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ABSTRACT 

 

This paper proposes a new non-probabilistic robust topology optimization approach for structures under 

interval uncertainty, as a complementarity of the probabilistic robust topology optimization methods. 

Firstly, to avoid the nested double-loop optimization procedure that is time consuming in computations, 

the interval arithmetic is introduced to estimate the bounds of the interval objective function and 

formulate the design problem under the worst scenario. Secondly, a type of non-intrusive method using 

the Chebyshev interval inclusion function is established to implement the interval arithmetic. Finally, a 

new sensitivity analysis method is developed to evaluate the design sensitivities for objective functions 

like structural mean compliance with respect to interval uncertainty. It can overcome the difficulty due to 

non-differentiability of intervals and enable the direct application of gradient-based optimization 

algorithms, e.g. the Method of Moving Asymptotes (MMA), to the interval uncertain topology 

optimization problems. Several numerical examples are used to demonstrate the effectiveness of the 

proposed RTO method. 
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1. INTRODUCTION 

In the field of structural optimization, topology optimization has experienced considerable development 

over the past two decades with a range of applications [1]. Topology optimization is essentially a 

numerical process to optimize a prescribed objective function under specific constraints by iteratively 

distributing a given amount of material, until the best layout of the material is obtained in the design 

domain. Several typical methods have been developed for topology optimization of structures, such as the 

homogenization method [2], the SIMP based methods [3, 4], and the level set-based methods (LSMs), e.g. 

[5-7], as well as the heuristic methods like the evolutionary structural optimization (ESO) method and its 

variants [8, 9]. 

 

However, the majority of current studies about the topology optimization of structures are based on the 

deterministic assumption, which may result in a design that cannot satisfy the expected design goal and 

even a design that is unfeasible, as most problems in engineering inevitably involve various uncertainties, 

including the manufacturing tolerance, load variations, inhomogeneity of material properties, and so on 

[10]. For a structure, the topological design may be quite different when uncertain factors are considered. 

As a result, the performance of a structure, such as robustness and reliability, is unavoidably subject to 

variations in practice due to various uncertainties [11, 12]. Hence, it is necessary to incorporate 

uncertainties into structural topology optimization problems quantitatively, in order to enhance structural 

safety and avoid failure in extreme working conditions. 

 

The reliability-based design optimization (RBDO) [11, 13-15] and robust design optimization (RDO) [16-

19] are two main methods, which have been used to account for different uncertainties in engineering 

optimization. RBDO focuses on a risk-based solution taking into account the feasibility of target at 

expected probabilistic levels, in which the risk is commonly measured by the probabilities of failure. 

Thus, RBDO seeks a design that achieves a targeted probability of failure (i.e., less than some acceptable 

and invariably small value) and therefore ensures that the conditions that may lead to catastrophe are 

unlikely. The RBDO has been combined with topology optimization to deliver the so-called reliability-

based topology optimization (RBTO) methods. For instance, Kharmanda and et al. [20] studied topology 

optimization of continuum structures considering uncertainties by using the first-order reliability method. 

In [21], a non-deterministic topology optimization methodology is proposed by using a hybrid cellular 

automate method combined with a decoupled RBDO approach. Luo et al. [22] proposed a RBTO method 

based on a multi-ellipsoid convex model for problems consisting of non-probability uncertainties [23, 24], 

and so on [25]. 
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The RDO aims to reduce the sensitivity of the objective function with respect to uncertain parameters, so 

it can minimize both the mean and variation of the objective function. The application of RDO to 

structural topology optimization refers to the robust topology optimization, termed as RTO which is the 

major focus of this research. There have been some studies investigating RTO under uncertainties of load 

conditions, material properties, and geometry [26]. For instance, Sigmund [27] presented a topology 

optimization method to include uncertainties during the fabrication of micro and nanostructures [28]. 

Guest et al. [29] studied a perturbation-based topology optimization method for solving problems with 

small uncertainty level of externally applied loads. The perturbation method [30] was also used to solve 

RTO problems with small uncertainty of geometry. Asadpoure and et al. [10] combined deterministic 

topology optimization techniques with a perturbation method for quantification of uncertainties associated 

with structural stiffness. The main concept of the perturbation method is to transform the original 

topology optimization problem under uncertainty into an augmented deterministic problem. However, the 

perturbation method may produce errors which cannot be ignored when the uncertainty level of 

parameters is relatively high. 

