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Abstract 

Recommender Systems (RS) have been comprehensively analyzed in the past 

decade, Matrix Factorization (MF)-based Collaborative Filtering (CF) method 

has been proved to be an useful model to improve the performance of 

recommendation. Factors that inferred from item rating patterns shows the 

vectors which are useful for MF to characterize both items and users. A 

recommendation can concluded from good correspondence between item and 

user factors. A basic MF model starts with an object function, which is consisted 

of the squared error between original training matrix and predicted matrix as well 

as the regularization term (regularization parameters). To learn the predicted 

matrix, recommender systems minimize the squared error which has been 

regularized. However, two important details have been ignored: (1) the predicted 

matrix will be more and more accuracy as the iterations carried out, then a fix 

value of regularization parameters may not be the most suitable choice. (2) the 

final distribution trend of ratings of predicted matrix is not similar with the 

original training matrix. Therefore, we propose a Dynamic-MF(DMF) and 

DMF-based fine tuning method which is quite general to overcome the 

mentioned detail problems. Some other information, such as social relations, etc, 

can be easily incorporated into this method (model). The experimental analysis 

on two large datasets demonstrates that our method outperform the basic 

MF-based method . 
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1 Introduction 

Recommender Systems (RS) are computer applications and techniques for 

recommending specific items that may meet users' preference. Recommender 

systems can be generally classified into content-based (CB) (Bobadilla et al. 2013; 

Melville et al. 2002) Recommendation ， collaborative filtering (CF) 

recommendation (Resnik et al. 1994; Sarwar et al. 2001; Massa and Avesani. 2009), 

and hybrid recommendation (Adomavicius et al. 2005; Lu et al. 2012). CB 

recommendation tries to recommend items that are similar to the ones which are 

of users' historical preference. This recommend method usually extract useful 



external information, such as user profiles (Zhang et al. 2014)，features， explicit 

item descriptions (Marin et al. 2013)，etc, to describe user preference to provide 

recommendation. CF recommendation is a practical method adopted by 

mainstream RS. The core idea of CF is that similar users express similar 

preference, which means an item can be recommended to a target user by 

analyzing his similar users' preference. The most important point of CF is that it 

usually relies on the past user-item rating history information to describe and 

create a model. The hybrid recommendation combines both CB-based and 

CF-based method to improve the performance of RS and avoid certain limitations 

of single RS.    

CF is the most widely used technique for Recommender Systems (Massa  et 

al. 2004 ). It is so important as a heat pot that lots of research work are attracted 

to contribute to the task. There are two primary areas of collaborative filtering 

named the neighborhood methods (Zhang et al. 2006;  Forsati et al. 2014) and 

latent factor models (Koren et al. 2009). Neighborhood methods measure the 

similarity (similarity of users, similarity of items, similarity of combination) 

based on ratings of items given by users. Neighborhood methods are very 

effective at finding local similarity. Detecting neighborhood 

relationships(similarity) is the key point of those methods. However, 

neighborhood-based CF suffers some weaknesses: cold start issues and data 

sparsity (Lu et al. 2012). When new users enter the system, there is usually 

insufficient information to produce recommendation for them, that is so called 

cold start problem. Data sparsity implies that there is not enough data to analyze 

similarity between target users. To overcome the limitations, latent factor models 

are proposed (Forsati et al. 2014). Latent factor models comprise an alternative 

approach by transforming both items and users to the same latent factor space, 

thus making them directly comparable. Latent factor models are generally 

effective at estimating overall structure that relates simultaneously to most or all 

items (Koren. 2008). Establishing an appropriate model using the observed 

ratings/ evaluations is the key point to interpret the given data and to predict the 

unknown ratings/evaluations. Among all the latent factor models, matrix 

factorization-based methods have recently received greater exposure (Bokde et al. 

2015) and have been focused more widely and proved to be an effective method.  

    During various kinds of input data, explicit feedback are the most 

convenient data for RS. Ratings/Evaluations are the most obvious explicit 

information, which can reflect users' interest in products. These ratings are placed 

into a big matrix with one dimension representing users and one dimension 

representing items/products. Generally, the matrix is of high levels of sparsity i.e., 

many values in rating matrix are null since users are likely to have rated a 

fraction of items. MF algorithm decompose the user-item matrix into a user 

potential factor matrix and an item potential factor matrix by using dimension 

reduction technology (Bobadilla et al. 2013; Bokde et al. 2015), then the predicted 

matrix can be computed by dotting the two factor matrix. 

