shattering dimension. However, it

is difficult to fully characterise the region of the Bloch space. To the best of our knowledge,

the most convenient metric used in Bloch-sphere representation is the Euclidean norm, which

corresponds to the Hilbert-Schmidt norm (Schatten 2-norm) in the state space, i.e.

‖ρr1 − ρr2‖HS =

√
d− 1

2d
‖r1 − r2‖2.

Recalling that conv
(
−Q(Cd) ∪Q(Cd)

)
= Sd1 ⊂ Sd2 ⊂ Sd∞ = conv

(
−E(Cd) ∪ E(Cd)

)
, the

Hilbert-Schmidt norm is not efficient in characterising the state space (that is why some

regions in the Bloch sphere are not representative as valid states). On the other hand, the

unit ball of Schatten 2-class is not sufficient to contain Sd∞, so we have to scale up the

Hilbert-Schmidt norm by a factor
√
d (since ‖ · ‖2 ≤

√
d‖ · ‖∞). Then we may overestimate

the effective size of the effect space. As a result, directly analyzing the linear functionals

between Sd1 and Sd∞ is the most efficient way of calculating the fat-shattering dimension. We

emphasise that with Bloch-sphere representation, all the quantum measurements/states are

transformed into Euclidean space, where existing ML algorithms (e.g. perceptron learning

algorithm, neural network, SVM, etc.) can be applied to conduct the learning tasks. It is

also worth considering other metrics (e.g. Bures metric, or other `p norms in Bloch-sphere

representation) and parameterization methods (e.g. Weyl operator basis, polarization operator

basis, Majorana representation, etc.) in our quantum ML framework. We leave it as future

work.

When learning an (M + 1)-outcome POVM measurement {Πj}Mj=0, with
∑M
j=0 Πj = I,

we can simply follow the procedure discussed so far. Now the training data set consists of

{(ρi,Tr(Πρi)}ni=1, where

Tr(Πρi) := (Tr(Π1ρi), . . . ,Tr(Πnρi)) .

This is called multi-target prediction or multi-label classification. Each target Πj can be

independently learned by the individual function class F .

It is worth mentioning that Gross and Flammia et al. [47, 48] proposed a quantum

state tomography method via compressed sensing, which is similar to our setting of learning

quantum states. The main goal of the work is to concentrate on states ρ that can be well

approximated by density matrices of rank r � d and to reconstruct a density matrix ρ̂

based on m randomly sampled Pauli operators. With certain constraint coefficients λ and

m ≥ Crd log6 d, they show

‖ρ̂− ρ‖1 ≤ C0rλ+ C1‖ρc‖1,
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where ρc = ρ− ρr is the residual part and ρr is the best rank-r approximation to ρ.

6.1. Numerical Results

In this section, we present the numerical results of the proposed neural network learning

algorithms for learning Schatten ∞-norm matrices in Sd∞ and Schatten 1-norm matrices in

Sd1 for d = 32 and 64, which correspond to learning 6-qubit quantum measurements and 6-

qubit quantum states respectively. The training data in both cases are sampled according to

the Haar measure (i.e. invariant from any unitary transformation) on the Hilbert space Cd.
The loss function is the squared error function, and gradient descent algorithms are used to

find the optimal empirical minimizer.

The simulation results for d = 64 and d = 32 are shown in Figures (1a) and (1b). We can

observe that the testing error for learning elements in Sd1 decays faster than those in Sd∞. That

is because the sample complexity for learning Schatten 1-norm matrices is logarithmically

proportional to the sample complexity for learning Schatten ∞-norm matrices. We remark

that d = 64 and d = 32 correspond to learning a six and five qubits quantum system,

respectively. It can be observed from Figures (1a) and (1b) that the estimation error converges

very quickly. Hence it is beneficial to consider quantum tomography using the ML approach

because it significantly reduces the number of experiments needed.

Algorithm 1 Algorithms for Learning Matrices in Schatten ∞-norm Class

Input: Training data (Xri , 〈Wn, Xri〉), size n
for i = 1 to n to
tttTransform Xri to Bloch vector ri
end for
Set the input vectors {ri} and output variables {〈Wn, Xri〉}
do gradient descent algorithms with boundary constraints to obtain the target coefficients
n
Transform the Bloch vector n to Wn

Output: Wn

(a) Learning matrices in S64
∞ and S64

1 . (b) Learning matrices in S32
∞ and S32

1 .

