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Passive PT-symmetric couplers without complex optical potentials
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In addition to the implementation of parity-tim&{ )-symmetric optical systems by carefully and actively
controlling the gain and loss, we show thal & 2 P7-symmetric Hamiltonian has a unitarily equivalent rep-
resentation without complex optical potentials in the hé&sg optical coupler. Through the Naimark dilation in
operator algebra, passif&T -symmetric couplers can thus be implemented with a refraatidex of real values
and asymmetric coupling coefficients. This opens up theilpiissto implement generalP7-symmetric sys-
tems with state-of-the-art asymmetric slab waveguidesimilar optical fibers, or cavities with chiral mirrors.

PACS numbers: 42.79.Gn, 42.25.Bs, 11.30.Er, 78.20.Ci

With spatial reflection and time reversal, parity-tinf&n)- In this Letter, we demonstrate that ary x 2 P7T-
symmetric systems that could exhibit entirely real and posisymmetric system can be unitarily transformed into another
tive eigenvalue spectra have attracted considerabletiatten P7-symmetric system with only real-valued Hamiltonians.
[E, @]. In Bender and Boettcher’s original proposal, such aThis unitary transformation is constructed by applying the
class of non-Hermitian systems reveals the possibilityeef r Naimark dilation to embed &7 -Hamiltonian in larger sys-
moving the restriction of Hamiltonians from Hermiticity &0  tem dimensions]ﬂ4]. As a result, we show that the refrac-
weakerPT-symmetry. Nevertheless, it was pointed out thattive index of real values and asymmetric coupling coeffitsen
the no-signalling principle will be violated when applyitfige ~ of P7-symmetric optical couplers are sufficient to satisfy the
local PT7-symmetric operation on one of the entangled par-P7-symmetry condition. Our result has an immediate ex-
ticles @]. Although situations become much more compli-perimental implication since asymmetric couplers in ttadsl
cated when quantum entanglementis invoe@-symmetry  waveguides have been well-studied [15]. With current @ptic
could still be used as an interesting model for open systams idevice technologies, these asymmetric couplers can be eas-
classical limit Iﬂl]. ily implemented with dissimilar optical fibe@lG], or thrgh

Based on the equivalence between the Schrodinger equanequal amplitudes at the two boundaries _in the two_clgdding
tion and the optical wave equation, classical optical syste 1aYers (L. Furthermore, the asymmetric transmission of
have proven to be an excellent testbed for studying propefircularly polarzied wave is realized by applying metamate
ties of PT-symmetric systems. To satisfy7-symmetry, na! [18], where the rr_1etamater|al has be_en used to realize
optical systems with a complex potentid(z) = U*(—x) gam/losS_PT—symmet_rlc systgqm9], showing that asymmet-
are required for one-dimensional (1D) optical couplera{pl "€ coupling system is promising. Our proposal hence pro-
nar waveguides or cavitieg) [5]. As a result, the real part of/id€S a more accessible platform to stJay -symmetric sys-
this complex potential is an even function of the coordinatd®™Ms in classical optics, and overcomes the current difficul
variablez; while the corresponding imaginary part is an odd ©f implementing balanced gain/log87-symmetric optical
one. Several unique features, such as nonlinear soliton dfouPlers. _ _ .
namics[ﬂS], power oscillations in synthetic optical |&H§i§(ﬂ], Le_t us cons_,lder a 1D optical coupler, as illustrated in Fig.
unidirectional invisibility [8], and loss-induced suppsionof 1. With two eigenmodes denoted a¢z) and B(z) for the

lasing Eg], have been demonstrated®f -symmetric optical left and right channels in the paraxial wave approximation,
systems. respectively. The dynamics for this optical coupler satsh

. . . . Schrodinger-like wave equation:
Experimental demonstration &f7 -symmetry in optics has g a

been realized with spatially balanced gain and loss of gnerg Oy

in a planar slab waveguide [10,/11]. However, it still rensain Yoz T

challenging to keep gain and loss constantly balanced in opt 7

cal devices. In addition to activBT-symmetric optical sys- With ¢ = (4, B)" and

tems, passiv®7 symmetry breaking has been experimentally ( ha hap )
H=s ,

H, 1)

demonstrated by externally modulating meta-materialhen t (2
Si-on-insulator platforn’JﬂZ]. More recently, it was alss r
vealed that a supersymmetric transformation can provide wheres is the scaling factor of the syster; andh g are the

versatile platform by synthesizing the refractive indeafije ~ corresponding potentials (propagation constants) of éffte |

