Determining Trade-off between Sustainable Yield and Baseflow in the Kulnura – Mangrove Mountain Aquifer System using Simulation – Optimisation Modelling

Ьу

Mohammed Abdelmohdi Alkhatib

Submitted for the Degree of Doctor of Philosophy

University of Technology, Sydney

February 2007

CERTIFICATE OF AUTHORSHIP / ORGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate Production Note: Signature removed prior to publication.

.

ACKNOWLEDGMENTS

First of all, I am most thankful to God for giving me the strength and ability to read and write which is the basis for the acquisition of knowledge and critical for the benefit of mankind.

My deep thanks to my parents, sisters and brothers who honestly prayed for my success and encouraged me during my study in Australia. They are always close to me despite the long distances between us, I'll never forget their support.

I really am most thankful to my supervisor Dr Noel Merrick for his guidance, continuous support, encouragement and the time that he spent to make a success of this research and reviewing this thesis. He has supported me in the challenge of solving the research problems which are reflected in my experience. I really learned a lot from him and how to think as a researcher not only from this research but also from other projects. This is true when I compare my knowledge at the first time when I arrived in Sydney in 2003. I hope that we continue as a good working team on other projects in the future.

I would like to express my deep appreciation to Department of Natural Resources and Gosford Wyong Councils' Water Authority for supporting and funding for three years of study which provided me the opportunity to come and study here and submit this thesis. I am grateful to all steering committee members for the valuable comments which enriched this research and reflected on the results. My thanks to Allan Raine, John Williams, Michael Williams, Ian Grimster, Don Mampitiya, Jon Sayers, Pavel Kozarovski, Fred Bell, and Robin Meldrum.

I thank the staff in the National Centre for Groundwater Management at University of Technology, Sydney, Dr Bryce Kelly co supervisor, Dr William Milane-Home, Mr Derek Yates and Ms Lorraine Dixon. I would like to express my deep appreciation to my friend Richard Preston who helped me a lot during my life in Sydney and his continuous encouragement and support to finalise and submit my thesis on time.

I thank the people who helped me to extract the data and the models from the corrupted hard drive of my personal computer at the end of the last year, particularly to Ghazi Naimat, Richard Preston, Abed Kassis and Ivan Teliatnikov.

I thank my friend Fathi Swaid for his help and I wish all the best to finalise his thesis. I appreciate my flatmates who understood the struggling life for the PhD student and they didn't annoy me during my thesis writing.

My thanks are extended to everyone who prayed for my success and my apologies to those whom I have failed to mention.

TABLE OF CONTENTS

CERTIFICATE OF AUTHORSHIP / ORGINALITY	.I
ACKNOWLEDGMENTS	II
TABLE OF CONTENTSI	
LIST OF ILLUSTRATIONS I	x
LIST OF TABLES	
LIST OF SYMBOLS	V
ABSTRACTXXI	
CHAPTER ONE	
1.0 INTRODUCTION	
1.1 BACKGROUND	1
1.2 Research Objectives	1
1.3 Thesis Structure	2
CHAPTER TWO	4
2.0 LITERATURE REVIEW AND METHODOLOGY	
2.1 INTRODUCTION	4
2.2 WATER SHARING PLAN	
2.2.1 Water Sharing Plan for Kulnura Mangrove Mountain Groundwater	
Sources	5
2.2.1.1 Area of the Plan	
2.2.2 Water Sharing Plan for Ourimbah Creek Water Source	
2.2.3 Water Sharing Plan for Jilliby Jilliby Creek Water Source	
2.3.1 Baseflow and Importance	
2.3.2 Baseflow Computation	
2.3.2.1 Baseflow Separation	
2.3.2.1.1 Graphical Separation Method	õ
2.3.2.1.2 Automated Baseflow Separation Techniques	1
2.3.2.1.2.1 Recursive Digital Filter	
2.3.2.1.2.2 Smoothed Minima Technique2	
2.3.2.1.2.3 Chapman Algorithm	
2.3.2.1.2.4 PART Model	4
2.3.2.1.2.5 Comparison between Smoothed Minima Technique and	
Recursive Digital Filter	4
Filter	7
2.3.2.1.2.7 Comparison between Chapman Algorithm and Recursive	1
Digital Filter	7
2.3.2.1.2.8 Investigating Filter Parameter and Number of Passes2	
2.3.2.1.2.9 Summary of Automated Baseflow Separation Techniques 2	

2	.3.2.2	Frequency Analysis Method	3
2	.3.2.3	Recession Analysis Method	3
2.4	STREAM-A	QUIFER INTERACTION	3
2.4.		luction	
2.4.	2 Analy	tical Solution of Stream Depletion	3
2.4.		ndwater and Surface Water Software	
2		Groundwater Software	
	2.4.3.1.1	MODFLOW	
	2.4.3.1.2	MODFLOW-SURFACT	
	2.4.3.1.3	MODHMS	
	2.4.3.1.4	GSFLOW	
2		Surface Water Software	
-	2.4.3.2.1		
	2.4.3.2.2		
	2.4.3.2.3	HSPF	
	2.4.3.2.3	PRMS	
21		gement Applications of Coupling Surface and Groundwa	
	-	ct of Aquifer Heterogeneity on River Seepage	
2.4		mflow versus Groundwater Pumping	
2.5		ATER MANAGEMENT MODELS OF A STREAM-AQUIFER SYS	
		duction	
		ndwater Management Models	
		Response Matrix Approach	
2		Embedding Approach	
	2.5.2.2.1		
		Embedding Approach	
_		Linked Simulation-Optimisation Approach	
2.5	.3 Comp	parison between the Results of Simulation Model and Sim	ulation-
		nisation Management Model	
2.5	.4 Strea	m-Aquifer Management Model and Conjunctive Use Mar	agemer
		2	
	2.5.4.1.1	Objective Functions	5
	2.5.4.1.2	Constraints	
	2.5.4.1.3	Groundwater Management Applications on Stream-Aq	uifer
	2.0	Interactions using Response Matrix Approach	
	2.5.4.1.4	Groundwater Management Application on Stream-Aqu	ufer
	2.3.4.1.1	Interactions using Embedding Approach	
	2.5.4.1.5	Groundwater Management Applications on Stream-Aq	uifer
	2.3.4.1.5	Interactions using Linked Simulation-Optimisation Ap	
2.6	SIMULATIO	N-OPTIMISATION MODEL APPLICATIONS IN AUSTRALIA	
2.0		ON WITH THE PREVIOUS STUDIES AND RESEARCH ORIGINA	
2.7			
2.0	RESEARCH	METHODOLOGY	
CHA]	PTER TI	HREE	7
3.0 \$	STUDY AR	EA	/
	LOCATION	••••••	7
3.1	TOPOGRAP	НҮ	7
3.1 3.2	I OI OUIGAL		7
3.2	RATHEATT	* * * * * * * * * * * * * * * * * * * *	
	RAINFALL.		
3.2	RAINFALL.	V	
3.2	RAINFALL.		

