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Passive PT -symmetric couplers without complex optical potentials
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In addition to the implementation of parity-time (PT )-symmetric optical systems by carefully and actively
controlling the gain and loss, we show that a2× 2 PT -symmetric Hamiltonian has a unitarily equivalent rep-
resentation without complex optical potentials in the resulting optical coupler. Through the Naimark dilation in
operator algebra, passivePT -symmetric couplers can thus be implemented with a refractive index of real values
and asymmetric coupling coefficients. This opens up the possibility to implement generalPT -symmetric sys-
tems with state-of-the-art asymmetric slab waveguides, dissimilar optical fibers, or cavities with chiral mirrors.

PACS numbers: 42.79.Gn, 42.25.Bs, 11.30.Er, 78.20.Ci

With spatial reflection and time reversal, parity-time (PT )-
symmetric systems that could exhibit entirely real and posi-
tive eigenvalue spectra have attracted considerable attention
[1, 2]. In Bender and Boettcher’s original proposal, such a
class of non-Hermitian systems reveals the possibility of re-
moving the restriction of Hamiltonians from Hermiticity toa
weakerPT -symmetry. Nevertheless, it was pointed out that
the no-signalling principle will be violated when applyingthe
local PT -symmetric operation on one of the entangled par-
ticles [3]. Although situations become much more compli-
cated when quantum entanglement is involved,PT -symmetry
could still be used as an interesting model for open systems in
classical limit [4].

Based on the equivalence between the Schrödinger equa-
tion and the optical wave equation, classical optical systems
have proven to be an excellent testbed for studying proper-
ties of PT -symmetric systems. To satisfyPT -symmetry,
optical systems with a complex potentialU(x) = U∗(−x)
are required for one-dimensional (1D) optical couplers (pla-
nar waveguides or cavities) [5]. As a result, the real part of
this complex potential is an even function of the coordinate
variablex; while the corresponding imaginary part is an odd
one. Several unique features, such as nonlinear soliton dy-
namics [6], power oscillations in synthetic optical lattices [7],
unidirectional invisibility [8], and loss-induced suppression of
lasing [9], have been demonstrated onPT -symmetric optical
systems.

Experimental demonstration ofPT -symmetry in optics has
been realized with spatially balanced gain and loss of energy
in a planar slab waveguide [10, 11]. However, it still remains
challenging to keep gain and loss constantly balanced in opti-
cal devices. In addition to activePT -symmetric optical sys-
tems, passivePT symmetry breaking has been experimentally
demonstrated by externally modulating meta-materials on the
Si-on-insulator platform [12]. More recently, it was also re-
vealed that a supersymmetric transformation can provide a
versatile platform by synthesizing the refractive index profile
in optical systems withPT -symmetry [13].

In this Letter, we demonstrate that any2 × 2 PT -
symmetric system can be unitarily transformed into another
PT -symmetric system with only real-valued Hamiltonians.
This unitary transformation is constructed by applying the
Naimark dilation to embed aPT -Hamiltonian in larger sys-
tem dimensions [14]. As a result, we show that the refrac-
tive index of real values and asymmetric coupling coefficients
of PT -symmetric optical couplers are sufficient to satisfy the
PT -symmetry condition. Our result has an immediate ex-
perimental implication since asymmetric couplers in the slab
waveguides have been well-studied [15]. With current optical
device technologies, these asymmetric couplers can be eas-
ily implemented with dissimilar optical fibers [16], or through
unequal amplitudes at the two boundaries in the two cladding
layers [17]. Furthermore, the asymmetric transmission of
circularly polarzied wave is realized by applying metamate-
rial [18], where the metamaterial has been used to realize
gain/lossPT -symmetric system [19], showing that asymmet-
ric coupling system is promising. Our proposal hence pro-
vides a more accessible platform to studyPT -symmetric sys-
tems in classical optics, and overcomes the current difficulty
of implementing balanced gain/lossPT -symmetric optical
couplers.

