
SODE: Self-Adaptive One-Dependence Estimators for Classification

Jia Wua,∗, Shirui Pana, Xingquan Zhub, Peng Zhanga, Chengqi Zhanga

aQuantum Computation & Intelligent Systems (QCIS) Centre,
Faculty of Engineering & Information Technology, University of Technology Sydney, NSW 2007, Australia.

bDepartment of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA.

Abstract

SuperParent-One-Dependence Estimators (SPODEs) represent a family of semi-naive Bayesian classifiers which

relax the attribute independence assumption of Naive Bayes (NB) to allow each attribute to depend on a common

single attribute (superparent). SPODEs can effectively handle data with attribute dependency but still inherent

NB’s key advantages such as computational efficiency and robustness for high dimensional data. In reality, deter-

mining an optimal superparent for SPODEs is difficult. One common approach is to use weighted combinations

of multiple SPODEs, each having a different superparent, by assigning a proper weight value to each superparent

(i.e., an attribute). In this paper, we propose a self-adaptive SPODEs, namely SODE, which uses immunity the-

ory in artificial immune systems to automatically and self-adaptively select the weight for each single SPODE.

SODE does not need to know the importance of individual SPODE nor the relevance among SPODEs, so it can

flexibly and efficiently search optimal weight values for each SPODE during the learning process. Extensive

experiments and comparisons on 56 benchmark data sets, and validations on image retrieval and document cat-

egorization demonstrate that SODE is suitable for a wide range of tasks and outperforms other state-of-the-art

weighted SPODE algorithms. Results also confirm that SODE provides an appropriate balance between runtime

efficiency and accuracy effectiveness.

Keywords: Attribute Weighting, Self-Adaptive, Classification, Artificial Immune Systems, Evolutionary

Machine Learning

1. Introduction

Naive Bayes (NB) [13] is a simple, efficient, and effective learning algorithm which uses a simplified Bayesian

network, as shown in Figure 1(a), with conditional attribute independence assumption for classification [18]. De-

spite of the strong independence assumption, NB has demonstrated very good classification accuracy, compared

to other sophisticated learning methods [51]. Meanwhile, many methods also exist to improve NB by relaxing

its attribute interdependence but also retaining its simplicity and efficiency [26, 47, 48, 53, 54]. In this paper, we

refer to this type of approaches as semi-naive Bayesian methods.

∗Corresponding author. Tel.: +61 416387666, Fax.: +61 2 9514 4535
Email addresses: jia.wu@student.uts.edu.au (Jia Wu), shirui.pan@student.uts.edu.au (Shirui Pan),

xzhu3@fau.edu (Xingquan Zhu), peng.zhang@uts.edu.au (Peng Zhang), chengqi.zhang@uts.edu.au (Chengqi Zhang)

Preprint submitted to ELsevier June 8, 2016

(a) NB (b) ODE (c) SPODE

Figure 1: A conceptual view of (a) Naive Bayes (NB), (b) One-Dependence Estimator (ODE), and (c) SuperParent-One-Dependence Estima-
tor (SPODE). Each circle represents an attribute (e.g., class labelY or attribute Ai : 1 ≤ i ≤ 4). An arrow points from a parent to a child, who
only depends on its parents. NB assumes that attributes (Ai) are independent of each other given the class labelY. ODE allows each attribute
to depend on at most one other attribute (i.e., parent) in addition to the class. By contrast, SPODE assumes that each attribute depends on a
common attribute (e.g., the superparent A2).

In order to relax the conditional independence assumption in naive Bayes and allow interdependency between

attributes, semi-naive Bayesian techniques commonly employ simple wrapper heuristics by minimizing learning

error on training data [54]. For example, One-Dependence Estimator (ODE), as an alternative to NB, allows each

attribute to depend on at most one other attribute in addition to the class label, as shown in Figure 1(b). Existing

analysis and empirical studies [47] have shown that ODE can indeed outperform simple NB when the attribute

independence assumption is violated.

SuperParent-One-Dependence Estimator (SPODE), as shown in Figure 1(c), is a subcategory of ODE which

allow all attributes to depend on one superparent (i.e., one attribute) in addition to the class label [49]. The

employment of a superparent allows SPODE to retain same training efficiency as NB but with a potentially higher

classification accuracy. Due to the fact that the superparent plays a major role in SPODE but finding a globally

optimal superparent is a challenging task, many existing SPODE methods employ an ensemble based approach

by using each single attribute as a superparent to build a SPODE and combining multiple SPODEs for prediction.

For example, Averaged One-Dependence Estimators (AODE) [40] combines all SPODEs that satisfy a minimum

support constraint and estimate class conditional probabilities by the averaging strategy (i.e., each attribute is

treated equally). This approach has demonstrated good classification accuracy with very little extra computational

cost. In reality, attributes are playing different roles in learning tasks. A natural way to extend AODE is to assign

attributes different weight values, which is the core of weighted SPODEs (WSPODE/WAODE) [22].

In order to discover proper weight values for weighted SPODEs, researchers have proposed many useful

methods to evaluate the importance of attributes. Examples include gain ratio [52], correlation-based algorith-

m [16], mutual information [24], and ReliefF attribute ranking algorithm [34], etc. Although existing attribute

weighting SPODEs methods have achieved good performance to solve domain specific problems, all these meth-

ods rely on external criteria, such as gain ratio, to determine the weight values of the attributes. In this case,

attribute weighting and SPODE learning objective are separated without being considered simultaneously for

maximum accuracy gain. To this end, we propose in this paper a new approach to automatically calculate optimal

2

attribute weight values for SPODEs, by directly targeting SPODEs’s objective function. To achieve the goal, we

propose to assign proper weight values for weighted SPODEs classification based on immunity theory in artificial

immune systems (AIS) [55]. Immune theory has been successfully used to self-adaptively calculate the weight

for weighted naive Bayes in previous work [44]. In [45], an immune theory based self-adaptive probability esti-

mation method has also been proposed to select terms and parameters for probability estimation. Therefore, it is

appealing to pattern recognition community to have an optimization framework with self-adaptively determined

weight values for SPODEs for different learning tasks.

In this paper, we propose to use immune principle to design an automated searching strategy to find optimal

attribute weight for each SPODE. The unique immune evolution computation processes, including initialization,

clone, mutation, and selection, ensure that our method can adapt to the unique distributions of the underlying

data. In contrast to conventional statistical probabilistic evaluation in SPODEs, the proposed immune based

SPODEs (SODE) is a self-learning algorithm with immunological properties, such as memory property and

clonal selection. To the best of our knowledge, this is the first work to introduce immune principle to the field

of SPODE based classification. The niche and advantages of SODE can be understood from the following three

aspects:

1) SODE is a data-driven self-adaptive method because it does not requires explicit specification of functional

or distributional form for the underlying model or the underlying learning tasks.

2) SODE is a nonlinear model capable of modeling complex real-world relationships.

3) SODE inherits the memory property of human immune systems and can recognize the same or similar

antigen quickly at different times.

Our experiments and comparisons on 56 UCI benchmark data sets and validations in image retrieval and doc-

ument categorization demonstrate that SODE consistently outperforms other state-of-the-art weighted SPODEs

algorithms in terms of classification accuracy and variance (i.e., the standard deviation). The runtime compar-

isons further confirm that SODE provides an appropriate trades-off between learning efficiency and accuracy

effectiveness.

The remainder of the paper is structured as follows. Preliminary concepts are addressed in Section 2. Sec-

tion 3 presents an overview of attribute weighting approaches for SPODE classifiers, followed by a brief review

of immune principle in artificial immune systems. Section 4 introduces the proposed algorithm, followed by

experiments in Section 5. We conclude the paper in Section 6.

2. Preliminaries

In this section, we introduce important notations and definitions used in the paper.

A training set D = {(x1, y1) · · · , (xN , yN)} has N instances, each of which containing n attribute values and

a class label. We use xi = {xi,1, · · · xi, j, · · · xi,n} to denote the ith instance in the data set D, with xi, j denoting

3

the jth attribute value and each instance is paired with a class label yi. The class space Y = {c1, · · · , ck, · · · , cL}

denotes the set of labels that each instance belongs to and ck is the kth label of the class space. The attribute space

of the data is denoted by A = {A1, · · · , A j, · · · , An}, where A j denotes the jth attribute. Each attribute can be a

discrete random variable (with a number of discrete values) or a continuous random variable. In this paper, we

only focus on categorical (or nominal) attributes, and for any attribute A j, we use aτj , τ = 1, · · · , |A j| to denote the

τth attribute value of A j and |A j| denotes the total number of distinct values of A j. For each instance xi, its value

satisfies xi, j ∈ A j.

SPODE-based Classifiers: For an instance (xi, yi) in the training set D, its class label satisfies yi ∈ Y, where-

as a test instance xt only contains attribute values and its class label yt needs to be predicted by the classification

model.

A Maxim A Posteriori (MAP) classifier aims to determine the class label of a test instance xt by maximizing

the posteriori probability as follows:

c(xt) = arg max
ck∈Y

P
(
ck |xt

)
= arg max

ck∈Y

P
(
xt, ck

)
(1)

Since P(ck |xt)=P(ck, xt)/P(xt) and P(xt) is invariant across different class labels, one only needs to calculate

P(ck, xt) to determine the final class label. In reality, when the number of training samples is limited, the esti-

mation of joint distribution P(ck, xt) is usually unreliable. Therefore, approximating P(ck, xt) becomes the key

challenge of deriving Bayesian learning models [23].

2.1. Naive Bayes

In reality, because joint probability P(ck, xt) = P(xt |ck) × P(ck), a straightforward approach to simplify the

joint probability estimation is to simply ignore the dependency relationships between attributes and assume all

attributes are conditionally independent, given the class label ck. By doing so, the probability of observing the

conjunction of all attributes is simplified as the product of the probabilities of each individual attributes. This

assume results in the core concept of naive Bayes (NB) as follows,

c(xt) = arg max
ck∈Y

∏n

j=1
P
(
xt, j

∣∣∣ck
)
P(ck) (2)

In naive Bayes, each attribute node only has a class node as its parent, which makes the learning highly effi-

cient. However, such settings may also reduce the classification performance due to the ignorance of attribute

interdependency.

2.2. SuperParent-One-Dependance Estimators

To improve NB classification, semi-naive Bayesian approaches are proposed to exploit attribute dependencies

at a moderate degree. For example, k-dependence estimator (k-DE) [37] allows each attribute to have the class

Y and a maximum of k other attributes as parents (i.e. a naive Bayes (NB) classier is a 0-dependence estimator).

4

Among all existing semi-naive Bayesian approaches, One-Dependence Estimator (ODE, e.g., Tree Augmented

Naive Bayes (TAN) [15]) based methods have achieved good trade-off between classification efficiency and

effectiveness [47]. For ODEs, each attribute is allowed to depend on at most one other attribute in addition to the

class label.

SuperParent-One-Dependence Estimators (SPODEs) are a special type of ODEs which require all attributes

to depend on the same attribute, i.e., the superparent [49], as shown in Figure 1(c). Indeed, SPODEs offer a

good combination of training efficiency, classification efficiency, and accuracy [40, 22, 48, 49]. A SPODE with

superparent Aq will estimate the probability of each class label ck given an instance xt as follows (where xt,q

denotes the value of attribute Aq in instance xt):

c(xt) = arg max
ck∈Y

P
(
ck, xt

)
= arg max

ck∈Y

P
(
ck, xt,q

)
P
(
xt |ck, xt,q

)
= arg max

ck∈Y

P
(
ck, xt,q

)∏n

j=1
P
(
xt, j|ck, xt,q

) (3)

2.3. Averaged One-Dependence Estimators

The first approach to use SPODEs for learning is Averaged One-Dependence Estimators (AODE) [40], which

uses an average ensemble of all SPODEs. In [40], this simple selection criterion has shown good performance in

prediction accuracy and runtime efficiency, compared to TAN [15], as

c(xt) = arg max
ck∈Y

(∑
1≤q≤n

P
(
ck, xt,q

)∏n

j=1
P
(
xt, j|ck, xt,q

))
(4)

On the other hand, there are also some subsequent SPODE ensemble strategies, such as MAPLMG [8] scheme

(maximum a posteriori linear mixture of generative distributions) and BMA (Bayesian model averaging) [19].

Moreover, Yang et al. [47] proposed a forward sequential addition strategy to iteratively add the SPODEs based

on the hill-climbing search method.