in optical systems WithPT-symmetry]. channel and right channels, ahdz and hp4 are the cou-

hpa hp
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Alz) B(2) Hamiltonian in Ref.[[14]:
1sin o 1
H_S< 1 —isina)’ ()
h from which the coupled-mode equations for an optical cauple
i can be derived as:
S 0A
i— =issina A+ s B, (5)
0z
z z B
hBE i%—:sA—issinaB. (6)
4
Here, the coupling strengths, 5 andh s 4 between two chan-
nels are equal. There also exists gain and loss in the chan-
nelsA and B with coefficientst sin «, respectively. It can be

checked that the corresponding eigenvalues of this Hamilto
(a) (b) nian areE. = =+scosca, Wherea is introduced as a Her-
miticity parameter. Whemx = 0, the HamiltonianH re-
FIG. 1. (Color online) (a) lllustration of #7-symmetric coupler ~turns to a Hermitian one. When # 0, this Hamiltonian
with complex optical potentials for the Hamiltonian showriq. (4).  is not Hermitian, i.e.[7 # HT, but gives the right eigenstates
Here, two eigenmodes for the left and right channels in thexpa | £1') and left eigenstates’ ), respectively. Here, we define

ial wave approximation are denoted 46z) and B(z), respectively. H|ER) = B4 |EBY andHY|EL) = EL|EL), which have the
The channel with gain and loss are represented in color rexk (d following explicit forms:
gray) and green (light gray). The magnitudes of gain and éoes '

the same to satisfy the requir@l] symmetry; while the coupling eia/2 1

strengths between two channels are the same,ligz, = hpa. |Ef(04)> =7 ( ia > ) (7)
(b) lllustration of aPT-symmetric couplewithout complex opti- V2cosa \ €

cal potentials for the Hamiltonian shown in Eq. (17a). Asyeam R je—ta/2 1

try coupling strengths are depicted in different sizes obwy i.e., |[EX () = m ( _eta > ) 8)

hap # hpa, and gray (whole area) is used to represent where there
is no gain and loss in each channel. and|EL(a)) = |Ef(—a)). The eigenvalue equation &f
can be written as

pling strengths between two channels, respectively. Thie op = H® = F, 9)
cal HamiltonianH is PT-symmetric when it commutes with .
the’ 7 operator, i.e., where® = (|EY), [EF)T, 2 = ([ET), |EL))T, and the di-
agonal matrixt’ consists of the energy spectrum:
[PT.H] =0, (3)

~ E;y 0
: . . E = . (10)

where?P is the spatial reflection operator that takess —z, 0 E-

and7 is the time reversal operator that takess —i. It is
easy to see that the eigenvaluestbfare always real when
the eigenstates of B7-symmetric Hamiltonian are also the
eigenstates dP7. However, when the eigenstatesidfare
no longer the eigenstates®fT, the eigenvalues become com-
plex. This is called spontaneo@y symmetry-breaking.

In the following, we will show how to construct a general =fe =1. (12)
PT-symmetric Hamiltonian with only the real values of the i o
refractive index involved. In the case of Hermitian Hamiito | Nerefore, the Naimark dilation theorem allows us to embed
ans, the situation is much simpler since one can directljyapp € ©riginal2 x 2 non-Hermitian Hamiltoniad into a4 x 4
a unitary transformation to construct a real-valued Hamilt Hermitian one:

It is known that a non-Hermitian matrix does not have an
orthogonal set of eigenvectoE_[ZO]. In other words, a non-
Hermitian matrix, in general, cannot be transformed into a
diagonal form by an orthogonal matrix. Nevertheless, tfte le
and right eigenstates éf have thebiorthogonalityproperty:

nian. In contrast, it is not clear if this is also true in tR§ - cosaw (Hnp ' +nH H— HT
| in which the i is defined dif- ~ H= . .2
symmetric system, in which the inner product is defined dif 9 HY—H Hn'+nH
ferently from a Hermitian one. In the following, we answer
this question positively. wheren = Z=T is the metric operator coming from the

Based on the Naimark dilatioﬂ14], the7-symmetric  Naimark dilation in Ref. @4]. To answer the question of
Hamiltonian is expanded into a Hermitian one with a largerwhether a unitary transformation exists that can rotate the
system dimension. Consider the followifiRy7-symmetric ~ PT-symmetric system shown in Eqld)(to one with only



real values, note the structure of our dilated Hamiltorin

shown in Eq.[[2). SinceH is Hermitian, it is simple to use

theunitary transformatiorlU to change the basis and find the

different mathematical representations of the physictesys

H. Itis important to note that the connection betwédémnd

H is based on the constraint of the dilated quantum siate
G

having the form of
v )
b <W)

and one can see the relation by applyldign ¥ and obtains
(0

)