Let us consider a 1D optical coupler, as illustrated in Fig.
1, with two eigenmodes denoted asA(z) andB(z) for the
left and right channels in the paraxial wave approximation,
respectively. The dynamics for this optical coupler satisfies a
Schrödinger-like wave equation:

i
∂ψ

∂z
= H ψ, (1)

with ψ = (A,B)T and

H = s

(

hA hAB

hBA hB

)

, (2)

wheres is the scaling factor of the system;hA andhB are the
corresponding potentials (propagation constants) of the left
channel and right channels, andhAB andhBA are the cou-
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FIG. 1. (Color online) (a) Illustration of aPT -symmetric coupler
with complex optical potentials for the Hamiltonian shown in Eq. (4).
Here, two eigenmodes for the left and right channels in the parax-
ial wave approximation are denoted asA(z) andB(z), respectively.
The channel with gain and loss are represented in color red (dark
gray) and green (light gray). The magnitudes of gain and lossare
the same to satisfy the requiredPT symmetry; while the coupling
strengths between two channels are the same, i.e.,hAB = hBA.
(b) Illustration of aPT -symmetric couplerwithout complex opti-
cal potentials for the Hamiltonian shown in Eq. (17a). Asymme-
try coupling strengths are depicted in different sizes of arrow, i.e.,
hAB 6= hBA, and gray (whole area) is used to represent where there
is no gain and loss in each channel.

pling strengths between two channels, respectively. The opti-
cal HamiltonianH is PT -symmetric when it commutes with
thePT operator, i.e.,

[PT , H ] = 0, (3)

whereP is the spatial reflection operator that takesx → −x,
andT is the time reversal operator that takesi → −i. It is
easy to see that the eigenvalues ofH are always real when
the eigenstates of aPT -symmetric Hamiltonian are also the
eigenstates ofPT . However, when the eigenstates ofH are
no longer the eigenstates ofPT , the eigenvalues become com-
plex. This is called spontaneousPT symmetry-breaking.

In the following, we will show how to construct a general
PT -symmetric Hamiltonian with only the real values of the
refractive index involved. In the case of Hermitian Hamiltoni-
ans, the situation is much simpler since one can directly apply
a unitary transformation to construct a real-valued Hamilto-
nian. In contrast, it is not clear if this is also true in thePT -
symmetric system, in which the inner product is defined dif-
ferently from a Hermitian one. In the following, we answer
this question positively.

Based on the Naimark dilation [14], thePT -symmetric
Hamiltonian is expanded into a Hermitian one with a larger
system dimension. Consider the followingPT -symmetric

Hamiltonian in Ref. [11]:

H = s

(

i sinα 1
1 −i sinα

)

, (4)

from which the coupled-mode equations for an optical coupler
can be derived as:

i
∂A

∂z
= i s sinαA+ sB, (5)

i
∂B

∂z
= sA− i s sinαB. (6)

Here, the coupling strengthshAB andhBA between two chan-
nels are equal. There also exists gain and loss in the chan-
nelsA andB with coefficients± sinα, respectively. It can be
checked that the corresponding eigenvalues of this Hamilto-
nian areE± = ±s cosα, whereα is introduced as a Her-
miticity parameter. Whenα = 0, the HamiltonianH re-
turns to a Hermitian one. Whenα 6= 0, this Hamiltonian
is not Hermitian, i.e.,H 6= H†, but gives the right eigenstates
|ER

±〉 and left eigenstates|EL
±〉, respectively. Here, we define

H |ER
±〉 = E±|ER

±〉 andH†|EL
±〉 = E±|EL

±〉, which have the
following explicit forms:

|ER
+(α)〉 = eiα/2√

2 cosα

(

1
e−iα

)

, (7)

|ER
−(α)〉 = ie−iα/2

√
2 cosα

(

1
−eiα

)

, (8)

and |EL
±(α)〉 = |ER

±(−α)〉. The eigenvalue equation ofH
can be written as

Ξ†HΦ = Ẽ, (9)

whereΦ ≡ (|ER
+〉, |ER

−〉)T , Ξ ≡ (|EL
+〉, |EL

−〉)T , and the di-
agonal matrixẼ consists of the energy spectrum:

