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1 Introduction

The cross sectional dependence has been a hot topic for the past two decades. A dominant

branch of modelling the cross-sectional dependence is to use a factor structure in panel data

models (c.f. Pesaran (2006), Bai (2009) and so forth). Recently, Robinson (2011) and Lee

and Robinson (2016) have employed the time series technique to model the dependence among

cross-sectional data sets. Following the spirit of their work, I consider a varying-coefficient

model with cross-sectional dependence in this study.

2 Model Specification

The mode is as follows:

yi = x′iβ(zi) + ui. (2.1)

zi ∈ [0, 1] is the so-called univariate index variable (Wang and Xia (2009)) and xi is a p × 1

vector. For simplicity, we consider the scalar case for zi only and it is straightforward to extend

zi to multivariate case. To distinguish xi and zi, they are referred to as regressors and covariates

hereafter. In order to impose the cross-sectional dependence, we follow Robinson (2011) and

Lee and Robinson (2016) and denote that

ui = σ(xi, zi)ei, ei =
∞∑
j=1

bijεj, bii 6= 0, Bi =
∞∑
j=1

b2
ij <∞ for i = 1, . . . , N, (2.2)

where σ : Rp×[0, 1]→ R, the bij are real constants, and {εj, j ≥ 1} is a sequence of independent

random variables with zero mean and unit variance, independent of {xj, j ≥ 1} and {zj, j ≥ 1}.
Remark:

Notice bii 6= 0 rules out the case where the error term ei does not change across index i.

For example, without the restriction of bii 6= 0, one can let σ(xi, zi) = 1, bi1 = 1, bij = 0

for i = 1, . . . , N and j = 2, . . . ,∞. Then the model will reduce to yi = x′iβ(zi) + ε1. In

this case, the consistent estimation cannot be achieved at all.

In this note, our kernel function is denoted as:

Kh (zi − z) =
1

h
K

(
zi − z
h

)
, (2.3)

where K(w) is symmetric denoted on [−1, 1] satisfying
∫ 1

−1
K(w)dw = 1 and h is the bandwidth.

In order to facility the development, we adopt the following assumptions.

Assumptions:
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1. {εj, j ≥ 1} is a sequence of independent random variables with zero mean and unit

variance, independent of {xj, j ≥ 1} and {zj, j ≥ 1}. E[εj] = 0, E[ε2
j ] = 1 and

maxj≥1E[ε2+ν
j ] <∞. σ2(x, z) is a uniformly bounded. Moreover, max1≤i≤N E‖xi‖4 <∞

and maxz∈[0,1] ‖β(z)‖ <∞.

2. Let E[xix
′
i|zi = z] = Σxi(z), where ‖Σxi(z)‖ is uniformly bounded on [0, 1]. Σxi(z) has

bounded continuous second order derivative with respect to z uniformly in i. Moreover,

xi is the function of zi and independent of zj for i 6= j.

3. For 1 ≤ i 6= j ≤ N , let fij(w1, w2) denote the joint density function for (zi, zj) and be

bounded uniformly in i, j. For i = 1, . . . , N , let fi(w) denote the density function for

zi and be bounded uniformly in i. In addition, fi(w) has uniformly bounded continuous

second order derivative with respect to w.

4. (a) Nh→∞, h→ 0;

(b) limN→∞
1
N

∑N
i=1Bi = B and max1≤i≤N |Bi| ≤ C1, where C1 is a constant. Also, for

∀z ∈ [0, 1], let V2(z) = limN→∞
1
N

∑N
i=1 Σxi(z)fi(z) be positive definite uniformly in

z.

(c) max1≤j≤N
1√
Nh

∑N
i=1 |bij| → 0;

(d) ∆2N

N2 → 0 and
√

∆1N

Nh
→ 0, where

∆1N =
N∑

i,j=1,i 6=j

∫∫
|fij(w1, w2)− fi(w1)fj(w2)| dw1dw2,

∆2N =
N∑

i,j=1,i 6=j

|γi,j|, γi,j = Cov(ei, ej);

Assumptions 1-4 are standard in the literature (c.f. Wang and Xia (2009), Lee and Robinson

(2016)), so the relevant discussions are omitted. In Assumption 4.c, max1≤j≤N
1√
Nh

∑N
i=1 |bij| →

0 certainly captures the i.i.d. case. For example, let σ(xi, zi) = 1. When ui is i.i.d., the matrix

B = {bi,j}N×N = IN . Then it is easy to see that max1≤j≤N
1√
Nh

∑N
i=1 |bij| → 0 holds. Notice

that if zi is independent across i, one can easily show that ∆1N = 0 and γi,j = 0, so Assumption

4.d holds immediately.

