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Abstract 

Based on the theory of Absolute Nodal Coordinate Formulation (ANCF), this paper proposes a new 

dynamic computation method to solve the flexible multibody system with uncertain material properties 

(Young’s modulus and Poisson’s ratio) that may be induced by the material asymmetric distribution. 

Rather than traditionally considering an uncertain factor as one single variable in the whole system, the 

material properties vary continuously in the space domain so that they are described by the random field, 

which is then discretized to countable random variables using the expansion optimization linear 

estimation (EOLE) method. The uncertain response of the system is approximated by the Polynomial 

Chaos (PC) expansion, numerically implemented by a collocation method. We propose and prove an 

important theory that the collocation method provides the same results as the Gaussian quadrature 

formula if the roots of the corresponding orthogonal polynomials are used as the collocation points. As a 

result, the proposed method is a non-intrusive technique that does not modify the original solver but only 

adds a pre-process and a post-process. The uncertain displacement of system is finally illustrated by an 

ellipse and ellipsoid, which visually show the uncertainty extent and correlation between different 

coordinates. The numerical examples show that the proposed method has almost an equivalent accuracy 

of Monte Carlo simulation but much higher efficiency. 

 

Keywords: flexible multibody system; ANCF; random field; PC expansion; collocation method 

1. Introduction 

The multibody systems are quite important for the machine, automotive, robot, aerospace system, 

engineering vehicle, and many other industries depending on the mechanical engineering. The rigid 

multibody systems have been well studied [1], so there have been more and more studies to solve the 

flexible multibody systems in recent decades, which are more satisfied with some practical application 

conditions. Traditional finite element methods used to solve the flexible multibody system are based on 

the assumption that only small deformation and small rotation are happened in the components. Therefore, 

these methods will not provide proper dynamic results when the components of a system are subject to 

large rotation and large deformation [2].  
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To solve the problem of large deformation and rotation, Shabana [3] proposed a new Absolute Nodal 

Coordinate Formulation (ANCF) to model the element of flexible components. The ANCF defines the 

element coordinates as the absolute displacements and global slopes rather than the infinitesimal and 

finite rotations in traditional finite element methods [4]. As a result, the locations and deformations of the 

material points in the model are defined in the global coordinate system, using the element shape function 

and the nodal coordinates, which leads to that the mass matrix of the system equations remains constant 

and the centrifugal and Coriolis forces are identically equal to zero [5]. As a non-incremental finite 

element method, the ANCF has been considered as a benchmark approach in the research of flexible 

multibody dynamics [6], especially for the large deformation flexible multibody systems [7-9].  

There have been some applications for solving the flexible multibody systems by using the ANCF. Zhang 

et al. [10] investigated the viscoelastic flexible multibody systems with a fractional constitutive model by 

using the ANCF. Tian et al. [11] proposed a novel methodology for modeling and analysis of flexible 

multibody system with clearance and lubricated revolute joints by using the ANCF. The ANCF was also 

incorporated with the Natural Coordinate Formulation (NCF) to build the dynamic model of the 

rigid-flexible multibody systems by Tian et al. [12], who derived a new general and comprehensive 

approach for a spatial flexible multibody system with cylindrical clearance joint. Liu et al. [13] used the 

ANCF-NCF combined method to compute the dynamic response of a large scale rigid-flexible multibody 

system composed of composite laminated plates. More applications about the ANCF in multibody 

systems can be found in references [14-17]. 

The studies mentioned above are based on the deterministic assumption, which means that all the 

parameters in the governing equations are thought to be exactly known. However, a multibody system 

contains many uncertain factors, e.g. the geometry size of a component has a tolerance to manufacturing 

easily, which will contribute to the uncertainty of mass, gravity force, and constraints; the different kinds 

of raw material and manufacturing process may lead to the inhomogeneous distribution of material, which 

will further lead to the change of material properties including the Young’s modulus, Poisson’s ratio, and 

density. Since the uncertainty of material properties is induced by the inhomogeneous distribution of 

material in space, they may continuously change in the space domain, which are widely existed in the 

flexible components. These uncertain factors may lead to a quite different response compared to the 

deterministic response. To compute the dynamical response of a multibody system more accurately, it is 

demanded to take account the uncertain factors. 
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The uncertainty can be divided into two types that are the aleatory uncertainty and epistemic uncertainty 

[18, 19]. Aleatory uncertainty, also termed as objective or stochastic uncertainty, describes the inherent 

variation associated with a physical system or environment. Epistemic uncertainty or subjective 

uncertainty, on the other hand, derives from some level of ignorance or incomplete information about a 

physical system or environment. The aleatory uncertainty is commonly expressed by the random variables 

(or random field) while the epistemic uncertainty may be described as the interval variables or convex 

models [20] and so on.  

When the information of uncertain factors is limited, the interval variables are usually used to describe the 

uncertainty, because they only need the bounds information of uncertain variables. Thus, typically the 

uncertainty of the geometry size is quite suitable to be described by the interval variables. The bounds of 

the response can be obtained by using optimization methods [21] or interval arithmetic [22]. To save the 

computational cost, the interval arithmetic is usually used to produce an envelope of the actual response. 

There have been a few studies using the interval method to solve the multibody system with uncertainty. 

Wu et al. [23] employed the Chebyshev series expansion method to solve the rigid multibody system, 

where the geometry size and the external torque are considered as interval parameters. Wang et al. [24] 

also used the same method to solve the rigid-flexible multibody system with interval uncertain parameters, 

which was the first time that interval parameters are introduced into the rigid-flexible multibody system. 

The OpenMP directives were used to parallelize the computation of the nonlinear algebraic equations 

with deterministic sampling parameters, which improved the computational efficiency largely. 

