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Abstract We perform a computational investigation of the optical properties of nanoscale gold ‘semi-

shells’ and show how additional plasmon resonances develop as the shape is successively mutated from 

‘nanoshell’ to ‘nano-cup’, ‘half shell’ and finally to ‘nano-cap’. The effects of aspect ratio, surface 

roughness and cut-off height are explored. Of special interest is a new longitudinal resonance that 

generates an electric current loop. We predict that this will induce an orthogonal magnetic component 

that will sum with the magnetic component of incident light at certain orientations. Exploitation of this 

phenomenon in an ordered array of semi-shells may produce anomalous optical effects due to an altered 

magnetic permeability. 

 

PAC Codes : 52.25.Tx, 73.20 Mf 
 

 

1. Introduction 

 

The optical properties of coinage metal (Cu, Ag, and Au) nanoparticles are interesting as they exhibit 

strong plasmon resonances, usually in the visible part of the spectrum. As a result, suspensions or 

coatings of these particles may be quite strongly coloured. This has led to decorative applications [1, 2], 

but the phenomenon can also be exploited in fields as diverse as medical diagnostics [3], solar glazing 

[4, 5], resonant fluorescence enhancement [6], medical treatment [7-9], optical sensing [10], and 

spectrally or angularly selective filters [11]. A variety of shapes such as nanoshells, nanorods, and nano-

triangles have been successfully synthesized, most commonly from gold or silver [12]. Core-shell 

nanoparticles of the metal-on-dielectric type (‘nanoshells’ [13]) are attractive on account of their optical 

properties which can be readily tuned by varying the ratio of inner and outer radii (ri/ro) of the particle 

[14-18]. Reduction in the symmetry of these particles by somehow excising a part of the nanoshell 

generates a series of shapes we have termed ‘semi-shells’ [19]. Semi-shells encompass ‘nano-caps’ of 

low symmetry [20], through to ‘nanocaps’ with rotational symmetry [21], ‘half-shells’ and half-shell 

arrays [22-25], and ‘nano-cups’ [21] (figure 1). We consider semi-shells to be interesting for at least two 

reasons : their geometry offers an additional means (besides ri/ro) to tune optical properties, and they can 

be prepared by physical or chemical deposition onto a polymer particle template [20-24, 26]. Previous 

work on the plasmon resonances in semi-shells has confirmed that the optical properties are also 

influenced by geometric asymmetry and by the orientation of the particle with respect to the light, as 

well as the fact that these shapes can sustain quadrupole resonances [21, 26].  Here we extend these 

insights to explore the gamut of optical properties possible with gold semi-shells and the detailed nature 

of their plasmon resonances. In particular, we will show that one of the semi-shell resonances has 

potential for use in the design of a meta-material with anomalous magnetic permeability. 
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Figure 1.  Semi-shells of various kinds and their orientation with respect to light. (a)  The family of semi-shell shapes. Shapes 
a, b and c have been designated ‘nanocups’ [21], shape d is a ‘half-shell’ [25], shapes e and f are ‘nanocaps’ [21] with 
rotational symmetry, and shapes g and h are ‘nanocaps’ without an axis of symmetry. (Reproduced with permission from Liu 

et al. [19].) The semi-shells a to f (but not g and h) can be defined by a cut-off parameter, , that gives their height fraction 

relative to a full shell (=1.0). For example, a half-shell has =0.5. (b) Various orientations of light with respect to the semi-

shells studied here. The direction of propagation of light (k) is shown as a long arrow while the electric field (e) is shown by a 

translucent plane and a short arrow orthogonal to k.  

 

2. Methodology 

 

The baseline to which all shapes are referred in the present work is a full nanoshell, and we have 

simulated their optical properties using the Discrete Dipole Approximation code of Draine and Flatau 