 

For the continuous problems with uncertainty, the stochastic spectrum-based method is usually used to 

discretise the random field. Tootkaboni et al. [31] combined the polynomial chaos expansion with 

topology optimization, to design continuum structures to achieve robustness in presence of random 

uncertainties. Zhao et al. [32] considered loading uncertainty of random field by using the Karhunen-

Loeve expansion to characterize the random field as a reduced set of random variables. The Karhunen-

Loeve expansion was also used to develop robust topology optimization method [33] with random field 

uncertainty, in which the univariate dimension-reduction method was combined with the Gauss type 

quadrature sampling to calculate statistical moments of the objective function. Jansen et al. [34] 

discretised the random field by using the expansion optimal linear estimation method, which particularly 

suits for discretising random fields with a relatively large correlation length. Zhao et al. [35] proposed an 

efficient approach by completely separating the Monte Carlo sampling with topology optimization to 

solve the RTO problem of structures under loading uncertainty, which obtained the accurate calculation 

of the objective function. 

 

Most of the aforementioned RTO methods are based on the theory of random field or random variables, 

using a combination of the first and second order statistical moments (mean and variance) of the design 

response as the objective function of the RTO problems. However, in engineering, how to accurately 

describe probability distribution functions is a challenging task, especially for variables with limited 

uncertainty information. In some cases, for the uncertain variables the lower and upper bounds can be 

more easily obtained than the evaluation of accurate probability distributions [36]. Hence, the uncertain-
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but-bounded parameters may be more suitable for describing uncertainties under some situations. When 

non-probabilistic parameters are used to describe the uncertain parameters, the performance under the 

worst condition can be used to define the objective function of RTO problems. In [37], the RTO problem 

was formulated to minimize the maximum compliance induced by the worst case of an uncertain load set, 

which was characterised by a convex model. By constraining the Euclidean norm of the uncertain loads, 

the robust optimization problem was formulated as the minimization of maximum eigenvalue of an 

aggregated symmetric matrix, according to the Rayleigh-Ritz theorem for symmetric matrices. However, 

this method can only be used to handle the convex model rather than the interval uncertainty. Csébfalvi et 

al. [38] considered the direction of load as uncertain-but-bounded parameters to optimize the truss by 

using a nonlinear optimization solver the previously developed hybrid metaheuristic ANGEL [39], but it 

was not used in the optimization of continuous structure. Wang et al. [36] presented a hybrid genetic 

algorithm, which was integrated with a simple local search strategy as the worst-case-scenario of an anti-

optimization, to tackle structure topology optimization under interval uncertainty. However, the anti-

optimization method is usually time-consuming, especially for the RTO of continuum structures, which 

often involves a nested double-loop optimization process that is computationally expensive. 

 

There have been some applications about the interval uncertainty analysis and optimization. Jiang et al. 

[40] proposed an optimization method for uncertain structures based on convex model and a satisfaction 

degree of interval, in which the interval analysis method was used to determine the bounds of constraints. 

This method was then applied to [41], but the neural network was employed to calculate the bounds of 

constraints. Gao et al. [42] studied the interval dynamic response of vehicle-bridge interaction systems, in 

which the parameters of the bridge and vehicle were considered as interval variables, and a heuristic 

optimization method (LHNPSO) was used to find the bounds of bridge displacement. The hybrid 

uncertainty analysis of probability and interval uncertainty was also studied in references [43, 44]. 

 

Compared to optimization algorithms, the interval arithmetic [45] is a more efficient method that can be 

applied to handle the interval uncertainty, but it often produces large overestimation [46, 47]. A series of 

techniques have been developed to control overestimation or wrapping effect induced by interval 

arithmetic, e.g. the Taylor series-based method [48, 49], Taylor model method [50, 51], and Chebyshev 

interval method [46, 47]. Due to its non-intrusive characteristic, the Chebyshev interval method can be 

implemented for complex models as a black-box model. The Chebyshev interval method has been applied 

to the optimization problem of vehicle dynamics for hardpoints coordinate with interval uncertainty [52] 

and truss structures for geometric dimensions with interval uncertainty [53], and demonstrated as an 

effective method to compress the overestimation and avoid the nested double-loop in the optimization. 
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However, there has been no publication in applying interval arithmetic to the RTO problems of 

continuum structures, particularly due to the following numerical issue. 

 

Besides the overestimation in the numerical implementation, there has been no effective method so far 

developed for commutating the derivatives of interval functions, due to non-differentiability of intervals. 