Ẽ =

(

E+ 0
0 E−

)

. (10)

It is known that a non-Hermitian matrix does not have an
orthogonal set of eigenvectors [20]. In other words, a non-
Hermitian matrix, in general, cannot be transformed into a
diagonal form by an orthogonal matrix. Nevertheless, the left
and right eigenstates ofH have thebiorthogonalityproperty:

Ξ†Φ = I. (11)

Therefore, the Naimark dilation theorem allows us to embed
the original2× 2 non-Hermitian HamiltonianH into a4× 4
Hermitian one:

H =
cosα

2

(

Hη−1 + ηH H −H†

H† −H Hη−1 + ηH

)

, (12)

where η ≡ ΞΞ† is the metric operator coming from the
Naimark dilation in Ref. [14]. To answer the question of
whether a unitary transformation exists that can rotate the
PT -symmetric system shown in Eq. (4) to one with only
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real values, note the structure of our dilated HamiltonianH

shown in Eq. (12). SinceH is Hermitian, it is simple to use
theunitary transformationU to change the basis and find the
different mathematical representations of the physics system
H. It is important to note that the connection betweenH and
H is based on the constraint of the dilated quantum stateΨ

having the form of

Ψ ∝
(

ψ

ηψ

)

, (13)

and one can see the relation by applyingH onΨ and obtains
that

HΨ =

(

H 0
0 H†

)(

ψ

ηψ

)

. (14)

To preserve the structure in Eqs. (13-14), the unitary transfor-
mation to be applied ontoH is

U =

(

U 0
0 U †

)

, (15)

whereU lives in the two dimensional Hilbert space and gives
a new HamiltonianH ′ = UHU †; while H ′ keeps the same
spectrum asH . The corresponding left and right eigenstates
ofH ′ areΞ′ = UΞ andΦ′ = UΦ, respectively. With the help
of the Bloch sphere, we can regard this unitary transformation
as a rotation operator by decomposing the operatorU with the
Euler anglesφz , φy′ andφz′ , i.e.,

U = e−iσzφz/2e−iσyφy′
/2e−iσzφz′

/2, (16)

wherez corresponds to the rotation axis; whiley′ andz′ in-
dicate the new axis after rotation. Here,σz andσy are the
corresponding Pauli matrices;φz , φy′ , andφz′ are the corre-
sponding Euler angles. Then, we can derive an explicit form
for the generalizedH ′ with the following matrix elements:

h′A = −(cosφz′ sinφy′ − i sinα cosφy′),

h′AB = e−iφz(cosφz′ cosφy′ − i sinφz′ + i sinα sinφy′),

h′BA = eiφz(cosφz′ cosφy′ + i sinφz′ + i sinα sinφy′),

h′B = cosφz′ sinφy′ − i sinα cosφy′ ,

and compute its eigenvalues:

E± =
(h′A + h′B)±

√

(h′A + h′B)
2 − 4(h′Ah

′
B − h′ABh

′
BA)

2
.

With this unitary transformation, the condition of the
PT -symmetry in the new HamiltonianH ′ is changed to
P ′T ′H ′P ′T ′ = H ′, whereP ′ andT ′ are the new parity and
time reversal operators after the unitary transformation.It is
worth remarking thatT ′ is equal to a unitary operator mul-
tiplied by an anti-linear operator. It is the general form ofa
time reversal operator. BothP ′ andT ′ satisfy the conditions
of P ′2 = T ′2 = I and[P ′, T ′] = 0.

In general, there are eight degrees of freedom in an arbi-
trary Hamiltonian. Among them, four degrees of freedom cor-
respond to three Euler angles introduced in Eq. (16) and the
non-Hermiticityα. We can also introduce the following three
constraints for the energy spectrumE± to be satisfied: (1):
E+ + E− = 0, (2): E+ − E− = ω0, and (3):E+, E− ∈ R.
Here, the first constraint comes from the fact that the overall
energy shift should not affect the physical phenomena. The
second constraint helps us to focus on physical systems with
the same energy scale, denoted byω0; while the third ensures
all the energies are real values. Finally, we can derivePT -
symmetric Hamiltonians coping with all these constraints.