[27, 28]. In this scheme the nanoparticle is approximated by a three-dimensional array of dipoles and the 

resulting optical behaviour obtained numerically.  The accuracy of this code has been extensively 

verified [12, 29, 30]; however it does have the twin limitations (for metallic nanoparticles at least) of 

slow convergence at wavelengths greater than 700 nm, and a requirement to use a small dipole. These 

factors impose severe computational limitations on the simulation of particles with a volume of more 

than about 5x10
5
 nm

3
 (which corresponds, for example, to the volume of a solid sphere of 100 nm 

diameter). Nevertheless, DDSCAT simulations of nanoshells closely replicate the exact analytical 

expressions, where available, for smaller sized particles particularly if a sufficiently fine dipole spacing 

is used. In previous work on rods [31] we used a dipole volume of ~1 nm
3
. Unfortunately, the volume of 
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gold in the present shapes is considerably larger, and such a small dipole volume would require an 

impractically large number of dipoles. In the present work we found that a dipole volume of between 5 

to 10 nm
3
 was adequate, since it reproduced the position of the optical extinction of the analytical 

solution for a nanoshell [32] within reasonable computation times (see Figure S1 in Supporting 

Information). However, the numerical method underestimates the extinction efficiency (the ratio of 

ostensible optical cross-section to actual geometric cross-section, Qext) of the extinction peak, with the 

best result (corresponding to the 5 nm
3
 dipole) being a 14% under-estimate.  Use of coarser dipoles 

exacerbates this problem and also introduces numerical instability at higher wavelengths. We also note 

that the Qext of DDSCAT is defined with respect to an ‘effective radius’ of nanoparticle [28], which is 

not the same as the outer radius of a nanoshell.  

Although the DDSCAT code does not normally output any information on the dipoles, the 

numerical solution for them is contained within the work space of the program. We modified DDSCAT 

to output this data, which consists of a 3-dimensional array of phasors. The array was then processed to 

yield maps and animations of the ostensible electric dipoles in the nanoparticles under various 

conditions. 

In the present work we consider only semi-shells with rotational symmetry. Four orientations of 

the electric field and k vectors of the light are considered in this work, figure 1(b). Besides outer 

diameter and shell thickness, the present semi-shells are also defined by , the cut-off parameter, which 

is their fractional height compared to the full nanoshell geometry (=1). The effect of surface roughness 

was simulated by randomly placing a predetermined number of hemispherical gold blebs on an empty 

core, much as described in a previous publication [33]. The material of the shell in all calculations is 

gold and the core and surrounding medium is water. The bulk dielectric properties of gold were used. 

This is acceptable for shell thicknesses greater than 10 nm, but electron confinement effects  in thinner 

shells or smaller particles will occur, causing the real extinction peaks to broaden and lose intensity 

although leaving their wavelength substantially unchanged [34, 35]. There is also an issue in DDSCAT 

itself, in which a somewhat inappropriate polarizability is used for surface dipoles [27], an effect 

obviously exacerbated in particles with the highest surface-to-volume ratios. We consider, however, that 

these factors have no material influence on our overall results, because their effects are restricted to 

some attenuation and shift in the plasmon resonances of only the thinnest of the semi-shells simulated 

here.  

 

3. Results 

 

In figure 2 we show the orientation and amplitude of the dipoles in a nanoshell of 100 nm outer diameter 

and 15 nm shell thickness at the resonant position, and for the phase angles depicted (an animation of 

the dipoles is available as Movie01.avi in the Supporting Information). In this case the resonance is of a 

simple dipolar nature and, overall, the charge simply oscillates back and forth in the plane of e, the 

electric field of the light. In detail, however, the resonance is longitudinal in nature at positions P and T, 

transverse at positions R and V, and of an anti-symmetric nature at the transition zones of Q, S, U, and 

X. The important point to note is that the dipoles at P and T point in the same direction at a given instant 

in time. We will designate this type of resonance as the  resonance in the text that follows. 
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Figure 2. The  dipole resonance in a gold nanoshell of 100 nm outer diameter and 70 nm inner diameter. The core and 
surrounding medium is water. (a) Section considered for analysis of dipoles and associated electric field and propagation 

vectors, (b) calculated optical extinction spectrum, (c) dipole distribution and orientation at 0.194*2  through cycle, (d) 

0.417*2, and (e) 0.667*2. The overall direction in which the dipoles are pointing at P and T is shown by the arrows and 
each dipole is rendered as a vector with starting point anchored in the lattice grid (see Supporting Information for animations 
of the dipoles). 