However, the first-order derivatives of the objective function with respect to the design variables are often 

required to enable the application of the gradient-based mathematical programming methods to the RTO 

problems. Therefore, the difficulty for computing the derivatives is another important issue in applying 

the interval arithmetic to the RTO problems. In this paper, the Chebyshev interval method [46, 47] will be 

introduced to the RTO problems of continuum structures with uncertain-but-bounded parameters. The 

interval functions of RTO problems will be calculated by the interval arithmetic, in order to improve 

computational efficiency by avoiding the nested double-loop optimization and numerical accuracy by 

compressing the overestimation due to interval wrapping effect. In particular, a new numerical scheme 

will be developed to compute the derivatives of interval functions, which makes it possible to implement 

the RTO problems by using many traditional but efficient gradient-based optimization algorithms. 

 

2. MATERIAL DENSITY BASED APPROACH FOR TOPOLOGY OPTIMIZATION 

A typical topology optimization problem is the one to find the best layout of material within a given 

design domain, to minimize a prescribed objective function while satisfying a set of constraints. The well-

known topological optimization design problem is the minimization of structural mean compliance. With 

a given amount of material, the goal of the optimization is to identify the best topology of the material 

distribution that stores the minimum amount of strain energy under a set of applied loads. Using the SIMP 

method [54], the optimization problem is typically defined as follows:  
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where C(ρ) is the compliance, ρ is the vector including all elemental design variables, k0 denotes the 

element stiffness matrix, e  is an entry in ρ corresponding to element e, ve is a quantity that gives the 

volume of the element e when multiplied by the design variable e , and V is the upper bound for the 

amount of material that are allowable for usage. min  is a vector of minimal densities, N is the number of 

elements used to discretise the design domain, and p is the penalization power. U and F denote the global 

displacement vector and forcing vector, respectively, and they satisfy the following equation 

KU = F       (2) 
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where K is the global stiffness matrix. 

 

The above optimization model can usually be solved by several optimization algorithms, such as the 

Optimality Criteria (OC) method [55], the Method of Moving Asymptotes (MMA) [56], and so on. If the 

MMA is used, the sensitivity or the first-order derivatives of the objective function with respect to the 

design variables should be firstly derived, as follows [54]: 
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ρ u k u     (3) 

In SIMP, the filtering techniques will normally be used to smooth the design sensivity, so as to ensure 

regularity or existence of solutions of a topology optimization problem without occurring checkboards 

[54, 57]. If the sensitivity filtering scheme [54] id used, the element sensitivity is normally modified as  
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ρ ρ

    (4) 

where Ne is the set of elements whose center-center distance to element e is no larger than the filter radius 

R, and wi is the weight factor, determined by the following equation 

 ,i i ew R dist          (5) 

Using Eq. (4) to compute the derivatives of the objective function, the optimization given in Eq. (1) can 

be solved by the gradient-based optimization algorithms, e.g. the MMA. 

 

3. ROBUST TOPOLOGY OPTIMIZATION UNDER INTERVAL UNCERTAINTY 

3.1 RTO formulation under interval uncertainty 

The uncertain parameters in RTO are expressed by interval numbers in this study. Using IR to denote the 

interval real set, an interval number [ ]x  IR  is defined by its lower bound and upper bound, i.e. 

     ,x x x x x x x    R     (6) 

where x  and x  denotes the lower bound and upper bound of interval [x], respectively. Similar to the real 

number, the interval vector [ ] kx IR  can be defined as 

     , 1, 2,...,ii i ix x x x i k     x x, x R    (7) 

The addition and subtraction operation of interval arithmetic are defined by 

       ,  ,  ,  x y x y x y x y x y x y                 (8) 

More detailed interval arithmetic operations can be found in [58]. Using interval arithmetic, the bounds of 

a continuous interval function f([x]), ([ ]) [ ,  ]f x f f , with explicit expression can be calculated easily. 
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When interval uncertain parameters (e.g. loads and material properties) involved in the original topology 

optimization model, the formulation in Eq. (1) will be re-written as follows: 
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Here, [ ] kx IR  denotes a k
th

-dimensional vector of interval parameters. The interval parameters are not 

involved in the constraint of the volume fraction. In this case, the original structural mean compliance 

becomes an interval objective function with respect to the interval parameters [x], denoted by its lower 

bound ( ,[ ])C ρ x  and upper bound ( ,[ ])C ρ x . Considering the worst case of the optimization, the upper 

bound of the interval function will be used to define the new objective function for the RTO problem as 
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It is noted that the above objective function includes a maximum operation, which is computationally 

expensive if the optimization method is employed to compute the maximum compliance under the 

interval uncertainty. One may consider enumerating all the vertices of interval parameters to estimate the 

maximum compliance, so the optimization model will be transformed to 
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where xi denotes the vertices of the interval parameters, and K is the number of vertices of the interval 

parameters. This model becomes a minimax optimization problem [59] which can be solved by using the 

MMA algorithm. However, the optimization procedure is usually unstable, as demonstrated by the 

numerical examples given in Section 5. The interval arithmetic will be used to estimate the ( ,[ ])C ρ x . 