For any given z ∈ [0, 1], we investigate the next estimator.

β̂(z) =

(
N∑
i=1

xix
′
iKh(zi − z)

)−1 N∑
i=1

xiyiKh(zi − z). (2.4)

Then the next result follows based on the above settings.

2



Theorem 2.1. Under Assumptions 1-4,

√
Nh

(
β̂(z)− β(z)−OP (h2)

)
→D N(0, V −1

2 (z)V1(z)V −1
2 (z))

where

V1(z) = lim
N→∞

1

N

N∑
i=1

fi(z)Bi

∫
Σxxσ(w)K2 (w) dw

+ lim
N→∞

h

N

N∑
i1=1

N∑
i2=1

γi1,i2fi1(z)fi2(z)η̃η̃′,

where η̃ =
∫
η(w)K(w)dw, η(zi) = E[xiσ(xi, zi)|zi], Σxxσ(zi) = E[xix

′
iσ

2(xi, zi)|zi] and V2(z) is

denoted in Assumption 4.

3 Conclusion

In this note, I have studied a vary-coefficient model under cross-sectional dependence. The tech-

nique of Robinson (2011) and Lee and Robinson (2016) is employed to mimic the dependence

among cross-sectional data sets. The asymptotic normality is established for the proposed es-

timator. The optimal bandwidth selection has been achieved under i.i.d. case in Li and Racine

(2010), but what the optimal bandwidth looks like under cross-sectional dependence remains

unsolved.

Appendix

Lemma A.1. Let ζi = (xi, zi) and Assumption 3 hold. For any bounded function g(w) with w =

(w1, w2) ∈ Rp× [0, 1] having that E [g(ζi)g(ζj)] with i 6= j and E [g(ζi)] exist uniformly in 1 ≤ i, j ≤ N ,

we obtain that ∣∣∣∣∣∣
∞∑

i,j=1,i 6=j
{E [g(ζi)g(ζj)]− E [g(ζi)]E [g(ζj)]}

∣∣∣∣∣∣ = O(∆1N ). (A.1)

Proof of Lemma A.1:∣∣∣∣∣∣
∞∑

i,j=1,i 6=j
{E [g(ζi)g(ζj)]− E [g(ζi)]E [g(ζj)]}

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑

i,j=1,i 6=j

∫
g(w1)g(w2) (fij(w1, w2)− fi(w1)fj(w2)) dw1dw2

∣∣∣∣∣∣
= O(1)

∞∑
i,j=1,i 6=j

∫
|fij(w1, w2)− fi(w1)fj(w2)| dw1dw2 = O(∆1N ). (A.2)
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Then the proof is complete. �

Lemma A.2. Under Assumptions 1-4, for any given z ∈ [0, 1]

1. 1
N

∑N
i=1 xix

′
iKh(zi, z)− 1

N

∑N
i=1 Σxi(z)fi(z) = OP (h2) +OP

(√
∆1N
Nh

)
;

2. 1
N

∑N
i=1 xiuiKh(zi, z) = OP

(
1√
Nh

)
+OP

(√
∆1N
Nh

)
+OP

(√
∆2N
N

)
;

3. 1
N

∑N
i=1 xix

′
i (β(zi)− β(z))Kh(zi − z) = OP (h2);

Proof of Lemma A.2:

1) Write

E

[
1

N

N∑
i=1

xix
′
iKh(zi − z)

]
=

1

N

N∑
i=1

E
[
xix
′
iKh(zi − z)

]
=

1

N

N∑
i=1

∫
Σxi(w)Kh(w − z)fi(w)dw

=
1

N

N∑
i=1

∫
Σxi(z + hw)K(w)fi(z + hw)dw

=
1

N

N∑
i=1

Σxi(z)fi(z) +O(h2), (A.3)

where the fourth equality follows from using Taylor expansion on each element of Σxi(w) and fi(w).