Fig. 2. The task of learning 64× 64 and 32× 32 matrices in Schatten∞-norm and 1-norm classes.
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7. Conclusions

Table 3. The Complexity Measures of The Quantum Learning Problems.

Learning Quantum Measurements Learning Quantum States

Pseudo Dimension d2 d2 − 1
Fat-Shattering Dimension fatF (ε) d/ε2 log d/ε2

Uniform Entropy Number logN2(ε,F) d/ε2 log d/ε2

Rademacher Complexity Rn(F)
√
d

√
log d

Sample Complexity mF (ε, δ) max{d, log(1/δ)}/ε2 max{log d, log(1/δ)}/ε2

In this work, we developed a series of technical proofs to establish the fat-shattering dimen-

sion, Rademacher complexity, Gaussian complexity and entropy numbers for learning Schatten

1 and ∞ matrices. Moreover, we showed that the tasks of learning quantum measurements

and states can be appropriately described into the framework of learning matrices with norm

constraints, and hence answered their learnabilities. Our results show that the fat-shattering

dimension of of learning (two-outcome) quantum measurements is min
{
O
(
d/ε2

)
, d2
}

. On the

other hand, the fat-shattering dimension for its dual problem—learning quantum states—is

min
{
O
(
log d/ε2

)
, d2 − 1

}
. Our proof is entirely based on tools from classical learning the-

ory, and provides an alternative proof for Aaronson’s result [14]. Other important complexity

measures for these two tasks are summarised in Table 3. Our results demonstrated that learn-

ing an unknown measurement is a more daunting task than learning an unknown quantum

state. The intuition is that, since the effect space is much larger than the state space, it is

reasonable that the fat-shattering dimension of the effect space is larger, too.

Finally, by exploiting general Bloch-sphere representation, we show that our learning

problems are equivalent to a neural network so that classical ML algorithms can be applied to

learn the unknown quantum measurement or state. Our work could provide a new viewpoint

to the study of quantum state and measurement tomography. We also discuss connections

between the quantum learning problems and other fields in QIS such as existence of QRA

coding and quantum state discrimination. We hope that the development of our results would

stimulate more theoretical studies in quantum statistical learning, and more applications in

quantum information processing and related areas can be discovered.
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97. I. Bengtsson and K. Źyczkowski, Geometry of Quantum States: An Introduction to Quantum
Entanglement. Cambridge University Press, 2008.

98. E. B. Davies, Quantum Theory of Open Systems. Academic Press, London, 1976.

Appendix A. Notation Table

http://dx.doi.org/10.1006/jcss.1996.0033
http://dx.doi.org/10.1007/bf01210321
http://dx.doi.org/10.1214/009117904000000388
http://dx.doi.org/10.1090/conm/529/10428
http://dx.doi.org/10.1103/physrevlett.91.120403
http://dx.doi.org/10.1007/bf02384340
http://dx.doi.org/10.1016/j.jfa.2007.05.014
http://dx.doi.org/10.1007/978-1-4757-2545-2_3
http://link.aps.org/doi/10.1103/PhysRevA.88.020302
http://link.aps.org/doi/10.1103/PhysRevA.88.020302
http://dx.doi.org/10.1109/TIT.2013.2295356
http://dx.doi.org/10.1103/physreva.65.062322
http://dx.doi.org/10.1103/physreva.72.032304
http://arxiv.org/abs/0810.2937


Hao-Chung Cheng, Min-Hsiu Hsieh, and Ping-Cheng Yeh 651

See Table A.1 for the symbols listed in this paper.

Appendix B .The Justification of the Quantum Learning Model

In this section, we address two practical issues that may arise in our quantum learning setting:

(1) Only the ‘yes’ (‘1’) or ‘no’ (‘0’) outcome can be observed rather than the outcome statistics‡‡.

(2) The measurement apparatus is not perfect (e.g. there are measurement errors in the

training data set). However, we will show that the sample complexities of the two scenarios

remain the same (up to a Lipschitz constant). We also emphasise that the idea of the quantum

learning model comes from Aaronson [14].

