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Abstract—We study source compression with a helper in the
fully quantum regime, extending our earlier result on classical
source compression with a quantum helper [arXiv:1501.04366,
2015]. We characterise the quantum resources involved in this
problem, and derive a single-letter expression of the achievable
rate region when entanglement assistance is available. The direct
coding proof is based on a combination of two fundamental
protocols, namely the quantum state merging protocol and
the quantum reverse Shannon theorem (QRST). This result
connects distributed source compression with the QRST protocol,
a quantum protocol that consumes noiseless resources to simulate
a noisy quantum channel.

I. INTRODUCTION

Quantum Shannon theory has been extensively studied in
the past decade [1]. It not only generalises Shannon’s source
and channel coding theorems [2], but also includes scenarios
that do not have classical correspondences due to the existence
of entanglement. Unlike classical correlations, i.e. the common
randomness, quantum entanglement fundamentally changes an
information-processing task whenever it is involved in the
protocol. The study of bipartite information-processing tasks
reached its peak in Ref. [3], where tradeoffs between classical
communication, quantum communication, and entanglement
for major protocols that either involve a quantum channel or
a quantum source in the Shannon-theoretic setting are given.
In the quantum multipartite information-processing tasks, the
capacity regions become much more complicated and often
require regularisation even with entanglement assistance [4],
[5]. Moreover, a quantum network information theory is still
in its infancy [6].

Quantum information theorists have developed a resource
theory that can efficiently describe an information-processing
task and largely simply the development of coding theorems
for complicated protocols that involve multiple valuable re-
sources [7], [8], [9]. The extension of classical Slepian-Wolf
coding theorem to the quantum regime has obtained great
success in quantum Shannon theory since the fully quantum
Slepian-Wolf (FQSW) protocol turns out to sit on the top of
the hierarchy chains of family protocols [7], [8], [9], [10].
From the FQSW protocol, coding theorems for many other
fundamental protocols can be trivially obtained by combin-
ing it with teleportation, superdense coding, or entanglement
distribution [3], [7], [8]. It also includes the quantum source
coding pioneered by Schumacher [11], followed by many
others [12], [13].

In the task of classical source coding with side information,
there is no advantage if the sender Alice has additional side
information regarding the compressed message X . Moreover,
the shared common randomness between the sender Alice
and the receiver Bob is also of no help. Therefore, the
classical Slepian-Wolf theorem is the most general theorem
for source coding with side information. In sharp contrast,
additional quantum side information at the encoder and/or
the decoder changes the problem [14]. Besides, pre-shared
entanglement between Alice and Bob, the quantum analog of
shared common randomness, also proves to be useful [14]. The
corresponding protocol, the state redistribution, characterises
the cost for Alice who owns systems A and C to redistribute
part of her system C to Bob when originally Bob has system
B and the inaccessible referee has system R of a pure
state |ψABCR〉. The communication cost is determined by
the conditional mutual information 1

2I(C;R|B)ψ , giving the
first operational meaning for the quantum conditional mutual
information.

What if the quantum side information is only observed by
a distant helper in the problem of source coding? Will an
answer to this problem further deepen our understanding of
the power of quantum resources? In our earlier study [15], we
provided a partial solution. We consider a classical-quantum
scenario, where the sender Alice has a classical source while
the helper observes a correlated quantum system with the
source and can only communicate with the decoder through
a classical channel. We derived a single-letter characterization
of the achievable rate region, where the direct part of our
result is proved via the measurement compression theory by
Winter [16], [17]. Our result reveals that a helper’s strategy that
separately conducts a measurement and a compression is sub-
optimal, and the measurement compression is fundamentally
needed to achieve the optimal rate region.

In this paper, we extend the classical distributed source cod-
ing problem [18], [19] and its classical-quantum generalisation
[15] to the fully quantum version; namely compression of a
quantum source with the help of a quantum server. Moreover,
we consider a general setting where entanglement assistance
between sender-decoder and helper-decoder is available. This
answers the open question raised in [15]. Our direct coding
proof combines two fundamental quantum protocols; the state
merging protocol [20], [21] and the quantum reverse Shannon
theorem [22].