For the second moment, write

E

∥∥∥∥∥ 1

N

N∑
i=1

(
xix
′
iKh(zi − z)− Σxi(z)fi(z)

)∥∥∥∥∥
2

=
1

N2

p∑
m=1

p∑
n=1

N∑
i=1

E [xi,mxi,nKh(zi − z)− Σxi,mn(z)fi(z)]
2

+
1

N2

p∑
m=1

p∑
n=1

N∑
i,j=1,i 6=j

E
[

(xi,mxi,nKh(zi − z)− Σxi,mn(z)fi(z))

· (xj,mxj,nKh(zj − z)− Σxi,mn(z)fj(z))
]

:= A1 +A2, (A.4)

where Σxi,mn(z) denotes the (m,n)th element of Σxi(z) for i = 1, . . . , N .

For A1, write

A1 =
1

N2

p∑
m=1

p∑
n=1

N∑
i=1

E [xi,mxi,nKh(zi − z)− Σxi,mn(z)fi(z)]
2

≤ 1

N2h

p∑
m=1

p∑
n=1

N∑
i=1

E
[
x2
i,mx

2
i,nKh(zi − z)

]
≤ 1

N2h

p∑
m=1

p∑
n=1

N∑
i=1

E
[
x2
i,mx

2
i,nKh(zi − z)

]
= O

(
1

Nh

)
, (A.5)
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where we have used the uniform boundedness of K(w).

For A2, write

N∑
i,j=1,i 6=j

E
[

(xi,mxi,nKh(zi − z)− Σxi,mn(z)fi(z))

· (xj,mxj,nKh(zj − z)− Σxj,mn(z)fj(z))
]

=

N∑
i,j=1,i 6=j

E
[

(Σxi,mn(zi)Kh(zi − z)− Σxi,mn(z)fi(z))

· (Σxj,mn(zj)Kh(zj , z)− Σxj,mn(z)fj(z))
]

=

N∑
i,j=1,i 6=j

∫∫
(Σxi,mn(w1)Kh(w1 − z)− Σxi,mn(z)fi(z))

· (Σxj,mn(w2)Kh(w2 − z)− Σxj,mn(z)fj(z)) fij(w1, w2)dw1dw2

=
N∑

i,j=1,i 6=j

∫
(Σxi,mn(w1)Kh(w1 − z)− Σxi,mn(z)fi(z)) fi(w1)dw1

·
∫

(Σxj,mn(w2)Kh(w2)− Σxj,mn(z)fj(z)) fj(w2)dw2

+
N∑

i,j=1,i 6=j

∫∫
(Σxi,mn(w1)Kh(w1 − z)− Σxi,mn(z)fi(z))

· (Σxj,mn(w2)Kh(w2 − z)− Σxj,mn(z)fj(z)) (fij(w1, w2)− fi(w1)fj(w2)) dw1dw2

≤ O(h4N2) +
1

h2

N∑
i,j=1,i 6=j

∫∫ ∣∣∣fij(w1, w2)− fi(w1)fj(w2)
∣∣∣dw1dw2

≤ O(h4N2) +O

(
∆1N

h2

)
, (A.6)

where the first inequality follows from (A.3), uniform boundedness of Σxi(w1, w2) and K(w); the

second inequality follows from Assumption 5.

Thus, we have A2 = O(h4) +O
(

∆1N
N2h2

)
. Based on the above, the first result of this lemma follows.

2) It is easy to know that E
[

1
N

∑N
i=1 xiuiKH,Θ(zi, z)

]
= 0. For the second moment, write

E

∥∥∥∥∥ 1

N

N∑
i=1

xiuiKH,Θ(zi, z)

∥∥∥∥∥
2

=
1

N2

N∑
i=1

E
[
‖xi‖2σ2(xi, zi)e

2
iK

2
h(zi − z)

]
+

1

N2

N∑
i,j=1,i 6=j

E
[
x′ixjσ(xi, zi)σ(xj , zj)Kh(zi,−z)Kh(zj − z)

]
E[eiej ]

≤ O(1)
1

N2h

N∑
i=1

E
[
‖xi‖2σ2(xi, zi)Kh(zi − z)

]
E[e2

i ]

+
1

N2

N∑
i,j=1,i 6=j

E
[
x′ixjσ(xi, zi)σ(xj , zj)Kh(zi,−z)Kh(zj − z)

]
E[eiej ]
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:= A1 +A2. (A.7)

For A1, it is easy to show that

A1 = O(1)
1

N2h

N∑
i=1

E
[
‖xi‖2σ2(xi, zi)Kh(zi − z)

]
E[e2

i ]

≤ O(1)
1

N2h

N∑
i=1

E
[
‖xi‖2σ2(xi, zi)Kh(zi − z)

]
≤ O(1)

1

N2h

N∑
i=1

E
[
‖xi‖2Kh(zi − z)

]
= O

(
1

Nh

)
.