We now consider what happens when material is successively removed from the top of the nanoshell 

shown above. As  is decreased below 0.85 a hole opens at the top of the semi-shell and it becomes a 

nano-cup (0.85 >  > 0.5), then a half-shell ( = 0.5) and finally a nano-cap (0.5 >  > 0.15) .The series 

of shapes, and the average of their e1 and e2 optical extinction spectra, are shown in figure 3(a). It is 

clear that for 1.0 >  > 0.85 the optical properties remain those of a nanoshell with an  resonance at 610 

nm, but as soon as the hole appears (  0.85) a strong new resonance develops at 690 nm. We will 

designate this the  resonance. The nanoshell  resonance is generated in the semishell by only by the e1 

orientation, and this weakens, blue shifts, and disappears as  decreases. There is also a third, smallish 

peak at ~580 nm, which will be designated the  resonance. A separation of the effects due to the various 

orientations,  figure 3(b), shows that the  and   resonances are associated with the e2, e3 and e4 

orientations, which produce identical optical extinction spectra.  Although possibly counter-intuitive, it 

is actually the direction of the electric field that determines the optical extinction spectrum of a single 

nanoparticle, and the direction of the k vector is not important [26]. In the e2, e3 and e4 cases the field is 

directed at right angles to the axis of rotational symmetry of the semishell, while for e1 it is parallel to it. 

Of course, in arrays or suspensions of nanoparticles there are macroscopic geometric effects that do 

depend on k, for example the extent by which the light is attenuated, and we will show later that there 

should be an anomalous magnetic permeability that depends on both e and k.  The Qext values at the 

various peaks can be extracted, and this is shown in figure 3(c) for the case of light with a single 

(appropriate) orientation. 

 

The evolution of dipole orientations and magnitudes with time can be used again to characterize 

the different resonances, figure 4. The resonances at 610 and 690 nm are dipolar in nature, with the local 

dipole moment oscillating back and forth (Movie02 and Movie03 respectively in Supporting 

Information), but the  resonance (at 610 nm) is along the short direction of the nanoparticle while the  

resonance (at 690 nm) is perpendicular to the axis of rotational symmetry. The oscillation of the  

resonance is influenced by the presence of the gap corresponding to the mouth of the particle, which 

causes it to have a somewhat asymmetric nature, being far stronger on the side of the particle opposite 

the mouth of the semishell. This causes the  resonance to have a circular, longitudinal aspect which 
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will have the net effect of causing an oscillating current loop, the practical importance of which we will 

return to later. Once the mouth of the particle closes the  resonance disappears completely because the 

circuit for the charge flow is then complete.  It appears necessary to interrupt this path in order to have 

charge build-up. Next we consider the  resonance. The maximum in the magnitude of the dipoles 

(arrows, figure 4) at the 6 o’clock position leads that at the 10 and 2 o’clock positions by /4 radians. 

Furthermore, the oscillations at the 10 and 2 o’clock positions are directed in opposite directions. The 

phenomenon is particularly apparent if the animation is viewed. (Movie04 in Supporting Information) 

Therefore, this is the quadrupole resonance identified in previous work on semi-shells [21, 26] and it 

reaches its greatest strength in this series of shapes when = 0.85. However, the wavelengths at which 

the ,  and  resonances occur approach one another as  is increased from 0.2 to 0.85. For 0.85 <  < 

1.0 the peaks overlap so much that the individual resonances can no longer be differentiated.    

 

Of course, it is not only  that is important, and aspect ratio and surface roughness also play an  

important role. In figure 5(a) we examine the extinction spectra of a range of semi-shells of 100 nm 

outer diameter and =0.8, but with varying shell thicknesses. The particle with the 25 nm thick shell 

behaves almost like a solid sphere, but as the shell is thinned the separation between the nanoshell-like 

resonance due to e1 and the new circular, longitudinal resonance due to e2 increases, while both are 

simultaneously red-shifted. The onset of diverse multipolar effects is also visible in the calculated 

spectra as evidenced by small irregularities on the Qext curves. Surface roughness, if present, is also 

known to have a red-shifting effect [36, 37] and the effect is simulated in figure 5(b) for a series of 

shapes in which a half shell of 100 nm outside diameter and 20 nm shell thickness has been constructed 

from an increasing number of hemispherical gold sub-grains. In practice the surface of the semi-shells is 

likely to be quite rough, irrespective of whether produced by chemical or physical means (see, for 

example, images published elsewhere [20, 26]). A poorly covered templating sphere can be seen to have 

a broad optical extinction peak due to the somewhat random dipole-dipole interactions between 

individual gold blebs, but as the coverage of the gold increases (which simultaneously reduces the 

surface roughness) the spectrum develops two clear resonances, in this case at about 550 and 670 nm. 