    This paper mainly study the basic MF models, which map both users and 



items to a joint latent factor space of a low dimensionality. That means the 

original matrix will be factorized to two low-dimension latent matrices, which are 

used to compute predicted matrix. Some very effective matrix factorization based 

methods, such as Singular Value Decomposition (SVD) model (Liu et al. 2015)，

Matrix Factorization (MF) (Koren et al. 2009), Probabilistic Matrix Factorization 

(PMF) (Salakhutdinov and Mnih. 2008b), Non-negative Matrix Factorization (NMF) 

(Lee et al. 1999, 2001), use an objective function corresponding to the root square 

error of final predicted matrix with respect to original training matrix to indicate 

the difference between the two mentioned matrixes . The predicted matrix can be 

found by minimizing the objective function (Please see section 2 for more 

details ). The SVD model is a powerful technical of dimensionality reduction. 

How to find a proper lower dimensional feature space is the key issue of SVD 

model. PMF is a probabilistic linear model with Gaussian observation noise, it 

models the rating matrix as a product of two low-rank matrices (users and items). 

Probabilistic Sparse Matrix Factorization (PSMF) (Dueck et al. 2004), Bayesian 

Probabilistic Matrix Factorization (BPMF) (Liu et al. 2013; Salakhutdinov and Mnih. 

2008a), General Probabilistic Matrix Factorization (GPMF) (Shan and Banerjee, 

2010) are all the effective probabilistic models. Non-negative Matrix 

Factorization is also called non-negative matrix approximation, which is greatly 

developed by Lee and Seung (1999). In NMF model, the original rating matrix is 

factorized into two matrices, with the property that all values of the three matrices 

are no-negative. 

    There are two parts of object function of MF model, root square error 

between original matrix and predicted matrix and regularization terms. 

Regularization terms constraint the latent matrices for users and items to prevent 

over-fitting. In the latest phase of the research, Adding useful related information 

to regularization terms has become a hotspot of the field of MF. For example, 

(Ma et al. 2011a) propose a method of MF combining social regularization. 

(Zhang and Liu, 2015) present a social recommendation model combining trust 

propagation and sequential behaviors. (Forsati et al. 2014) propose a MF-based 

model that properly incorporates both explicit trust and distrust side information 

in order to improve the performance of social recommendation. 

In basic MF model, both regularization parameters is a fixed value. However 

the predicted factor matrix will be more and more accuracy based on iterations, 

then a fix value of regularization parameters may not be the most suitable choice 

(Please see section 3 for more details). Based on the above analysis, a 

Dynamic-MF is proposed in this paper. Furthermore, a method of fine tuning is 

put forward by observing and analyzing the distribution of ratings of original 

training matrix and ratings of the final predicted matrix (shown in section 4).    

The rest of this article is organized as follows: Section 2 introduces the basic 

MF model. Section 3 states the proposed DMF method. The method of fine 

tuning is presented in Section 4, followed by experiments and results in Section 5. 

Finally, Section 6 concludes this paper and put forward the vision of future work. 

         



2 Basic MF model 

Usually, the behaviors of users can be modeled in a big user-item matrix (Luo et 

al. 2014; Koren et al. 2009; Ma et al. 2011a; Ma et al. 2011b). Like we said before, 

the matrix was very sparse, and the modeled explicit ratings express users' 

preference about items. Then the missed data (ratings) of this user-item 

rating-matrix can be predicted by MF-based CF method. In this section, we 

introduce the traditional MF algorithm. 

    We assume that { , ,..., }1 2 nU u u u  stands for a set of n users and 

{ , ,..., }1 2 mI i i i  stands for a set of m items. Then the whole user-item matrix can 

be defined as n mR  , where the rows correspond to users and columns correspond 

to items, 
ijr  is the numerical preference (rating) of user i on item j, ,1 i n 

1 j m  .The method of  MF to recommender system is to factorize the 

user-item matrix R to two low-dimensional matrices n fP   and 
f mQ 

, Where 

n fP   and 
f mQ 

 stand for user-specific and item-specific matrices, respectively, 

and f is f-dimensional specific potential feature of user and item, usually, 

,f n m . The MF formula is 
n m n f f mR P Q   . User-item matrix R is very 

spare in most cases, then the method of MF make it possible to effectively predict 

and recover the missing data of the rating matrix by learning the observed ratings.  