For A2, write

N∑
i,j=1,i 6=j

∣∣∣E [x′ixjσ(xi, zi)σ(xj , zj)Kh(zi − z)Kh(zj − z)
]
E[eiej ]

∣∣∣
=

N∑
i,j=1,i 6=j

∣∣∣E [ηi(zi)′ηj(zj)Kh(zi − z)Kh(zj − z)
]
γi,j

∣∣∣
=

N∑
i,j=1,i 6=j

∣∣∣ ∫∫ ηi(w1)′Kh(w1 − zc)ηj(w2)Kh(w2 − zc)fij(w1, w2)dw1dw2γi,j

∣∣∣
≤

N∑
i,j=1,i 6=j

∣∣∣ ∫ ηi(w1)′Kh(w1 − zc)fi(w1)dw1

∫
η(w2)Kh(w2 − zc)fj(w2)dw2 · γi,j

∣∣∣
+

N∑
i,j=1,i 6=j

∣∣∣ ∫∫ η(w1)′Kh(w1 − z)η(w2)Kh(w2 − z)

·
(
fij(w1, w2)− fi(w1)fj(w2)

)
dw1dw2 · γi,j

∣∣∣
≤ O(1)

N∑
i,j=1,i 6=j

|γi,j |+
1

h2

N∑
i,j=1,i 6=j

∫∫ ∣∣∣fij(w1, w2)− fi(w1)fj(w2)
∣∣∣dw1dw2

≤ O(∆2N ) +O

(
∆1N

h2

)
, (A.8)

where the second inequality follows from the uniform boundedness on η(·) and fi(w).

Therefore, for A2, we obtain A2 = O
(

∆2N
N2

)
+ O

(
∆1N
N2h2

)
. Based on the analysis on A1 and A2,

the result follows.

3) We then focus on 1
N

∑N
i=1 xix

′
i (β(zi)− β(z))Kh(zi − z).

E

∥∥∥∥∥ 1

N

N∑
i=1

xix
′
i (β(zi)− β(z))Kh(zi − z)

∥∥∥∥∥
≤ 1

N

N∑
i=1

E
[
‖xix′i (β(zi)− β(z)) ‖Kh(zi − z)

]
≤ O(1)

1

N

N∑
i=1

∫
Kh(w − z)fi(w)dw = O(h2),

where the last line follows from (A.3). Then, the result follows immediately. �
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Proof of Theorem 2.1:

We now focus on the normality.

√
Nh

(
β̂(z)− β(z)

)
=

(
1

N

N∑
i=1

xix
′
iKh(zi − z)

)−1√
h

N

N∑
i=1

xix
′
i (β(zi)− β(z))Kh(zi − z)

+

(
1

N

N∑
i=1

xix
′
iKh(zi − z)

)−1√
h

N

N∑
i=1

xiuiKh(zi − z)

:= A1 +A2. (A.9)

By Lemma A.2, we just need to focus on
√

h
N

∑N
i=1 xiuiKh(zi − z). Notice that by the proof for

(2) of Lemma 2.2

Var

[√
h

N

N∑
i=1

xiuiKh(zi − z)

]

=
h

N

N∑
i1=1

N∑
i2=1

E[xi1x
′
i2σ(xi1 , zi1)σ(xi2 , zi2)Kh(zi1 − z)Kh(zi2 − z)]γi1,i2

=
1

N

N∑
i1=1

E

[
Σxxσ(z)

1

h
K2

(
zi − z
h

)]
Bi1

+
h

N

N∑
i1,i2=1,i1 6=i2

E[η(zi1)Kh(zi1 − z)]E[η(zi2)′Kh(zi2 − z)]γi1,i2

=
1

N

N∑
i1=1

fi(z)Bi1

∫
Σxxσ(w)K2 (w) dw

+
h

N

N∑
i1,i2=1,i1 6=i2

fi1(z)fi2(z)γi1,i2

∫
η(w)K(w)dw

∫
η(w)′K(w)dw

+O(h2) +O

(
∆2N

N2

)
+O

(
∆1N

Nh2

)
= V1(z) + o(1), (A.10)

where Σxxσ(z) = E[xix
′
iσ(xi, zi)|zi = z]; the third equality follows from the procedure similar to (A.3)

and (A.8).