To preserve the structure in Eq&3(14), the unitary transfor-
mation to be applied ontH is

o~

whereU lives in the two dimensional Hilbert space and gives
a new Hamiltonian’ = UHUT; while H’ keeps the same

(13)

H 0

0 Ht (14)

U 0

0 Ut (15)

spectrum adf. The corresponding left and right eigenstates

of H areZ' = U= and®’ = U®, respectively. With the help
of the Bloch sphere, we can regard this unitary transfoionati
as a rotation operator by decomposing the opefataith the
Euler angle®., ¢,, and¢,-, i.e.,

U = e—iazqﬁz/Qe—io’yqﬁy//Qe—iazqﬁz//2’ (16)
wherez corresponds to the rotation axis; whijeandz’ in-

dicate the new axis after rotation. Hewe, ando, are the
corresponding Pauli matrices;, ¢/, and¢,. are the corre-

sponding Euler angles. Then, we can derive an explicit form

for the generalized’ with the following matrix elements:
h'y = —(cos ¢, sin ¢, — i sinacos ¢y ),
g = € 9= (cos b, cos ¢y —ising, +isinasin g, ),
W s = €% (cos ¢ cos ¢y +isin ¢, + isinasin g, ),

‘s = o8 ¢, sin ¢y — i sinacos ¢y,

and compute its eigenvalues:

(hly + ) & /(W + p)* — A(Wyhip — Wy gl 4)

E 5 .

With this unitary transformation, the condition of the
PT-symmetry in the new Hamiltonial’ is changed to
P'T'H'P'T' = H', whereP’ and7’ are the new parity and
time reversal operators after the unitary transformatibis
worth remarking thaf”’ is equal to a unitary operator mul-
tiplied by an anti-linear operator. It is the general formaof
time reversal operator. BotA’ and7” satisfy the conditions
of P2 =T =Tand[P',T'] = 0.

3

In general, there are eight degrees of freedom in an arbi-
trary Hamiltonian. Among them, four degrees of freedom cor-
respond to three Euler angles introduced in Bd) @nd the
non-Hermiticitya. We can also introduce the following three
constraints for the energy spectrufh. to be satisfied: (1):
Ei+FE_ =0,2):Ey —FE_=wy,and(3):E, E_ € R.
Here, the first constraint comes from the fact that the oleral
energy shift should not affect the physical phenomena. The
second constraint helps us to focus on physical systems with
the same energy scale, denoteddgywhile the third ensures
all the energies are real values. Finally, we can deFfJe
symmetric Hamiltonians coping with all these constraints.

In addition to the originalP7-symmetric Hamiltonian in
Eq. @), we explicitly list all other possibléPT-symmetric
Hamiltonians for2 x 2 couplers:

Hl_s<1+(s)ina 1_(S)ina>’ (172)
H?’:S(i—l-iosina _i+(§sma)’ (170)
H4:s(_l.slma _ififo‘), (17d)
H5_s<shlla _S_“lla>. (17¢)

Note that the Hamiltonian&l, and H5 shown in Egs. [179

and [[78 contain only real numbers matrix elements. Interms
of the interacting optical channels, the non-Hermiticitythie
PT-symmetric system comes from the asymmetric couplings
between two channels. Since there is no complex number in-
volved, the gain and loss effects can be absent to satisfy the
PT-symmetry condition.

To realize these passiV&T -symmetric couplers as optical
devices, one may need to implement asymmetric couplings
between two channels. Physically, itis the difference leetw
gain and loss that contributes to asymmetric coupling. Take
the Hamiltonian; shown in Eq.[L79 as an example, as il-
lustrated in Fig. 1(b), asymmetric couplers in the slab \gave
uides, dissimilar optical fibers, or coupled cavities wiltiral
mirrors m] are ready to act @7 -symmetry-based func-
tional devices.

We remark that, although a seemingly genefJ -
symmetric Hamiltonian below was proposedlin [2]:
s —iytany  z— (2 +1dy)

with z,y, z,v € R, under the condition of fixed energy dif-
ference, it is unitarily equivalent tél’ with ¢, = ¢, = 0.
The rotation operator used to generafé gives an explicit
picture that Eq.[I8 can be obtained by only rotating EE)
abouty-axis, which is obviously not the most gene®ak 2
PT-symmetric Hamiltonian.
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