In addition to the originalPT -symmetric Hamiltonian in
Eq. (4), we explicitly list all other possiblePT -symmetric
Hamiltonians for2× 2 couplers:

H1 = s

(

0 1− sinα
1 + sinα 0

)

, (17a)

H2 = s

(

i sinα −i
i −i sinα

)

, (17b)

H3 = s

(

0 −i+ i sinα
i + i sinα 0

)

, (17c)

H4 = s

(

1 −i sinα
−i sinα −1

)

, (17d)

H5 = s

(

1 − sinα
sinα −1

)

. (17e)

Note that the HamiltoniansH1 andH5 shown in Eqs. (17a)
and (17e) contain only real numbers matrix elements. In terms
of the interacting optical channels, the non-Hermiticity in the
PT -symmetric system comes from the asymmetric couplings
between two channels. Since there is no complex number in-
volved, the gain and loss effects can be absent to satisfy the
PT -symmetry condition.

To realize these passivePT -symmetric couplers as optical
devices, one may need to implement asymmetric couplings
between two channels. Physically, it is the difference between
gain and loss that contributes to asymmetric coupling. Take
the HamiltonianH1 shown in Eq. (17a) as an example, as il-
lustrated in Fig. 1(b), asymmetric couplers in the slab waveg-
uides, dissimilar optical fibers, or coupled cavities with chiral
mirrors [21] are ready to act asPT -symmetry-based func-
tional devices.

We remark that, although a seemingly generalPT -
symmetric Hamiltonian below was proposed in [2]:

H =

(

x+ (z + iy) z
tan γ − iy tan γ

z
tan γ − iy tan γ x− (z + iy)

)

, (18)

with x, y, z, γ ∈ R, under the condition of fixed energy dif-
ference, it is unitarily equivalent toH ′ with φz′ = φz = 0.
The rotation operator used to generateH ′ gives an explicit
picture that Eq. (18) can be obtained by only rotating Eq. (4)
abouty-axis, which is obviously not the most general2 × 2
PT -symmetric Hamiltonian.
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Another feature which is not obvious in our generalized
HamiltonianH ′ and Eq. (17a-17e) is the symmetry broken
phase where the eigenvalues become complex. The absence of
this feature is due to the fact that the range ofsinα in Eq. (4)
is restricted in[−1, 1]. To recover the complex eigenvalue fea-
ture, one can replacesinα by κ whereκ ∈ (−∞,∞). With
the replacement, e.g., Eq. (17a) becomes

H̃1 = s

(

0 1− κ

1 + κ 0

)

, (19)

with eigenvalues±
√
1− κ2, which are complex whenκ > 1

and while all the entries are real.
The unitary matrix providing the generalization here is not

as trivial as the basis transformation in conventional quan-
tum mechanics theory. InPT -symmetric theory, a new inner
product is defined so is the meaning of unitary transforma-
tion. Thus the matrix of transformation in this paper is uni-
tary in conventional inner product but not inPT -symmetry
theory and cannot be consider a basis transformation inPT -
symmetry theory. The relation established here firstly illus-
trates the reason that unitary matrix generating more general
Hamiltonian by using Naimark dilation, and then provides a
clear picture by decomposing the transformation matrix into
rotation operators on Bloch sphere. The idea here does not
only apply on two-level system but may also applies on higher
dimension, and gives a systematic way to find out other gen-
eralPT -symmetric Hamiltonian.

In conclusion, based on the Naimark dilation to construct a
Hermitian Hamiltonian with the left and right eigenstates from
aPT -symmetric system, we reveal a generalized2 × 2 PT -
symmetric coupler without any complex optical potentials in-
volved. Instead of gain/loss balancedPT -symmetric optical
couplers, now passive devices with asymmetric coupling co-
efficients can also be used to implement thesePT -symmetric
optical systems.
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