3.4	SURFACE DRAINAGE	77
CHA	APTER FOUR	81
4.0	DATA ANALYSIS	81
4.1	RAINFALL DATA	81
4.	.1.1 Gosford Rainfall Station	81
4.	.1.2 Peats Ridge Rainfall Station	85
4.	.1.3 Kulnura North Rainfall Station	87
4.	.1.4 Laguna Rainfall Station	89
4.	.1.5 Residual Rainfall Mass Curve	91
4.2	Temperature	
4.3	EVAPORATION	
4.4	Relative Humidity	
4.5	WIND SPEED	
4.6	STREAM FLOW DATA	
4.7	Monitoring bores network	102
CHA	APTER FIVE	113
5.0	GEOLOGY AND HYDROGEOLOGY	113
5.1	GEOLOGY	
5.	.1.1 Quaternary Alluvium	
5.	.1.2 Volcanics	
5.	.1.3 Hawkesbury Sandstone	114
	5.1.3.1 Sheet Facies Sandstone	115
	5.1.3.2 Massive Facies Sandstone	115
	5.1.3.3 Mudstone Facies	
	5.1.3.4 Relationship of the Units	
5.	.1.4 Narrabeen Group	
	5.1.4.1 Gosford Formation	
	5.1.4.1.1 Wyong Sandstone Member	
	5.1.4.1.2 Ourimbah Sandstone Member	
	5.1.4.1.3 Mangrove Sandstone Member	
	5.1.4.2 Clifton Sub-group	
	1.5 Structure	
5.2		
	.2.1 Aquifer Systems	118
	.2.2 Groundwater Movement	
5.3		
СНА	APTER SIX	
6.0	GROUNDWATER FLOW MODELLING	
6.1	General	
6.2	SELECTION OF A MODEL CODE	
6.3	GOVERNING EQUATIONS	
6.4	Model Design	120
	4.1 Model Domain and Grid Size	120
6.	4.2 Input Parameters	120

.