The effect of surface roughness is to red-shift the second resonance, as expected. 
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Figure 3. Conversion of a nanoshell to a semi-shell by removal of material, and the effect of this action on the calculated 

optical extinction spectra. (a) Average of e1 and e2 orientations for  from 0.2 to 1.0, also showing the shapes simulated. Data 

for =0.85 is shown as a dotted line. (b) Separation of effects due to orientation of light for =0.8 (also showing the effect of 

orientations e3 and e4 as dashed lines). (c) Peak Qext values of main resonances as a function of  for this series of semi-shells, 
extracted for a single but appropriate orientation of the light. The wavelength at which the three resonances occur converge 

near =0.85  (dotted line) and they cannot be distinguished from one another when 0.85 <  < 1.0.  
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Figure 4. Nature of the dipole resonances in gold semi-shells of 100 nm outer diameter, 15 nm shell thickness, and =0.8. 

Maxima in local dipole moment shown by arrows. (a) Quadrupole  resonance at 570 nm, with images separated by =/4 

radians, (b) dipole  resonance at 610 nm sampled at =/2 intervals, and (c) longitudinal  resonance at 670 nm (see 
Supporting Information for animations of the dipoles). 

 

 

4. Discussion 

 

Although other precious metal nanoparticle shapes can also be tuned to absorb at varying wavelengths, 

semi-shells are especially interesting. First, the anisotropic nature of their optical properties can 

potentially be readily exploited in arrays prepared on transparent substrates by physical or chemical 

methods. This yields coatings of angular- and wavelength-selective properties [21, 26]. Another factor is 

that the dipole strengths at the rim of the semi-shell are large, much larger than at the apex of a 

nanoshell. This will produce large electric fields in the vicinity of the mouth of the semi-shells [38], 

possibly rendering them useful in respect of fluorescence enhancement or Surface Enhanced Raman 

analyses. Finally, the diverse nature of the various plasmon resonances of nanoshells may open up 

possibilities for the design and synthesis of meta-materials. In particular, nanoscale current loops have 

been predicted shown to have interesting effects on the effective optical and magnetic properties of a 

composite of conducting rods in an insulating matrix [39]. This is the reason why metamaterial schemes 

intended for functionality in the visible or near-infrared part of the spectrum are currently generally 

based on rods, bars or cylinders (e.g. [40-42]), and their longitudinal and transverse plasmon resonances. 
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Figure 5. Effect of varying shell thickness and surface roughness on semi-shells of 100 nm outer diameter. (a) =0.8, and 

shell thickness as indicated. In all cases the left-hand peak is generated by e1, and the right-hand peak by e2, e3 or e4. (b) 
Effect of surface roughness on the calculated optical extinction spectrum of a gold half shell. The number of blebs of gold 
used to generate the shapes is shown next to a depiction of each shape and alongside each spectrum. The inner diameter of 
the shapes is 60 nm, and the blebs are 20 nm thick at their mid-points.  

 

The plasmon resonance shown in figure 4(c) is effectively a current loop that reverses once during the 

passage of one wave of light of the appropriate frequency. From the right-hand rule it can be deduced 

that this current loop will set up a magnetic field which will also oscillate. For light of the correct 

wavelength and with the e3 orientation this field will add to that of the incoming light (with a small 

phase lag), but for the e4 orientation it will oppose it, figure 6. For this special wavelength and for these 

two orientations, an array of these shapes should exhibit an enhanced apparent magnetic permeability 

and a reduced, perhaps even negative, apparent magnetic permeability, respectively. Is it possible to 

dispense with the semi-shell and achieve the same effect using a split ring? The answer is that it is not, 
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because the k of the light must necessarily lie in the plane of the ring, a geometry that would cause 

extreme attenuation if the rings are deposited on the surface of a planar substrate. This limitation does 

not exist for semi-shells, which would normally be prepared by physical vapour deposition in the 

appropriate orientation on a substrate. 
 

 

Figure 6. Gold half-shell under conditions of reduced magnetic permeability. The k, e and b vectors of the light are shown, 

along with the induced current in the half-shell (small arrows inside cut-away shape), and the induced magnetic field, b 
(translucent downward pointing arrow). 