Notations. Various entropic quantities will be used in the
paper. The von Neumann entropy of a quantum state ρA,
where the subscript A represents the quantum state is held
by A(lice), is H(A)ρ = −Tr(ρA log ρA). The conditional
von Neumann entropy of system A conditioned on B of
a bipartite state ρAB is H(A|B)ρ = H(AB)ρ − H(B)ρ.
The quantum mutual information between two systems A
and B of ρAB is I(A;B)ρ = H(A)ρ + H(B)ρ − H(AB)ρ.
The conditional quantum mutual information I(A;B|C)ρ =
I(A;BC)ρ − I(A;C)ρ.

Before introducing quantum protocols that will be needed in
our main result, we will first review the language of Resource
Inequality (RI) [8], [9]. The RIs are a concise way of describ-
ing interconversion of resources in an information-processing
task. Denote by [qq] and [q → q] an ebit (maximally entangled
pairs of qubits) and a noiseless qubit channel, respectively.
Then a quantum channel N that can faithfully transmit Q(N )
qubits per channel use with an unlimited amount of entangle-
ment assistance can be symbolically represented as

〈N〉+∞[qq] ≥ Q(N )[q → q],

where 〈N〉 is an asymptotic noisy resource that corresponds
to many independent uses, i.e. N⊗n. Schumacher’s noiseless
source compression [11] can be similarly expressed

H(B)ρ[q → q] ≥ 〈ρB〉,

which means that a rate of H(B)ρ noiseless qubits asymp-
totically is sufficient to represent the noisy quantum source
ρB .

Sometimes, the RI only applies to the relative resource, 〈N :
ρ〉, which means that the asymptotic accuracy is achieved only
when n uses of N are fed an input of the form ρ⊗n. For
detailed treatment of combining two RIs and cancellations of
quantum resources, see Ref. [8].

II. RELEVANT QUANTUM PROTOCOLS

Given a bipartite state ρAB whose purification is |ψABR〉,
the state merging protocol [20], [21], [26] is the information-
processing task of distributing A-part of the system that
originally belongs to Alice to the distant Bob without altering
the joint state. Moreover, Alice and Bob have access to pre-
shared entanglement and their goal is to minimise the number
of EPR pairs consumed during the protocol. The state merging
can be efficiently expressed as the following RI:

〈ψA|B|R〉+I(A;R)ψ[c→ c]+H(A|B)ψ[qq] ≥ 〈ψ|AB|R〉 (1)

where the notation ψA|B|R denotes the state is originally
shared between three distant parties Alice, Bob, and Eve, while
ψ|AB|R means that the system A is now together with system
B. This protocol involves classical communication; however,
for the purpose of this paper, quantum resources are much
more valuable and classical communication is considered to
be free. As a result, the state merging protocol either consumes
EPR pairs with rate H(A|B)ψ when this quantity is positive,
or generates H(A|B)ψ rate of EPR pairs for later uses, if

H(A|B)ψ is negative, after the transmission of the system A
to B.

The state merging protocol gives the first operational inter-
pretation to the conditional von Neumann entropy. Most im-
portantly, it provides an answer to the long-standing puzzle—
the conditional von Neumann entropy could be negative, a
situation that has no classical correspondence.

The fully quantum Slepian-Wolf (FQSW) protocol [10], [9]
can be considered as the coherent version of the state merging
protocol. It can be described as

〈ψA|B|R〉+
1

2
I(A;R)ψ[q → q] ≥ 1

2
I(A;B)ψ[qq] + 〈ψ|AB|R〉.

(2)
It is a simple exercise to show, via the resource inequalities,
that the state merging protocol can be obtained by combining
teleportation with the FQSW protocol [10], [3]. Moreover,
the FQSW protocol can be transformed into the a version of
the quantum reverse Shannon theorems (QRST) that involves
entanglement assistance [10].

The quantum reverse Shannon theorem (QRST) addresses a
fundamental task that asks, given a quantum channel N , how
much quantum communication is required from Alice to Bob
so that the channel N can be simulated. There are variants of
the QRSTs depending on whether entanglement or feedback
is allowed in the simulation (see [22, Theorem 3]). The QRST
protocol has become a powerful tool in quantum information
theory. It can be used to establish a strong converse to the
entanglement-assisted capacity theorem. Moreover, it can also
be used to establish quantum rate distortion theorems [23],
[24], [25].