6	6.4.2.1 Topography	126
6	6.4.2.2 Model Layers	126
6	6.4.2.3 Hydraulic Conductivity	130
6	6.4.2.4 Recharge Estimation	
6	6.4.2.5 Baseflow Estimation	135
6.4.	8.3 Boundary Conditions	140
6.4.	4.4 Initial Conditions	143
6.4.	9.5 Drainage Network	143
6.5	STEADY-STATE CALIBRATION	146
6.6	TRANSIENT SIMULATION	150
6.6.	5.1 Time Scale Selection	150
6.6.	5.2 Groundwater Usage	151
6.6.	5.3 Transient Model Calibration	153
6.6.		
6.6.	5.5 Model Calibration Performance Measures	166
6.6	5.6 Transient Water Budget	171
6.6	5.7 Baseflow Simulation	171
6.7	Sensitivity Analysis	175
6.8	TRANSIENT MODEL SIMULATION	185
CILAI	DTED SEVEN	100
	PTER SEVEN	
7.0 H	PARTICLE TRACKING	189
7.1	INTRODUCTION	189
7.2	SIMULATION SCENARIOS	190
1.4	SIMULATION SCENARIOS	107
	2.1 Scenario 1: Forward Tracking	
	2.1 Scenario 1: Forward Tracking	189
7.2 7.2	2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking	189 191
7.2 7.2 CHAI	2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking PTER EIGHT	189 191 194
7.2 7.2 CHAI	2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking PTER EIGHT OPTIMISATION MODEL	189 191 194 194
7.2 7.2 CHAI	2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking PTER EIGHT OPTIMISATION MODEL INTRODUCTION	189 191 194 194
7.2 7.2 CHAI 8.0 (Scenario 1: Forward Tracking Scenario 2: Backward Tracking PTER EIGHT OPTIMISATION MODEL INTRODUCTION OPTIMISATION MODEL FORMULATION, OBJECTIVE FUNCTION AND 	189 191 194 194 194
7.2 7.2 7.2 CHAI 8.0 8.1	 2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking PTER EIGHT OPTIMISATION MODEL OPTIMISATION MODEL FORMULATION, OBJECTIVE FUNCTION AND CONSTRAINTS 	189 191 194 194 194 194
7.2 7.2 7.2 CHAI 8.0 8.1	 Scenario 1: Forward Tracking	189 191 194 194 194 194 196
7.2 7.2 7.2 CHAI 8.0 8.1 8.2	 Scenario 1: Forward Tracking	189 191 194 194 194 194 196 198
7.2 7.2 7.2 CHAI 8.0 8.1 8.2 8.3	2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking PTER EIGHT OPTIMISATION MODEL INTRODUCTION OPTIMISATION MODEL FORMULATION, OBJECTIVE FUNCTION AND CONSTRAINTS OPTIMAQ SOFTWARE GAMS CODE STEADY STATE OPTIMISATION	189 191 194 194 194 194 196 198 199
7.2 7.2 7.2 CHAI 8.0 8.1 8.2 8.3 8.4	 Scenario 1: Forward Tracking	189 191 194 194 194 194 196 196 198 199 199 201
7.2 7.2 7.2 CHAI 8.0 8.1 8.2 8.3 8.4 8.5	 2.1 Scenario 1: Forward Tracking	189 191 194 194 194 194 194 196 198 198 198 199 201 203
7.2 7.2 7.2 CHAI 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.5 8.5	2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking PTER EIGHT OPTIMISATION MODEL INTRODUCTION. OPTIMISATION MODEL INTRODUCTION. OPTIMISATION MODEL OPTIMISATION MODEL FORMULATION, OBJECTIVE FUNCTION AND CONSTRAINTS OPTIMAQ SOFTWARE GAMS CODE STEADY STATE OPTIMISATION 5.1 Response Matrix Steady State Optimisation Scenarios 8.5.2.1	189 191 194 194 194 194 194 196 196 198 199 201 203 204
7.2 7.2 7.2 CHAI 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.5 8.5 8.5	2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking PTER EIGHT OPTIMISATION MODEL INTRODUCTION. OPTIMISATION MODEL FORMULATION, OBJECTIVE FUNCTION AND CONSTRAINTS OPTIMAQ SOFTWARE GAMS CODE STEADY STATE OPTIMISATION 5.1 Response Matrix. 5.2 Steady State Optimisation Scenarios 8.5.2.1 Scenario 1: Water Sharing Plan Area. 8.5.2.1.1 Verification and Trade-Off Curve	189 191 194 194 194 194 194 196 198 199 199 201 203 204 208
7.2 7.2 7.2 CHAI 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.5 8.5 8.5	2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking PTER EIGHT OPTIMISATION MODEL INTRODUCTION. OPTIMISATION MODEL INTRODUCTION. OPTIMISATION MODEL OPTIMISATION MODEL FORMULATION, OBJECTIVE FUNCTION AND CONSTRAINTS OPTIMAQ SOFTWARE GAMS CODE STEADY STATE OPTIMISATION Steady State Optimisation Scenarios S.2.1 Scenario 1: Water Sharing Plan Area 8.5.2.1 Scenario 2: Brisbane-Water Catchment	189 191 194 194 194 194 194 194 195 198 198 199 201 203 204 208 210
7.2 7.2 7.2 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.5	2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking PTER EIGHT OPTIMISATION MODEL INTRODUCTION OPTIMISATION MODEL INTRODUCTION OPTIMISATION MODEL FORMULATION, OBJECTIVE FUNCTION AND CONSTRAINTS OPTIMAQ SOFTWARE GAMS CODE STEADY STATE OPTIMISATION Steady State Optimisation Scenarios 8.5.2.1 Scenario 1: Water Sharing Plan Area 8.5.2.1 Scenario 2: Brisbane-Water Catchment 8.5.2.1 Verification and Trade-Off Curve	189 191 194 194 194 194 194 194 194 195 195 195 195 201 203 204 208 210 214
7.2 7.2 7.2 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.5	2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking PTER EIGHT OPTIMISATION MODEL INTRODUCTION OPTIMISATION MODEL FORMULATION, OBJECTIVE FUNCTION AND CONSTRAINTS OPTIMAQ SOFTWARE GAMS CODE STEADY STATE OPTIMISATION 5.1 Response Matrix. 5.2 Steady State Optimisation Scenarios 8.5.2.1 Scenario 1: Water Sharing Plan Area. 8.5.2.2 Scenario 2: Brisbane-Water Catchment 8.5.2.3 Scenario 3: Ourimbah Catchment	189 191 194 194 194 194 194 194 194 195 195 195 195 201 203 204 208 210 214 216
7.2 7.2 7.2 8.1 8.2 8.3 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking PTER EIGHT OPTIMISATION MODEL INTRODUCTION OPTIMISATION MODEL FORMULATION, OBJECTIVE FUNCTION AND CONSTRAINTS OPTIMAQ SOFTWARE GAMS CODE STEADY STATE OPTIMISATION 5.1 Response Matrix 5.2 Scenario 1: Water Sharing Plan Area 8.5.2.1 Verification and Trade-Off Curve 8.5.2.1 Verification and Trade-Off Curve 8.5.2.3 Scenario 3: Ourimbah Catchment 8.5.2.3.1	189 191 194 194 194 194 194 194 194 194 195 195 201 203 204 210 214 216 220
7.2 7.2 7.2 8.1 8.2 8.3 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking PTER EIGHT OPTIMISATION MODEL INTRODUCTION OPTIMISATION MODEL FORMULATION, OBJECTIVE FUNCTION AND CONSTRAINTS OPTIMAQ SOFTWARE GAMS CODE STEADY STATE OPTIMISATION 5.1 Scenario 1: Water Sharing Plan Area 8.5.2.1 Scenario 2: Brisbane-Water Catchment 8.5.2.1 Verification and Trade-Off Curve 8.5.2.3 Scenario 3: Ourimbah Catchment 8.5.2.3.1 Verification and Trade-Off Curve 8.5.2.3 Scenario 3: Ourimbah Catchment 8.5.2.3.1 Verification and Trade-Off Curve 8.5.2.3 Scenario 3: Ourimbah Catchment 8.5.2.3.1 Verification and Trade-Off Curve 8.5.2.4	189 191 194 194 194 194 194 194 194 194 195 195 201 201 203 204 210 214 216 220 223
7.2 7.2 7.2 8.1 8.2 8.3 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking PTER EIGHT OPTIMISATION MODEL INTRODUCTION. OPTIMISATION MODEL FORMULATION, OBJECTIVE FUNCTION AND CONSTRAINTS OPTIMAQ SOFTWARE GAMS CODE STEADY STATE OPTIMISATION 5.1 Response Matrix. 5.2 Scenario 1: Water Sharing Plan Area. 8.5.2.1 Verification and Trade-Off Curve. 8.5.2.1 Verification and Trade-Off Curve. 8.5.2.3 Scenario 3: Ourimbah Catchment 8.5.2.3.1 Verification and Trade-Off Curve. 8.5.2.3.1 Verification and Trade-Off Curve. 8.5.2.3.1 Verification and Trade-Off Curve. 8.5.2.4 Scenario 4: Wyong Catchment. 8.5.2.4.1	189 191 194 194 194 194 194 194 194 194 194 194 195 195 201 203 204 210 216 216 220 223 226
7.2 7.2 7.2 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	2.1 Scenario 1: Forward Tracking 2.2 Scenario 2: Backward Tracking PTER EIGHT OPTIMISATION MODEL INTRODUCTION OPTIMISATION MODEL FORMULATION, OBJECTIVE FUNCTION AND CONSTRAINTS OPTIMAQ SOFTWARE GAMS CODE STEADY STATE OPTIMISATION 5.1 Scenario 1: Water Sharing Plan Area 8.5.2.1 Scenario 2: Brisbane-Water Catchment 8.5.2.1 Verification and Trade-Off Curve 8.5.2.3 Scenario 3: Ourimbah Catchment 8.5.2.3.1 Verification and Trade-Off Curve 8.5.2.3 Scenario 3: Ourimbah Catchment 8.5.2.3.1 Verification and Trade-Off Curve 8.5.2.3 Scenario 3: Ourimbah Catchment 8.5.2.3.1 Verification and Trade-Off Curve 8.5.2.4	189 191 194 194 194 194 194 194 194 194 195 195 201 203 203 204 210 214 216 220 223 226 229