2.4. Attribute Weighted SPODE

In AODE, each single SPODE is treated equally, which essentially means that attributes are treated equally.

In real-world applications, attributes play different roles in classification. A natural way to extend AODE is to

assign different weight values to attributes, which is the design of the WSPODE [22]:

c(xt) = arg max
ck∈Y

(n∑
q=1

wqP
(
ck, xt,q

) n∏
j=1

P
(
xt, j|ck, xt,q

))
(5)

where wq is the weight of the SPODE for attribute Aq.

5

By proposing to use immune principle to search optimal weight values for attribute weighted SPODE, our

method is related to attribute weighting in machine learning and immune evolutionary computation.

3. Related Work

3.1. Attribute Weighted Methods

In real-world applications, attributes often play different roles. Assigning different weight values to attributes

is potentially helpful in improving the classification performance. In this subsection, we review existing work

on attribute weighting by separating them into two main categories: methods considering each single attribute’s

correlation to the class, and methods considering multiple attributes’ joint correlations to the class.

3.1.1. Single Attribute Correlation Weighting

Mutual Information (MI) provides a quantitative measure to evaluate the mutual dependence of two vari-

ables. A high MI value indicates a large reduction of uncertainty of one random variable, after observing another

random variable, and therefore suggests a strong correlations between two random variables. A zero MI value

between two random variables means the variables are independent. Mutual information has a long history of

being used for measuring correlations between attributes and the class variable in classification. For instance,

Jiang & Zhang [24] applied this method to improve the accuracy for AODE.

Gain Ratio (GR) is used to solve the drawback by dividing each attribute’s IG (Information Gain) score

by the information encoded in each attribute itself. It has been commonly used to evaluate the correlation of

attributes to the class for decision tree learning. A notable drawback of IG is that the resulting score is biased to

attributes with a large number of distinct values, and common solutions are to divide IG scores by the entropy of

each attribute, resulting in Information Gain Ratio measure. In [52], Zhang & Sheng proposed to assign a higher

weigh value to attributes with a larger gain ratio value in weighted naive Bayes (WNB).

3.1.2. Multiple Attribute Correlation Weighting

Correlation-based Feature Selection (CFS) for attribute weighing uses a correlation-based heuristic evalu-

ation function as an attribute quality measure to calculate the weight value of each attribute. It uses a best-first

search to traverse the feature space. CFS starts with an empty set and generates all possible single feature ex-

pansions. The subset with the highest evaluation is selected and expanded in the same manner by adding new

features. If expanding a subset results in no improvement, the search drops back to the next best unexpanded

subset and continues from there. The best subset found is returned after the search terminates. The core of CFS

is the heuristic process that evaluates the worth or “merit” of a feature subset. Hall [16] employed this method to

evaluate the importance of attributes according to the heuristic “merit” value.

Relief-F is a feature selection method based on attribute estimation [34]. Relief-F assigns a grade of relevance

to each feature by examining the change of the feature values with respect to instances within the same class (i.e.,

the nearest hit) and instances between classes (i.e., the nearest miss). If a feature’s values remain relatively stable

6

for instances within the same class, the feature will receive a higher weight value. Wu et.al. [44] applied Relief-F

attribute weighted approach to calculate the attribute for WNB.

Attribute Correlation-based Weighting explicitly considers the correlation of each attribute to all other

attributes to calculate the attribute’s weight value [16]. A large weight value will be assigned to the attributes

with strong dependencies on other attributes. In order to estimate each attribute’s dependence, an unpruned

decision tree is constructed from the training instances with a minimum depth, which indicates the depth for

testing the tree. The weight assigned to each attribute is inversely proportional to the minimum depth at which

they were first tested in an unpruned decision tree. Attributes that do not appear in the tree receive a zero weight

value. In [43], this type of approach has been proposed as a state-of-art weighting to enhance the performance of

AODE.

Maximum a Posteriori Linear Mixture of Discriminative Distributions (MAPLMD) is proposed to im-

prove the performance of the Bayesian Model Averaging (BMA) [19, 12, 30], a well used coherent framework

for the purpose of integrating learning models to solve the uncertainty problem when using a single model. BMA

has been successfully applied to weighted SPODEs in [8]. However, it has been proved that BMA cannot provide

a better approximation than AODE to their probability distributions most of the times [48, 49]. In order to carry

out the exact BMA prediction, a straightforward solution is to use MarKov Chain Monte Carlo (MCMC) for the

approximation. However, such designs are subject to expensive computational costs. Accordingly, MAPLMD

first constructs a linear mixture of discriminative distribution model, and then determines the weight by using

Expectation-Maximization (EM) method for Maximum A Posteriori (MAP) estimation.

Maximum a Posteriori Linear Mixture of Generative Distributions (MAPLMG) finds the best weight

for an ensemble of generative distribution model by maximizing the supervised posterior probability. The max-

imization problem in a linear mixture of generative distribution model is a constrained nonlinear optimization

issue, which can be solved by adopting the augmented (or penalized) lagrangian approach [1]. By adjusting

the penalization provided by not fulfilling the constraints, the constrained nonlinear optimization issue can be

transformed into a sequence of unconstrained optimization problems (i.e., means of a sequence of unconstrained

maximizations) [8], each of which is solvable by the well known Newton-like procedure, Broyden-Fletcher-

Goldfarb-Shanno (BFGS) [29].

3.2. Immune Principle

The immune principle in Artificial Immune Systems (AIS) consists of three major components, including

representation, recognition, and clone selection, as shown in Figure 2. The representation, known as shape-

shape problem, focuses on the modeling of antibodies and antigens. When the immune system is attacked by

antigen (i.e. foreign substances), antibodies try to neutralize the infection by binding to the antigen through a

recognition process. Binding strength, also regarded as affinity, is used as a threshold for the immune system

to respond to the antigen. The clone selection is corresponding to an affinity maturation process, which means

that immune individuals with low affinity will gradually increase during clone and mutation process. Meanwhile,

7

Selection

AntigenB-cell

Differentiation

M

M

Proliferation/
Clone

Maturation
M
e
m
o
ry
 c
e
lls

P
la
s
m
a
 c
e
lls

Figure 2: A concept view of immune principle: A B-cell contains the antibody (the middle rings on the left) that allows it to recognize the
antigen (triangle), which denotes pathogenic materials invading to the system. The binding between B-cell and antigen can be evaluated by
using certain affinity (i.e., degree of binding). In a learning system, this resembles to the assessment of how good a solution (i.e., antibody)
recognize/resolve the training data (i.e., antigen). After recognition, the system will respond and result in proliferation, differentiation and
maturation process of the B-cell as secondary antibodies. The secondary antibodies with high affinity becomes a memory cell, and others
become plasma cells. The memory cells are retrained in the system to allow faster response to the same (or similar) attacks in the future (if
the body is re-infected by the same pathogenic materials).

some immune individuals will polarize into memory individuals, which will be propagated to the future iterations.

Similar to the AIS, evolutionary algorithms (EAs) [31], such as Genetic Algorithms (GA) [36], Evolution

Strategies (ES) [3] and Differential evolution (DE) [38] are all designed based on biological evolution to control

and optimize artificial systems. An immune system has a mechanism of memorizing past events to continually

improve the learning for any new encounters. Moreover, AIS is highly distributed, highly adaptive, and self-

organising. In addition, AIS is also a general framework for distributed systems, which can be easily applied

to many domains. Because of its self-organizing nature, AIS typically requires very few learning parameters.

Evolutionary computation and AIS share striking similarities in many key concepts, such as populations and

proliferation of individuals mostly fit to the environment. Some previous works have pointed out the similari-

ties and the differences between immune principle in AIS and other heuristics [55, 32, 7]. From the intuition

perspective, EAs are inspired by natural evolution, whereas AIS is inspired by the natural immune system, with

the clonal principle as a basic and important mechanism. The mutation in evolution is random, whereas the

hypermutation process of clonal selection in AIS is controlled and directly proportional to the receptors affinity

with the triggering antigen. In [7], the authors suggested that works on EAs can be leveraged by AIS, which

indicates that research on selection operations (e.g., tournament, roulette, wheel, etc.) may be exploited. AIS

can reach a diverse set of local optima solutions, while the EAs tend to bias the whole population of individuals

toward the best candidate solution. Essentially, their encoding schemes and evaluation functions are similar, but

their evolutionary search processes differ from many key aspects, such as inspiration, vocabulary, and sequence

of steps. In summary, evolutionary algorithms utilize a vocabulary borrowed from natural genetics and are in-

spired in the Darwinian evolution, by the contrast, AIS algorithms adopt the shape-space formalism, along with

8

immunological terminology to describe antibody and antigen interactions and cellular evolution [6].

Immune mechanism has been used in many applications [50, 28, 42, 56, 35, 33], including pattern recognition,

clustering, and optimization, etc. Furthermore, the immune theory has been successfully employed to calculate

weight for weighted NB [44] and self-adaptive probability estimation for Bayesian learning [45]. In this paper,

we propose an immune strategy based adaptive weighting method to improve weighted SPODEs. It is worth

noting that some works exist to improve AIS to solve domain specific problems, such as an improved artificial

immune system for seeking the Pareto front of land-use allocation problem in large areas [21]. However, in this

paper the improved AIS for weighted SPODEs is not included, mainly because that we aim at proposing a general

self-adaptive weighting framework for weighted SPODEs which can be also generalized to other improved AIS

algorithms.

4. SODE: Self-adaptive SPODE

4.1. Problem Definition

In this paper, we aim to search optimal attribute weight values for each SPODE, so all SPODEs can be

combined to form an accurate classifier. Notice that although many approaches exist to determine attribute

weight values for classification, our problem differs from them by using a combined objective function which

unifies the search of the optimal weight values and the SPODE learning into a single learning process. Assume

that each SPODE has an optimal wq value, and n SPODEs are combined to form a combined classifiers, there are

n weight values wq values needed to be found during the classification process. Therefore, the weighted SPODE

classification can be translated to an optimization problem as follows.

w∗ = arg max
wq∈w

f (xt,w) s.t. 0 ≤ wq ≤ 1 (6)

where w = {w1, · · · ,wq, · · · ,wn} denotes the attribute weight vector for all SPODEs. f (xt,w) is calculated by

Eq. (5).

4.2. Weight Optimization for SODE

By proposing to use the immune theory in artificial immune systems to search optimal weight values for

weighted SPODE classification, our method is related to attribute weighting in machine learning and immune

evolutionary computation. In our solution, antigens in SODE are simulated as samples or training data which

are presented to the system during the training and the testing process. The antibody as candidate, presented

by attribute weight vector w which has good affinity, will experience a form of clonal expansion after being

presented with input data sets (analogous to antigens). When antibodies are cloned they will undergo a mutation

process, in which specific mutation function will be designed. The evolving optimization process of the immune

system will help discover optimal w vector with the best classification accuracy. Before introducing algorithm

details, we briefly define following key notations, which will help understand the learning of the weight values

9

Table 1: Symbol Mapping between Immune System and SODE.

Immune system SODE

Antibody Attribute weight vector w.

Antigens A set of samples provided for learningDa,
(80% of training setD in our experiments).

Shape-space Possible values of the data vectors.

Affinity The accuracy of the classifier built fromDa by using the weight vector w,
and validated onDb (20% of training setD in our experiments).

Clonal Expansion Reproduction of weight vectors w that are well matched with antigens.

Affinity Maturation Specific mutation of w vector, including the removal of lowest
stimulated weight vectors.

Immune Memory Memory set of mutated weight vectors.

using immune principle. In Table 1, we summarize the mapping of the symbols between immune system and

SODE.

• Antibodies: W represents the set of antibodies, W = {w1, · · · ,wL}, where L represents the size of anti-

bodies. wi = {wi,1, · · ·wi, j, · · ·wi,n} represents a single antibody (i.e., attribute weight vector). So wi, j will

represent the jth value of the ith antibody wi.

• Antigens: Da represents the set of antigens, Da = {xa
1, · · · , x

a
Na
}, where Na represents the size of antigens.

xa
i represents a single antigen. In SODE, Antigens resemble to the samples which are provided to help

build the leaning models. So xa
i denotes an instance in the data setDa.

• Affinity: A measure of fitness/closeness between antibodies and antigens. In the current implementation,

this value is calculated as accuracy on given data setDb = {xb
1, · · · , x

b
Nb
} with Nb instances.