In this paper, we will use the QRST with entanglement
assistance.

Theorem 1 (Quantum Reverse Shannon Theorem): Let N be
a quantum channel from A to B so that its isometry UNA→BE
results in the following tripartite state when inputting ρA:

|ψRBE〉 = UNA→BE |ψ
ρ
RA〉,

where TrR |ψρRA〉〈ψ
ρ
RA| = ρA. Then with sufficient amount of

pre-shared entanglement, the channel N with input ρA can be
simulated with quantum communication rate 1

2I(R;B)Ψ:

1

2
I(R;B)ψ[q → q] +

1

2
I(E;B)ψ[qq] ≥ 〈N : ρA〉. (3)

III. MAIN RESULT

As shown in Figure 1, the protocol for fully quantum
source coding with a quantum helper involves two senders,
Alice and Bob, and one receiver, Charlie. Initially Alice and
Bob hold n copies of a bipartite quantum state ρAB , where
Alice holds quantum systems An := A1 · · ·An while Bob
(being a quantum helper) holds quantum systems Bn =
B1 · · ·Bn. Moreover, there are pre-shared entangled states
|ΦTAT ′

A
〉 between Alice and Charlie, and pre-shared entangled

states |ΦTBT ′
B
〉 between Bob and Charlie. The goal is for the

decoder Charlie to faithfully recover Alice’s quantum state
ρAn = Tr ρ⊗nAB when assisted by the quantum helper Bob.
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Fig. 1. Fully Quantum Source Compression with a Quantum Helper. We
consider the most general case where both senders pre-share entanglement
(ΦTAT ′

A
and ΦTBT ′

B
) with the receiver, respectively. The goal is for the

receiver Charlie to recover the system An sent from the first sender Alice
while the second sender Bob who holds Bn acts as a helper.

We now proceed to formally define the coding procedure.
We define an (n, ε) code for fully quantum source compression
with a quantum helper to consist of the following:

• Alice’s encoding operation EA : TAA
n → A1M so that

the c-q state σA1M = EA(ρAn ⊗ τTA
);

• Bob’s encoding operation EB : TBB
n → L so that σL =

EB(ρBn ⊗ τTB
) where |L| = 2nR2 ;

• Charlie’s decoding operation D : MLT ′AT
′
B →

C1Â
nL̂T̂ ′B that produces

ωA1C1ÂnL̂T̂ ′
B

= IA1
⊗D(σA1MLT ′

AT
′
B

)

where

σA1MLT ′
AT

′
B

= EA ⊗ EB(ρ⊗nAB ⊗ ΦTAT ′
A
⊗ ΦTBT ′

B
);

so that the final state ωA1C1Ân satisfies

‖ωA1C1ÂnL̂T̂ ′
B
− ΦA1C1

⊗ ρAnLT ′
B
‖1 ≤ ε, (4)

where |ΦA1C1
〉 is a maximally entangled state.

Let R1 = log |TA| − log |A1|. A rate pair (R1, R2) is said
to be achievable if for any ε, δ > 0 and all sufficiently large n,
there exists an (n, ε) code with rates R1 + δ and R2 + δ. The
rate region is then defined as the collection of all achievable
rate pairs. Our main result is the following theorem.

Theorem 2: Given is a bipartite quantum source ρAB =
TrR ψABR. The optimal rate region for lossless source coding
of A with a quantum helper B is the set of rate pairs (R1, R2)
such that

R1 ≥ H(A|C)φ (5)

R2 ≥ 1

2
I(RA;C)φ. (6)

The state φACER resulting from Bob’s application of some
CPTP map EB→C is

|φACER〉 = IRA ⊗ UEB→CE |ψ
ρ
ABR〉. (7)

A. Direct part

We use the channel simulation method. For any local
channel EB→C performed by the quantum helper B on his half
of bipartite state ρAB , it can be simulated by the decoder using
the quantum reverse Shannon theorem (QRST) (Theorem 1):

1

2
I(RA;C)φ[q → q] +

1

2
I(E;C)φ[qq] ≥ 〈E : ρB〉, (8)

where

|φACER〉 = IR ⊗ UEB→CE |ψ
ρ
ABR〉.