8	8.5.2.6	Scenario 6: Hypothetical Bores Network in Water Sharin	-
		Area	
	8.5.2.6.1	Hypothetical Bores Optimisation	
	8.5.2.6.2		
		sient Optimisation Scenarios	
	3.5.3.1	Rainfall-Recharge Analysis	
8	3.5.3.2	•	
	8.5.3.2.1	Trade-Off Curves	272
CHA	PTER N	INE	
9.0 5	SUMMAR	Y AND CONCLUSION	
9.1		CTION	
9.2		REA	
9.3		DLOGY	
9.4		ALYSIS	
9.5			
9.6		OLOGY AND GROUNDWATER MOVEMENT	
9.7		JAL MODEL	
9.8		VATER FLOW MODEL	
9.9		TRACKING	
9.10		TION MODEL	
9.11		ION	
9.12		VORK	
REFER	RENCES		
APPE	NDICE	S	
APPE	ENDIX A		
DERI	VATIO	N OF THE HYDRAULIC GRADIENT	
CON	STRAIN	Τ	
APPE	ENDIX I	8	312
		Ξ	
Unit	$S \cup U D I$	++++++++++++++++++++++++++++++++++++++	

LIST OF ILLUSTRATIONS

Figure	Title	Page
2.1	Location map of Kulnura Mangrove Mountain Groundwater Sources (shaded area) within the Central Coast Water Management Area	7
2.2	Kulnura Mangrove Mountain Groundwater Sources (8 zones)	9
2.3	Location map of Ourimbah Creek Water Source (shaded area) within the Cental Coast Water Management Area	11
2.4	Ourimbah Creek Water Source	13
2.5	Location map of Jilliby Jilliby Creek Water Source (shaded area) within the Cental Coast Water Management Area	15
2.6	Jilliby Jilliby Creek Water Source	17
2.7	Components of a typical stream hydrograph	19
2.8	Baseflow separation techniques: straight line method (line AB), fixed base method (line ACD) and variable slope method (line ACEB)	21
2.9	Illustration of the slow flow separation filter performance. Two stage filter with $\alpha = 0.8$	23
2.10	Examples of continuous baseflow separation using the smoothed minima technique	25
2.11	Examples of continuous baseflow separation using recursive digital filter	25
2.12	Correlation between BFI indices derived using digital filter and smoothed minima techniques	26
2.13	Baseflow by PART model vs graphical approach	27
2.14	Baseflow by Recursive Digital Filter vs graphical approach	27
2.15	Outline of the problem considered	35
2.16	A comparison between predictions of stream depletion caused by groundwater pumping at 250 m and 1000 m using two different methods: the MODHMS model and the Hunt (1999) solution to a simplified system	43

2.17	General Process of an Optimisation Model	46
2.18	Classification of groundwater management models	50
2.19	Tradeoffs between groundwater withdrawals and minimum streamflow criteria	66
3.1	Location map of the study area	76
3.2	Topographical map of the study area	78
3.3	Rainfall Distribution over the Study Area	79
3.4	Drainage Map of the Study Area	80
4.1	Rainfall Stations, Flow Gauges and Monitoring Bore Location Map	82
4.2	Total annual rainfall variation at Gosford rainfall station during the period 1917 - 2002	84
4.3	Minimum, average and maximum monthly rainfall recorded at Gosford rainfall station for the period July 1916 – May 2003	85
4.4	Total annual rainfall variation at Peats Ridge rainfall station during the period 1982 - 2004	86
4.5	Minimum, average and maximum monthly rainfall recorded at Peats Ridge rainfall station for the period October 1981 – August 2005	87
4.6	Total annual rainfall variation at Kulnura North rainfall station during the period 1960 - 2000	88
4.7	Minimum, average and maximum monthly rainfall recorded at Kulnura North rainfall station for the period October 1959 – November 2001	89
4.8	Total annual rainfall variation at Laguna rainfall station during the period 1960 - 2002	90
4.9	Minimum, average and maximum monthly rainfall recorded at Laguna rainfall station for the period April 1959 – April 2003	91
4.10	Residual Rainfall Mass Curve for Gosford rainfall station	92
4.11	Residual Rainfall Mass Curve for Peats Ridge rainfall station	92
4.12	Residual Rainfall Mass Curve for Kulnura North rainfall station	93
4.13	Residual Rainfall Mass Curve for Laguna rainfall station	93
4.14	Residual Rainfall Mass Curves for all rainfall stations	94

- 4.15 Monthly averages of the mean, maximum and minimum 95 temperatures at Peats Ridge meteorological station (October1981-May 2003)
- 4.16 Minimum, maximum and averages monthly evaporation rate at Peats 96 Ridge meteorological station (October1981- May 2003)
- 4.17 Average mean monthly relative humidity with minimum and 96 maximum at 9:00 am and 3:00 pm at Peats Ridge meteorological station (October1981- May 2003)
- 4.18 Average mean monthly wind speed with minimum and maximum at 97
 9:00 am and 3:00 pm at Peats Ridge meteorological station (October1981- May 2003)
- 4.19 Residual Mass Curves (Ourimbah CK Flow Gauge # 211013 & 98 Kulnura North Rainfall Station)
- 4.20 Residual Mass Curves (Ourimbah CK Flow Gauge # 211005 & 99 Kulnura North Rainfall Station)
- 4.21 Residual Mass Curves (Jilliby CK Flow Gauge # 211010 & Gosford 99 Rainfall Station)
- 4.22 Residual Mass Curves (Wyong River Flow Gauge # 211014 & 100 Laguna Rainfall Station)
- 4.23 Residual Mass Curves (Wyong River Flow Gauge # 211009 & 100 Laguna Rainfall Station)
- 4.24 Residual Mass Curves (Wyong River Flow Gauge # 211007 & 101 Laguna Rainfall Station)
- 4.25 Residual Mass Curves (Mangrove CK Flow Gauge # 212039 & 101 Gosford Rainfall Station)
- 4.26 Residual Mass Curves (Mangrove CK Flow Gauge # 212019 & 102 Gosford Rainfall Station)

104

- 4.27 Monitoring Bores Location Map
- 4.28 Groundwater Hydrograph for Bore 64051 and Residual Rainfall 106 Mass Curve for Peats Ridge Rainfall Station
- 4.29 Groundwater Hydrograph for Bore 75009 and Residual Rainfall 106 Mass Curve for Peats Ridge Rainfall Station
- 4.30 Groundwater Hydrograph for Bore 75010 and Residual Rainfall 107 Mass Curve for Peats Ridge Rainfall Station