    From the above definitions, our purpose is to learn the most accurate f- 

dimensional matrix P and Q to estimate the missing entries of the big spare 

user-item matrix R. We define the estimated matrix as ˆ n m n f f mR P Q    , so 

ˆ n m n mR R   , then the missing entries of R can be filled by R̂  in every training 

iteration. This factorization problem can be solved by minimizing the difference 

between the original matrix R and the estimated matrix R̂ . This difference is 

defined by Euclidean distance, so the MF-based CF problem is given as follows: 
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Eq.(1) is the object function, where   is the Frobenius norm of a matrix, that is, 
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indicator function that is equal to 1 if user i rates item j and equal to 0 otherwise. 

The parameters 
P  and 

Q  are regularizing coefficients for P and Q 

respectively ,which are used to prevent over-fitting. This is an non-convexity 

optimization problem, and it can be solved by conventional optimization 

algorithms (Koren et al. 2009; Ma et al. 2011b)，For instance, stochastic gradient 

decent is an effective method to optimize Eq.(1), each desired element is obtained 

via the following training process: 

( ) ( )

( ) ( )

R T R T

ik ik ij ik ij ik P ikupdate

R T R T

kj kj ij kj ij kj Q kjupdate

P P I RQ I PQQ P

Q Q I P R I P PQ Q





        


       

，     （2） 

where   is the corresponding learning-rate. 
ikP  denotes the corresponding 

entry(rating) of P at row i and column k, 
kjQ  denotes the corresponding 

entry(rating) of Q at row k and column j, as mentioned before, these two 

parameters actually denote the kth latent feature of user iu  and the kth latent 

feature of item 
ji  , respectively. Initially, entries of P and Q are random, during 

the training process they may be updated to more accurate values, in other words, 

ˆR R . The whole process is shown in Figure 1. The above object function is a 

baseline function of MF-based CF method, some other regularization terms can 

be added to constraint the object function, such as social factors (Kim and Chen. 

2015; Zhang and Liu. 2015; Qian et al. 2014; Sherchan et al. 2013; Wierzowiecki et al. 

2010). In this paper, we focus on the original object function, especially the 

parameters. We hope to make it more efficient to system architectures for 

recommender systems. 

 

Fig. 1  Example of the process of MF 

 



3 Dynamic-MF for CF problems 

 

Fig. 2 DMF-based fine tuning method 

 

As discussed in section 2, traditional MF algorithm to recommender system 

consider the rating-matrix estimate in a CF problem. In Eq.(1) consists of three 

parts (Forsati et al. 2014). The first part is the Euclidean distance between 

user-item matrix R and the f-dimensional estimate PQ, which should be 

minimized through the method of optimization in every iteration. The last two 

parts constraint the latent matrices for users and items, respectively as 

● ● ●       ● ● ● 

Algorithm of DMF 

● ● ●       ● ● ●     

[1] Initialization: 

  feature matrixes n fP  , f mQ  .       dimension  f. 

  training round d 1 .  
maxd =500.    learning rate   . 

  regularization parameter 
P Q= =1+    

for d 500  do 

[2] update P 

   * TA R Q ,   * * TB P Q Q  

   for each 
ijP  in P ,     ( )ij ij ij ij P ijP P A B P      

[3] update Q 

    *TC P R    *TD P P*Q  

    for each 
ijQ  in Q,     ( )ij ij ij ij Q ijQ Q C D Q      

end for  until min (object function)       

d = d+1    3 2 21 1
( ) ( )

1
P Q d a

d d
 

 
       . 

end for 

[4] fine tuning for P and Q 

    if d=500, compute fine tuning percentage 
ft . 

fine tuning 
( ) ( )( ) , ( )ij 2 ft ij ij 4 ft ijR 1 R R 1 R         

end 

           

 

 
 



regularization terms. The parameters 
P  and 

Q  are regularization parameters 

that are introduced to control the regularization of the trained latent matrices P 

and Q.  