• Memory Cell: wc represents the memory cell for the antibody which has the best affinity (i.e., best accuracy

onDb).

• Clone rate: An integer value used to determine the number of mutated clones for a given antibody (i.e.,

attribute weight vector).

• Mutation rate: A parameter between 0 and 1 that indicates the probability that an antibody is mutated. For

a given antibody, 1 minus its affinity will be considered as the resulting mutation rate. So, the antibody

with high affinity will receive low mutation probability.

The overall framework of the proposed SODE includes the following two major steps: (1) Using immune

strategy to determine the optimal weight values for each single SPODE classifier (i.e., weight optimization as

shown in Figure 3); and (2) Classifying each test instance using SODE with the optimal weight. The detailed

process is described as follows:

Initialization For individuals inW = {w1, · · · ,wL} with its population size L, we ensure that every individual

wi = {wi,1, · · ·wi, j, · · ·wi,n} in antibody population is generated through a random mechanism, by setting wi, j of wi

10

Figure 3: A conceptual view of self-adaptive weighting strategy for SODE: An initial population contains many antibodies (i.e., weight
vectors w) that allow themselves to recognize antigens (i.e., Da) with certain affinity (i.e., accuracy on Db via the classier build on Da with
weight vectors w; Da ∪ Db = D (training set)). After recognition, the system will respond and select the weight vector wt

c with the best
affinity (a), and then clone it (b) to replace the weight vectors with low affinity (c). After that, mutation strategy is adopted to maintain the
diversity of the weight vectors (d). The mutation population will further replace the old population (e) to reselect the best weight vector as
the memory antibody (a). Through the evolutionary process, the search will aim to find global optimal weigh vector w∗ (f) to build weighted
SPODE classifier-SODE.

a uniformly distributed random number within range [0, 1]. In order to evaluate the fitness of a model, we use a

set of training instancesD as antigensDa, and the remaining instances inD are used asDb to assess the wc (i.e.,

memory antibody). In our experiments, we setDa as 80% of training data setD, soDb is 20% of the training set

D. L is set to 50, which is the same used in [44].

Weight Evaluation

• Calculation of affinity function: The affinity of the ith individual of the tth generation wt
i is the classifi-

cation accuracy that is obtained by SODE trained fromDa with wt
i to carry out the probability estimation.

Calculation of affinity function can be described as

f [wt
i] =

1
Nb

∑Nb

i=1
δ[c(xb

i), yb
i] (7)

where, c(xb
i) is the classification result of the ith instance inDb with Nb instances, using the SODE trained

onDa with individual wt
i. yb

i is the true class value of xb
i . δ[c(xb

i), yb
i] = 1 if c(xb

i) = yb
i and zero otherwise.

• Antibody Clone: The individual wt
c with the best affinity will be selected as the memory antibody to be

further cloned. To ensure the population size of every generation is fixed, wt
c will be cloned under the clone

factor c to replace the individuals inW with low affinity under the same rate c.

• Antibody Mutation: Applying mutation to the individuals in the tth generationWt, to ensure the diversity

of the antibodies. It means that we obtain the generation composed with the new variation individuals from

the parent generation. For any individual wt
i from the tth generation, the new variation individual vt+1

i can

11

be generated as follows:

vt+1
i = wt

i + F ∗ N(0, 1) ∗ (wt
c − wt

i) (8)

Among them, N(0,1) is a normally distributed random variable within the range [0,1]. F = 1 − f [wt
i], as

the variation factor during the process of evolution, can be adaptively obtained according to the different

clones [44]. f [wt
i] denotes the affinity of the ith individual of the tth generation. In this case, the antibody

with high affinity will have a low probability being mutated. As a result, it will accelerate the affinity

maturation.

• Antibody Crossover: After obtaining mutation antibodies, the crossover operation will be used between

the individual wt
i and its corresponding variation individual vt+1

i to generate crossover individuals ct+1
i . By

doing so, some new individuals with high affinity may be generated to approach to the optimal solution.

The antibody crossover can be formulated as:

ct+1
i, j =

 vt+1
i, j , rand(j) ≤ F or j = randn(i)

wt
i, j, rand(j) > F and j , randn(i)

(9)

where rand(j) ∈ [0, 1] is a uniformly distributed random number, with j denoting the index of the indi-

vidual. The parameter F, which is the same used in Eq. (8), is used to determine which dimension of

the individual wt
i will be replaced by the variation individual vt+1

i . In this case, the individual with high

affinity will receive a small crossover probability to maintain its good performance. In addition, randn(i) is

denoted as a random integer between [1, n] to ensure that at least one dimension variable of the individual

wt
i is contributed by the variation vector vt+1

i . Otherwise, individual wt
i and the crossover individual ct+1

i

vt+1
i,1

wt
i,n

vt+1
i,2 vt+1

i,3 vt+1
i,n�1 vt+1

i,n

ct+1
i,1 ct+1

i,2 ct+1
i,3 ct+1

i,n�1 ct+1
i,n

wt
i,n�1wt

i,3wt
i,1 wt

i,2

wt
i

vt+1
i

ct+1
i

Figure 4: An example of the crossover procedure used in SODE. For a n-dimensional vector (i.e., attribute weight individual) wt
i in the ith

generation, its crossover vector ct+1
i is obtained by reorganizing some values using the variation individual vt+1

i under the cross mechanism
in Eq. (9).

12

Algorithm 1 SODE (Self-Adaptive SPODEs)
Input:

Clone Factor c, Threshold T , Training SetD;
Maximum Iterations MaxGen,Antibody PopulationW;

Output:
The target class label c(xt) of test instance xt;

1: W,Da,Db ← InitializeW,Da, andDb via Initialization
2: while t ≤ MaxGen and f [wt+1

c] − f [wt
c] ≥ T do

3: f [wt
i]← ApplyDa andDb to antibody wt

i, and calculate the affinity of wt
i.

4: wt
c ← Apply the sequence of each f [wt

i] and find the wt
c with the best affinity.

5: (Wr)t ← Select antibody set with the lowest affinity with clone factor c.
6: (Wc)t ← Clone wt

c with clone factor c and obtain clone antibody set.
7: Wt ← [Wt − (Wr)t] ∪ (Wc)t;
8: for all each wt

i inWt do
9: vt+1

i ← Apply wt
c to wt

i and obtain the mutation individual by using Eq. (8).
10: ct+1

i ← Apply vt
c to wt

i and obtain the crossover individual by using Eq. (9).
11: wt+1

i ← Apply ct+1
i to wt

i and obtain the new individual in the t + 1th generation.
12: end for
13: end while
14: w∗ ← wc; // Global optimal weight
15: c(xt)← Apply w∗ to instance xt to predict its class label.

will be the same, which brings no help to the evolution process. The process of the crossover operation for

an n-dimensional variable is described in Figure 4.

Update of Weight In order to determine whether the crossover individual ct+1
i can replace the target individual

vector wt
i to be the new individual wt+1

i in the t + 1th generation, a greedy search strategy is employed. If the

affinity of ct+1
i is better than that of the target individual wt

i, it will be chosen as the offspring. The system chooses

the individual wt+1
c with the best affinity performance in the t + 1th generation as the new memory antibody.

Classification An unabridged evolutionary process for the population includes Evaluation and Update, which

continuously repeats until (1) the algorithm surpasses the pre-set maximum number MaxGen; or (2) the result

gap obtained from two consecutive iterations is less than the threshold (i.e., T). The resulting SPODEs classier

with optimal weight vector w∗ will further used to predict the test sample xt. The detailed SODE is summarized

in Algorithm 1.

5. Experiments

5.1. Experimental Setting

We implement the proposed method using WEKA [41] data mining tool. Because SPODE based classifiers

are designed for categorical attributes, in our experiments, we first replace all missing attribute values using

unsupervised attribute filter ReplaceMissingValues in WEKA. Then, we apply unsupervised filter Discretize

in WEKA to discretize numeric attributes into nominal attributes. Similar data preprocessing approaches can

also be found in the previous works [44, 45]. In our experiments, the algorithm performances are evaluated

13

in terms of classification accuracy, standard deviation, time complexity, and CPU runtime. Besides, the three

parameters maximum iteration MaxGen, threshold T , and the clone factor c in Algorithm 1 are set to 50, 0.001

and 0.1 respectively. All reported results are based on 10 runs of 10-fold cross validation, and all experiments are

conducted on a Linux cluster node with an Interl(R) Xeon(R) @3.33GHZ CPU and 3GB fixed memory size.

5.2. Baseline Methods

We continue by introducing baselines and their abbreviations. Because the proposed SODE is a weighted

SPODE approach, so we use the existing weighted SPODEs as baselines. For other semi-naive Bayesian clas-

sifiers (e.g., NB, ODE, et. al.), existing research [40] has systematically validated and demonstrated that they

are inferior to AODE. Therefore, we only compare the proposed algorithm with AODE, but not include the

comparisons with NB or semi-naive NB, such as ODE et. al.

1. AODE : The AODE classifier by using average of multiple SPODEs [40].

2. CODE : Weighted SPODE based on correlation-based feature selection [17].

3. GODE : Weighted SPODE based on gain ratio [52] for feature weighting.

4. MODE : Weighted SPODE using mutual information based feature weighing method [22].

5. RODE : Weighted SPODE using a Relief-F attribute ranking based feature estimation [34].

6. TODE : Weighted SPODE with the weighting method according to the degree to which they depend on

the values of other attributes [43].

7. DODE : Weighted SPODE with the weighting method based on maximizing a posteriori linear mixture of

discriminative distributions (MAPLMD) [49].

8. PODE : Weighted SPODE with the weighting method based on maximizing a posteriori linear mixture of

generative distributions (MAPLMG) [48].

9. SODE : The proposed self-adaptive weighting SPODE to dynamically calculate the weight value.

For all the above methods, the probability values P(ck, xt,q) and P(xt, j|ck, xt,q) for SPODE in Eq. (3) are

estimated by using the Laplace estimate as

p(ck, xt,q) =
F(ck, xt,q) + 1.0

N + L
(10)

P(xt, j|ck, xt,q) =
F(ck, xt,q, xt, j) + 1.0

F(ck, xt,q) + |A j|
(11)

where, |A j| is the number of distinct values (e.g., xt, j) of attribute A j and L is the number of classes in the training

data. F(·) is the frequency with which a combination of terms with N denoting the number of training samples.

14

Table 2: Data characteristics of the benchmark data

Data Set Instances Attributes Classes Missing Numeric

anneal 898 39 6 Y Y
anneal.ORIG 898 39 6 Y Y
artificial-characters 10218 8 10 N Y
audiology 226 70 24 Y N
autos 205 26 7 Y Y
balance-scale 625 5 3 N Y
breast-cancer 286 10 2 Y N
breast-w 699 10 2 Y N
car 1728 7 4 N N
climate 540 21 2 N Y
colic 368 23 2 Y Y
colic.ORIG 368 28 2 Y Y
credit-a 690 16 2 Y Y
credit-g 1000 21 2 N Y
cylinder-bands 540 41 2 Y Y
diabetes 768 9 2 N Y
ecoli 336 8 8 N Y
energy-y1 768 9 37 N Y
energy-y2 768 9 38 N Y
Glass 214 10 7 N Y
hayes-roth 160 5 3 N Y
heart-c 303 14 5 Y Y
heart-h 294 14 5 Y Y
heart-statlog 270 14 2 N Y
hepatitis 155 20 2 Y Y
hypothyroid 3772 30 4 Y Y
ionosphere 351 35 2 N Y
iris 150 5 3 N Y
kr-vs-kp 3196 37 2 N N
labor 57 17 2 Y Y
letter 20000 17 26 N Y
lymph 148 19 4 N Y
mfeat-f 2000 77 10 N Y
monks 556 7 2 N Y
movement-libras 360 91 15 N Y
mushroom 8124 23 2 Y N
newthyroid 215 6 3 N Y
optdigits 5620 63 10 N Y
page-blocks 5473 11 5 N Y
pendigits 10992 17 10 N Y
primary-tumor 339 18 21 Y N
qar-biodegradation 1055 42 2 N Y
robot-24 5456 25 4 N Y
segment 2310 20 7 N Y
sick 3772 30 2 Y Y
sonar 208 61 2 N Y
soybean 683 36 19 Y N
spectrometer 531 102 48 N Y
splice 3190 62 3 N N
steel-plates-faults 1941 34 2 N Y
texture 5500 41 11 N Y
vehicle 846 19 4 N Y
vote 435 17 2 Y N
vowel 990 14 11 N Y
waveform 1000 41 3 N Y
zoo 101 18 7 N Y

15

Table 3: Classification accuracy comparisons on UCI data sets (%).