4.31	Groundwater Hydrograph for Bore 75013~1 and Residual Rainfall Mass Curve for Peats Ridge Rainfall Station	107
4.32	Groundwater Hydrograph for Bore 75013~2 and Residual Rainfall Mass Curve for Peats Ridge Rainfall Station	108
4.33	Groundwater Hydrograph for Bore 75013~3 and Residual Rainfall Mass Curve for Peats Ridge Rainfall Station	108
4.34	Groundwater Hydrograph for Bore 75014 and Residual Rainfall Mass Curve for Peats Ridge Rainfall Station	109
4.35	Groundwater Hydrograph for Bore 75015~1 and Residual Rainfall Mass Curve for Peats Ridge Rainfall Station	109
4.36	Groundwater Hydrograph for Bore 75015~2 and Residual Rainfall Mass Curve for Peats Ridge Rainfall Station	110
4.37	Groundwater Hydrograph for Bore 75016 and Residual Rainfall Mass Curve for Peats Ridge Rainfall Station	110
4.38	Groundwater Hydrograph for Bore 75038~1 and Residual Rainfall Mass Curve for Peats Ridge Rainfall Station	111
4.39	Groundwater Hydrograph for Bore 75038~2 and Residual Rainfall Mass Curve for Peats Ridge Rainfall Station	111
5.1	Geological Map of the Study Area	113
5.2	General Section through the Narrabeen Group in the Wyong-Gosford area	117
5.3	Composite Groundwater Contour Map	121
5.4	Conceptual Model	122
6.1	General groundwater modelling process	124
6.2	Model Grid Mesh	127
6.3	Geological Cross-section 6-km North of Narara East-West	128
6.4	Geological cross-section along George Downes Dr through Kulnura North-South	128
6.5	Plan view and cross-section through the model layers	131
6.6	Soil landscape map	133
6.7	Vegetation cover map	134

xii

6.8	Recharge Zones Map	135
6.9	Flow Gauge and Reach Location Map	137
6.10	Comparison of simulated baseflow with different hybase baseflow run (Ourimabah CK @ 211013	139
6.11	Boundary Condition for Layer 30	142
6.12	Boundary Condition for Layer 1	142
6.13	Boundary Condition for Layer 15	142
6.14	Drainage map with high order of stream lines	145
6.15	Drainage map with intermediate number of stream lines	146
6.16	Drainage map with low order of stream lines	146
6.17	Comparison Map between Observed and Simulated Water Level	148
6.18	Observed vs computed target values through the model layers	148
6.19	The calibrated Recharge Zones Map	150
6.20	Cumulative distribution function of water allocation	152
6.21	Cumulative distribution function for the extraction of bore's layer	152
6.22	Bore location map in layer 30	153
6.23	Bore location map in layer 29	153
6.24	Simulated vs. observed hydrograph for bore # GW064051	156
6.25	Simulated vs. observed hydrograph for bore # GW075009	156
6.26	Simulated vs. observed hydrograph for bore # GW075010	157
6.27	Simulated vs. observed hydrograph for bore # GW080167	157
6.28	Simulated vs. observed hydrograph for bore # GW075013~1	158
6.29	Simulated vs. observed hydrograph for bore # GW075013~2	158
6.30	Simulated vs. observed hydrograph for bore # GW075013~3	159
6.31	Simulated vs. observed hydrograph for bore # GW075014	159
6.32	Simulated vs. observed hydrograph for bore # GW075015~1	160

.

Simulated vs. observed hydrograph for bore # GW075015~2	160
Simulated vs. observed hydrograph for bore # GW080164	161
Simulated vs. observed hydrograph for bore # GW080163	161
Simulated vs. observed hydrograph for bore # GW075038~1	162
Simulated vs. observed hydrograph for bore # GW075038~2	162
Simulated vs. observed hydrograph for bore # GW075012~1	163
Simulated vs. observed hydrograph for bore # GW075012~1	163
Simulated vs. observed hydrograph for bore # GW075016	164
Simulated vs. observed hydrograph for bore # GW080168	164
Simulated vs. observed hydrograph for bore # GW080166	165
Simulated vs observed hydrograph for bore # GW080165	165
Sum of Square Residual for 20 DNR monitoring bores through the calibration period (Jan 1985 – Oct 2003)	166
Monitoring bores SSQR comparison between calibration and verification period	167
Scatter diagram of observed versus modelled head targets through the model layers	170
Simulated vs. observed baseflow in reach 400	172
Simulated vs. observed baseflow in reach 401	173
Simulated vs. observed baseflow in reach 201	173
Simulated vs. observed baseflow in reach 30	174
Simulated vs. observed baseflow in reach 301	174
Sensitivity to horizontal hydraulic conductivity (0.15 m/d)	177
Sensitivity to horizontal hydraulic conductivity (0.045 m/d)	177
Sensitivity to horizontal hydraulic conductivity (0.03 m/d)	178
Sanaitivity to havigantal hydraulia conductivity (0.001m/d)	178
Sensitivity to horizontal hydraulic conductivity (0.001m/d)	170
	Simulated vs. observed hydrograph for bore # GW080164 Simulated vs. observed hydrograph for bore # GW075038~1 Simulated vs. observed hydrograph for bore # GW075038~2 Simulated vs. observed hydrograph for bore # GW075012~1 Simulated vs. observed hydrograph for bore # GW075012~1 Simulated vs. observed hydrograph for bore # GW075016 Simulated vs. observed hydrograph for bore # GW080168 Simulated vs. observed hydrograph for bore # GW080166 Simulated vs. observed hydrograph for bore # GW080165 Sum of Square Residual for 20 DNR monitoring bores through the calibration period (Jan 1985 – Oct 2003) Monitoring bores SSQR comparison between calibration and verification period Scatter diagram of observed versus modelled head targets through the model layers Simulated vs. observed baseflow in reach 400 Simulated vs. observed baseflow in reach 401 Simulated vs. observed baseflow in reach 201 Simulated vs. observed baseflow in reach 301 Sensitivity to horizontal hydraulic conductivity (0.15 m/d) Sensitivity to horizontal hydraulic conductivity (0.03 m/d)

6.57	Sensitivity to vertical hydraulic conductivity (0.00004 m/d)	179
6.58	Sensitivity to vertical hydraulic conductivity (0.00005 m/d)	180
6.59	Sensitivity to specific yield (0.0175 m/d)	180
6.60	Sensitivity to specific yield (0.01 m/d)	181
6.61	Sensitivity to specific yield (0.0045 m/d)	181
6.62	Sensitivity to storage coefficient (0.000175 m/d)	182
6.63	Sensitivity to storage coefficient (0.0001 m/d)	182
6.64	Sensitivity to storage coefficient (0.000045 m/d)	183
6.65	Sensitivity to rainfall recharge zone 1 (13% rainfall)	183
6.66	Sensitivity to rainfall recharge zone 2-9 (5% rainfall)	184
6.67	Sensitivity to rainfall recharge zone 10 (10.5% rainfall)	184
6.68	Sensitivity to rainfall recharge zone 11 (14% rainfall)	185
6.69	Sensitivity to drain conductance	185
6.70	Monitoring bores SQR comparison between the baseline calibration with pumping and with no pumping scenario	186
6.71	The impact of scenario with no pumping on the hydrographs in bore GW064051	187
6.72	The impact of scenario with no pumping on the hydrographs in bore GW075010	188
7.1	Groundwater path lines resulting from particle tracking at top of Mangrove Mountain	190
7.2	Path lines and travel times through cross sectional view in Mangrove Mountain (Row 40, Column 30)	191
7.3	Groundwater path lines resulted from backward particle tracking at the drain cells	192
7.4	Path lines and travel times through cross sectional of the plan view for backward tracking into the drain cells	193
8.1	Schematic diagram for stream-aquifer interaction stages	195
8.2	Flowchart for coupling MODFLOW-SURFACT with GAMS using the response matrix approach	197