In traditional MF-based CF, both regularization parameters is the same fixed 

perfect value. But in the sense of experience, the estimated PQ ( R̂ ) will be more 

and more accurate, the previous papers (Koren et al. 2009; Luo et al. 2014; Ma et 

al. 2011b ) prove that the final results are convergent and R̂  is more and more 

accurate to make E.q. (1) minimized. Obviously, R̂  is not fix in every iteration, 

so it reminds us that the regularization parameter should not be a fix value to 

control the regularization of P and Q in every iteration, because the accuracy of 

different P and Q make different levels of contribution to the object function and 

the result of next iteration. Every 20 iterations the predicted matrix is collected as 

a standard of accuracy, thus we totally collect 11 original training matrix (0, 20, 

40, ..., 200) with different accuracy. In order to find the change rule of 

regularization parameters, every matrix will be tested using 5 regularization 

parameter values (5, 4, 3, 2, 1), then one of these values will be the best 

regularization parameter value for one of 11 matrices. Figure 3 shows us the 

change rule (yellow line) of regularization parameters in the case of matrix of 

different accuracy. We can draw a basic conclusion that the more accuracy of R̂ , 

the less value of regularization parameters . 

 

Fig. 3 regularization parameters changing with the matrix of different accuracy (change rule 

of regularization parameters)  

In our method, regularization parameters are not a fix value any more, it is a 

dynamic parameter that can change dynamically. We define the dynamic 

parameter as a function of the number of iterations, given by: 
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where d denotes the number of iterations. When the first time of iteration, 
P  

and 
Q  can be initialized to 2

2

1
P Q d a

d
     . a  is the constrict factor, 

which has two functions, the first one is to control the parameter to a base line. So 

the value of parameter will not too small in every iteration. The second one is in 

order to fit different kinds and densities of datasets. Finally, the dynamic 

regularization parameters can be used in E.q. (2). We call this method as 

Dynamic-MF, or DMF. The effect of DMF and how to select a better a  will be 

shown in section 5. 

 

4 Process of fine tuning   

Like we said before, matrix ˆR R , the missing entries are predicted by learning 

the matrix R, so the matrix R̂  is an updated full matrix, which can provide more 

useful information to complete the process of recommendation. When the final 

result of R̂  obtained by MF-based method , we can recommend new items, 

which were not rated or didn't pay attention by users, to users according to the 

predicted ratings in R̂ .   

    However, we should not only pay close attention to the predicted ratings, but 

also put ourselves into analyzing the character of the whole updated matrix R̂ . 

For example, if ratings range from 1 to 5, Figure 4 describes the distribution of 

original ratings of test datasets  and the final predicted ratings of datasets 

(datasets come from Movielens and Epinions, which will be described detailedly 

in the next section). We can conclude an interesting observation that the predicted 

ratings focus on the range of 2-4 ,but the number of 1 and 5 are very little . 

Obviously, it is inconsistent with the trend of the real situation. That means some 

rating score 1 or 5 were updated into range 2-4. So it is necessary to make a fine 

tuning after getting the predicted matrix R̂ . The ratings less than 2 should be 

decreased meanwhile the ratings more than 4 should be increased in a proper 

range to make the distribution of predicted matrix similar to the original training 

matrix. 



 

 

 

Fig. 4 Distribution of original ratings (left) and predicted ratings (right) . 

 

    Only we have now is the original training matrix and the final predicted  

matrix. The fine tuning percentage is given by: 
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where 
R  is the set of observed ratings of R, that is: 

[( , ) [ ] [ ]: ]R iji j n m R empty     . 

R̂
  is the set of predicted ratings corresponding to the same position with R, 

which means 
ijR  and ˆ

ijR  have the same coordinate "ij". | |  denotes the 

number of ratings of original training matrix R. 

Then the ratings less than 2 and more than 4 should be updated as: 
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Figure 2 illustrates pseudo-code of the algorithm of DMF and the process of fine 

tuning. 

5 Experiments and Results 

5.1 Datasets 

To test the methods, we use two standard public datasets: Movielens 1M (Zhang 

et al. 2014) and Epinions[Ma et al. 2009a, 2009b].  

    Movielens datasets contains ratings by users on their watched movies to 

form a large user-movie rating matrix, the rating score range from 1 to 5. For our 

experiments, we use a 100000 ratings matrix to check whether the proposed 

method can bring high efficiency and accuracy, the rating density of selected 

datasets is 6.3%. We call the sampled datasets D1. 