The output space consists of binary measurement outcomes rather than measure-

ment statistics. In this case, the training sample (Xi, Yi) equals to (Xi, 1) with probability

Tr(ΠXi), and (Xi, 0) with probability 1 − Tr(ΠXi). We show that the covering number re-

mains the same as the training sample (Xi,Tr(ΠXi)) considered in the quantum machine

learning setting. Other complexity measures easily follow by the same argument. Assume the

underlying loss function `f satisfies the Lipschitz condition, i.e. there exists L > 0 such that

|`f (X,Y )− `g(X,Y )| ≤ L |f(X)− g(X)| . (B.1)

By denoting pX = Tr(ΠX), then the expected risk can be expressed as follows

L(f) = Eµ`f (X,Y )

= EXEY |X`f (X,Y )

= EX [pX`f (X, 1) + (1− pX)`f (X, 0)]

=: EX`′f (X,Y ).

In the third equality we use the fact that the ‘1’ (resp. ‘0’) outcome occurs with probabil-

ity pX = Tr(ΠX) (resp. 1 − pX). In the last line we introduce the induced loss function

`′f (X,Y ) := [pX`f (X, 1) + (1− pX)`f (X, 0)]. Then for all X ∈ X , the distance between `′f
and `′g can be calculated as

|`′f (X,Y )− `′g(X,Y )| = |pX (`f (X, 1)− `g(X, 1)) + (1− pX) (`f (X, 0)− `g(X, 0))|
≤ pX |`f (X, 1)− `g(X, 1)|+ (1− pX) |`f (X, 0)− `g(X, 0)|
≤ pX · L |f(X)− g(X)|+ (1− pX) · L |f(X)− g(X)|
= L |f(X)− g(X)| .

The second inequality follows from the triangle inequality. The next line is due to the Lipschitz

condition. The above relation shows that the distance |`′f − `′g| can be upper bounded by

L|f − g|, which is exactly the same as the upper bound for |`f − `g| (see Eq. (B.1)). Recall

Definition 6, it is clearly that the covering numbers with respect to the induced loss function

and the original loss function are bounded by the same quantity. Therefore, the generalisation

error, Eq. (3) and the sample complexity do not change in this scenario.

There is noise involved in the measurement procedure. In this case, we assume that

‡‡The situation can also occur when only one measurement is performed.
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the training sample is (X,Y +n), where Y ≡ Tr(ΠX) and n is a random variable that models

the measurement error. Following the same reasoning, we can calculate the expected risk as

follows

L(f) = Eµ`f (X,Y + n)

= EXEn`f (X,Y + n)

=: EX`′f (X,Y ).

In the last line, we let `′f (X,Y ) := En`f (X,Y + n). Thus,

|`′f (X,Y )− `′g(X,Y )| = |En`f (X,Y + n)− En`g(X,Y + n)|
≤ LEn [|f(X)− g(X)|]
= L |f(X)− g(X)| .

Therefore, the original complexity measures (which depends on the distance of the loss func-

tion) and the induced sample complexity hold the same.

Appendix C. Learning Framework in Bloch-sphere Representation

When illustrating the state space on a finite dimensional Hilbert space Cd, it is convenient to

adopt a geometric parameterisation method called Bloch-sphere representation [97, 16, 17].

Here, we provide another point of view on our quantum learning framework. The key idea

is to represent the quantum objects in a Euclidean space, wherein classical techniques of

traditional ML can be applied. Although the Bloch-sphere representation method may not

be as direct as the machinery we used in Sections 4 and 5, it does gain more insights into our

quantum ML problems.

Based on the orthogonal basis {I,Λ1, . . . ,Λd2−1} of SU(d), any state ρr on Cd can be

represented in a Bloch vector r through:

ρr =
1

d

I + cd

d2−1∑
i=1

riΛi

 =
1

d
(I + cdr ·Λ), (C.1)

where cd :=
√

d(d−1)
2 and the dot product corresponds to the conventional Euclidean inner

product, and

ri =

√
d

2(d− 1)
Tr (ρrΛi) ∈ R, i = 1, . . . , d2 − 1.

Define the Bloch vector space as the set of Bloch vectors, which are representative of the valid

states on Cd as

Ωd := {r ∈ Rd
2−1 : r =

√
d

2(d− 1)
Tr (ρr ·Λ)}.

Now we calculate the linear functional of En ∈ E1 acting on the state ρr (where Ek denotes
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the convex hull of rank-k projection operators):

Tr(Pnρr) = Tr

(
1

d2
(I + cdr ·Λ)(I + cdn ·Λ)

)
= Tr

(
1

d2
[I + cd(r ·Λ + n ·Λ) + c2d(r ·Λ)(n ·Λ)]

)
=

1

d
+
c2d
d2

Tr ((r ·Λ)(n ·Λ))

=
1

d
(1 + (d− 1)r · n) .