Data Set SODE AODE [40] PODE [48] DODE [49] CODE [17] GODE [52] MODE [24] RODE [34] TODE [43]

anneal 98.41 97.15 • 97.05 • 96.97 • 96.92 • 96.90 • 97.38 • 97.54 96.83 •
anneal.ORIG 90.02 89.01 • 89.52 89.37 • 89.40 89.59 89.70 89.86 89.59
artificial-characters 58.78 56.62 • 57.87 • 58.09 56.31 • 56.79 • 56.83 • 57.55 • 56.86 •
audiology 75.96 75.96 71.66 • 71.61 • 71.70 • 71.66 • 71.61 • 71.57 • 71.66 •
autos 79.81 74.60 • 75.08 • 76.86 • 75.18 • 75.08 • 75.43 • 75.32 • 74.60 •
balance-scale 89.45 89.78 89.25 89.49 88.32 89.65 89.65 89.15 89.71
breast-cancer 72.18 72.73 72.18 72.56 72.77 71.80 72.25 72.53 72.67
breast-w 96.71 96.85 96.95 96.88 96.68 96.82 96.82 96.81 96.67
car 94.11 91.41 • 92.29 • 92.30 • 91.30 • 90.39 • 90.75 • 91.04 • 91.19 •
climate 90.93 88.43 • 88.94 • 88.93 • 87.96 • 87.48 • 87.46 • 87.54 • 88.28 •
colic 81.26 80.93 81.01 81.45 81.01 81.36 81.50 81.72 81.23
colic.ORIG 77.71 75.38 75.87 75.06 75.60 75.71 76.26 75.82 75.85
credit-a 84.93 85.86 86.12 85.93 85.96 85.97 85.90 85.90 85.90
credit-g 75.95 76.45 76.46 76.41 76.33 76.52 76.30 76.20 76.45
cylinder-bands 84.43 77.52 • 78.28 • 78.37 • 77.67 • 77.46 • 76.94 • 77.44 • 76.83 •
diabetes 76.96 76.57 76.47 76.42 76.42 76.33 76.20 76.05 76.54
ecoli 85.43 81.67 • 82.59 • 82.50 • 81.52 • 82.71 80.17 • 79.97 • 80.56 •
energy-y1 66.03 58.58 • 62.93 62.28 • 58.18 • 57.69 • 57.56 • 57.93 • 59.32 •
energy–y2 54.56 50.05 • 52.00 • 51.92 • 50.29 50.05 • 49.74 • 49.80 • 50.10 •
glass 62.19 61.73 62.06 61.54 61.87 62.06 61.40 61.26 61.78
hayes-roth 81.00 71.00 • 71.44 • 71.38 • 69.94 • 71.13 • 71.06 • 71.19 • 70.75 •
heart-c 83.80 82.84 82.54 82.77 82.97 83.04 83.04 83.10 83.00
heart-h 83.85 84.09 83.85 83.86 84.32 84.29 84.50 84.30 84.36
heart-statlog 83.59 83.63 83.59 83.44 83.63 83.52 83.93 83.48 83.59
hepatitis 84.92 85.21 84.89 84.11 84.76 85.09 84.06 85.15 85.02
hypothyroid 94.36 93.56 • 93.65 • 93.65 • 93.61 • 93.58 • 93.52 • 93.58 • 93.62 •
ionosphere 93.44 91.85 • 92.02 • 92.00 • 91.99 • 91.88 • 91.85 • 91.74 • 91.74 •
iris 96.00 94.00 94.60 94.07 94.40 95.07 95.00 95.40 94.67
kr-vs-kp 94.62 91.64 • 94.75 94.14 92.30 • 93.26 • 94.14 93.51 • 91.03 •
labor 93.90 94.57 94.90 94.40 94.93 94.93 94.03 94.17 94.17
letter 83.28 77.80 • 78.94 • 78.79 • 78.06 • 78.65 • 78.70 • 78.87 • 77.64 •
lymph 85.67 85.46 85.52 85.46 85.39 85.59 85.46 85.91 85.92
mfeat-f 81.40 79.21 • 79.47 • 78.22 • 79.64 • 79.69 • 79.68 • 79.72 • 79.51 •
monks 99.45 82.23 • 99.87 99.85 80.16 • 74.64 • 74.64 • 99.75 81.89 •
movement-libras 81.22 76.08 • 76.11 • 72.81 • 76.11 • 76.06 • 75.97 • 76.06 • 76.03 •
mushroom 99.94 99.94 99.94 99.90 99.92 99.88 99.87 99.90 99.68
newthyroid 96.71 91.58 • 91.68 • 91.67 • 91.58 • 91.58 • 91.54 • 91.54 • 91.54 •
optdigits 96.49 95.67 • 95.80 • 95.69 • 95.72 • 95.65 • 95.82 • 95.85 • 95.77 •
page-blocks 93.57 93.22 • 93.36 93.35 93.32 93.23 • 93.28 92.87 • 93.28
pendigits 98.03 97.58 • 97.72 • 97.68 • 97.59 • 97.62 • 97.64 • 97.65 • 97.57 •
primary-tumor 48.38 47.87 48.05 47.84 47.87 47.96 47.70 47.61 47.72
qar-biodegradation 84.00 81.88 • 82.13 • 82.47 • 81.96 • 81.88 • 82.00 • 81.89 • 82.02 •
robot-24 91.40 89.66 • 89.89 • 88.47 • 89.70 • 89.71 • 89.64 • 89.68 • 89.66 •
segment 95.46 92.83 • 92.89 • 92.84 • 92.89 • 92.98 • 93.13 • 93.22 • 92.83 •
sick 98.14 97.74 • 97.97 • 97.95 • 97.59 • 97.63 • 98.01 97.84 • 97.52 •
sonar 78.38 79.91 80.25 78.38 80.20 80.20 80.30 80.91 79.92
soybean 94.45 93.32 • 93.35 • 93.44 • 93.38 • 93.28 • 93.26 • 93.32 • 93.31 •
spectrometer 54.20 48.12 • 48.31 • 45.73 • 48.18 • 48.10 • 48.21 • 48.16 • 47.97 •
splice 96.34 96.12 96.11 96.09 96.18 96.13 96.11 96.20 96.11
steel-plates-faults 92.32 90.07 • 91.92 • 95.77 ◦ 90.62 • 91.10 • 89.49 • 89.69 • 93.92 ◦
texture 95.71 94.38 • 94.53 • 94.40 • 94.45 • 94.47 • 94.50 • 94.48 • 94.49 •
vehicle 73.88 71.65 71.93 70.39 • 71.58 71.85 71.83 71.70 71.64
vote 94.53 94.52 94.78 94.59 94.52 94.46 94.46 94.11 94.25
vowel 93.33 89.56 • 91.66 • 91.22 • 89.56 • 89.04 • 89.09 • 89.73 • 89.64 •
waveform 84.60 84.84 84.44 84.42 84.78 85.19 85.18 85.04 85.00
zoo 98.11 94.66 94.66 94.47 93.76 94.66 93.76 93.96 94.57

w/t/l - 0/25/31 0/29/27 1/27/28 0/27/29 0/26/30 0/28/28 0/27/29 1/26/29

•, ◦ :Statistically significant degradation/upgradation via a two-tailed t-test with 95% confidence level.

16

Table 4: Classification accuracy standard deviation comparisons on UCI data sets (%.)

Data Set SODE AODE [40] PODE [48] DODE [49] CODE [17] GODE [52] MODE [24] RODE [34] TODE [43]

anneal 1.05 1.66 1.61 1.61 1.59 1.56 1.58 1.51 1.59
anneal.ORIG 2.72 3.10 3.01 3.06 3.09 3.07 2.78 2.86 2.95
artificial-characters 0.97 1.52 1.46 1.47 1.42 1.48 1.44 1.47 1.47
audiology 6.37 6.42 6.42 6.46 6.48 6.42 6.67 6.59 6.54
autos 6.07 10.10 10.07 10.40 10.26 10.03 9.96 10.00 10.22
balance-scale 1.83 1.88 1.95 1.85 2.34 2.00 2.00 2.21 1.97
breast-cancer 6.45 7.01 7.08 7.05 6.88 7.33 7.11 7.13 7.11
breast-w 2.21 1.90 1.90 1.99 1.94 1.91 1.91 1.91 2.05
car 1.39 2.06 1.94 1.90 2.12 2.13 2.22 2.26 2.16
climate 1.70 2.45 2.73 2.47 2.49 2.92 2.92 2.80 2.46
colic 4.32 6.16 6.09 6.03 6.23 6.03 6.09 5.90 6.33
colic.ORIG 4.65 6.41 6.86 6.57 6.51 6.21 6.35 6.46 6.21
credit-a 3.55 3.72 3.61 3.60 3.73 3.58 3.57 3.57 3.76
credit-g 3.65 3.88 3.87 3.82 3.80 3.62 3.63 3.75 3.77
cylinder-bands 3.88 5.58 5.49 5.57 5.51 5.64 5.49 5.33 5.25
diabetes 4.27 4.53 4.35 4.78 4.58 4.64 4.64 4.70 4.52
ecoli 4.47 5.06 5.50 5.39 4.81 5.43 5.33 5.34 5.18
energy-y1 4.57 4.79 4.54 4.28 4.94 4.99 4.96 4.99 4.83
energy-y2 3.37 4.61 4.94 4.83 4.69 4.63 4.68 4.70 4.56
glass 9.45 9.69 9.20 9.25 9.43 9.46 9.38 9.24 9.68
hayes-roth 8.04 8.91 8.76 8.34 9.09 9.52 9.43 9.05 8.88
heart-c 6.04 7.03 6.90 7.01 6.91 6.93 6.83 6.91 7.00
heart-h 5.96 6.00 5.83 6.14 5.77 5.52 5.77 5.92 6.07
heart-statlog 5.37 5.32 5.60 5.73 5.67 5.80 5.84 5.90 5.89
hepatitis 6.25 9.36 9.57 9.97 9.65 9.63 10.05 9.49 9.51
hypothyroid 0.64 0.61 0.55 0.54 0.56 0.55 0.56 0.54 0.57
ionosphere 2.74 4.28 4.25 4.30 4.17 4.13 4.12 4.23 4.01
iris 4.76 5.88 5.82 5.91 5.50 5.16 5.14 4.80 5.53
kr-vs-kp 0.94 1.66 1.25 1.28 1.46 1.39 1.28 1.45 1.71
labor 9.26 9.72 9.61 9.34 9.13 9.13 10.18 9.90 9.48
letter 1.71 2.02 1.96 2.08 2.07 1.93 1.94 1.95 2.08
lymph 8.16 9.32 9.26 9.37 9.24 9.20 9.23 9.45 9.21
mfeat-f 2.24 2.45 2.49 2.56 2.39 2.35 2.33 2.29 2.40
monks 4.48 4.33 1.56 1.78 4.69 4.26 4.26 0.93 4.78
movement-libras 5.04 5.99 6.10 6.25 5.96 6.06 6.04 6.04 6.12
mushroom 0.19 0.19 0.19 0.24 0.21 0.24 0.25 0.23 0.42
newthyroid 4.31 5.02 5.04 5.00 5.02 5.02 5.04 5.04 5.04
optdigits 0.71 0.85 0.84 0.89 0.86 0.87 0.84 0.84 0.86
page-blocks 0.81 0.76 0.76 0.77 0.78 0.83 0.74 0.81 0.77
pendigits 0.35 0.41 0.39 0.39 0.40 0.40 0.39 0.40 0.42
primary-tumor 3.80 6.37 6.32 6.43 6.46 6.47 6.42 6.55 6.44
qar-biodegradation 3.31 3.88 4.00 3.74 3.91 3.85 3.88 3.92 3.88
robot-24 1.19 1.33 1.35 1.44 1.33 1.36 1.33 1.35 1.33
segment 1.08 1.40 1.41 1.55 1.42 1.44 1.49 1.45 1.43
sick 0.44 0.72 0.71 0.70 0.71 0.75 0.72 0.69 0.66
sonar 7.80 9.60 9.27 8.72 9.38 9.52 9.44 9.16 9.38
soybean 1.87 2.85 2.70 2.67 2.78 2.87 2.82 2.74 2.80
spectrometer 5.75 5.81 5.85 5.72 5.88 5.70 5.75 5.79 5.79
splice 0.72 1.00 1.03 1.04 0.98 0.99 1.01 0.98 1.01
steel-plates-faults 1.41 2.17 1.89 1.66 2.03 1.82 2.07 2.08 1.60
texture 0.76 1.01 0.95 1.00 0.94 0.97 0.96 0.96 0.96
vehicle 3.54 3.59 3.69 3.40 3.58 3.61 3.64 3.62 3.67
vote 3.17 3.19 3.24 3.22 3.19 3.17 3.17 3.35 3.28
vowel 2.18 3.06 2.95 2.96 3.09 3.21 3.21 3.15 3.13
waveform 3.41 3.07 3.20 3.24 3.24 3.11 3.14 3.15 3.08
zoo 4.22 6.38 6.38 6.64 6.43 6.38 6.43 6.46 6.50

17

Table 5: Experimental results on UCI data sets: Training Time (Sec).