    Epinions.com1 is a well known knowledge sharing site and review site, 

which was established in 1999. User can assign movies, reviews or some others 

products, which was selected from social network, ratings from 1 to 5. So the 

users and items and ratings are able to form a large sparse user-item rating matrix. 

The dataset used in our experiments consists of 1000000 ratings and the density 

of the selected user-item matrix is 1.5%. We can observe that the user-item matrix 

of Epinions is very sparse. The fact that other part of the dataset also contains 

explicit positive and negative relations between users makes it very appropriate 

for future studying issues in social-based recommender systems, we just care 

about the rating matrix in this paper. We call this sampled datasets D2． 

 

Datasets User Item 

Epinions 943 1628 

Movielens 5538 12038 

Table 1. Statistics of User-Item Rating Matrix 

 

 The statistics of data source is summarized in Table 1. Obviously, D1 and 

D2 are different kinds of experiment datasets. They have different densities and 

they collect different opinions (ratings) by different users on different kinds of 

items. Although the rating matrices are formed by integer numbers, they come 

from different social network or e-commerce network. 

5.2 Metrics 

Two well-known measures, mean absolute error (MAE) and root mean squared 

error (RMSE) (Lu et al. 2012), were employed to compute the prediction accuracy 

of proposed method.  

    In order to measure the accuracy of the results of an RS, we usually use the 

calculation of some of the most common prediction error metrics, among which 

the Mean Absolute Error (MAE) and its related metrics: mean squared error, root 

mean squared error, and normalized mean absolute error stand out. MAE is 

calculated by measuring the difference between the predicted ratings and the real 

ratings (test datasets), the errors should be averaged over all predicted ratings to 

                                                             
1 WWW.Epinions.com 



obtain a mean final value. MAE is defined as: 

,

ˆ
ij ij

i j

R R

MAE











, 

More precisely,   denotes the number of ratings of test datasets testR , "ij" 

denote the coordinate of rating in testR , that is: 

ˆ ˆ{( , ) [ ] [ ], , }ij test iji j n m R R R R      , 

where 
îjr  need to be predicted by the algorithms. 

    RMSE measures larger errors compare to MAE (mean error), RMSE is 

defined as: 

,

ˆ( )2

ij ij

i j

R R

RMSE











,  

where the elements (
ijR , ˆ

ijR , ) of RMSE have the same meaning of MAE. From 

the formulas, we can draw a conclusion that lower MAE and RMSE value means  

higher prediction accuracy. 

    All tested models are implemented in MATLAB R2012a, and tested on a PC 

Server with a 2.2 GHz CPU and 8 GB Memory. 

 

5.3 Experimental Process 

In order to test the effectiveness of the proposed method, the traditional MF 

model described in section 2 and some other state-of-arts methods are used as the 

baseline methods. A cross-validation technique will be used in the paper. We 

randomly select 90%, 80%, 70%, 60%, and 50% of D1and D2 as the training-sets 

to validate the performance. The random selection was carried out 5 times 

independently.  

    As descriptions in section 3, in DMF, the constrict factor   control the 

extent of regularization under the condition of dynamic change of regularization 

parameters. Prediction accuracy and convergence rate will be affected by this 

factor. Therefore, different values are verified to find a reasonable value for the 

social regularization constrict factor.  

    On both two datasets, we validated the performance of DMF (section 3) and 

DMF-based fine tuning method (section 4) to compare with traditional MF and 

NMF method. For a fair comparison, the training process of each model contains 

500 training iterations (convergence state) on each dataset. 

 

5.4 Results and Discussions 



In this section , we discuss two experimental results. Firstly, the impact of factor  
is shown in part 5.4.1. Secondly, the comparison of some state-of-arts 

methods will be shown in part 5.4.2, we can easily find the performance of the 

method of DMF-based fine tuning from the comparisons.  

5.4.1. Impact of factor   

E.q. (2), (3) are used in the process of the experiment. We use different 

values of   (-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2) to complete the experiment on 

both datasets. When it achieves the final predicted matrix R̂ , the best RMSE and 

MAE value on each datasets of different   are shown in Figure 5. We see that 

  has vital effect on prediction accuracy of DMF. We can find with =0 , the 

algorithm gets the best performance of prediction accuracy on datasets Epinions. 