Consequently, we have the affine functionals with elements in the convex hull of rank-1 pro-

jection operators, i.e.

F1 = {ρr 7→
1

d
(1 + (d− 1)r · n) : n ∈ Ωd}.

In order to characterise the quantum effects associate with higher dimensional projection

operators, it is useful to consider the algebraic properties of the projection operators. The set

of projection operators on Cd is not a vector space but corresponds to an orthocomplemented

lattice. Therefore, the sum of two projections, say P and Q, is a projection only when they

are orthogonal, i.e. PQ = QP = O. Based on this fact, now let {Pn1
, . . . , Pnd

} be arbitrary

mutually orthogonal rank-one projections on Cd. To each of them, we associate a unit Bloch

vector ni such that Pni = 1
d (I + cdni ·Λ), i = 1, . . . , d. It can be verified by Eq. (C.1) that

the Bloch vectors {n1, . . . ,nd} form a (d − 1)-dimensional (regular) simplex since the angle

between any two Bloch vectors is θ(ni,nj) = cos−1(− 1
d−1 ). With a slight abuse of notation,

denote a rank-k projection Pn(k)
as the summation of arbitrary k different projections from

the set {Pn1
, . . . , Pnd

}. More formally, we denote an index set Ik ⊆ {1, . . . , d} with cardinality

k, and Pn(k)
=
∑
i∈Ik Pni

, where we adopt the convention that the empty sum is zero. Hence,

when a rank-k projection Pn(k)
∈ Fk acts on the state ρr, we have:

Tr(Pn(k)
ρr) =

∑
i∈Ik

1

d
(1 + (d− 1)r · ni) = k · 1

d
(1 + (d− 1)r · n(k)),

where

n(k) :=
1

k

∑
i∈Ik

ni (C.2)

is the centroid of the (k− 1)-face of the simplex ∆d−1 subtended by the vectors {ni}i∈Ik .The

`2-norm of n(k) can be calculated as the Euclidean distance from the center of the simplex

∆d−1 to the centroid of (k − 1)-face; that is

‖n(k)‖2 := rd,k =

√
d− k
k(d− 1)

< 1, k ∈ {1, 2, . . . , d}. (C.3)

Intuitively, we can interpret the value Tr(Pn(k)
ρr) as an operator Pn(k)

acting on the state ρr,

and then scaled by k.
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Since every quantum effect can be composed into the extremal effects (i.e. projection

operators) of the effect space [98]. We can represent Tr(Enρr) for all En ∈ E(Cd) as:

d∑
k=0

wk · k
d

(
1 + (d− 1)r · n(k)

)
=

1

d
(n0 + (d− 1)r · n) , (C.4)

where
∑d
i=0 wk = 1, 0 ≤ n0 ≤ d and ‖n‖2 ≤ maxk∈{0,1,...,d}

√
k(d−k)
d−1 .

By utilising the bijection relationship of quantum state ρr and its corresponding Bloch

vectors r, we can associate the input space as the Bloch vector space, i.e. X = Ωd. Denote

the function class Fk as the linear functionals of Ek acting on ρr. According to Eq. (C.2), we

have:

Fk = conv

(
{r 7→ k

d

(
1 + (d− 1)r · n(k)

)
}
)
. (C.5)

For the rank-0 projection operator, the class consists of only one element, i.e. F0 = {O}. We

can see from the above equation that the affine coefficient is fixed such that Fk consists of

linear functionals. For the class of all quantum effects F = E(Cd), by Eq. (C.4) we have a

similar result:

F = {r 7→ 1

d
(n0 + (d− 1)r · n) : n ∈ Rd

2−1}, r ∈ Ωd,

where n0 can be upper bounded by d and ‖n‖2 can be bounded by k ·rd,k =
√

k(d−k)
d−1 . Clearly,

F = E(H) is the function class consisting of the affine functionals. However, we can easily

convert this formulation into a linear form by letting r̃ = [1, r], and ñ = [n0,n]. The intuition

behind this is that when characterising the learnability of quantum measurements, all we need

is to bound the complexity measures of the class of linear functionals.