The material properties of a component in the flexible multibody system vary continuously in the space 

domain, which means that the uncertainty has to be characterized by using the concept of ‘field’. We 

consider that the material properties change in the space domain rather than in the time domain, i.e. the 

Young’s modulus or Poisson’s ratio at different location of a component is different, but they will not 

change in the simulation process. As the authors’ known, there has no definition about the ‘interval field’ 

so that we cannot use interval to describe the continuous uncertainty of material properties. In the 

stochastic finite element method, the random field that handles randomness and spatial variability 

simultaneously has been used to describe the uncertainty of material properties. Therefore, the random 

field can be employed to characterize the uncertain material properties in the dynamic computation of the 

flexible multibody system. The continuous random field is formally defined as an indexed set of random 

variables, the index belonging to some continuous uncountable set. The random field can be 
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approximated as closely as desired by restricting the index to a set dense in the indexing set. Stretching 

mathematical rigor further, a random field can be represented by its values at a discrete set of points in its 

domain of definition [25], which means that a continuous random field can be approximated represented 

by a set of countable random variables. Since the uncountable index set is not convenient to implement in 

the numerical computation, the random field has to be discretized to countable random variables. 

The discretization methods for the random field can be divided into three groups that are point 

discretization, average discretization, and series expansion methods [26]. The point and average 

discretization methods involved a finite number of random variables having a straightforward 

interpretation: point values or local averages of the original field. These random variables can be 

expressed as weighted integrals of random field over the volume of the system. Using these random 

variables, the random field can be approximated by a finite summation of the product of these random 

variables and some deterministic functions or basis on the space domain. However, the basis used in these 

methods is not optimal, because these bases have a compact support. The series expansion methods aim at 

expanding any realization of the original random field over a complete set of deterministic functions [26]. 

The discretization occurs thereafter by truncating the obtained series after a finite number of terms. The 

series expansion methods mainly include the Karhunen-Loeve (K-L) expansion [25], orthogonal series 

expansion (OSE) [27], and expansion optimal linear estimation (EOLE) method [28]. Reference [26] 

provided a detailed comparison of these discretization methods, and some conclusions are given as 

follows: the K-L expansion is the best choice for the exponential autocorrelation function and the 

accuracy of EOLE is very close to it, but the K-L expansion may not be fit to handle the exponential 

square autocorrelation function; the EOLE provides better accuracy than the OSE for both types of 

autocorrelation functions.  

After the random field is discretized to countable random variables, many probabilistic methods can be 

employed to solve the propagation of probabilistic uncertainty. The probabilistic methods can be broadly 

classified into two major categories: statistical methods and non-statistical methods. Monte Carlo method 

[29] is one of the most widely used statistical methods, which is easy to implement. The Monte Carlo 

method takes samples of the random variables (input) based on their probability distribution and then 

computes the probability distribution of response (output) directly. The accuracy of Monte Carlo method 

depends on the sampling size, in accordance with the weak law of large number. Therefore, to get enough 

high accuracy, it usually requires a large number of sampling points. For the dynamical computation of a 
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flexible multibody system, each running takes a large amount of time especially for the large-scale system, 

so that the thousands of running for Monte Carlo method cannot be affordable. As a result, the Monte 

Carlo method is often used as the reference of other methods.  

To reduce the computational cost, the non-statistical methods can be used, e.g. the perturbation method, 

Neumann expansion method, and Polynomial Chaos (PC) expansion method [30]. Both the perturbation 

method and Neumann expansion method requires the small uncertainty extent of random variables while 

the PC expansion method is quite fit for the problems with large uncertainty extent variables. The PC 

expansion method approximates the response of system by a truncated orthogonal series and then uses the 

characteristics of orthogonal polynomials to estimate the first and second moment of the random response. 

The PC expansion methods have been widely used in various engineering problems, such as in fluid 

mechanics [31], vehicle dynamics [32, 33], structure dynamics [34], and optimization problems [35].  

There have been only a few studies investigating the random uncertainty of the multibody systems. Soize 

et al. [36] and Schmitt et al. [37] used the Monte Carlo method to handle the rigid multibody systems 

under random uncertainty. Sandu et al. [38, 39] used the PC expansion method to investigate the 

uncertainty of rigid multibody systems. Wang et al. [40] used both the perturbation method and Monte 

Carlo method to investigate the dynamic response of flexible multibody systems with parameter 

uncertainty, but it was based on the assumption of small deformation. In summary, there has no 

publication studying the large deformational flexible multibody system with random uncertainty, 

especially for using the random field to characterize the uncertainty of material properties.  

This paper studies the dynamic response of the flexible multibody system with uncertain material 

properties, in which the Young’s modulus and Poisson’s ratio are considered as random field. The paper 

is organized as follows. Section 2 gives a brief review about the theory of ANCF, and then the random 

field and its discretization are provided in Section 3. Section 4 provides the PC expansion theory and its 

numerical implementation method. The detailed computational scheme will be given in Section 5, and 

two numerical examples are provided in Section 6 to demonstrate the validation of the proposed method. 

The conclusion is given in the last section.  
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2. ANCF-based beam element 

2.1 Planar and spatial ANCF-based beam element 

The two-dimensional [41] and three-dimensional [42] ANCF-based beam element are shown as Fig. 1 

and Fig.2, respectively. The displacement field of two-dimensional shear deformable beam element can 

be defined in the global coordinate system as 

   T TT T T T T T T T T
1 2 , , , ,,  i j i i x i y j j x j yr r          r Se e e e r r r r r r   (1) 

while the displacement of the three-dimensional beam element is given as  

   T TT T T T T T T T T T
1 2 3 , , , , , ,,  i j i i x i y i z j j x j y j zr r r          r Se e e e r r r r r r r r   (2) 

where r denotes the nodal coordinates in the global coordinate system, S is the shape function, e denotes 

the absolute nodal coordinate vector of node i and j, rp (p = i, j) is the position coordinates defined in the 

global coordinate system, the rp,x denotes the derivative of rp with respect to local coordinate x, while the 

rp,y and rp,z have the similar meaning.  