 

3.2 RTO using the Chebyshev interval method 

If the explicit expression of the objective function with respect to interval parameters [x] can be obtained, 

the interval arithmetic can be directly used to calculate the upper bound of the interval objective function. 

However, it is hard to obtain the explicit expression, so we have to solve the following linear system to 

obtain the interval displacement, and then calculate the interval function for the mean compliance. 

     K x U = f x      (12) 
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The Eq. (12) is difficult to solve by using interval arithmetic directly, especially for the large dimensional 

case in the finite element analysis. On the other hand, each node displacement occurs several times in the 

expression of compliance, which may produce large overestimation if the interval arithmetic is used 

directly. To overcome these problems, the non-intrusive Chebyshev interval method will be employed to 

calculate the interval compliance. 

 

For simplicity but without loss of generality, the interval vector is considered to be [x]=[-1, 1]
k
. Based on 

the Chebyshev interval method [47], a general continuous interval function F([x]) often without explicit 

expression can be approximated by the following n-th order truncated Chebyshev series: 
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where       arccos 0,  i ix   ,   cos i ij   denotes the Chebyshev polynomial, l is the number of 

subscript ji = 0 (i=1,…, k) of 
1... kj jf , which are the Chebyshev coefficients and can be calculated by the 

following Gaussian-Chebyshev numerical quadrature formula. 
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where m denotes the order of numerical quadrature formula, q is the interpolation points of the numerical 

quadrature formula, determined by 

2 1
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Using Eq. (14), we do not need the explicit expression of function F(x), but only the function values at 

some interpolation points, so F(x) can be very complicated model or even black-box model. Once the Eq. 

(13) is obtained, the interval arithmetic can be used to calculate the bounds of F([x]) based on the 

characteristic of trigonometric function, i.e. 

           cos 0 1,  cos 1,  1 , 1,2,... for 0,  j j          (16) 

Using the interval arithmetic shown in Eq. (8), the bounds of an interval function can be estimated by 
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Let ( ,[ ])eC ρ x denotes the interval element compliance under the interval parameters, i.e. 

             T

0,
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e e eC ρ x u x k x u x     (18) 
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Replace the general interval function F([x]) by the interval compliance ( ,[ ])eC ρ x  in Eq. (13), we have 
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The coefficients 
1... k

e

j jc  are generated by Eq. (14) after replacing F by C
e
. It should be noted that the 

coefficients will be changed along with the design variables ρ, noted as  
1... k

e

j jc ρ . Considering Eq. (9), 

the interval compliance of the structure can be expressed by 
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Based on Eq. (17), the objective function of the RTO problem can finally be expressed, as follows: 
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Eq. (21) assumes that all the element interval compliances can reach their upper bounds simultaneously, 

so it usually makes ( ,[ ])C ρ x  larger than its exact upper bound. However, ( ,[ ])C ρ x  has the same trend as 

the exact upper bound, so it can be used as the objective function to replace the exact upper bound. 

 

4. Numerical implementation of RTO using interval arithmetic 

4.1 Sensitivity analysis of the interval functions 

To use the MMA to solve the RTO, the derivatives of the objective with respect to the design variables 

have to be produced. The objective shown in Eq. (22) contains the operation of computing the absolute 

value, which is difficult to calculate the derivative, so we change Eq. (22) as the following equation 
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where the sign function is defined as 
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Differentiating Eq. (22) with respect to design variables e , we have the sensitivity 
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Figure.1 The plot of sign(x) and tanh(β x) 

 

It is noted the function ‘ sign( )x ’ is not continuous, as it is not differentiable at the point x=0, as given in 

Eq. (23). Here the Heaviside projection method is used to smooth the sign function, as follows: 

   tanhs x x       (25) 

where the parameter β is a positive real number. The s(x) and the sign(x) are plot in Fig. 1, which shows 

that the s(x) will be equal to sign(x) when the parameter β tends to be infinite. 

 

Replacing the sign(x) by the continuous s(x) in Eq. (24), we can obtain the following equation 

      
        1

1 1 1

1

1

...0...0 2

... ... ...