Appendix D. Neural Networks

Here we briefly introduce the theory of Neural Networks. Readers may refer to Ref. [62] for

more details. The basic computing unit in a neural network is the (simple) perceptron (see

Fig. D.1), which computes a function from Rd to R:

f(r) = σ(v · r + v0),

for input vector r ∈ Rd, where v = (v1, . . . , vd) ∈ Rd and v0 ∈ R are adjustable parameters,

or weights (the particular weight v0 being known as the threshold). The function σ : R→ R is

called the activation function. In the scenario of binary classification, the activation function

may be chosen as the sign function; in the case of real-value outputs, σ(·) may satisfy some

Lipschitz conditions. Note that the decision boundary of the binary perceptrons is the affine

subspace of Rd defined by the equation v · r + v0 = 0.

When using a simple perceptron for a binary classification problem, the perceptron learning

algorithm (PCA) finds adequate parameters v and v0 to well fit the training data set. The

algorithm starts from an arbitrary initial parameter and updates the parameter when there

are misclassified data. For example, if now the function computes (r, y) (with r ∈ Rd and

y ∈ {0, 1}), the algorithm adds η(y − f(r))[r,−1] element-wise to [v, v0], where η is a fixed

step constant. PCA iterates until a termination criterion is reached.
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The second example is the two-layer networks (also called single-hidden layer nets) (see

Fig. D.2). The network can compute a function of the form

f(r) =

k∑
i=1

wkσ(vi · r + v0i) + w0,

where wi ∈ R, i = 0, . . . , k, are the output weights, [vi, v0i] are the input weights. The positive

integer k is the number of hidden units. One can use a ‘gradient descent’ procedure to adjust

the parameters to minimize the squared errors over the training data.

Fig. D.1. Consider a qubit system. A measurement in F1 can be characterised by a simple

perceptron with 3-dimensional input data and the activation function σ. The ‘1’ node is a bias

node and v0 is the corresponding bias weight. The input vector is the Bloch vector r ∈ Ω2. The
output variable y = f(r) is computed by the simple perceptron. Hence the problem of learning an

unknown measurement Π ∈ F1 is to infer the simple perceptron, i.e. the values of {vi}4i=1.
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Fig. D.2. Single-hidden layer net computes 3-dimensional input data with activation function σ

and three hidden units, which correspond to Fi for i = 0, 1, 2. The value v0k corresponds to the
bias weight of the k-th hidden unit. The single-hidden net represents a quantum measurement in

E(C2).
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Table A.1. Summary of Notation

Notation Mathematical Meaning

H the (separable) Hilbert space
d the dimension of the linear space
R, N the set of real numbers and positive integers
Cd the linear space of d-dimensional complex vectors
Md the set of all self-adjoint operators on Cd
Tr the trace function on Md

A† the conjugate transpose of A
〈A,B〉 = Tr(B†A), the Hilbert-Schmidt inner product on Md;

also stands for conventional inner product on Cd
B(H) the set of bounded operators on H
T (H) the set of trace class operators (i.e. finite trace) on H
O the zero operator on H.
I the identity operator on H.
A � B = A−B � O, the standard partial ordering
‖M‖p the Schatten p-norm on Md, which reduces to the `p norms on Cd.
Sdp ={M ∈Md : ‖M‖p ≤ 1}, the unit ball of Schatten p-class
|ϕ〉 the unit vector on H
ρ, σ the quantum state on H, i.e. ρ = ρ† ∈ T (H), with Tr(ρ) = 1
E, Π the POVM element on H, i.e. O
Q(H) state space, the set of all states on H
E(H) effect space, the set of all POVM elements on H
X the input space, or called the instances domain (the set)
Y the output space, or called the labels domain (the set)
Z = X × Y
F the hypothesis set of functions f : X → Y
µ a distribution on Z
Zn a training data set of n elements independently according to µ
`f : Z → (0,∞) loss function
Pr, E probability and expectation of a random variable
L(f) = Eµ[`f (X,Y )], the ensemble error

L̂n(f) = 1/n
∑n
i=1 `f (Xi, Yi), the empirical error over the training data set Zn

VCdim(F) Vapnik-Chervonenkis dimension of the function class F
Pdim(F) pseudo dimension of the function class F
fatF (ε) fat-shattering dimension of the function class F with ε > 0
fatF (ε) level fat-shattering dimension of the function class F with ε > 0
N (ε,F , τ) covering number of F with metric τ and ε > 0
logN (ε,F , τ) entropy number
Rn(F) Rademacher complexity of the function class F on Zn
γi uniformly {+1,−1}-valued random variables or called Rademacher variables
O the big O notation; f = O(g) means f(x) ≤ cg(x)

for some positive c, x0 and all x ≥ x0

A . B = A ≤ cB
for some constant c

A ' B both A . B and A & B