     

Figure. 1 Two-dimensional beam element   Figure. 2 Three-dimensional beam element 

2.2 Equations of motion 

By using Newton–Euler formulation, the element equations of motion can be written as 

 e e e M e Q F   (3) 

where the constant element mass matrix Me can be computed by the following formula 
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 T
e eV

dV M S S   (4) 

Here ρe is the density of material, and V denotes the volume of element. Fe denotes the element elastic 

force vector and Qe is the element external generalized force vector that can be deduced by continuum 

mechanism approach [43, 44]. To improve the computational efficiency, the invariant matrix method [43] 

can be used to compute the element elastic force, which is computed by the following equation. 

     1 2e     F K e e K K e e   (5) 

where the nonlinear stiffness matrix K(e) can be divided into summation of a constant stiffness matrix K1 

and another nonlinear stiffness matrix K2(e) which is depend on the generalized coordinates. The constant 

stiffness matrix of the two-dimensional element and three-dimensional element is expressed by 

  
2 3

2 T 3 T
1 , , 1 , ,

1 1

3 2
,  

2
D D

V V

G
G dV dV   

 


 


      K S S K S S   (6) 

where the G denotes the Young’s modulus, and κ is the Poisson’s ratio. The entry of nonlinear stiffness 

matrix K2(e) can be computed by 

  
2

T
2

ij

ij
   Ke CK e e   (7) 

where the 
2

ij
KC  is a constant matrix, termed as invariant matrix, which is expressed as 

 

   

       

2

T T
, , , ,

1

T T T T
, , , , , , , ,

1 1, 1 1,

2

2

         
2

N Tij

i jV

N N N NT T

i j i jV V

G
dV

dV G dV

   


       
       






     




 



    

KC S S S S

S S S S S S S S

  (8) 

where N = 2 for two-dimensional element and N = 3 for three-dimensional element. It should be noted 

that the material properties, e.g. Young’s modulus and Poisson’s ratio, are considered as constant in the 

Eqs. (6) and (8). 

3. Material property represented by random field 

As aforementioned in the introduction, the material properties of flexible components are uncertain and 

they vary in the space domain continuously. Therefore, the random field is the best tool to describe the 

uncertain material properties. This Section will introduce the random field and its discretization. 
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3.1 Random field 

In elementary of probability theory outcomes of experiments are usually described in terms of “random 

variables”, uncertain quantities to be observed. Similarly, it is meaningful to associate with the term 

“random field” a giant laboratory where an investigator can do numerous experiments. The location of 

each experimental setup in the laboratory is identified, in the terminology of random fields, by a set of 

coordinates or parameters [45]. For the d-dimensional space, locations are denoted by a vector x∈D, 

where D is an open set of Rd describing the system geometry. When d = 1, the random field is called as 

univariate random field which is also termed as random process. Therefore, a random field Y(x, θ) can be 

defined as a curve in L2(Ω, F, P), that is a collection of random variables indexed by the continuous 

parameter x. This means that for a given x0, Y(x0, θ) is a random variable. Conversely, for a given 

outcome θ0, Y(x0, θ0) is a realization of the field [26]. 

The covariance of values of a random field at two different locations, Y(x1) and Y(x2) (short for Y(xi, θ)), 

defines the covariance function (of x1 and x2): 

              1 2 1 2 1 2 1 2, Cov ,C Y Y Y Y Y Y                x x x x x x x xE E E   (9) 

where Cov[f, g] denotes the covariance of random variables f and g, E[f] represents the expectation or 

mean of random variable f. Using σ(f) delegate the standard deviation of random variable f, the correlation 

function of random field is given as 

    
   

1 2
1 2

1 2

,
,

C


 


x x
x x

x x
  (10) 

The random field is a Gaussian field if any vector [Y(x1) … Y(xn)]T is Gaussian. The Gaussian field is 

completely defined by its mean μ(x), variance σ2(x) and autocorrelation functions ρ(x1, x2). If the random 

field is homogenous (or stationary for one-dimensional case), its covariance (and correlation) function 

will depend on the relative position of the pints x and x only, so we may write the covariance function as

   ,C C  x x x x . This paper only studies the homogenous random field.  

The typical exponential and square exponential correlation functions are given as follows: 

    , exp a    x x x x   (11a) 
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    2 2, exp a    x x x x   (11b) 

where a is the correlation length. 

The spectral representation of stationary random process can be stated as [25] 

    T

, ,iY e d  



  x ωx ω   (12) 

where dμ is an orthogonal set function, also termed as orthogonal stochastic measure, defined on the 

σ-algebra F of random events, and ω is the wave number vector. This representation involves differentials 

of random functions so that it sets in an infinite dimensional space, which is not readily implemented by 

computational algorithms. The K-L expansion, which expands the random field Y(x, θ) in the infinite 

dimensional space to a finite number of orthogonal random variables, is widely used to discretize the 

random field [26]. The random field Y(x, θ) can be expanded to a Fourier-type series by the K-L 

expansion method, that is 

        
1

, i i i
i

Y f   




  x x x   (13) 

where μ(x) is the mean of the random field, λi is some constant, {Εi(θ)} is a set of orthogonal random 

variables, and {fi(x)} is an orthonormal set of deterministic functions which form a complete orthogonal 

basis of L2(D). Through the definition of covariance function  ,C x x  in Eq. (9), it is bounded, 

symmetric and positive definite, so it has the following spectral decomposition 

      
1

, i i i
i

C f f




 x x x x   (14) 

where λi and fi(x) are the eigenvalue and the eigenvector of the covariance kernel, respectively. They are 

the solution to the following integral equation 

        , i i iC f d f D x x x x x   (15) 

Due to non-accumulation of eigenvalues around a non-zero value, they can be sorted as a descending 

series converging to zero. We cannot use the infinite series to represent the random field, so the expansion 

is usually truncated by the first m terms, that is 
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        
1

,
m

i i i
i

Y f   


  x x x   (16) 

It should be noted that {Εi(θ)} is a set of independent standard Gaussian random variables if the random 

field is a Gaussian field. For sake the simplicity, only the Gaussian field is investigated in this study. After 

solving the Eq. (15), we can obtain the K-L expansion of a random field. Only few covariance functions 

have the closed-form solution for the Eq. (15), so the numerical method has to be used, which can be 

found in reference [25]. However, the orthogonal basis {fi(x)} obtained by the numerical method is no 

more optimal [26], thus another discretization method termed as expansion optimal linear estimation will 

be used, shown in the following subsection. 