1 0 ,...,
... 0

,
tanh sech

2 2

k

k k k

k

k

eeN
j j e e e

j j j j j jk l
e j j ne e e

j j

C cc
c c c  

    
  

 
    

    
 

 
ρ x ρρ

ρ ρ ρ (26) 

 

Since the first-order derivatives of the coefficients 
1... k

e

j jc  with respect to e  (sensitivities) cannot be 

explicitly obtained, we will consider the following expansion, to approximate these first-order derivatives. 

Considering the interval parameters, the derivative of the compliance in Eq. (3) can be rewritten as 
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ρ x
ρ x u x k x u x    (27) 

Similar to the procedure shown in Section 3.2, the derivatives can also be expanded by using the 

truncated Chebyshev series, as follows: 
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It is noted that the above equation involves the coefficients  
1... kj jh ρ , which actually can be directly 

calculated by using the same quadrature formula, as given in Eq. (14). 

 

Differentiating Eq. (20) with respect to e , we have 
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Comparing Eq. (28) and Eq. (29), we will have 
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In this case, we can get the summation of the first-order derivatives of coefficients  
1... k

e

j jc ρ  with respect 

to e  at the right-hand side of Eq. (26), according to Eq. (14). Hence, substituting Eq. (30) into Eq. (26), 

we can finally find the design sensitivity of the interval objective function as 
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ρ x
ρ ρ ρ ρ ρ  (31) 

 

After obtaining Eq. (31), in a similar way as given by Eq. (4), we can still use filtering schemes, such as 

the sensitivity filtering method, to smooth the sensitivity before finally feeding into the MMA solver. 

 

4.2 Optimization procedure 

With the use of MMA algorithm, the implementation process of the proposed robust topology 

optimization method under interval uncertainties can be summarized, as follows: 

 

Initialize     and produce the      by Eq. (15)ρ q

Evaluate the compliance:     

      and the sensitivity:  
1

( ,cos( ),...,cos( ))
kq qC  ρ

1
( ,cos( ),...,cos( ))

kq qh  ρ

Compute the coefficient           and
1 ... k

e

j jc
1 ... kj jh

Evaluate the upper bound of compliance: ( ,[ ])C ρ x

Compute the sensitivity of objective:
( ,[ ])

e

C







ρ x

Update    by using the MMA algorithmρ

Satisfy the termination?

End 

Yes

No

 

Figure. 2 The flowchart of RTO based on interval method 
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This process mainly contains 6 steps that are: 

1) Initialize the design variables ρ  and produce the interpolation points of the interval parameters q  by 

using Eq. (15); 

2) Set the interval parameters to be the values at the interpolation points produced in Step (1), solve the 

displacements from the Eq. (12) and then evaluate the compliance 
1

( ,cos( ),...,cos( ))
kq qC  ρ  and 

sensitivity 
1

( ,cos( ),...,cos( ))
kq qh  ρ  at these interpolation points; 

3) Calculate the coefficients 
1... k

e

j jc  and 
1 ... kj jh  using the Gaussian quadrature formula in Eq. (14); 

4) Evaluate the upper bound of interval compliance ( ,[ ])C ρ x  using Eq. (21); 

5) Calculate the sensitivity of the objective 
( ,[ ])

e

C







ρ x
 using Eq. (31) and then substitute it into Eq. (4) to 

get the final sensitivity to be used in MMA; 

6) Update the design variables by the MMA, and go back to Step 2) until convergence. 

 

5. Numerical examples 

In this section, three numerical examples with different interval parameters will be used to illustrate the 

proposed RTO method under interval uncertainty. Besides the interval optimization method, the minimax 

optimization in Eq. (11) based on the vertices of interval parameters will also be used to implement the 

RTO. The traditional deterministic topology optimization is also employed to show the difference 

between the deterministic and uncertain topology optimization problems. 

 

5.1 Simple column design 

The boundary conditions and load for the design problem is shown as Fig. 3. In the optimization, the 

volume fraction V is set as 0.3. The magnitude of the force F is set as 1, but the direction of force is 

considered as an interval parameter and subject to variation. For the deterministic case, the force direction 

is set as =-90 . For the uncertain cases, three uncertainties are considered as: 1) small uncertainty 

[ ]=[-95 , -85 ] , 2) medium uncertainty [ ]=[-100 , -80 ] , and 3) large uncertainty [ ]=[-110 , -70 ] . 