Data Set SODE AODE [40] PODE [48] DODE [49] CODE [17] GODE [52] MODE [24] RODE [34] TODE [43]

anneal 0.4517 0.0191 1.3995 1.3906 0.0488 0.0271 0.0155 0.1247 0.0649
anneal.ORIG 0.4411 0.0086 1.3709 1.3923 0.0264 0.0149 0.0145 0.1026 0.0407
artificial-characters 0.3969 0.0082 1.4227 1.0382 0.0178 0.0184 0.0082 0.2674 0.1673
audiology 1.2765 0.0104 4.3286 4.1895 0.0371 0.0168 0.0146 0.0649 0.0370
autos 0.0564 0.0026 0.1987 0.1680 0.0062 0.0038 0.0033 0.0185 0.0114
balance-scale 0.0029 0.0004 0.0323 0.0266 0.0006 0.0009 0.0003 0.0117 0.0062
breast-cancer 0.0034 0.0004 0.0312 0.0253 0.0010 0.0003 0.0005 0.0102 0.0051
breast-w 0.0086 0.0007 0.0620 0.0592 0.0021 0.0011 0.0008 0.0217 0.0058
car 0.0175 0.0008 0.1620 0.1465 0.0022 0.0017 0.0010 0.0457 0.0102
climate 0.0320 0.0023 0.1848 0.1084 0.0063 0.0039 0.0035 0.0324 0.0115
colic 0.0254 0.0015 0.1057 0.0866 0.0045 0.0025 0.0023 0.0287 0.0115
colic.ORIG 0.0352 0.0024 0.1532 0.1187 0.0068 0.0038 0.0035 0.0337 0.0144
credit-a 0.0226 0.0012 0.1111 0.0935 0.0036 0.0025 0.0018 0.0354 0.0145
credit-g 0.0596 0.0030 0.2921 0.2105 0.0088 0.0054 0.0046 0.0693 0.0334
cylinder-bands 0.1243 0.0168 0.5992 0.4144 0.0471 0.0286 0.0275 0.0881 0.0441
diabetes 0.0082 0.0005 0.0499 0.0469 0.0017 0.0012 0.0009 0.0224 0.0117
ecoli 0.0097 0.0006 0.0433 0.0422 0.0012 0.0007 0.0007 0.0110 0.0047
energy-y1 0.1230 0.0016 0.3593 0.3124 0.0035 0.0026 0.0021 0.0343 0.0243
energy-y2 0.1273 0.0017 0.3583 0.3201 0.0037 0.0028 0.0025 0.0368 0.0219
glass 0.0088 0.0003 0.0409 0.0350 0.0013 0.0010 0.0006 0.0080 0.0058
hayes-roth 0.0007 0.0001 0.0176 0.0134 0.0004 0.0003 0.0001 0.0023 0.0022
heart-c 0.0157 0.0004 0.0683 0.0609 0.0017 0.0011 0.0009 0.0148 0.0068
heart-h 0.0150 0.0004 0.0687 0.0591 0.0014 0.0010 0.0008 0.0135 0.0055
heart-statlog 0.0073 0.0005 0.0467 0.0357 0.0020 0.0011 0.0009 0.0133 0.0066
hepatitis 0.0071 0.0005 0.0428 0.0350 0.0019 0.0010 0.0007 0.0066 0.0041
hypothyroid 0.7534 0.0196 2.5204 2.7864 0.0576 0.0370 0.0334 0.3290 0.2331
ionosphere 0.0604 0.0044 0.2553 0.1868 0.0131 0.0074 0.0073 0.0406 0.0164
iris 0.0006 0.0002 0.0150 0.0133 0.0004 0.0004 0.0001 0.0021 0.0012
kr-vs-kp 0.4937 0.0239 2.8490 2.3393 0.0722 0.0439 0.0406 0.3749 0.1199
labor 0.0022 0.0003 0.0216 0.0175 0.0010 0.0005 0.0006 0.0014 0.0017
letter 1.9621 0.0146 4.7750 4.2716 0.0325 0.0228 0.0210 0.2412 0.1815
lymph 0.0109 0.0010 0.0499 0.0465 0.0017 0.0010 0.0010 0.0060 0.0043
mfeat-f 8.6214 0.2714 22.7282 20.6407 0.5124 0.4233 0.4076 0.7125 0.6794
monks 0.0036 0.0006 0.0412 0.0472 0.0007 0.0009 0.0008 0.0141 0.0051
movement-libras 2.9361 0.1259 8.3806 7.9377 0.1739 0.1713 0.1875 0.2980 0.2613
mushroom 0.1088 0.0052 0.3676 0.7140 0.0158 0.0099 0.0086 0.1351 0.0185
newthyroid 0.0014 0.0002 0.0191 0.0170 0.0006 0.0003 0.0002 0.0041 0.0015
optdigits 16.8904 0.3355 45.5101 42.6542 0.7521 0.4563 0.5530 1.9393 1.1122
page-blocks 0.2148 0.0045 0.7298 0.8794 0.0140 0.0092 0.0080 0.1657 0.0644
pendigits 2.0822 0.0288 5.5798 5.7605 0.0743 0.0534 0.0456 0.7943 0.2723
primary-tumor 0.1170 0.0010 0.3533 0.3477 0.0023 0.0018 0.0015 0.0296 0.0159
qar-biodegradation 0.2697 0.0166 1.1033 0.7953 0.0446 0.0291 0.0279 0.1582 0.0881
robot 0.9376 0.0291 3.1681 2.5756 0.0749 0.0527 0.0490 0.5288 0.1945
segment 0.4158 0.0086 1.0964 1.3094 0.0207 0.0141 0.0130 0.1387 0.0523
sick 0.3983 0.0195 1.8619 2.1304 0.0572 0.0349 0.0323 0.3222 0.0852
sonar 0.1101 0.0101 0.4463 0.3249 0.0341 0.0172 0.0206 0.0426 0.0336
soybean 0.9237 0.0066 2.5657 2.5088 0.0170 0.0112 0.0105 0.1041 0.0347
spectrometer 16.3370 0.2567 44.9328 45.2391 0.4701 0.4129 0.4001 0.6494 0.6812
splice 2.4584 0.0887 6.7361 6.8725 0.2148 0.1487 0.1439 0.8177 0.3503
steel-plates-faults 0.3269 0.0196 1.5014 1.6842 0.0448 0.0324 0.0306 0.2166 0.0671
texture 6.7507 0.1081 18.6764 17.3391 0.2136 0.1524 0.1568 0.9611 0.4256
vehicle 0.0834 0.0033 0.2842 0.2259 0.0071 0.0051 0.0046 0.0502 0.0301
vote 0.0134 0.0009 0.0774 0.0691 0.0021 0.0016 0.0013 0.0242 0.0058
vowel 0.1331 0.0024 0.4033 0.3212 0.0048 0.0038 0.0036 0.0487 0.0247
waveform 0.3623 0.0261 1.1789 0.9782 0.0415 0.0296 0.0276 0.1362 0.0841
zoo 0.0099 0.0002 0.0550 0.0419 0.0009 0.0007 0.0005 0.0038 0.0022

18

Table 6: Experimental Results on UCI data sets: Testing Time (Sec).

Data Set SODE AODE [40] PODE [48] DODE [49] CODE [17] GODE [52] MODE [24] RODE [34] TODE [43]

anneal 0.0068 0.0082 0.0074 0.0058 0.0052 0.0050 0.0060 0.0051 0.0054
anneal.ORIG 0.0039 0.0052 0.0050 0.0050 0.0050 0.0048 0.0049 0.0049 0.0047
artificial-characters 0.0045 0.0042 0.0042 0.0047 0.0050 0.0046 0.0042 0.0045 0.0043
audiology 0.0155 0.0166 0.0153 0.0157 0.0201 0.0158 0.0151 0.0174 0.0188
autos 0.0001 0.0009 0.0008 0.0007 0.0009 0.0005 0.0009 0.0007 0.0007
balance-scale 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0003
breast-cancer 0.0002 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001
breast-w 0.0005 0.0001 0.0003 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001
car 0.0003 0.0003 0.0003 0.0003 0.0003 0.0001 0.0002 0.0005 0.0004
climate 0.0009 0.0003 0.0005 0.0004 0.0006 0.0004 0.0005 0.0003 0.0004
colic 0.0005 0.0003 0.0005 0.0003 0.0001 0.0003 0.0003 0.0003 0.0002
colic.ORIG 0.0005 0.0002 0.0005 0.0005 0.0004 0.0004 0.0005 0.0004 0.0004
credit-a 0.0007 0.0004 0.0004 0.0003 0.0001 0.0001 0.0003 0.0005 0.0001
credit-g 0.0006 0.0008 0.0007 0.0007 0.0006 0.0009 0.0009 0.0004 0.0007
cylinder-bands 0.0012 0.0016 0.0012 0.0014 0.0017 0.0015 0.0020 0.0016 0.0016
diabetes 0.0004 0.0002 0.0001 0.0002 0.0002 0.0002 0.0001 0.0001 0.0004
ecoli 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0002
energy-y1 0.0016 0.0014 0.0018 0.0018 0.0015 0.0016 0.0016 0.0016 0.0014
energy-y2 0.0016 0.0018 0.0017 0.0018 0.0017 0.0016 0.0015 0.0027 0.0014
glass 0.0002 0.0003 0.0003 0.0001 0.0003 0.0001 0.0002 0.0003 0.0001
hayes-roth 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001
heart-c 0.0005 0.0001 0.0002 0.0007 0.0002 0.0003 0.0003 0.0003 0.0001
heart-h 0.0003 0.0005 0.0001 0.0003 0.0005 0.0002 0.0001 0.0005 0.0006
heart-statlog 0.0002 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
hepatitis 0.0002 0.0003 0.0003 0.0002 0.0001 0.0001 0.0002 0.0001 0.0002
hypothyroid 0.0141 0.0085 0.0086 0.0085 0.0082 0.0084 0.0081 0.0081 0.0083
ionosphere 0.0012 0.0006 0.0006 0.0007 0.0008 0.0007 0.0007 0.0008 0.0008
iris 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
kr-vs-kp 0.0092 0.0059 0.0059 0.0060 0.0059 0.0058 0.0054 0.0059 0.0058
labor 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
letter 0.0369 0.0199 0.0193 0.0208 0.0222 0.0201 0.0202 0.0196 0.0198
lymph 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
mfeat-f 0.1374 0.1308 0.1515 0.1304 0.1320 0.1296 0.1300 0.1356 0.1487
monks 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001
movement-libras 0.0565 0.0403 0.0431 0.0505 0.0403 0.0567 0.0565 0.0560 0.0652
mushroom 0.0020 0.0012 0.0012 0.0013 0.0014 0.0011 0.0012 0.0012 0.0012
newthyroid 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
optdigits 0.2215 0.2050 0.2274 0.2163 0.2140 0.1826 0.2055 0.2153 0.2111
page-blocks 0.0043 0.0022 0.0030 0.0034 0.0084 0.0020 0.0024 0.0024 0.0022
pendigits 0.0209 0.0209 0.0218 0.0214 0.0216 0.0210 0.0208 0.0208 0.0213
primary-tumor 0.0014 0.0013 0.0014 0.0014 0.0013 0.0014 0.0014 0.0012 0.0014
qar-biodegradation 0.0029 0.0026 0.0031 0.0026 0.0026 0.0026 0.0028 0.0027 0.0028
robot 0.0101 0.0093 0.0116 0.0105 0.0097 0.0090 0.0093 0.0090 0.0090
segment 0.0080 0.0043 0.0059 0.0053 0.0045 0.0081 0.0042 0.0044 0.0041
sick 0.0037 0.0045 0.0063 0.0055 0.0042 0.0044 0.0048 0.0043 0.0046
sonar 0.0021 0.0013 0.0013 0.0016 0.0017 0.0014 0.0013 0.0013 0.0015
soybean 0.0107 0.0105 0.0099 0.0129 0.0105 0.0104 0.0102 0.0102 0.0098
spectrometer 0.3180 0.3475 0.3470 0.3787 0.3717 0.3580 0.3736 0.3778 0.3451
splice 0.0252 0.0242 0.0235 0.0248 0.0230 0.0241 0.0285 0.0236 0.0235
steel-plates-faults 0.0063 0.0031 0.0032 0.0036 0.0030 0.0032 0.0032 0.0030 0.0031
texture 0.0772 0.0706 0.0773 0.0703 0.0704 0.1226 0.0788 0.0724 0.0765
vehicle 0.0014 0.0008 0.0009 0.0009 0.0007 0.0009 0.0009 0.0007 0.0010
vote 0.0006 0.0001 0.0003 0.0003 0.0001 0.0002 0.0001 0.0002 0.0003
vowel 0.0028 0.0014 0.0015 0.0015 0.0016 0.0015 0.0014 0.0018 0.0014
waveform 0.0035 0.0035 0.0037 0.0041 0.0037 0.0035 0.0037 0.0037 0.0038
zoo 0.0003 0.0001 0.0005 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001