3.2 EOLE method for discretizing the random field 

The expansion optimal linear estimation (EOLE) method was proposed in the reference [28]. Discretize 

the random field Y(x, θ) to an approximated field ˆ( , )Y x  by a linear function of nodal values X = 

[Y(x1), … Y(xq)]T as follows: 

    Tˆ( , )Y A  x x B x X  (17) 

where A(x) is a function, B(x) = [B1(x), …, Bq(x)]T is a function vector, and q is the number of nodal 

points involved in the approximation. The functions A(x) and B(x) are determined by minimizing the 

variance of the error in each point x subject to ˆ( , )Y x  being an unbiased estimator of Y(x, θ) in the 

mean. Thus, there is the following optimal problem: 

 
   

   

ˆ,    min  Var , ,

ˆ                  s.t.    , , 0

Y Y

Y Y

 

 

    
   

x D x x

x xE
  (18) 

Solving the above optimization problem, the functions A(x) and B(x) can be determined as [26] 

        T 1,    A     X XX xXx x B x B x C C   (19) 

where μ(X) is the mean of nodal values X = [Y(x1), …, Y(xq)]T, xXC  denotes a vector with entry 

 , iC Xx , and XXC  is the covariance matrix of nodal values with entry    , ,k lk l CXXC x x . 

Substituting the Eq. (19) into Eq. (17), the approximated field is expressed as 
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    T 1ˆ( , )Y     xX XX Xx x C C X   (20) 

The spectral decomposition of the covariance matrix XXC  of X is expressed by: 

    
1

q

i i i
i

    


  XX   (21) 

The {Εi(θ)} (i=1, …, q) is a set of independent standard Gaussian variables and (λi, i ) are the 

eigenvalues and eigenvectors of the covariance matrix XXC , computed by solving the following 

eigenvalue problem 

 i i i XXC   (22) 

Substituting Eqs. (21) and (22) into Eq. (20), we can obtain the approximated field of EOLE 

        T 1 T

1 1

ˆ( , )
q q

i
i i i i

i i i

Y


      




 

 
     

 
 xX XX xXx x C C x C   (23) 

After sort the eigenvalues in descending order, the series in Eq. (23) can also be truncated by first m terms. 

For the homogenous Gaussian field and considering the Eq. (10), the approximated field can be 

simplified as 

 
  T

1

ˆ( , )
m

i
i

i i

Y


   



   xXx ρ   (24) 

where the vector     T

1, ,..., , q    xXρ x x x x . The variance of the error for EOLE is: 

      22 T

1

1ˆVar , ,
m

i
i i

Y Y   


      xXx x ρ   (25) 

The value of m can be determined by make the relative variance error be lower than a small constant, e.g. 

5% used in this study. Thus, the original random field has been approximated by a series governed by the 

m independent standard normal variables {Εi(θ)} (i=1, …, m), which will be investigated in Section 4.  

4. Polynomial Chaos expansion for uncertainty system 

Since the random field has been discretized to m independent standard normal variables Εi(θ), the 

response of a system can be expressed by a function with respect these random variables f(Ε(θ)), Ε ∈	Rm, 
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although the analytic expression of which is not known. This section uses the PC expansion to obtain the 

approximated analytic expression of the function and estimate its mean and covariance. 

4.1 PC expansion theory 

Considering the 1-dimensional case firstly, let f(Ε) be a function of a random variable Ε whose probability 

distribution is FΕ(ε) = P(Ε൑ε) and its support is IΕ. A generalized polynomial chaos approximation in a 

strong sense is fn(ε) ∈	Pn(Ε), where Pn(Ε) is the space of polynomials of random variable Ε of degree up 

to n ൒	0, such that ( ) ( ) 0nf f     as n→∞, in a proper norm defined on IΕ [46]. For any function 

f(Ε) in the mean-square integrable space, its nth-degree PC orthogonal projection is defined as 

         
0

1ˆ ˆ,  
n

i i i i
i i

f f f f


          E  (26) 

This projection is the mean-square convergence. The ˆ
if  is the coefficients of the PC expansion, and 

Ψi(Ε) denotes PC basic functions that are the orthogonal polynomial functions satisfying the following 

equation. 

      2,  ,  , 0,1,...,i j i ij i i i j n                E E   (27) 

where γi are the normalization factors, and δij is the Kronecker delta function. For the continuous random 

variable Ε, its probability density function is denoted by ( )  , so the orthogonality can be expressed by 

          i j i j i ijd                 E   (28) 

Therefore, the {Ψi(ε)} are orthogonal polynomials of ε ∈	R with the weight function ( )  , which is the 

probability density function of the random variable Ε. The coefficients are computed by the following 

formula 

          1 1ˆ
i i i

i i

f f f d    
 

        = E   (29) 

For the probability distribution function of the standard normal random variable Ε, its probability density 

function is given as 
2 21

( )
2

e  


 , and the corresponding orthogonal polynomials are the Hermite 

polynomials, which are expressed by 
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          0 1 1 21;  ;  ,  2,3....i i iH H H H iH               (30) 

Therefore, the Hermite polynomials will be used as the basis of PC expansion for normal random variable, 

and the corresponding normalization factor is γi = i!, which can be obtained through Eq. (27). 

For the m-dimensional case, the bases are defined as the product of the each univariate Hermite 

polynomials, i.e.  