 

5. Conclusions  

Gold semi-shells exhibit additional plasmon resonances with light as a result of their reduced symmetry 

compared to full nanoshells. We have investigated these resonances by simulating the optical properties 

of family of shapes sharing an outer diameter of 100 nm. As the semi-shell shape is produced by cutting 

back a nanoshell, the basic nanoshell resonance is sustained until the top of the shell is perforated.  

Thereafter a longitudinal and a quadrupole resonance develop, while the contribution of the nanoshell 

resonance declines. The longitudinal resonance is interesting because it generates an oscillating current 

loop. This in turn is expected to generate a net magnetic field. Depending on the orientation of the light 

with respect to the nanoparticle, this will either enhance or reduce the apparent magnetic permeability of 

the nanoparticle. We propose that arrays of these nanoparticles will provide a useful basis for a 

metamaterial with anomalous magnetic permeability.  
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Figure captions 

 

Figure 1.  Semi-shells of various kinds and their orientation with respect to light. (a)  The family of 

semi-shell shapes. Shapes a, b and c have been designated ‘nanocups’ [21], shape d is a ‘half-shell’ [25], 

shapes e and f are ‘nanocaps’ [21] with rotational symmetry, and shapes g and h are ‘nanocaps’ without 

an axis of symmetry. (Reproduced with permission from Liu et al. [19].) The semi-shells a to f (but not 

g and h) can be defined by a cut-off parameter, , that gives their height fraction relative to a full shell 

(=1.0). For example, a half-shell has =0.5. (b) Various orientations of light with respect to the semi-

shells studied here. The direction of propagation of light (k) is shown as a long arrow while the electric 

field (e) is shown by a translucent plane and a short arrow orthogonal to k.  

Figure 2. The  dipole resonance in a gold nanoshell of 100 nm outer diameter and 70 nm inner 

diameter. The core and surrounding medium is water. (a) Section considered for analysis of dipoles and 

associated electric field and propagation vectors, (b) calculated optical extinction spectrum, (c) dipole 

distribution and orientation at 0.194*2  through cycle, (d) 0.417*2, and (e) 0.667*2. The overall 

direction in which the dipoles are pointing at P and T is shown by the arrows and each dipole is rendered 

as a vector with starting point anchored in the lattice grid (see Supporting Information for animations of 

the dipoles). 

Figure 3. Conversion of a nanoshell to a semi-shell by removal of material, and the effect of this action 

on the calculated optical extinction spectra. (a) Average of e1 and e2 orientations for  from 0.2 to 1.0, 

also showing the shapes simulated. Data for =0.85 is shown as a dotted line. (b) Separation of effects 

due to orientation of light for =0.8 (also showing the effect of orientations e3 and e4 as dashed lines). 

(c) Peak Qext values of main resonances as a function of  for this series of semi-shells, extracted for a 

single but appropriate orientation of the light. The wavelength at which the three resonances occur 

converge near =0.85  (dotted line) and they cannot be distinguished from one another when 0.85 <  < 

1.0.  

Figure 4. Nature of the dipole resonances in gold semi-shells of 100 nm outer diameter, 15 nm shell 

thickness, and =0.8. Maxima in local dipole moment shown by arrows. (a) Quadrupole  resonance at 

570 nm, with images separated by =/4 radians, (b) dipole  resonance at 610 nm sampled at =/2 

intervals, and (c) longitudinal  resonance at 670 nm (see Supporting Information for animations of the 

dipoles). 

Figure 5. Effect of varying shell thickness and surface roughness on semi-shells of 100 nm outer 

diameter. (a) =0.8, and shell thickness as indicated. In all cases the left-hand peak is generated by e1, 

and the right-hand peak by e2, e3 or e4. (b) Effect of surface roughness on the calculated optical 

extinction spectrum of a gold half shell. The number of blebs of gold used to generate the shapes is 

shown next to a depiction of each shape and alongside each spectrum. The inner diameter of the shapes 

is 60 nm, and the blebs are 20 nm thick at their mid-points.  

Figure 6. Gold half-shell under conditions of reduced magnetic permeability. The k, e and b vectors of 

the light are shown, along with the induced current in the half-shell (small arrows inside cut-away 

shape), and the induced magnetic field, b (translucent downward pointing arrow). 

 