19

0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

SODE

A
O

D
E

(a) SODE vs. AODE

0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

SODE

P
O

D
E

(b) SODE vs. PODE

0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

SODE

D
O

D
E

(c) SODE vs. DODE

0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

SODE

C
O

D
E

(d) SODE vs. CODE

0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

SODE

G
O

D
E

(e) SODE vs. GODE

0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

SODE

M
O

D
E

(f) SODE vs. MODE

0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

SODE

R
O

D
E

(g) SODE vs. RODE

0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

SODE

T
O

D
E

(h) SODE vs. TODE

Figure 5: Head-to-head comparison between SODE vs. rival weighted SPODE algorithms on 56 UCI data sets. Each data point in figure
represents classification accuracy on one data set. The x−axis denotes SODE’s accuracy and the y−axis represents the rival method’s accuracy.
A data point below y = x diagonal line indicates that SODE outperforms the rival method.

5.3. Comparisons on UCI benchmark data sets

We first report the classification accuracies on the fifty-six benchmark data sets from UCI repository1, which

includes data from a wide range of domains (the data characteristics are briefly described in Table 2).

In our experiments, we compare the effectiveness of SODE with AODE [40], PODE [48], DODE [49], CODE

[17], GODE [52], MODE [24], RODE [34] and TODE [43]. For all benchmark data sets, we comparatively study

the performance of the proposed SODE w.r.t. other baselines, and report the results in Figure 5, where data points

below the x = y diagonal line are data sets on which SODE achieves better results than the rival algorithm.

1https://archive.ics.uci.edu/ml/datasets.html

20

(a) Average 56 UCI Data Sets (b) Iris (150 Instances, 5 Attributes)

(c) Artificial-Characters (10218 Instances, 8 Attributes) (d) Movement-Libras (360 Instances, 91 Attributes)

Figure 6: Classification accuracy on (a) all UCI benchmark data sets, and (b) “Iris” data with 150 instances and 5 attributes, (c) “Artificial-
Characters” data with 10218 instances and 8 attributes, and (d) “Movement-Libras” data with 360 instances and 91 attributes respectively.

In Table 3, we also report the detailed accuracy of all methods on the 56 benchmark data sets reported in

Figure 6(a). For each row (i.e. a data set) in Table 3, a field marked with • and ◦ mean that compared to the

method showing in the corresponding column, SODE’s classification accuracy is statistically and significantly

better (upgradation) or worse (degradation), respectively, using two-tailed t-test with 95% confidence level. The

entry w/t/l at the bottom of table means that the algorithm in the corresponding column wins in w data sets,

ties in t data sets, and loses in l data sets on the 56 benchmark data sets, compared to SODE. In addition to

the classification accuracy, standard deviation, i.e., the square root of the variance, describes the component of

error that results from random factors, such as random variation in the training data and random processor in

the learning algorithm, and therefore measures the robustness of the algorithm (i.e., how sensitive an algorithm

facing the data changes). Table 4 shows the detailed standard deviations w.r.t. each data set, and the average of

the stand deviations are shown in Figure 7(a).

21

(a) Average 56 UCI Data Sets (b) Iris (150 Instances, 5 Attributes)

(c) Artificial-Characters (10218 Instances, 8 Attributes) (d) Movement-Libras (360 Instances, 91 Attributes)

Figure 7: Standard deviation of classification accuracy on (a) all UCI benchmark data sets, and (b) “Iris” data with 150 instances and 5
attributes, (c) “Artificial-Characters” data with 10218 instances and 8 attributes, and (d) “Movement-Libras” data with 360 instances and 91
attributes respectively.

Overall, the results can be summarized as follows:

1. Figure 5 shows that majority data points fall below the diagonal line x = y, which indicates SODE performs

better than other baseline weighted SPODE models.

2. SODE greatly outperforms the classical AODE model (31 wins and 0 losses) and the gain ratio weighted

GODE (30 wins and 0 losses). The average accuracy on 56 data sets for SODE (85.26%) is higher than

both AODE (83.14%) and GODE (83.02%).

3. SODE significantly outperforms both CODE and RODE with 29 wins and 0 losses. Although the average

accuracy of RODE (83.43%) is superior to CODE (83.02%), they are both inferior to the proposed SODE.

4. Maximum a posteriori linear mixture of discriminative distributions MAPLMD/DODE shows the superi-

22

ority in average accuracy (83.58%) compared to two weighted baselines, including MODE (82.93%) and

TODE (83.11%). However, by self-adaptively adjusting the attribute weight for each SPODE, SODE con-

sistently outperforms TODE (29 wins and 1 losses), MODE (28 wins and 0 losses), and MAPLMD/DODE

(28 wins and 1 losses).

5. Existing empirical studies have suggested that the Bayesian model averaging of maximum a posteriori

linear mixture of generative distribution MAPLMG/PODE is one of the most effective of approaches [48,

49]. Compared to our proposed SODE, it loses 27 on data sets, and its average accuracy 83.78% is also

inferior to SODE.

6. From the standard deviation perspective, it is observed that, SODE achieves the best performance in re-

ducing the standard deviation of the accuracy compared to other alternative approaches. This is mainly

attributed to the self-adaptive adjusting strategy used in SODE, so the ensemble of the SPODEs can have

less variance in their prediction and therefore be more stable.

In order to further demonstrate the algorithm performance in different data environments (e.g., number of

instances or attributes), we first report the experimental results on “Iris” data set with a small number of instances

(150 instances) and 5 attributes in Figure 6(b), followed by two other special data sets “Artificial-Characters”

(10218 Instances, 8 Attributes) with relatively a large number of instances and “Movement-Libras” (360 In-

stances, 91 Attributes) for large number of attributes in Figures 6(c) and 6(d), respectively. The standard devi-

ation estimation could also be found in Figures 7(b), 7(c), and 7(d). As expected, SODE also demonstrates the

best classification performance with high accuracy and low standard deviation.

5.4. Image Retrieval Learning Task

In image classification, an image is classified into different categories according to its visual content. An

important application of image classification is image retrieval: searching through an image data set to obtain (or

retrieve) those images with particular (or user provided) visual content. For example, finding pictures containing

a car.

In this part of experiment, we report SODE’s performance for content-based image retrieval task. In our

experiments, we obtain the original color images from Corel data set [27]. For each image, four sets of visual

features [20] are extracted, including color histogram , color histogram layout, color moments, and co-occurrence

texture. We choose the color histogram approach in the HSV color space as color features. The HSV color space

is divided into 32 subspaces (32 colors with 8 ranges of H and 4 ranges of S). After that, the value in each

dimension in a color histogram of an image is the density of each color in the entire image, which yields 32-

dimensional color histogram features. For the color histogram layout, each image is divided into 4 sub-images

(one horizontal split and one vertical split), in which 4×2 color histogram for each subimage is computed. In this

case, we can obtain another 32-dimensional features. In addition, the color moment feature has 9 dimensions,

in which one (mean, or standard deviation, or skewness) for each of H, S , and V in HSV color space. At last,

23

Figure 8: Example images used in the experiment from the COREL image categorization database. The first three rows show images in
category “Cats”, including “Lion” (The first row), “Tiger” (The second row) and “Leopard” (The third row), and the last three rows represent
the image examples form other categories. Examples show that image retrieval is challenging and many non-cat images are also visually
similar to the ones showing in the first three rows. The similar image data generation can also be found in previous work [46].

for texture feature, images are converted to 16 gray-scale images, then co-occurrence in 4 directions is computed

(horizontal, vertical, and two diagonal directions). The corresponding 16 texture feature values are: one for each

direction, second angular moment, contrast, inverse difference moment, and entropy.

In our experiment, we use category “Cats” as the positive class, which consists of “Tiger”, “Lion” and “Leop-

ard”, to form a binary learning problem (each subcategory has 100 images). To obtain negative classes, we

selected 300 images randomly from the remaining classes. Some sample images from the benchmark data sets

are shown in Figure 8.

Figure 9(a) shows the accuracy of SODE and the baselines. We can see that all weighted SPODE classifiers

achieve a higher accuracy than unweighted AODE, which equally combines SPODEs for prediction. This is

mainly attributed to the fact that attributes are playing different roles in each individual learning tasks, and there-

fore should be differentiated during the learning (and the classification) process. For CODE, GODE, MODE

and RODE, they have similar performance gain but are all inferior to the TODE and DODE. On the other hand,

MAPLMG/PODE which is one of the most effective approaches in literature, has shown the best performance

among the baseline weighted SPODE models. In fact, MAPLMG (Maximum a Posteriori Linear Mixture of Gen-

erative Distributions) employs a maximum a posterior principle to determine weight values for SPODEs. This

resembles to the fitness principles employed in SODE which intends to find the optimal generative parameters

maximally approximate to the given training data. Although MAPLMG employs unconstrained maximization

to find parameters, SODE employs immune procedures go generate diversified parameters and self-adaptively

24

(a) Image (b) Text
Figure 9: Experimental results on (a) Image data set and (b) Text data set, respectively: Accuracy %.

search for the optimal parameter settings for classification.

5.5. Text Categorization Task

Our text categorization data set contains documents of free text business descriptions of Brazilian companies,

categorized into a subset of 9 categories cataloged in a table called national classification of economic activities2.

The original texts were pre-processed as follows to build our data set: 1) Initially, prepositions of the texts are

removed and only letters remain for processing; 2) Secondly, words are transformed to their canonical form; and

3) each document is represented by a vector with 857 features (552 of which are binary), where the weight of each

word is its frequency in the document. The categories are equally distributed, with 120 instances in each of nine

categories (i.e., 1080 documents in total). Because the main purpose for this paper is to design a good weighting

model for ensembling SPODEs, and our analysis on the 56 benchmark data sets has already demonstrated the

performance of the proposed SODE, we use the text and image learning tasks to demonstrate the generality of

the SODE for different applications. Moreover, the SPODE model (e.g., AODE) has already been improved for

the highly scalable attribute problem in [10]. Also, SPODE models can be trained incrementally [5]. When

facing huge word histograms, a hashing correlated feature approach in [4] has been proposed to rank the features.

Similarly, some other feature selection/extraction methods can also be united with the SPODEs for classification.

Because the paper is not primarily targeting ultra-high dimensional data, we did not report results in this regard.

The text categorization data set is very sparse (99.22% of the matrix is filled with zeros). To alleviate the data

sparsity issue, dimensionality reduction is applied to retain the top 200 words with the highest information gain

score [11]. As a result, each document/instance is represented by a 200-dimensional feature vector.

The results in the Figure 9(a) show that MAPLMD/DODE’s performance is inferior to unweighted AODE.