    
1

,  0,1,...
k

m

i k k
k

H i


   i Ε   (31) 

where the subscript i is a m-dimensional multi-index. As a result, the nth-degree PC expansion of function 

f(Ε), Ε ∈	Rm, is expressed as the following equation 

        
0

1ˆ ˆ,   
n

f f f f


      i i i i
i i

Ε Ε Ε ΕE   (32) 

where 
0

max ,  1ki k m  i , and the number of coefficients is (n+1)m. 

After the PC expansion, based on the orthogonality, the mean and variance of the function f(Ε) can be 

computed by the following equations  

    
0

ˆ ˆ
f

n

f f d f


       i i 0
i

Ε ε εE   (33) 

   
0

22 2

0

ˆ
f f

n

f f  
 

       i i
i

ΕE   (34) 

It can be found that after the coefficients of PC expansion are determined, the mean and variance of the 

function f(Ε) can be obtained conveniently. If the output of a function is a vector, that is ( ) : m kf Ε R R , 

we can compute the covariance between each output as 

      
0

, ,
0

ˆ ˆ ,  , 1,...,
l jlj l f j f l j

n

f f f f l j k   
 

        i i i
i

Ε ΕE   (35) 

4.2 Numerical implementation method  

The key of PC expansion is to compute the coefficients that are determined by the Eq. (29). Since the 

analytical expression of function f(Ε) is not known, we have to use the numerical quadrature formula to 

compute it. Here we use the interpolation integral formula to calculate the integration, defined as 
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      
1

kb

i ia
i

x f x dx w f x


   (36) 

where the k is the order of the interpolation integral formula, ρ(x) denotes the weight function, wi is the 

integral coefficient, and xi denotes the interpolation points. When the interpolation points are the roots of 

kth-order orthogonal polynomial with weight function ρ(x), the algebraic precision order of this integral 

formula will be 2k-1, which is the Gaussian quadrature formula. When the weight function is ( ) ( )     , 

the corresponding orthogonal polynomials will be the Hermite polynomials. Therefore, the Eq. (29) can 

be computed by using the following Gaussian-Hermite quadrature formula [47] 

          
2 2

2 2
1 1

1 1 1 !ˆ ,  
2

k

i i j j i j j
ji i k j

k
f f H e d w f H w

k H
    

  
 


 

 =   (37) 

where the εj is the roots of kth-order univariate Hermite polynomials. To keep the numerical accuracy, the 

order k is required to be larger than the order of PC expansion n, so we set k=n+1 to save the 

computational cost. 

Writing the Eq. (37) in the format of matrix, the coefficient vector can be expressed by following formula 

    1 Tˆ f Γ H ε Ωf ε   (38) 

where the T
0 1
ˆ ˆ ˆˆ [ , , ... ]nf f ff  denotes the coefficient vector, Γ is a diagonal matrix with entry Γii = γi (here 

the subscript start from 0), H(ε) = [H0(ε), … Hn(ε)] is the transform matrix at the interpolation points 

ε=[ε1, … εn+1]T, Ω denotes the diagonal weighting matrix with entry Ωii = wi, and f(ε) = [f(ε1), … f(εn+1)]T 

is the vector of function value at the interpolation points. Besides using the quadrature formula, we can 

also use the collocation method which is realized by the least square method to compute the coefficients, 

that is 

         1T Tˆ 
f H ε H ε H ε f ε   (39) 

Theorem 1: When computing the coefficients of PC expansion, the Gaussian quadrature formula Eq. (38) 

and the least square method Eq. (39) will give the same result, if both the two methods use the roots of 

corresponding orthogonal polynomials as the interpolation points or collocation points. 

Proof: We only need to prove that the right side of the Eq. (38) and (39) are equivalent, that is 
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             11 T T T Γ H ε Ωf ε H ε H ε H ε f ε   (40) 

The previous equation indicates the following equation 

         11 T T T Γ H ε Ω H ε H ε H ε   (41) 

Postmultiplying H(ε) to the two sides, the previous equation can be transformed to 

             11 T T T  Γ H ε ΩH ε H ε H ε H ε H ε I   (42) 

where I is the unit matrix with size n+1 by n+1. To validate the Eq. (42), use the (n+1)th-order 

Gaussian-Hermite quadrature formula to compute the following integral. 

          
1

1

,  0 ,
n

i j k i k j k
k

H H d w H H i j n      




      (43) 

where εk denotes the roots of Hermite polynomials with order n+1. Since the algebraic precision order of 

the Gaussian quadrature formula is 2n+1, as well as the order of Hi and Hj is no more than n, the two 

sides of the previous formula are exactly equivalent. Considering the orthogonality of Hermite 

polynomials (Eq. (28)), we have 

    
1

1

,   0 ,
n

k i k j k i ij
k

w H H i j n   




     (44) 

Rewrite the Eq. (44) as the format of matrix, which lead to the following equation 

    T H ε ΩH ε Γ   (45) 

Premultiplying Γ-1 to the two sides of Eq. (45), we can obtain the Eq. (42), so the theorem is proved.  

�  

For the m-dimensional case, we can still use the least square method to compute the coefficients, 

changing the univariate Hermite polynomials to the multi-dimensional Hermite polynomials, i.e. 

         1T Tˆ 
f Ψ ε Ψ ε Ψ ε f ε      (46) 

where the coefficient is expressed by a vector Tˆ ˆˆ [ ,... ]f f 0 nf  with (n+1)m rows,  f ε are function values 

at the given collocation points ε , and  Ψ ε  denotes the transform matrix with size (n+1)m by (n+1)m, 
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defined by 

      ,    0 nΨ ε ε ε     (47) 

The collocation points ε  are the tensor product of the roots of univariate Hermite polynomials with 

order n+1 in m dimensional space, that is 

  T1 1 1,  , ,  1, 2,...,m i n i m      ε ε ε ε     (48) 

It can be found that this procedure is same as constructing a response surface model. The only difference 

is that the basis are Hermite polynomials rather than the monomials used in traditional response surface 

model, so this method is also termed as stochastic response surface method (SRSM) [48]. 