8.3	Bores location map	201
8.4	Hypothetical bores network in Ourimbah -Wyong catchments at layer 28	202
8.5	Optimal pumping cell location map in WSP area	206
8.6	Baseflow reduction versus hydraulic gradient reduction	210
8.7	Trade-off curve in WSP area	210
8.8	Optimal pumping cell location map in Brisbane-Water Catchment	213
8.9	Baseflow reduction versus hydraulic gradient reduction	216
8.10	Trade-off curve in Brisbane Water Catchment	216
8.11	Optimal pumping cell location map in Ourimbah catchment	219
8.12	Baseflow reduction versus hydraulic gradient reduction	222
8.13	Trade-off curves for Ourimbah catchment	223
8.14	Optimal pumping cell location map in Wyong catchment	225
8.15	Baseflow reduction versus hydraulic gradient reduction	228
8.16	Trade-off curves for Wyong catchment	229
8.17	Optimal pumping cell location map in all catchments	233
8.18	Optimal cell drawdown at the observation sites in all catchments under scenario 5	,235
8.19	Baseflow reduction versus hydraulic gradient reduction	239
8.20	Baseflow reduction versus hydraulic gradient reduction	239
8.21	Trade-off curves for the water sharing plan and the outside areas	240
8.22	Trade-off curve for the combination water sharing plan and the outside areas	241
8.23	Hypothetical Bores Network in Layer 1	242
8.24	Hypothetical Bores Network in Layer 15	243
8.25	Hypothetical Bores Network in Layer 30	244
8.26	Sustainable yield variation with the layers	245

xvi

8.27	Location map for the optimal hypothetical pumping cells at Layer 15 and change of the hydraulic gradient by 10%	249
8.28	Baseflow reduction versus hydraulic gradient reduction in Layer 15	250
8.29	Trade-off curve for hypothetical pumping cells at Layer 15 in water sharing plan area	251
8.30	Seasonal rainfall variations at Peats Ridge rainfall station	252
8.31	Cumulative distribution function for Gosford rainfall station	253
8.32	Cumulative distribution function for Gosford rainfall station	253
8.33	Optimal pumping cells location map in summer season	259
8.34	Optimal pumping cells location map in autumn season	260
8.35	Optimal pumping cells location map in winter season	261
8.36	Optimal pumping cells location map in spring season	262
8.37	Optimal pumping cells location map in dry condition	263
8.38	Optimal pumping cells location map in wet condition	264
8.39	Optimal cell drawdown at the observation sites in all catchments during summer season	266
8.40	Optimal cell drawdown at the observation sites in all catchments during autumn season	267
8.41	Optimal cell drawdown at the observation sites in all catchments during winter season	268
8.42	Optimal cell drawdown at the observation sites in all catchments during spring season	269
8.43	Optimal cell drawdown at the observation sites in all catchments during dry condition	270
8.44	Optimal cell drawdown at the observation sites in all catchments during wet condition	271
8.45	Trade-off curves for the water sharing plan under different climate conditions	279
8.46	Trade-off curves for the Wyong catchment under different climate conditions	279
8.47	Trade-off curves for the Ourimbah catchment under different climate conditions xvii	280

conditions

- 8.48 Trade-off curves for the Brisbane catchment under different climate 280 conditions
- 8.49 Trade-off curves for the combination water sharing plan and the 281 outside areas under different climate conditions
- 8.50 Sustainable yield versus rainfall for each catchment in Kulnura- 282 Mangrove area
- 8.51 Sustainable yield versus rainfall for all catchments in Kulnura- 282 Mangrove area

LIST OF TABLES

,

Fable	Title	Page
2.1	Estimation of annual recharge, water requirements and sustainable yield for each groundwater source	10
2.2	Daily flow sharing arrangements with Total Daily Extraction Limits TDEL ML/day	14
2.3	Daily flow sharing arrangements with Total Daily Extraction Limits TDEL ML/day	18
2.4	Previous applications of simulation-optimisation models on stream-aquifer system	72
3.1	Catchments description in the study area	77
4.1	Rainfall Stations in the study area	83
4.2	Statistical parameters for Gosford rainfall station from (July 1916 – May 2003)	84
4.3	Statistical parameters for Peats Ridge rainfall station from (Oct 1981 – August 2005)	86
4.4	Statistical parameters for Kulnura North rainfall station from (Oct 1959 – November 2001)	88
4.5	Statistical parameters for Laguna rainfall station from (April 1959 – April 2003)	90
4.6	Location of the stream flow gauges	98
4.7	Groundwater monitoring bores in Kulnura-Mangrove Mountain area	105
5.1	Stratigraphy of the study area	114
5.2	Section of Gosford Formation, Narrabeen Group, in Gosford district	118
6.1	Top and Bottom Elevation for each Layer	129
6.2	Flow Reach Description	136
6.3	Comparison of baseflow from two different hybase runs	139

6.4	Comparison between estimated and simulated baseflow in steady- state calibration	149
6.5	Comparison between estimated and simulated baseflow in the previous and current model	
6.6	Groundwater budget of the model during the steady state calibration	149
6.7	Ranges of the calibrated hydraulic parameters	154
6.8	Number of measurements and SQR for each DNR monitoring bore through the calibration and verification processes	167
6.9	Calibration performance measures	169
6.10	Quantitative measures summary for the calibration performance in the regional complex Kulnura-Mangrove model	170
6.11	Global Water Budget at the end of stress period 250	171
6.12	SQR comparison with and without pumping for each monitoring bore	18 7
8.1	A typical GAMS program structure	199
8.2	The entitlement for SDF bores	200
8.3	Number of the hypothetical bores in the proposed layer	202
8.4	Optimisation model zone number characteristics	203
8.5	Sustainable yield in WSP area	205
8.6	Statistical summary for the optimal pumping bores in WSP at 10% hydraulic gradient reduction tolerance fraction	206
8.7	Statistical summary of the optimal pumping layer	207
8.8	Statistical summary for the drawdown at the observation sites at 10% hydraulic gradient reduction tolerance fraction	208
8.9	Statistical summary for the residual drawdown between MODFLOW-SURFACT and Response Matrix Optimisation at 10% hydraulic gradient reduction tolerance fraction	209
8.10	Baseflow reduction in WSP area	210
8.11	Sustainable yield in Brisbane Water Catchment	211
8.12	Statistical summary for the optimal pumping bores	212