In other words, by using the pre-shared entanglement between
the helper and the decoder with rate 1

2I(E;C)φ and sending
quantum message from the helper to the decoder with rate
1
2I(RA;C)φ, the decoder can simulate the quantum state
E(ρB) locally with error goes to zero in the asymptotic sense.

Alice’s coding: Once the decoder has the system C, then
Alice and the decoder start the state merging protocol, using
the pre-shared entanglement with rate H(A|C)φ.

B. Converse part

Here, we refer to Figure 1 for corresponding labels used
in the converse proof. To bound R1 = log |TA| − log |A1|,
we follow steps in the converse proof of the state merging
protocol [21] and have

R1
>∼ H(An|LT ′B) (9)

=

n∑
i=1

H(Ai|LT ′BA<i) (10)

=

n∑
i=1

H(Ai|Ui) (11)

= nH(AT |UTT ) (12)
= nH(A|C), (13)

where we set Ui := (L, T ′B , A<i), T being uniformly dis-
tributed in {1, 2, · · · , n}, and in the last equality, we relabel
A = AT and C := (UT , T ).

To bound the quantum communication rate R2 = log |L|,
note that the task is equivalent to simulating a local channel
with entanglement assistance. Thus, steps in the converse proof
of the entanglement-assisted quantum rate-distortion theorem



(see equation (21) in [24]) can be recycled:

2R2 ≥ I(LT ′B ;RnAn) (14)

=

n∑
i=1

I(LT ′B ;RiAi|R<iA<i) (15)

=

n∑
i=1

[I(LT ′BR<iA<i;RiAi)− I(R<iA<i;RiAi)]

(16)

=

n∑
i=1

I(LT ′BR<iA<i;RiAi) (17)

≥
n∑
i=1

I(LT ′BA<i;RiAi) (18)

=

n∑
i=1

I(Ui;RiAi) (19)

= nI(UT ;RTAT |T ) (20)
= nI(UTT ;RTAT ) (21)
= nI(C;RA). (22)

Note that T is a random variable uniformly distributed in
{1, 2, · · · , n} and Ui can be generated from Bi via Bob’s local
CPTP. In fact, Bob can first append the maximally entangled
states (TB , T

′
B), systems (A<i, B<i), and B>i. Then, he can

perform EB , and get Ui = (L, T ′B , A<i).

IV. DISCUSSION

The rate region in our main result, Theorem 2, bears a close
resemblance to its classical counterpart. Our result also shows
a helper’s strategy of simply compressing the side information
H(C)φ and sending it to the decoder is sub-optimal with
entanglement assistance. Recall the following identity:

H(C)φ =
1

2
I(C;E)φ +

1

2
I(C;RA)φ,

where the state |φACER〉 is given in (7). The QRST protocol
allows us to cleverly divide the amount of quantum commu-
nication required for lossless transmission of system C to the
decoder into pre-shared entanglement with rate 1

2I(C;E)φ and
quantum communication with rate 1

2I(C;RA)φ.
We will like to point out that the definition of the fully

quantum source compression with a quantum helper requires
to explicitly include additional quantum systems LT ′B (see
Eq. (4)) for a technical purpose. The reason behind this
is because when the quantum state merging is performed,
the target systems to which the quantum state is merged
needs to be specified. We believe that the inclusion of these
additional systems in the definition is inevitable, and it signals
a fundamental difference between the fully quantum source
compression with a quantum helper and its classical counter-
part.

Note that it is possible to replace the state merging protocol
with the FQSW protocol, and derive an alternative theorem for
quantum source compression with a quantum helper. It is also
possible to consider the same problem without entanglement

assistance between the helper and the decoder. These exten-
sions will be treated in the future.

Finally, in the classical source coding with a helper problem,
it is possible to bound the dimension for the helper’s output
system. However, we do not know how to bound the dimension
of the helper’s output system in the quantum regime.
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