5. Computational strategy for solving the system  

In the previous section, we have solved the problem how to estimate the mean and variance of a function 

with random variables, but it requires computing the function values  f ε  at some collocation points. 

For this study, computing the function values  f ε  need to solve the flexible multibody system, which 

will be provided in this section. 

Based on the ANCF, the assembly of the elements can be implemented by traditional finite element 

method. The element nodal coordinates e can be transformed into the flexible multibody system 

generalized coordinates q. The equations of motion for a constrained flexible multibody system can be 

expressed in a compact form of differential algebraic equations (DAEs) as [5] 

 
   

 

T

, t

   




qMq Φ λ F q Q q

Φ q 0


  (49) 

where M is the system mass matrix, Φ(q, t) is the vector that contains the system constraint equations 

corresponding to ideal or perfect joints, t represents the time, Φq is the derivative matrix of constraint 

equations with respect to the system generalized coordinates q, λ is the Lagrangian multipliers associated 

with the constraints, Q(q) is the system external generalized forces, e.g. the gravity force in this study, 

and F(q) denotes the system elastic force vector that can be computed by Eq. (7). A variety of numerical 

methods can be used to solve the DAEs shown in Eq. (49), which can be found in the literature [49]. The 

generalized-α method [50] will be used in this paper, since it has a good trade-off between the numerical 
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accuracy at low-frequency and numerical damping at high-frequency. More detailed iteration procedure 

of the generalized-α algorithm can be found in the reference [50].  

The generalized-α method only solve the traditional deterministic flexible multibody system. When the 

uncertainties of material properties are considered, we do not need to modify the solver itself, but only 

add a pre-process and a post-process. 

5.1 Pre-process for solving uncertain flexible multibody system 

In this study, the Young’s modulus and Poisson’s ratio are considered as Gaussian random field. Using the 

EOLE discretization method shown in Section 3, the Young’s modulus G and Poisson’s ratio κ can be 

approximated by 

 
   T T

1 1

( , ) ,  ( , )
m m

i i
G G i i

i ii i

G  

 
        

  

 
    xX xXx ρ x ρ   (50) 

Here the G and κ are changed in the space domain, so the expression of the constant stiffness matrix Eq. 

(6) and invariant matrix Eq. (8) will be modified as 

         2 3
2 T 3 T
1 , , 1 , ,

1 1

3 , 2 ,
, , ,  

2
D D

V V

G
G dV dV   

 

  
  

 


      

x x
K x x S S K S S   (51) 
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  (52) 

Since the two matrix are depend on the random variables Ε(θ), the elastic forces are also depend on them, 

so the DAEs of the system will be modified as 

 
    

 

T ,

, t

   




qMq Φ λ F q Ε Q q

Φ q 0


  (53) 

Considering the generalized coordinates q(Ε) as the function f(Ε) in Section 4.2 and using the PC 

expansion method to solve this system, we just need to solve the previous DAEs by fixing the value 

random variable Ε(θ) at the given collocation points ε , which has the same procedure of solving 

traditional deterministic DAEs. After we obtain the generalized coordinates at the given collocation points, 

we can use the Eq. (46) to compute the coefficients of PC expansion. 
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5.2 Post-process for represent the displacement 

We can obtain the mean and variance of the displacement field by using Eq. (33) and Eq. (34). On the 

other hand, the displacements of each node at different direction are not independent, so the covariance 

should also be used describe the relationship. To show the uncertainty extent of displacement in each 

direction, a post-process is added. Considering the displacement field in global coordinate system of 

two-dimensional element, its mean and covariance can be expressed by 

   1 1 2

1 2

1 2 2

2
T

1 2 2
,  Cov ,

r r r

r r

r r r

r r
 

  
 

 
        

r   (54) 

Use the eigenvalues analysis to transform the covariance matrix to a diagonal matrix, i.e. solving the 

following eigenvalues problem 

 1 1 2

1 2 2

22
11 12 11 121

2 2
21 22 21 222

r r r

r r r

    
     

      
       

       




  (55) 

where the eigenvalues i  denotes the normalized standard deviation, and the eigenvectors determine the 

direction of the normalized standard deviation.  

Therefore, when considering the uncertainty, the displacement of a node in one standard deviation can be 

plot by an ellipse, shown as Fig. 3. Similarly, the displacement of a node for the three-dimensional 

element can be plot as an ellipsoid. 
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r r   
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Figure.3 Plot of nodal displacement under uncertainty 

The computation procedure of the flexible multibody system with uncertain material properties can be 
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summarized as the following flowchart. It can be found that the proposed method mainly contains four 

steps: (1) discretize the random field to several independent normal random variables; (2) determine the 

collocation points of the random variables; (3) solve the DAEs using the generalized-α method at the 

given collocation points and then compute the coefficients of PC expansion; (4) compute the mean, 

covariance matrix, and normalized variance of the displacement of each node, as well as plot the ellipse 

and ellipsoid of the nodal displacement. 

Input: correlation function of random field:  ,X X 

EOLE method discretizes the random field to m random 
variables: Ei, i=1,...m

Determine the order of PC expansion: n
Compute the roots of n+1th - order Hermite polynomial

 T

1 1 1,  , ,  1, 2,...,m i n i m      ε ε ε ε  

Fix the random variables as      in Eq. (53), and solve the     
  using the generalized-α method

kε
( )kq ε

Compute the coefficients using Eq. (46)
Compute the mean and covariance using Eq. (33) and (35)

Post-process using Eq. (55) and plot the ellipse, ellipsoid

k<(n+1)m

k=1

k=k+1

NO

YES

 

Figure. 4 Flowchart for solving flexible multibody system with uncertain material properties 

6. Numerical examples 

6.1 Single plane pendulum with uncertain Poisson’s ratio 

Considering a uniform distributed gravity force is applied to a single plane pendulum with 1m length and 

rectangle cross-section (0.05m height and 0.01m width). The left end of the bar is connected by a revolute 

joint. The initial configuration of the single pendulum is shown as Fig. 5.  
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Figure. 5 The schematic of single plane pendulum 

The gravity acceleration is 9.81m/s2 to the negative Y direction. The Young’s modulus is 2×107 Pa. The 

Poisson’s ratio of the material is considered as a Gaussian random field along the X direction, and the 

correlation function is given by the following formula. 