Further write √
h

N

N∑
i=1

xiuiKh(zi − z) =

√
h

N

N∑
i=1

xiσ(xi, zi)eiKh(zi − z)

=

√
h

N

N∑
i=1

xiσ(xi, zi)Kh(zi − z)
∞∑
j=1

bijεj =

N∑
j=1

wjNεj +

∞∑
j=N+1

wjNεj , (A.11)

where wjN =
√

h
N

∑N
i=1 xiσ(xi, zi)Kh(zi − z)bij . By the Cramer-Wold device, in order to derive

asymptotic normality of the vector, we consider
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√
h

N

N∑
i=1

c′xiuiKh(zi − z) =
N∑
j=1

c′wjNεj +
∞∑

j=N+1

c′wjNεj , (A.12)

where c ∈ Rp is a fixed vector satisfying ‖c‖ = 1.

By (A.10), there must a sufficiently large M satisfying E
[∑∞

j=N+1 c
′wjNεj

]2
= o(1) for N > M .

Since c′wjNεj is martingale difference, we just need to focus on verifying the next two terms

N∑
j=1

E
[
c′wjNεj

]2 → 1, (A.13)

N∑
j=1

E
[(
c′wjNεj

)2
1(|c′wjNεj | > ε)

]
→P 0, for ε > 0. (A.14)

For (A.13), write

N∑
j=1

E
[
c′wjNεj

]2
=

N∑
j=1

(c′wjN )2 −
∞∑

j=N+1

(c′wjN )2 = c′V1(zc, zd)c+ o(1).

Next let ν be as in Assumption 1. Since {xi, i ≥ 1} and {zi, i ≥ 1} are independent of {εj , j ≥ 1},

we then proceed further by conditional on {xi, i ≥ 1} and {zi, i ≥ 1}. Then, unconditionally, the

results automatically hold. Conditional on {xi, i ≥ 1} and {zi, i ≥ 1}, we have

N∑
j=1

E
[
(c′wjNεj)

21(|c′wjNεj | > ε)
]

=
N∑
j=1

(c′wjN )2E
[
ε2
j1(|c′wjNεj | > ε)

]
≤

N∑
j=1

(c′wjN )2
{
E
[
|εj |2+ν

]} 2
2+ν
{
E
[
1(|c′wjNεj | > ε)

]} ν
2+ν

≤
N∑
j=1

(c′wjN )2
{
E
[
|εj |2+ν

]} 2
2+ν

{
E[|c′wjNεj |]

ε

} ν
2+ν

≤
N∑
j=1

(c′wjN )2
{
E
[
|εj |2+ν

]} 2
2+ν

{
|c′wjN |

ε

} ν
2+ν

{E|εj |}
ν

2+ν

=

N∑
j=1

|c′wjN |2+ ν
2+ν ε−

ν
2+ν
{
E
[
|εj |2+ν

]} 2
2+ν {E|εj |}

ν
2+ν

≤ O(1)

{
max

1≤j≤N
|c′wjN |

ν
2+ν

} N∑
j=1

|c′wjN |2ε−
ν

2+ν .

We then just need to verify that max1≤j≤n(N) |c′wjN |
ν

2+ν → 0. We then obtain

|c′wjN | =

∣∣∣∣∣c′
√
h

N

N∑
i=1

xiσ(xi, zi)Kh(zi − z)bij

∣∣∣∣∣
≤ ‖c‖

√
h

N

N∑
i=1

‖xiσ(xi, zi)Kh(zi − z)bij‖

≤ O(1)

√
1

Nh

N∑
i=1

|bij | ≤ O(1) max
1≤j≤N

1√
Nh

N∑
i=1

|bij | → 0.
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Then the proof is complete. �
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