8.13	Statistical summary for the drawdown at the observation sites at 10% hydraulic gradient reduction tolerance fraction	214
8.14	Statistical summary for the residual drawdown between MODFLOW-SURFACT and Response Matrix Optimisation at 10% hydraulic gradient reduction tolerance fraction	215
8.15	Baseflow reduction in Brisbane-Water Catchment	215
8.16	The sustainable yield in Ourimbah catchment	217
8.17	Statistical summary for the optimal pumping bores at 10% hydraulic gradient reduction tolerance fraction	218
8.18	Statistical summary of the candidate bores in Ourimbah Catchment at 10% hydraulic gradient reduction tolerance fraction	218
8.19	Statistical summary for the drawdown at the observation sites at 10% hydraulic gradient reduction tolerance fraction	220
8.20	Statistical summary for the residual drawdown between MODFLOW-SURFACT and Response Matrix Optimisation at 10% hydraulic gradient reduction tolerance fraction	221
8.21	Actual baseflow reduction in Ourimbah catchment	222
8.22	The sustainable yield in Wyong catchments	223
8.23	Statistical summary for the optimal pumping bores at 10% hydraulic gradient reduction tolerance fraction	224
8.24	Statistical summary of the candidate bores in Wyong Catchment at 10% hydraulic gradient reduction tolerance fraction	224
8.25	Statistical summary for the drawdown at the observation sites at 10% hydraulic gradient reduction tolerance fraction	225
8.26	Statistical summary for the residual drawdown between MODFLOW-SURFACT and Response Matrix Optimisation at 10% hydraulic gradient reduction tolerance fraction in Wyong Catchment	227
8.27	Actual baseflow reduction in Wyong catchment	228
8.28	Sustainable yield variations with hydraulic gradient reduction tolerance fraction in all catchments	230
8.29	Sustainable yields comparison with the previous scenarios for all catchments	231

8.30	Statistical summary for the optimal pumping bores at 10% hydraulic gradient reduction tolerance fraction	232
8.31	Statistical summary of the candidate bores in all catchments at 10% hydraulic gradient reduction tolerance fraction	232
8.32	Statistical summary for the drawdown at the observation sites at 10% hydraulic gradient reduction tolerance fraction	234
8.33	Statistical summary for the residual drawdown between MODFLOW-SURFACT and Response Matrix Optimisation at 10% hydraulic gradient reduction tolerance fraction in all areas	236
8.34	Actual baseflow reduction in all zones	238
8.35	Sustainable yield summary for all areas under scenario 5	240
8.36	35 Sustainable yield in WSP area	245
8.37	Statistical summary for the optimal pumping cells at 10% Hydraulic Gradient Reduction tolerance fraction and maximum pumping use = $240 \text{ m}^3/\text{d}$	246
8.38	Statistical summary for the drawdown at the observation sites at 10% Hydraulic Gradient Reduction tolerance fraction and maximum pumping use = $240 \text{ m}^3/\text{d}$	247
8.39	Variation in actual baseflow reduction with layers at 10% hydraulic gradient reduction	248
8.40	Sustainable yield in Layer 15 and at Maximum Pumping Use 240 m^3/d	248
8.41	Actual baseflow reduction in layer 15	250
8.42	Number of the pumping cells location within the catchment	254
8.43	Sustainable yield variations with hydraulic gradient reduction tolerance fraction in all catchments for each season	256
8.44	Sustainable yield variations with hydraulic gradient reduction tolerance fraction in all catchments for each season	257
8.45	Statistical summary for the optimal pumping bores at 10% hydraulic gradient reduction tolerance fraction	258
8.46	Statistical summary for the drawdown at the observation sites at 10% hydraulic gradient reduction tolerance fraction	265
8.47	Actual baseflow reduction in all zones during summer conditions	273

xxii

8.48	Actual baseflow reduction in all zones during autumn conditions	274
8.49	Actual baseflow reduction in all zones during winter conditions	275
8.50	Actual baseflow reduction in all zones during spring conditions	276
8.51	Actual baseflow reduction in all zones during dry conditions	277
8.52	Actual baseflow reduction in all zones during wet conditions	278
8.53	Sustainable yield for each catchment at 10% baseflow reduction under different climate conditions	281

LIST OF SYMBOLS

Symbol	Description	Chapter
GWCWA	Gosford Wyong Councils' Water Authority	1
DNR	Department of Natural Resources	1, 2, 6, 8, 9
KMMA	Kulnura – Mangrove Mountain Aquifer	9
DIPNR	Department of Infrastructure, Planning and Natural Resources	2
WSP	Water Sharing Plan	2, 8, 9
f_k	filtered quickflow response at the k th sampling instant	2
${\mathcal{Y}}_k$	original streamflow at the k th sampling instant	2
\mathcal{Y}_{k-1}	original streamflow at the previous sampling instant to k	2
α	filter parameter representing the degree of attenuation	2
q_k	filtered baseflow response at the k^{th} sampling instant	2
Р	probability of a given flow being equalled or exceeded	2
m	rank for a discharge value	2
n	total number of streamflow readings	2
Qt	streamflow at time t	2
Qo	initial streamflow at the start of the recession segment	2
ΔQ	stream depletion flow rate	2
Qw	constant flow rate abstracted at well from $t = 0$ to $t = \infty$	2
S	aquifer storage coefficient, specific yield or effective porosity	2
t	time	2,6
I	the shortest distance between the well and stream edge	2
L	stream leakance that has a dimension of length	2