This suggests that this type of attribute weighting approaches, maximizing a posteriori linear mixture of discrim-

2http://archive.ics.uci.edu/ml/datasets/CNAE-9

25

inative distributions, do not work well for text data, possibly because of the high data dimensionality. Mean-

while MAPLMG/PODE, which is competitive to GODE, MODE, and RODE, is inferior to the CODE which

uses correlation-based weighting model. By employing self-adaptive weighting strategy, SODE demonstrates

significant performance gain, compared to other attribute weighted and unweighted baselines, especially the

MAPLMG/PODE (the most effective approach in literature).

5.6. Detailed Algorithm Performance Studies

5.6.1. Time Complexity Analysis

Training Time Complexity. The time complexity of SODE mainly includes the following two parts: (1)

evaluation of SODE, and (2) updating of the weight values.

Prior to the evaluation of SODE model, SODE needs to build n single SPODE classifier from data set Da

with Na instances, which will take O(Na · n2), where n is the number of attribute (each individual SPODE needs

to scan the whole training set and builds prior probabilities for all classes and conditional probabilities for all n

attributes). For the weight populationW in each generation, the calculation of affinity function for each weight

individual w ∈ W is similar to testing all SPODE classifiers on a test set Db with Nb instances, which will take

O(c · Nb · n2 · L), where L is the size of the weight populations (i.e., the number of weight vectors). The rest four

operations (e.g., selection, clone, mutation, and update) are all based on weight vectors. The corresponding time

complexity is O(L · logn). Assume the average number of evolution generations is M, the total time complexity

U is given by Eq. (12).

U = O(Na · n2) + M × [O(c · Nb · n2 · L) + O(L · logn)] (12)

Because Na + Nb = N, where N is the total number of training instances, Eq. (12) can be rewritten as

U =O[(N − Nb) · n2] + O(c · Nb · n2 · L · M) + O(L · logn · M)

≤O(N · n2) + O(c · Nb · n2 · L · M) + O(L · logn · M)

≤O(c · N · n2 · L · M) + O(L · logn · M) ≤ O(c · N · n2 · L · M)

(13)

Eq. (13) shows that the total time complexity of SODE is mainly bounded by four important factors: (1) the

total number of training instances N; (2) the number of the attributes n; (3) the size of weight pollution L; and

(4) the average number of evolution generations M. In our experiments, we use a threshold T to automatically

determine the termination process by following the principle that if the result gap obtained from two consecutive

Table 7: Training Time Complexity.

AODE [40] PODE [48] DODE [49] CODE [17] GODE [52] MODE [24] RODE [34] TODE [43]

O(Nn2) O(cNn2+ckNn) O(cNn2+ckNn) O(Nn2) O(Nn2) O(Nn2) O(cN2n2) O(Nn3)

26

(a) Average 56 UCI Data Sets (b) Iris (150 Instances, 5 Attributes)

(c) Artificial-Characters (10218 Instances, 8 Attributes) (d) Movement-Libras (360 Instances, 91 Attributes)

Figure 10: Training time on (a) the UCI benchmark data sets and, (b) “Iris” data with 150 instances and 5 attributes, (c) “Artificial-Characters”
data with 10218 instances and 8 attributes, and (d) “Movement-Libras” data with 360 instances and 91 attributes, respectively.

iterations is less than T , the algorithm will terminate. This process will further reduce the number of iterations

and save the computational cost.

In Table 7, we summarize the time complexity of other baselines for comparisons. During the training process,

GODE and MODE both need to calculate the gain ratio and mutual information as attribute weights from the

whole training data withO(Nn2) complexity. In the subsequent SPODE model training, the total training overhead

is O(Nn2 + Nn2) ≤ O(Nn2). For CODE, it needs to build a CFS model, with O(N((n2 − n)/2)) computational

complexity. Therefore, the corresponding overall complexity is O(N((n2 − n)/2) + Nn2) ≤ O(Nn2). For RODE,

its Relief-F model is subject to the complexity O(cN2n), therefore the total complexity is O(cN2n + Nn2) ≤

O(cN2n2). TODE requires to build a C4.5 tree with O(Nn3) complexity, consisting of building a tree O(Nnlogn)

and subtree replacement and pruning O(n(logn)2. As a result, the training time complexity of TODE will be

O(Nn3 + Nn2) ≤ O(Nn3). For DODE with MAPLMD, it first trains a supervised posterior probability model

27

(a) Average 56 UCI Data Sets (b) Iris (150 Instances, 5 Attributes)

(c) Artificial-Characters (10218 Instances, 8 Attributes) (d) Movement-Libras (360 Instances, 91 Attributes)

Figure 11: Testing time on (a) the UCI benchmark data sets, and (b) “Iris” data with 150 instances and 5 attributes, (c) “Artificial-Characters”
data with 10218 instances and 8 attributes, and (d) “Movement-Libras” data with 360 instances and 91 attributes respectively.

with O(cNn2) complexity, followed by an EM algorithm with a large fixed number K that bounds the number

of iterations which attributes to O(cKNn) complexity. Therefore, DODE will cost O(cNn2 + ckNn). In GODE

with MAPLMG, it also first trains a posterior probability model as in DODE with O(cNn2) complexity. The

difference is that GODE uses BFGS minimization algorithm with k iteration convergence. In our experiments,

the parameters in PODE and DODE are set the same as the ones used in [48] and [49].

Testing Time Complexity. For the testing time complexity, all algorithms are subject to O(cn2) costs, because

after the weights are calculated from the training process, the testing can be directly carried out using obtained

weight values. Notice that, according to our time complexity analysis, CODE, GODE, and MODE have the same

time complexity. The similar observation can be found between PODE and DODE. However, although these

methods have the same asymptotic complexity, their actual CPU runtime may vary significantly. Accordingly, in

the following subsection, we further carry out CPU runtime analysis.

28

0 20 40 60 80 100 120 140 160 180 200
0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

0.095

of Iterations

E
rr

or
 R

at
e

SODE

(a) Kr-vs-kp Data

0 20 40 60 80 100 120 140 160 180 200
0.056

0.058

0.060

0.062

0.064

0.066

0.068

0.070

0.072

0.074

0.076

of Iterations

E
rr

or
 R

at
e

SODE

(b) Soybean Data

Figure 12: Convergence curves of SODE for (a) “Kr-vs-kp”, and (b) “Soybean” data, respectively.

5.6.2. CPU Runtime Analysis

In Figure 10(a), we report the average CPU training time on 56 UCI benchmark data sets. The detailed results

for each method, with respect to each data set, are reported in Table 5. Overall, the results show that AODE, which

does not have any weighting scheme, demonstrates the best efficiency. However, existing studies [48, 22] have

also validated that AODE can not achieve better classification performance than weighted SPODE models. On

the other hand, an empirical study [49] has suggested that Bayesian model averaging of “Maximum a Posteriori

Linear Mixture of Generative Distributions” (MAPLMG) is one of the most effective approaches. Our results

show that the proposed SODE is not only more accurate than MAPLMG/PODE, but is also more efficient in

terms of CPU runtime. It is worth noting that, from the result on a general data set “Iris” with 150 instances

and 5 attributes in Figure 10(b), SODE can obtain a competitive efficiency with AODE. Because the efficiency

of SPODE family models may vary on data sets with a large number of instances or attributes, we further report

the CPU runtime on a number of data sets with different characteristics. Figures 10(c) and 10(d) show the

CPU training time results on “Artificial-Characters” data with 10218 instances and 8 attributes and “Movement-

Libras” data with 360 instances and 91 attributes, respectively. SODE consistently demonstrates better runtime

than PODE and DODE.

Table 6 also lists the details of CPU runtime for testing on 56 UCI benchmark data sets, with Figure 11(a)

reporting the average CPU testing time on all UCI data sets. In addition, we also report the result of the general

“Iris” data set in Figure 11(b), Figure 11(c) for “Artificial-Characters” data set, and Figure 11(d) for “Movement-

Libras” data set, respectively. Because weight values are only calculated during the training process, all algo-

rithms have similar/comparable CPU testing runtime.

5.6.3. Convergence and Learning Curves

In order to investigate the convergence of the SODE algorithm, we validate the relationship between the

number of iterations and the classification error rate on the “Kr-vs-kp”, and “Soybean” data sets, and report

29

0 5 10 15 20 25 30 35 40 45 50

0.860

0.865

0.870

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

of Iterations

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

c=0%
c=5%
c=10%
c=30%
c=60%

(a) Energy-y1 Data

0 5 10 15 20 25 30 35 40 45 50

0.934

0.935

0.936

0.937

0.938

0.939

0.940

0.941

0.942

0.943

0.944

of Iterations

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

c=0%
c=5%
c=10%
c=30%
c=60%

(b) Robot-24 Data

Figure 13: The results with respect to different clone factors on (a) “Energy-y1”, and (b) “Robot-24” data sets, respectively.

the results in Figure 12. Each point in the curves corresponds to the mean error rate from the 10-fold cross

validation under the iteration with the current optimal attribute weight values. Overall SODE demonstrates a

fast convergence and a lower classification error rate than other algorithms, which implies that the impact of the

parameter maximum iteration MaxGen in SODE is insignificant. For detailed investigations, we observe the

algorithm performance on “Kr-vs-kp” data set, which has 37 dimensions and 3,196 instances. Some previous

studies [25, 23] have discovered strong attribute dependencies in this data set. Our result in Figure 12(a) shows

that SODE achieves a low classification error 0.06 after 20th iteration, which demonstrates the convergence speed

of SODE. Moreover, there is no noticeable change after the 20th iteration, although SODE still does not converge

yet. In this case, the parameter T in SODE can help early terminate the algorithm, which will further reduce the

number of iterations and reduce the computational cost. Similar runtime improvement can also be observed from

other data sets.

5.6.4. Effectiveness of SODE Clone Strategy

The clone strategy plays an important role in SODE, as it helps generate diversified weight candidates. In

order to study the impact of the clone factor parameter c used in SODE, we report the learning curves with

respect to different c values. In Figure 13, we report the convergence curves with c values varying form 0%, 5%,

10%, 30%, to 60% on “Energy-y1” Figure 13(a), and “Robot-24” Figure 13(b), respectively. Notice that, when

c value is set to zero, there is no clone strategy involved in this version, i.e., a general evolutionary algorithm.

The results from Figure 13 show that clone factor c has a significant impact on the algorithm performance, and

SODE without clone scheme almost has the worst effectiveness (as shown in Figure 13(b)). On the other hand,

having too many clones also deteriorates the classification accuracy, mainly because clones severely reduce the

diversity in the weight population. For both Figures 13 (a) and (b), a clone factor c = 60% results in the worst

performance. By contrast, SODE with clone factor c being 5% ∼ 10% is significantly superior to the one without

30

clone. This observation demonstrates that SODE with effective clone strategy outperforms the ones using a

general evolutionary strategy.

6. Conclusions and Further Work

In this paper, we proposed to use immune principle to self-adaptively determine the optimal attribute weight

values for SPODEs. Different from existing attribute weighting approaches, which typically assess/rank attribute

based on predefined measures, our proposed method, namely SODE, intends to combine attribute weighting and

the derivation of the learning model into a unified objective function. To this end, we use immunity theory

to search optimal weight values for SPODE, so the determined weight values can automatically adapt to the

underlying data distributions to ensure the algorithm performance. Experiments and comparisons on 56 UCI data

sets and validations in image retrieval and text categorization tasks show that SODE outperforms state-of-the-art

attribute weighted SPODE approaches in terms of classification accuracy and standard deviation. Experiments

and analysis on time complexity and CPU runtime performance further demonstrate SODE provides effective

trade-off between runtime efficiency and accuracy effectiveness.

However, the application tasks (text category or image retrieval) are just demos in this paper. When handing

a huge number of dimensions in current day image data (e.g., 1M dimensional FV [2] and 4096 dimensional

ConvNets [9] which are not categorical), SPODEs family will pre-discretize the attribute with continuous vari-

ables into categorical. Although the error of the probabilistic techniques could also be reduced by application of

alternative discretization techniques [39], we can apply the technologies proposed in GAODE and HAODE [14]

to directly deal with the continuous variables.

Acknowledgments

We thank Dr. Jesus Cerquides and Prof. Geoffrey I. Webb for their kind help on the implementation details of

MAPLMD/DODE and MAPLMG/PODE. This work was partially supported by the Australian Research Council

Discovery Projects under Grant Nos. DP140100545 and DP140102206.