    2 2, exp 2X X X X       (56) 

Here the correlation length is 2m. The mean of the Poisson’s ratio is set as 0.3, and the standard deviation 

is 5% of mean, i.e. 0.015. Use the EOLE method to discretize the random field, truncated by 2 terms, 

which means the random field is discretized to two normal random variables. The error of variance after 

the discretization is shown in Fig. 6, which indicates that the maximum error is about 0.0032 < 5% 

required by this study.  

 

Figure. 6  Variance error along the X axis  Figure. 7 Realizations at 36 collocation points 

Use the 5th-order Hermite series to implement the PC expansion, so it requires at least 6 collocation 

points that are roots of the 6th-order Hermite polynomial, i.e. ε = [-3.3243, -1.8892, -0.6167, 0.6167, 

1.8892, 3.3243]T for each random variable. Considering the tensor product operation of two random 

variables, there will be 62 = 36 collocation points. Substituting the collocation points into the Eq. (24), 
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we can obtain the corresponding 36 realizations along the length direction at these collocation points, 

shown in Fig. 7. 

Five ANCF-based planar beam elements are used to discretize the pendulum. The configuration of 

the single pendulum changing from 0s to 2s is shown in Fig. 8. The legend “DET” denotes the 

deterministic case that the Poisson’s ratio is considered as the mean value 0.3, while the “PC” 

denotes the mean solution obtained by the PC expansion considering the uncertainty, and the 

‘STD-ELLIPSE’ is the ellipse plot of normalized standard deviation for the nodal displacement. It 

can be found that there is an obvious difference between the solution of deterministic case and the 

uncertain case. Especially with time increasing, the difference becomes larger. The ellipse indicates 

the standard deviation of the displacement, which becomes larger with time increasing. Therefore, the 

uncertainty of Poisson’s ratio will produce a large uncertainty of nodal displacement when the time 

increases. 

 

Figure. 8(a) Configuration of single pendulum between 0s to 2s 
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Figure. 8(b) Scaled view of Fig. 8(a) 

To validate the PC expansion, the Monte Carlo method with 1000 sampling points is employed to give a 

reference solution. Figure 9 shows the 1000 realizations of the Poisson’s ratio produced by the Monte 

Carlo method. 

 

Figure. 9 The 1000 realizations used in Monte Carlo method 

The mean displacement of the pendulum’s end node is shown in Fig. 10. It is noted that the mean 

displacement of the end node obtained by the PC expansion and Monte Carlo simulation are coincident, 
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so the accuracy of the PC expansion for computing the mean displacement is quite high. 

 

Figure. 10 Mean displacement of the end node 

Figure 11 shows the covariance of the displacement of the end node change with the time. The magnitude 

of covariance increases with time increasing, which indicates that the uncertainty extent becomes larger 

and larger when time increases. On the other hand, the curves obtained by the PC expansion match the 

curves of Monte Carlo simulation in the whole time space, so the PC expansion can also estimate the 

covariance in high accuracy. 

 

Figure. 11 Displacement covariance of the end node 

Figure 12 shows the normalized standard deviation of displacement of the end node, where σ1 is the long 
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axis of the ellipse in Fig. 7 and σ2 is the short axis of the ellipse. With time increasing, the normalized 

standard deviations tend to become larger, which also demonstrates that the uncertainty extent will 

increase with the time. The magnitude of the long axis increases faster than the short axis, which means 

that there are strong correlation between the variance in X and Y direction. The PC expansion still gives 

quite similar results to the Monte Carlo simulation, which further indicates the accuracy of the PC 

expansion. It should be noted that the efficiency of PC expansion is much higher than the Monte Carlo 

simulation, since the PC expansion only runs the deterministic model 36 times but the Monte Carlo 

method uses 1000 simulations. 

 

Figure. 12 Normalized standard deviation of end node displacement 

6.2 Double space pendulum with uncertain Young’s modulus 

The initial configuration of a double space pendulum is shown in Fig. 13.  

 

Figure. 13 The initial configuration of the double space pendulum 

There are two sphere joints located between the base and the first pendulum, the first pendulum and the 
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second pendulum, respectively. The length of the first pendulum is 0.3m, while the second pendulum is 

0.4m length. The cross-section of both two pendulums is a square with edge length 0.01m. The gravity 

force of the two pendulums is uniformly distributed with gravity acceleration 9.81 m/s2 in negative Z 

direction. 

The two pendulums are made by the same material with Poisson’s ratio 0.3. The Young’s modulus of the 

two pendulums is considered as a Gaussian random field along the length direction, and the correlation 

function is given by the following formula. 

    2 2, exp 1X X X X       (57) 

where the correlation length is 1m. The mean of Young’s modulus is 2×107 Pa, while its standard 

deviation is 10% of mean, i.e. 2×106 Pa. 

Using the EOLE method to discretize the random field, the first pendulum is truncated by 1 term while 

the second pendulum is truncated by 2 terms. Therefore, the first pendulum is controlled by one normal 

random variable, and the second pendulum is controlled by two independent normal random variables. 

The variance error of the discretization is shown in Fig. 14. Since the maximum error of variance is 

smaller than 5%, this truncation can be accepted.  