К	aquifer hydraulic conductivity	2
K'	streambed hydraulic conductivity	2
<i>b</i> ′	thickness of semipervious layer	2
SDF	Stream Depletion Factor	2
λ	Hunt's leakage coefficient	2
M_a	number of active cells in the study area	2
а	cell index number	2
ga	groundwater extraction by pumping in cell a	2
Sa	surface water diversion in cell a for use in cell a	2
ga,k	groundwater extraction from cell a in time period k	2
$d_{a,k}$	streamflow diversion or reservoir release from reach e in time period k	2
Мр	total candidate number of cells from which groundwater withdrawal is optimised	2
Md	total number of potential stream diversion reaches	2
$C_{a,k}$	coefficients to perform minimisation, maximisation or economic optimisation on groundwater extraction	2
$C_{e,k}$	coefficients to perform minimisation, maximisation or economic optimisation on streamflow diversion	2
NW	total number of wells	2
ND _k	number of days in planning period k	2
TP	total number of planning periods	2
QWi, k	withdrawal rate at well i during planning period k	2
Qj.1	streamflow at reach j during time period t	2
$Q^{*}{}_{j,t}$	minimum allowed streamflow at reach j in time t	2
Qsd _{j,t}	streamflow depletion at streamflow constraint site j in month t	2
(Qsd _{j,t})max	maximum rate of streamflow depletion allowed at site j in month t	2
	171/11	

in month t

$Qsd_{j,t}^*$	streamflow depletion at site j in month t in response to a unit withdrawal Qw_i at well i	2
r _{j,i,t}	response coefficients for each well and streamflow constraint site pair	2
$\begin{array}{c} Qw_{i,t1} \text{ and } \\ Qw_{i,t2} \end{array}$	withdrawal rates at well i in month t1 and t2	2
A 11,2	ratio of total demand in month t1 to total demand in month t2	2
S(k,n)	drawdown at site k at the end on nth period	2
$\beta(k, j, n-i+1)$	response coefficients	2
q(j,i)	pulse pumping at site j and time i	2
М	total number of wells	2
n	total number of planning periods	2
k	observation site location	2
RM	Residual rainfall mass	4
RAINmonth	Total monthly rainfall in month A	4
RAINmonth	Mean monthly rainfall for month A in all years	4
®	Automatic Water Level Recorder	4
AMG	Australian Map Grid	4
AHD	Australian Height Datum ≈Mean Sea Level	4
K _x , K _y , K _z	values of hydraulic conductivity along the x, y and z coordinate axes	6
K _{rw}	relative permeability, which is a function of water saturation	6
h	hydraulic head	6
W	volumetric flux per unit volume and represents sources and/or sinks of water per unit of time	6

Sw	degree of saturation of water, which is a function of the	6
C -	pressure head	,
Ss	specific storage of the porous material	6
Sy	specific yield	6
Q	flux into boundary cell	6
Hb	boundary head	6
Hm	head computed by model	6
С	boundary conductance	6
Kb	hydraulic conductivity of the boundary material	6
Α	area of the boundary	6
В	thickness or width of boundary	6
SQR	Sum of Squares Residual	6
Wi	dimensionless weighting fraction (ranges from 0 to 1)	6
	for each i measurement in n samplings of data	
hi	modelled head	6
Hi	measured head	6
Ri	Residual	6
SR	Sum of Residuals	6
MSR	Mean Sum of Residuals	6
SMSR	Scaled Mean Sum of Residuals	6
SSQ	Sum of SquaresResidual	6
MSSQ	Mean Sum of Squares	6
RMS	Root Mean Square	6
RMRS	Root Mean Fraction Square	6
SRMFS	Scaled Root Mean Fraction Square	6
SRMS	Scaled Root Mean Square	6
CD	Coefficent of Determination	6

w	total number of bores	8
р	total number of planning periods $p \ge 1$	8
Q _{k,t}	total amount of groundwater withdrawal at bore k and planning period t	8
DD (i,j)	Maximum allowed drawdown during pumping	8, A
H _{OS} (i,j)	Natural pre-pumping head at the observation site i,j	8
H _{DB} (i,j)	Head at the drain (stream) boundary i,j	8, A
Т	hydraulic gradient reduction tolerance fraction	8, A
GAMS	General Algebraic Modelling System	8
SDF	Stock-Domestic-Farming bores	8
H _{N(i,j)}	Natural pre-pumping head at the observation site i,j	Α
H _{S(i,j)}	Stressed during-pumping head at the observation site i,j	Α
x	Distance between the observation site and the drain boundary	A
$\Delta H_{N(i,j)}$	Head difference between the observation site i,j at pre- pumping condition and the drain boundary i,j	Α
$\Delta H_{S(i,j)}$	Head difference between the observation site i,j during pumping and the drain boundary i,j	A

ABSTRACT

The public water supply in the Gosford-Wyong area of New South Wales is reliant on streams that originate in elevated sandstone country. About half of the stream flow is believed to be baseflow from the sandstone aquifer system in the Kulnura - Mangrove Mountain area. At the same time as the population is growing steadily on the coast, there is increased demand for groundwater for horticultural, agricultural and industrial purposes along the sandstone ridges. Hence, good groundwater management is critical, to ensure that stream baseflow is not jeopardised.

A management model that couples a simulation model with an optimisation model has been developed for the Kulnura-Mangrove Mountain aquifer system to evaluate the trade-offs between increased aquifer yields and baseflow reduction. The project has been successful in developing trade-off curves for sustainable yield versus reduction in baseflow. It is believed that this is the first time that rigorous trade-off curves for sustainable yield have been developed for a stream-aquifer system in Australia.

The objectives of this research were to determine the sustainable yield(s) of the aquifer system in relation to extraction limits from both groundwater and surface water; to determine the magnitude, distribution and dynamics of baseflow to the streams which drain the Kulnura – Mangrove Mountain aquifer; to determine groundwater entitlement limits that would preserve baseflow to streams in order to facilitate groundwater allocation policy; and to explore how groundwater extraction limits would change for tolerable reductions in baseflow.

The simulation model is necessarily coarse, with 500 m spatial resolution, as replication of a very large regional aquifer was required. Given the wide variation in vertical relief in the area, approximately 400 metres, it was necessary to divide the vertical profile into 30 layers. Otherwise, it would not have been possible to track the many baseflow-receiving creeks that descend from high elevations to the sea.

The calibration results of the simulation model show that the model performs very well in representing the values and the patterns of groundwater level for both steady state and transient conditions, is able to reproduce large vertical hydraulic gradients between aquifer layers, and also replicates baseflow reasonably well.

The optimisation model was developed with the objective of preserving stream baseflow within tolerable limits while maximising the pumping rates from the aquifer system. Constraints were designed in terms of hydraulic gradient, with reduction tolerance ranges from 0.1 % to 10 %. Conversion from hydraulic gradient reduction to baseflow reduction was achieved by running reported optimal production patterns through the model in simulation mode. This work differs from that of previous researchers in not making a pre-emptive assumption of linearity between groundwater pumping and stream baseflow.

A very large optimisation problem has been solved in this study, consisting of up to 5700 decision variables and 8000 constraints. The study has been successful in generating trade-off curves that will provide a scientific basis for government / community decisions on responsible water allocation between computing users.