References

[1] Aguiar, P., Xing, E. P., Figueiredo, M., Smith, N. A., & Martins, A. (2011). An augmented lagrangian

approach to constrained map inference. In Proceedings of the 28th International Conference on Machine

Learning ICML’ 11 (pp. 169–176). New York, NY, USA.

[2] Akata, Z., Perronnin, F., Harchaoui, Z., & Schmid, C. (2014). Good Practice in Large-Scale Learning for

Image Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 507–520.

[3] Babu, G., & Murty, M. (1994). Clustering with evolution strategies. Pattern Recognition, 27, 321 – 329.

31

[4] Bai, B., Weston, J., Grangier, D., Collobert, R., Sadamasa, K., Qi, Y., Chapelle, O., & Weinberger, K.

(2010). Learning to rank with (a lot of) word features. Inf. Retr., 13, 291–314.

[5] Bouckaert, R. R. (2006). Voting massive collections of bayesian network classifiers for data streams. In

Proceedings of the 19th Australian Joint Conference on Artificial Intelligence: Advances in Artificial Intel-

ligence AI’06 (pp. 243–252).

[6] de Castro, L., & Von Zuben, F. (2002). Learning and optimization using the clonal selection principle.

Evolutionary Computation, IEEE Transactions on, 6, 239–251.

[7] Castro, L. N. D., & Timmis, J. (2002). Artificial immune systems: A novel paradigm to pattern recognition.

In Artificial Neural Networks in Pattern Recognition (pp. 67–84). Springer Verlag, University of Paisley,

UK.

[8] Cerquides, J., & de Mántaras, R. L. (2005). Robust bayesian linear classifier ensembles. In Proceedings of

the 16th European Conference on Machine Learning ECML’ 05 (pp. 72–83). Berlin, Heidelberg.

[9] Chatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Return of the devil in the details: Delving

deep into convolutional nets. In Proceedings of the 25th British Machine Vision Conference BMVC’14.

[10] Chen, S., Martinez, A., & Webb, G. (2014). Highly scalable attribute selection for aode. In Proceedings of

the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 86–97).

[11] Ciarelli, P. M., & Oliveira, E. (2009). Agglomeration and elimination of terms for dimensionality reduction.

In Proceedings of the 2009 Ninth International Conference on Intelligent Systems Design and Applications

ISDA ’09 (pp. 547–552). Washington, DC, USA.

[12] Domingos, P. (2000). Bayesian averaging of classifiers and the overfitting problem. In Proceedings of

the Seventeenth International Conference on Machine Learning ICML (pp. 223–230). San Francisco, CA,

USA.

[13] Duda, R. O., & Hart, P. E. (1973). Pattern Classification and Scene Analysis. John Wiley & Sons Inc.

[14] Flores, M. J., Gámez, J. A., Martı́nez, A. M., & Puerta, J. M. (2009). Gaode and haode: Two proposals based

on aode to deal with continuous variables. In Proceedings of the 26th Annual International Conference on

Machine Learning ICML’09 (pp. 313–320).

[15] Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29,

131–163.

[16] Hall, M. (2007). A decision tree-based attribute weighting filter for naive bayes. Knowledge-Based Systems,

20, 120–126.

32

[17] Hall, M. A. (2000). Correlation-based feature selection for discrete and numeric class machine learning. In

Proceedings of the Seventeenth International Conference on Machine Learning ICML ’00 (pp. 359–366).

San Francisco, CA, USA.

[18] Hernández-González, J., Inza, I. n., & Lozano, J. A. (2013). Learning bayesian network classifiers from

label proportions. Pattern Recogn., 46, 3425–3440.

[19] Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial.

STATISTICAL SCIENCE, 14, 382–417.

[20] Hong, Z., Mei, X., Prokhorov, D., & Tao, D. (2013). Tracking via robust multi-task multi-view joint sparse

representation. In Proceedings of the 2013 IEEE International Conference on Computer Vision ICCV’13

(pp. 649–656). Sydney, Australia.

[21] Huang, K., Liu, X., Li, X., Liang, J., & He, S. (2013). An improved artificial immune system for seek-

ing the pareto front of land-use allocation problem in large areas. International Journal of Geographical

Information Science, 27, 922–946.

[22] Jiang, L., & Zhang, H. (2006). Weightily averaged one-dependence estimators. In Proceedings of the 9th

Pacific Rim International Conference on Artificial Intelligence PRICAI’06 (pp. 970–974). Berlin, Heidel-

berg: Springer-Verlag.

[23] Jiang, L., Zhang, H., & Cai, Z. (2009). A novel bayes model: Hidden navie bayes. IEEE Transactions on

Knowledge and Data Engineering, 21, 1361–1371.

[24] Jiang, L., Zhang, H., Cai, Z., & Wang, D. (2012). Weighted average of one-dependence estimators. Journal

of Experimental and Theoretical Artificial Intelligence, 24, 219–230.

[25] Kohavi, R. (1996). Scaling up the accuracy of naive-bayes classifiers:a decision-tree hybrid. In Proceedings

of the 2nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD’96

(pp. 202–207). New York.

[26] Langseth, H., & Nielsen, T. D. (2006). Classification using hierarchical naive bayes models. Mach. Learn.,

63, 135–159.

[27] Li, J., & Wang, J. Z. (2008). Real-time computerized annotation of pictures. IEEE Trans. Pattern Anal.

Mach. Intell., 30, 985–1002.

[28] de Mello Honorio, L., Leite da Silva, A., & Barbosa, D. (2012). A cluster and gradient-based artificial

immune system applied in optimization scenarios. Evolutionary Computation, IEEE Transactions on, 16,

301–318.

33

[29] Mokhtari, A., & Ribeiro, A. (2014). Res: Regularized stochastic bfgs algorithm. Signal Processing, IEEE

Transactions on, 62, 6089–6104.

[30] Monteith, K., Carroll, J., Seppi, K., & Martinez, T. (2011). Turning bayesian model averaging into bayesian

model combination. In Neural Networks (IJCNN), The 2011 International Joint Conference on (pp. 2657–

2663).

[31] Park, T., & Ryu, K. R. (2010). A dual-population genetic algorithm for adaptive diversity control. Evolu-

tionary Computation, IEEE Transactions on, 14, 865–884.

[32] Polat, K., Gne, S., & Tosun, S. (2006). Diagnosis of heart disease using artificial immune recognition

system and fuzzy weighted pre-processing. Pattern Recognition, 39, 2186 – 2193.

[33] Polat, K., Gne, S., & Tosun, S. (2011). Corrigendum to diagnosis of heart disease using artificial immune

recognition system and fuzzy weighted pre-processing. Pattern Recognition, 44, 1327.

[34] Robnik-Šikonja, M., & Kononenko, I. (2003). Theoretical and empirical analysis of relieff and rrelieff.

Machine Learning, 53, 23–69.

[35] Rodin, V., Benzinou, A., Guillaud, A., Ballet, P., Harrouet, F., Tisseau, J., & Bihan, J. L. (2004). An immune

oriented multi-agent system for biological image processing. Pattern Recognition, 37, 631 – 645.

[36] Rokach, L. (2008). Genetic algorithm-based feature set partitioning for classification problems. Pattern

Recognition, 41, 1676 – 1700.

[37] Sahami, M. (1996). Learning limited dependence bayesian classifiers. In Proceedings of the 2nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining KDD ’96 (pp. 335–338).

New York.

[38] Triguero, I., Garca, S., & Herrera, F. (2011). Differential evolution for optimizing the positioning of proto-

types in nearest neighbor classification. Pattern Recognition, 44, 901 – 916.

[39] Webb, G. I., Boughton, J., & Wang, Z. (2002). Averaged one-dependence estimators: Preliminary results.

In Proceedings of the Australasian Data Mining Workshop (pp. 65–73).

[40] Webb, G. I., Boughton, J. R., & Wang, Z. (2005). Not so naive bayes: Aggregating one-dependence

estimators. Machine Learning, 58, 5–24.

[41] Witten, I. H., & Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques. The

Morgan Kaufmann Series in Data Management Systems (2nd ed.). Morgan Kaufmann Publishers.

[42] Woldemariam, K. M., & Yen, G. G. (2010). Vaccine-enhanced artificial immune system for multimodal

function optimization. Trans. Sys. Man Cyber. Part B, 40, 218–228.

34

[43] Wu, J., & Cai, Z. (2011). Learning averaged one-dependence estimators by attribute weighting. Journal of

Information and Computational Science, 8, 1063–1073.

[44] Wu, J., Cai, Z., Zeng, S., & Zhu, X. (2013). Artificial immune system for attribute weighted naive bayes

classification. In Proceedings of the International Joint Conference on Neural Networks IJCNN’13 (pp.

798–805). Dallas, TX, USA.

[45] Wu, J., Cai, Z., & Zhu, X. (2013). Self-adaptive probability estimation for naive bayes classification. In

Proceedings of the International Joint Conference on Neural Networks IJCNN’13 (pp. 2303–2310). Dallas,

TX, USA.

[46] Wu, J., Hong, Z., Pan, S., Zhu, X., Zhang, C., & Cai, Z. (2014). Multi-graph learning with positive and

unlabeled bags. In Proceedings of SIAM International Conference on Data Mining SDM’14 (pp. 217–225).

Philadelphia, Pennsylvania, USA.

[47] Yang, Y., Korb, K., Ting, K. M., & Webb, G. I. (2005). Ensemble selection for superparent-one-dependence

estimators. In Proceedings of the 18th Australian Joint Conference on Advances in Artificial Intelligence

AI’05 (pp. 102–112). Sydney, Australia.

[48] Yang, Y., Webb, G., Cerquides, J., Korb, K., Boughton, J., & Ting, K. M. (2006). To select or to weigh: a

comparative study of model selection and model weighing for spode ensembles. In ECML (pp. 533–544).

[49] Yang, Y., Webb, G. I., Cerquides, J., Korb, K. B., Boughton, J., & Ting, K. M. (2007). To select or to

weigh: A comparative study of linear combination schemes for superparent-one-dependence estimators.

IEEE Trans. on Knowl. and Data Eng., 19, 1652–1665.

[50] Yuan, J., Zhang, L., Zhao, C., Li, Z., & Zhang, Y. (2012). An improved self-organization antibody network

for pattern recognition and its performance study. Pattern Recognition, 321, 96–103.

[51] Zaidi, N. A., Cerquides, J., Carman, M. J., & Webb, G. I. (2013). Alleviating naive bayes attribute indepen-

dence assumption by attribute weighting. Journal of Machine Learning Research, 14, 1947–1988.

[52] Zhang, H., & Sheng, S. (2004). Learning weighted naive bayes with accurate ranking. In Proceedings of the

Fourth IEEE International Conference on Data Mining ICDM’04 (pp. 567–570). Washington, DC, USA.

[53] Zheng, F., & Webb, G. I. (2006). Efficient lazy elimination for averaged one-dependence estimators. In

Proceedings of the 23rd International Conference on Machine Learning ICML ’06 (pp. 1113–1120). Pitts-

burgh, Pennsylvania.

[54] Zheng, F., Webb, G. I., Suraweera, P., & Zhu, L. (2012). Subsumption resolution: an efficient and effective

technique for semi-naive bayesian learning. Mach. Learn., 87, 93–125.

35

[55] Zheng, J., Chen, Y., & Zhang, W. (2010). A survey of artificial immune applications. Artif. Intell. Rev., 34,

19–34.

[56] Zhong, Y., & Zhang, L. (2013). Sub-pixel mapping based on artificial immune systems for remote sensing

imagery. Pattern Recognition, 46, 2902 – 2926.

36

	Introduction
	Preliminaries
	Naive Bayes
	SuperParent-One-Dependance Estimators
	Averaged One-Dependence Estimators
	Attribute Weighted SPODE

	Related Work
	Attribute Weighted Methods
	Single Attribute Correlation Weighting
	Multiple Attribute Correlation Weighting

	Immune Principle

	SODE: Self-adaptive SPODE
	Problem Definition
	Weight Optimization for SODE

	Experiments
	Experimental Setting
	Baseline Methods
	Comparisons on UCI benchmark data sets
	Image Retrieval Learning Task
	Text Categorization Task
	Detailed Algorithm Performance Studies
	Time Complexity Analysis
	CPU Runtime Analysis
	Convergence and Learning Curves
	Effectiveness of SODE Clone Strategy

	Conclusions and Further Work