 

The mesh size is 60 by 60, and the filter radius is set as 1.5. The parameters of the interval optimization 

method are set as follows: the 2
nd

 order Chebyshev series (n=2), the 3
rd

 order quadrature formula (m=3), 

and β=10. When the maximum change of design variables of two successive iterations is smaller than 

0.01 and the related change of objective function values is smaller than 0.01%, or the maximum number 

of iteration is larger than 500, the optimization will be terminated. The minimax optimization model uses 

the same convergence criterion. 
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It can be found that the results of the RTO problems based on the interval method are different from the 

design of the deterministic topology optimization. The deterministic optimization result is shown in Fig. 4, 

while the results of interval optimization under the three types of interval uncertainties are given in Fig. 5. 

 

    

Figure. 3 Design domain   Figure. 4 Deterministic design 

 

     

(a)  = -95 , -85         (b)   = -100 , -80        (c)  = -110 , -70     

Figure. 5 The RTO of simple column using interval optimization 

                         

(a)  = -95 , -85               (b)   = -100 , -80                (c)  = -110 , -70     

Figure. 6 The RTO of simple column based on minimax optimization 
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In the deterministic case, the force is fixed in the vertical direction, so all the material is distributed along 

the vertical direction. However, this structure is unstable, because its lateral stiffness is relatively very 

small, which may produce larger deformation when there is a perturbation from the force direction. The 

topology of the interval optimization is much more stable than the deterministic one, because the triangle 

structure provides larger lateral stiffness. With the increase of the uncertainty level, the angle in the top 

side of the structure becomes larger, in order to improve the lateral stiffness to bear the loadin    hen the 

uncertaint  le el achie es    , the angle in the top will not change, since the two support points in the 

bottom side have reached the two end points of the design domain. The results of the RTO by using the 

minimax model based on the vertices are given in Fig. 6. The minimax model is difficult to convergence, 

so the convergence criterion of the optimization procedure is that the maximum allowable iteration 

iterations are 500. Therefore, the optimized results of the minimax model will contain some intermediate 

densities. 
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(b) [ ]=[-100 , -80 ]  
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(c) [ ]=[-110 , -70 ]  

Figure. 7 Iteration histories of simple column (left: Interval optimization; right: minimax optimization) 

 

The iteration histories of the interval optimization and minimax optimization model are shown in Fig. 7. 

In general, the interval optimization topologically converges to the optimized design within 100 iterations 

and the rest iterations will be used to locally adjust the distribution of the material. Figure 7 also shows 

that the interval optimization can be processed stably without experiencing oscillation until the optimized 

design is obtained, due to the differentiability of the interval uncertainty optimization of the structure. The 

iteration history shows that the minimax optimization contains many waves in the optimization procedure 

and the iteration does not stop until the maximum iteration (500 iterations) is reached.  Hence, the 

minimax optimization model may be unstable. 

 

The compliances under the worst case of loading conditions are given in Table 1, which shows that the 

deterministic solutions of the topology optimization problem produce larger compliance than that of RTO. 

In Table 1, the solutions for both the deterministic and uncertain optimization problems are obtained by 

using a scanning method to find the maximum of the objective function within the intervals. It can be 

seen that with the increasing of the uncertainty level the compliance of the deterministic optimization 

problem increases obviously, because the loading will have a notable impact on the structural stability at 

the transverse direction, while the RTO based on interval optimization keeps the compliance to be 

minimized under the worst case. The interval optimization also provides smaller compliance than the 

minimax optimization model. The values in the bracket are compliance computed by the interval method. 

It is noted that the compliance obtained by the interval method is larger the actual compliance obtained by 

the scanning method. However, since here we only use the compliance computed by the interval method 

as an intermediary to obtain the optimal solution, it will not affect the final result. 

 

Table 1 The compliance of simple column under the worst case condition 

 [ ]=[-95 , -85 ]  [ ]=[-100 , -80 ]  [ ]=[-110 , -70 ]  

Deterministic 10.62 21.93 65.46 
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RTO by Interval 5.98(8.54) 6.88(11.24) 8.86(16.42) 

RTO by Minimax 7.42 7.39 12.05 

 

5.2 Cantilever beam design 

Figure 8 shows the cantilever beam structure where the volume fraction constraint is set to 0.3. There are 

two forces applied at the two corners of the right edge, as shown in Fig. 9. In the deterministic condition, 

the magnitudes of both the two forces are equal to 1. Considering the interval uncertainties, the magnitude 

of the two forces is set as: 1) F=[0.95, 1.05]
2
, 2) F=[0.9, 1.1]

2
, and 3) F=[0.8, 1.2]

2
. The mesh size is 60 

by 30, and all other parameters about the RTO are the same as the above simple column design. 