  

(a) The first pendulum       (b) The second pendulum 

Figure. 14 Variance error along the length direction 

Considering the second order PC expansion, there will be 3 collocation points that are ε = [-1.7321, 0, 

1.7321]T in each dimensional random variable. Therefore, there are 3 realizations of Young’s modulus for 

the first pendulum and 9 realizations for the second pendulum, shown as the Fig. 15. It should be noted 
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that for the whole system there are 3×9 = 27 collocation points, which means 27 runs of the deterministic 

model are required in the PC expansion. 

  

(a) The first pendulum       (b) The second pendulum 

Figure. 15 Realization of the Young’s modulus at the collocation points 

The first pendulum is discretized by 3 spatial ANCF-based beam elements, while the second pendulum is 

discretized by 4 spatial ANCF-based beam elements. Solving the system by using the generalized-α 

method, the configuration of the double pendulum from 0s to 1.2s under the deterministic assumption (i.e. 

G=2×107 Pa) is shown in Fig. 16(a), while the Fig. 16(b) shows the configuration under uncertain 

condition. 

 

 (a) Deterministic case 
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(b) Uncertain case 

Figure. 16 Configuration of double space pendulum 

We can find that, in the initial stage, the “ellipsoid” is too small to be seen clearly. However, with time 

increasing the “ellipsoid” of the nodal displacement becomes larger and larger, so uncertainty extent of 

system response increases with the time. To show the difference between the results of deterministic case 

and the uncertain case, the tracks of the end point of two pendulums are plot in Fig. 17 and 18, 

respectively. 

 

(a) Full view        (b) Scaled view 

Figure. 17 Track of the end point of the first pendulum 
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(a) Full view        (b) Scaled view 

Figure. 18 Track of the end point of the second pendulum 

The solution of deterministic case is under the condition that the Young’s modulus is set to the mean 

value of random field 2×107 Pa, but it is quite different from the mean solution of that the Young’s 

modulus is considered as random field. Therefore, it is necessary to consider the uncertainty of material 

properties. On the other hand, the mean of input does not guarantee to produce the mean of response. The 

ellipsoid in the figures can indicate the dependence of the displacement among different direction. 

To validate the PC expansion, the Monte Carlo method using 1000 samples will be employed. The 1000 

realizations of the Young’s modulus are provided in Fig. 19. The random field of the first pendulum is 

discretized to only one random variable, so its realization is smoother than that of the second pendulum 

that is discretized to two random variables. 

 

(a) The first pendulum       (b) The second pendulum 

Figure. 19 Realizations of the Young’s modulus used by Monte Carlo simulation 
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(a) The first pendulum 

 
(b) The second pendulum 

Figure. 20  Mean displacement of the end points 

The mean displacements of the two end points are provided in Fig. 20. It can be found that the 

displacement of both two end points obtained by the PC expansion is coincident with that of Monte Carlo 

simulation. Therefore, the PC expansion has very high accuracy in estimating the mean displacement. 

The displacement covariance of the first end point and the second end point are shown in Fig. 21 and 22, 

respectively. The covariance obtained by the PC expansion is also very close to that of Monte Carlo 

method. For the end point of the first pendulum, the diagonal entries (σx
2, σy

2, σz
2) of the covariance 

matrix dominated the covariance, which means that the dependence among the three coordinates is not 

very strong. However, for the end point of the second pendulum, the diagonal entries of the covariance 

matrix are close to the magnitude of the non-diagonal entries (σxy, σyz, σxz), which indicate that there are 

strong coupling among displacement of the three coordinates. 
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(a) The first pendulum 

 

(b) The second pendulum 

Figure. 21 Displacement covariance of the end point of the first pendulum 

  
(a) The first pendulum 
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(b) The second pendulum 

Figure. 22  Displacement covariance of the end point of the second pendulum 

Figure 23 shows the normalized standard deviation of the displacement of the two end points. The 

normalized standard deviation becomes large with time increasing, so it is hard to accurately predict the 

position of the end point after some time, even the uncertainty extent of material properties is not large. 

The standard deviation of the second end point is larger than the first one, so the longer pendulum is, the 

larger uncertainty extent occurs. Compared the result of PC expansion to the Monte Carlo simulation, it 

shows that they match well, so the PC expansion is accurate. At the same time, the PC expansion only 

runs the flexible multibody dynamic model 27 times, which is much less than the 1000 simulations used 

in the Monte Carlo method, so the efficiency of PC expansion is much higher.  

 

(a) The first pendulum 
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(b)The second pendulum 

Figure. 23  Normalized standard deviation of end point displacement 

7. Conclusion 

This paper investigates the dynamic response of the flexible multibody system with uncertain material 

properties including the Young’s modulus and Poisson’s ratio, where the dynamic model is built by using 

the ANCF-based method. The uncertain material properties vary in the space domain, so they have to be 

described by using the random field. In numerical implementation, the Gaussian random field is 

discretized to several independent normal random variables by using the high accurate EOLE method. 

After the discretization, the PC expansion method is used to approximate the uncertain solution by a 

truncated Hermite series. The PC expansion is realized through the collocation method, in which the 

collocation points are the roots of Hermite polynomials. We prove that the collocation method produce 

the same coefficients as the Gaussian quadrature method. In the uncertainty computation of flexible 

multibody system, the traditional solver (e.g. the generalized-α method used in this paper) is not modified, 

but only a pre-process and a post-process are added. Since this method is a non-intrusive method, it can 

also be used to other elements and other numerical solver. The pre-process computes the stiffness matrix 

at the given collocation points, while the post-process computes the mean, covariance, and normalized 

standard deviation of response. The uncertain displacement is visually represented by the ellipse and 

ellipsoid. Two numerical examples are used to show the effectiveness of the proposed method. The results 

indicate that there is an obvious difference between the response of the deterministic and uncertain cases. 
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The Monte Carlo method is employed to validate the PC expansion method, which shows that they have 

almost the same response for both the mean and covariance. However, the PC expansion method only 

requires 36 and 27 simulations that are much less than the 1000 simulations required in the Monte Carlo 

method. 
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