With .0 5  , the algorithm gets the best performance of prediction accuracy on 

datasets Movielens. The phenomenon demonstrates when the constrict factor   

in the range from -0.5 to 0.5, a better RMSE and MAE will be obtained on 

datasets Epinions, For the datasets Movielens of this experiments, the better rang 

of constrict factor   is from 0 to 0.5.    

 

(1) Epinions 

   

(2) Movielens 

Fig. 5 Impact of different value of constrict factor α on performance. 

 

5.4.2. Performance of DMF based fine tuning method 

Four methods are tested in the experiment. First, the traditional MF, which is 





described in section 2, is implemented and tested as a baseline method. Secondly, 

the NMF (Lee et al. 1999, 2001) is also tested as another benchmark. Note that 

we choose NMF as benchmark is because it is another widely used method to 

solve CF problem. Moreover, It provides us another idea to learn matrices P and 

Q, each value of matrices P and Q is nonnegative. Then the proposed DMF and 

DMF-based fine tuning methods are compared with MF and NMF to validate if 

our strategies can bring positive effect on performance. 

    As discussed, for the datasets Epinions, =0  will be used in DMF and 

DMF-based fine tuning method to get the best RMSE and MAE. For the datasets 

Movielens, .=0 5 . 

 

Method 

90% for 

training 

80% for 

training 

70% for 

training 

60% for 

training 

50% for 

training 

RMSE 

MF 0.8896 0.8973 0.9086 0.9238 0.9491 

NMF 0.8788 0.8898 0.9015 0.9197 0.9418 

DMF 0.8645 0.8801 0.8993 0.9125 0.9386 

DMF ft 0.8529 0.8796 0.8897 0.9066 0.9265 

       

MAE 

MF 0.6997 0.7072 0.7189 0.7298 0.7376 

NMF 0.6843 0.6908 0.7012 0.7198 0.7288 

DMF 0.6787 0.6802 0.6927 0.7069 0.7148 

DMF ft 0.6696 0.6762 0.6834 0.6932 0.7086 

(1) Movielens 

 

 

Method 

90% for 

training 

80% for 

training 

70% for 

training 

60% for 

training 

50% for 

training 

RMSE 

MF 1.0361 1.0954 1.1203 1.1505 1.1732 

NMF 1.0269 1.0868 1.1194 1.1462 1.1649 

DMF 1.0029 1.0711 1.1143 1.1308 1.1608 

DMF ft 0.9943 1.0636 1.1098 1.1240 1.1540 

       

MAE 

MF 0.8006 0.8398 0.8579 0.8926 0.9147 

NMF 0.7865 0.8245 0.8482 0.8803 0.9025 

DMF 0.7742 0.8123 0.8413 0.8611 0.8897 

DMF ft 0.7613 0.8084 0.8337 0.8527 0.8804 

(2) Epinions 

Table 2, RMSE and MAE comparison of MF, NMF, DMF and DMF-based fine tuning method 

     

    From Table 2, we can observe that our method outperforms the other models. 

In general, the proposed DMF and DMF-based fine tuning method both perform 

better than MF and NMF on both RMSE and MAE. 

6 Conclusion and future work 

In this article, we focus on improving the recommend efficiency of MF-based CF 



method. Firstly, we propose a Dynamic-MF algorithm based on the traditional 

MF model. In traditional MF model, they use a fixed value as the regularization 

parameters to learn and update target matrix, but they neglect an important 

phenomenon that the predicted matrix is more and more accurate based on 

iterations. So regularization parameter should not be a fixed value but an updated 

value based on iterations. Secondly, by analyzing the distribution trend of ratings 

of original training matrix and predicted matrix, we find that the proper 

distribution trend of ratings of predicted matrix should be similar with the 

training matrix. Hence, we introduced a fine tuning method according to the 

difference between predicted matrix and original training matrix. Based on the 

experimental analysis, The proposed DMF-based method leads to improved 

prediction accuracy, after getting the predicted matrix by DMF, the fine tuning 

method proved to have a better trend of results.  
    MF-based method has become popular in recent years by combining good 

scalability with predictive accuracy. In this paper, we only constrain the 

adjustment of parameters on the level of system architecture while ignoring some 

important regularization terms, such as users' social relation information, 

correlations between items, etc. In future work, the mentioned information can be 

incorporated into our framework to improve the performance of recommendation. 

Furthermore, other metrics can be used to test the effectiveness of the specific 

recommend system.   
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