 

       

Figure. 8 Design domain    Figure. 9 Deterministic optimization design 

 

The deterministic optimization result is shown in Fig. 9. When the two forces are exactly equivalent in 

magnitude but applied in the opposite directions, the stress of the beam will not be transmitted to the left 

side of the domain, so the materials will only be distributed in the right side of the domain. However, 

such structure is unstable, due to the infinite displacements once the two forces are not exactly equivalent. 

 

       

(a) F=[0.95, 1.05]
2
   (b) F=[0.9, 1.1]

2
   (c) F=[0.8, 1.2]

2 

Figure. 10 The RTO of cantilever beam using interval optimization 
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(a) F=[0.95, 1.05]
2
   (b) F=[0.9, 1.1]

2
   (c) F=[0.8, 1.2]

2 

Figure. 11 The RTO of cantilever beam using minimax optimization 

 

The results of the RTO by using interval method under different uncertain conditions are given in Fig. 10. 

The two types of optimization methods provide quite different solution. It can be found that there are 

some connections between the left side and the right side when the uncertain level is 5%, which can avoid 

infinite displacements. When the uncertain level increases to 10%, the connecting bars between the left 

side and the right domain become thicker. When the uncertain range reaches to 20%, there are more bars 

connecting the left side and right domain, which means that more material has been transformed from the 

right to the left of the design domain. There are more loads transferred to the left side when the 

uncertainty level increases, so more materials will be distributed in the left domain. The results of RTO 

by using the minimax optimization model are shown in Fig. 11. It can be found that the topologically 

optimized structure under very small level of uncertainty (e.g. 5% ) is unstable, similar to the 

deterministically designed structure (Fig. 8). The other two cases (10% and 20% uncertain levels) give 

more stable topological designs, but there are some intermediate densities in the final results. Since the 

minimax optimization is unstable (Fig. 12), the optimization procedure is not converged until the 500 

iterations have been reached. Therefore, the final results involve more intermediate densities. 
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(b) F=[0.9, 1.1]
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(c) F=[0.8, 1.2]
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Figure.12 Iteration histories of cantilever beam (left: interval optimization; right: minimax optimization) 

 

The iteration histories of the cantilever beam are shown in Fig. 11. The interval uncertainty optimization 

problem of the structure is more stable than the minimax optimization. At the initial 40 iterations of the 

interval optimization, there are oscillations, which are caused by the drastic change of structural topology 

at the initial stage of evolution. The interval optimization converges after 40 iterations (except the 10% 

uncertain level which converges after 200 iterations), so the computation is more efficient for the 

proposed interval optimization method. Besides the unstablility, the iteration histories of minimax 

optimization involves obvious fluctuations and difficult to converge until the maximum iterations is 

reached. 

 

Table 2 The compliance of cantilever beam under the worst-case condition 

 F=[0.95, 1.05]
2
 F=[0.9, 1.1]

2
 F=[0.8, 1.2]

2
 

Deterministic 3.67e11 1.43e12 5.46e12 

RTO by Interval 21.24(23.70) 28.14(33.36) 49.92(69.31) 

RTO by Minimax 120.06 30.76 57.26 

 

The detailed objective values of the design are given in Table 2. The compliances of the worst case of the 

deterministic optimization tend to be infinite, because there is no connection between the left and the right 

sides of the domain. The fixed points are located in the left side but the external forces are located in the 

right side. The compliance of RTO is much smaller than the deterministic topology optimization. At the 

same time, the interval optimization gives smaller compliance values than the minimax optimization. 

 

5.3 Michell-type structure design 

The boundary conditions and loads for the Michell-type structure are given in Fig. 13. The volume 

fraction is limited to 0.3, and the magnitude of the three forces are F1=1, F2=2, and F3=1. The force 

direction is assumed to be 1 2 3= -90     in the deterministic design. For the uncertain conditions, the 
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force direction is assumed to be: 1) 
3=[-95 ,  -85 ]θ ; 2) 

3=[-100 ,  -80 ]θ ; 3) 
3=[-110 ,  -70 ]θ . The mesh 

size is set as 120 by 50, and all other parameters about the RTO are the same as the simple column design. 

 

         

Figure. 13 Design domain    Figure. 14 Deterministic design 

 

Figures 14 to 16 show the results of the deterministic topology optimization and RTO by using the 

interval method and minimax model, respectively. For the deterministic topology optimization, there are 

no materials between the two end points and the locations of F1 and F3. Figure 15 sho s that t o crossin  

structures are occurred in the left botto  and ri ht botto  of the do ain  hen the uncertaint  is   , which 

may be useful to bear lateral force induced by the perturbation of the force direction. When the 

uncertainty approaches to    , it can be found that the t o crossin  structures  o e do n ard   hen the 

uncertaint   ets    , the crossing structures have moved to the bottom of the design domain, and they have 

degenerated to the direct linked bar. 

 

     

(a) 
3=[-95 ,  -85 ]θ    (b) 

3=[-100 ,  -80 ]θ    (c) 
3=[-110 ,  -70 ]θ  

Figure. 15 RTO of Mitchell-type structure using interval optimization 

 

     

(a) 
3=[-95 ,  -85 ]θ    (b) 

3=[-100 ,  -80 ]θ    (c) 
3=[-110 ,  -70 ]θ  

Figure. 16 RTO of Mitchell-type structure using minimax optimization 
 

Figure 16 gives unsymmetrical topological design for the minimax optimization and many intermediate 

densities occur for the cases under    and     uncertainties. Therefore, the minimax optimization may not 

be convergent, which can be further indicated by the iteration history (Fig. 17). 
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(a) 
3=[-95 ,  -85 ]θ  

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

iteratons

o
b

je
c
ti
v
e

20 iterations 100 iterations 200 iterations

0 100 200 300 400 500
0

1000

2000

3000

4000

iterations

o
b

je
c
ti
v
e

20 iterations 100 iterations 200 iterations

 

(b) 
3=[-100 ,  -80 ]θ  
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(c) 
3=[-110 ,  -70 ]θ  

Figure. 17 Iteration histories of Mitchell beam (left: interval optimization; right: minimax optimization) 

 

Figure 17 shows the iteration history of the RTO under different uncertainty levels. After 50 iterations, 

the variation of the interval objective function is relatively small, and the iteration is stable. However, 

there are large variations for the objective function of the minimax optimization in the process of the 

whole optimization, and the optimization does not converge until the maximum iterations are reached. 

 

The detailed objective function values are given in Table 3. The compliance shows that under worst case 

condition the proposed interval optimization can produce smaller compliance than both the deterministic 

topology optimization and the minimax optimization. 

 

Table 3 The compliance of Mitchell-type under the worst condition 
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 3=[-95 ,  -85 ]θ  
3=[-100 ,  -80 ]θ  

3=[-110 ,  -70 ]θ  

Deterministic 310 556 1503 

RTO by Interval 255(320) 267(354) 250(350) 

RTO by 

Minimax 

424 321 278 

 

To consider both the uncertain magnitude and the direction of loads simultaneously, another case of 

Mitchell-type structure is used. The loads are F2=[1.8, 2.2] and F1=F3=1 with direction θ1=[-100 ,  -80 ] , 

θ2= -90 , and θ3=[-100 ,  -80 ] . Using the interval optimization method and the minimax optimization 

method to solve this problem, the optimized topologies are shown in Fig. 18. The iteration history is 

shown in Fig. 19, which shows that the proposed interval topology optimization method is more smooth 

and stable than the minimax optimization. The compliance of the interval topology optimization is 287 

that is smaller than the compliance of minimax optimization 321. Hence, the proposed interval 

optimization is better. 

 

  

(a) Interval optimization    (b) Minimax optimization 

Figure 18. RTO of Mitchell beam under both uncertain magnitude and direction of loads 

 

 

(a) Interval optimization 
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(b) Minimax optimization 

Figure. 19 Iteration histories of Mitchell beam under both uncertain magnitude and direction of loads 

 

6. Conclusions 

This paper has proposed a new robust topology optimization method for structures with uncertain-but-

bounded parameters. To avoid the nested double-loop optimization procedure which is computationally 

expansive in the interval optimization, the Chebyshev interval method has been applied to the RTO 

design problems. Since the Chebyshev interval method is non-intrusive, it is preferable for handling the 

complex models and even black-box models. To take advantage of the gradient-based optimization 

algorithms, a numerical scheme is developed to evaluate the sensitivity of the interval objective function 

with respect to the design variables. The interval arithmetic is expressed by using the sign function and 

then the first-order derivatives of the interval function can be obtained. Several numerical examples have 

been used to show the effectiveness of the proposed interval RTO method, compared with the minimax 

optimization model based on the vertices of uncertain parameters. From these examples, it can be found 

that it is necessary to consider the uncertain parameters in the topology optimization of continuum 

structures, because even a relative small variation of loads may lead to obvious change of the structural 

performance. 
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