University of Technology, Sydney

Faculty of Science

A STUDY OF THIN-FOIL ROLLING AND THE DEVELOPMENT OF AN AI-Fe-Mn-Si LIGHT GAUGE FOIL ALLOY

Part 1

Course: N054 Doctorate in Science – (by Thesis)

Author: Matthew Mansell

Supervisor: Dr. Greg Heness

2007

九 SHIVERSITY OF YESHINGLOC LIERARY SYDNEY ,#

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work presented in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

14th December 2006.

ACKNOWLEDGMENTS

I would like to thank the following people who have assisted in the production of this thesis:

IAS, in particular Tony Santino for assistance on modelling of thin film foils.

ALCOA AUSTRALIA ROLLED PRODUCTS for their support on this project.

Dr Greg Heness, who's assistance was essential in completing this thesis, and his support in upgrading from a masters to a doctorate in Applied Science.

Milt Milner, Rob Sanders Jr, Mike Ringle, Tom Rouns and other members of ATC for there assistance in analysing the microstructure.

Jennifer Russell, Paul Munro and members of the Department of Physics – UTS for their assistance with surface topography.

My wife Fiona, children Tamika and Jai - Your support and patience over the years has kept me going when I wanted to stop, and I dedicate this to you.

CONTENTS

CERTIFIC	CATE OF AUTHORSHIP/ORIGINALITY	2
ACKNOW	LEDGMENTS	3
CONTEN	ГS	4
LIST OF F	FIGURES	9
LIST OF 1	TABLES	14
ABSTRAG	СТ	15
CHAPTER	R 1 INTRODUCTION	16
1.1.	World Growth - Export Overflow	16
1.2.	Aluminium Foil: Innovations and Outlooks	
1.3.	Foil in Australia – Thesis Justification	21
LITERAT	URE SURVEY	24
CHAPTEI	R 2 ALUMINIUM AND ITS ALLOYS	25
2.1.	Introduction	25
2.2.	Aluminium Designations	27
2.3.	Foil Alloys	31
2.3.1.	Aluminium – The Metal	32
2.3.2.	1xxx Alloys	33
2.3.2.1.	The Effect of Individual Additions for Foil Alloys	35
2.3.2.2.	Casting of Aluminium Alloys	
2.3.2.3.	Phases and Microstructure in lxxx Alloys	47
2.3.2.4.	Strengthening Mechanisms in Foil Alloys	51
2.3.2.5.	Annealing of 1xxx Alloys	59
2.3.2.6.	Surface Oxide Studies	61
2.3.3.	8XXX Alloys	67

CHAPTER	3 ROLLING THEORY
3.1.	Introduction72
3.2.	Circular Arc Rolling Model (Orowan's Model)75
3.2.1.	Asymptotic Techniques80
3.2.2.	Finite Element Methods
3.3.	Non-Circular Arc Rolling Model82
3.3.1.	Roll Pressure in the Plastic Region
3.3.2.	Roll Pressure in the Elastic Region
3.3.3.	Roll Deformation Model
3.3.4.	Yield Stress Model
3.3.5.	Temperature Model
3.3.6.	Initialisation and Convergence Algorithm90
3.4.	Particle Break-Up Modelling
3.4.1.	Introduction - Particle Effects on Recrystallisation91
3.4.2.	Particle Break-up Theory93
3.4.2.1.	Log-Normal Distribution95
3.4.2.2.	Fracture of Brittle Particles Theory97
3.4.2.3.	Comminution Theory
3.4.2.4.	Model Development
CHAPTER	4 ROLLING LUBRICATION – TRIBOLOGY
4.1.	Functions of Lubrication102
4.2.	Fundamentals in Metalworking104
4.2.1.	Lubrication Regimes107
4.3.	Rolling Lubricants111
4.3.1.	Base Oils111
4.3.2.	Lubricant Additions113

4.4.	Batch versus Flash Annealing of Foil Alloys116
4.5.	General Adhesion Principles - Stickiness119
CHAPTER	5 WEB HANDLING
5.1.	Introduction124
5.2.	Metal Dimensions125
5.3.	Traction128
5.3.1.	Air Entrapment128
5.3.2.	Lubricant129
5.4.	Tension131
5.4.1.	Torque Capacity132
5.4.2.	Torque Calculations134
5.4.3.	Inertial effects (acceleration / deceleration)135
5.5.	Wrinkles / Creasing137
5.5.1.	Non-Uniform Strip Elongation139
5.5.1.1.	Shape139
5.5.1.2.	Tension Buckling140
5.5.1.3.	Ripple Collapse Producing Creasing140
5.5.2.	Shape Issues143
5.5.3.	Reducing Creasing through Mechanical Means148
BENCHM	ARKING AND OPTIMISATION151
CHAPTER	6 WEB FAILURE
6.1.	Miscellaneous Web Failures153
6.1.1.	Casting Defects153
6.1.2.	Rolling Defects157
6.1.3.	Handling or Storage Defects164
6.2.	Other Influences on Web Failure

6.2.1.	Effects of Boundary Lubrication on Web Failure166
6.2.1.1.	Experimental167
6.2.1.2.	Discussion - Development of the Mansell Curve
6.2.1.3.	Conclusion173
6.2.2.	Effects of Entrained Polymers on Web Failure174
6.2.2.1.	Experimental Procedure174
6.2.2.2.	Results of the Investigation175
6.2.2.3.	Discussion and Conclusion178
6.2.3.	Filtration Methods for Foil - Web Failure179
6.2.3.1.	Experimental Procedure181
6.2.3.2.	Results and Discussion183
6.2.3.3.	Conclusion186
CHAPTER	7 STEADY-STATE VELOCITY VARIABLES
7.1.	Introduction188
7.2.	Initial Settings190
7.2.1.	Exit Tension / Stress191
7.2.2.	Entry Tension / Stress194
7.2.3.	Load198
7.2.4.	Coolant Temperature / Viscosity200
7.3.	Final Speed Settings201
7.4.	Break Rate204
7.5.	A Comparison between Chromed and Steel Work Rolls205
7.5.1.	Chroming Process
7.5.2.	Speed changes
7.5.3.	Pinholes209
7.5.4.	Conclusion211

REFERENCES	•••••••••••••••••••••••••••••••••••••••	2
REFERENCES		••••

8

.

LIST OF FIGURES

Figure 1.1.	Aluminium foil deliveries 1997-2004 to the EAFA	.17
Figure 1.2.	Foil domestic market 1980 - 89, 1997 - 2003	.21
Figure 2.1.	Primary aluminium production by region	26
Figure 2.2.	Recent growth of aluminium production in the western world	.26
Figure 2.3.	Temper designations	.30
Figure 2.4.	Typical concentration of iron and silicon in foil alloys Al-Fe(Mn)-Si	
	(1xxx, 8xxx), Al-Fe-Mn (8xxx)	.31
Figure 2.5.	Segregation effects in a 1xxx series alloy	.36
Figure 2.6.	Cake-mode filtration	.41
Figure 2.7.	Depth-mode filtration	.41
Figure 2.8.	Section of a CFF	.42
Figure 2.9.	Filter section of a RMF	.43
Figure 2.10.	Isochronal annealing curve for alloy 1100-H19	.51
Figure 2.11.	Typical burst strengths	.52
Figure 2.12.	Variation of yield strength with grain size	.53
Figure 2.13.	Volume fraction in 1xxx alloys	.55
Figure 2.14.	Schematic representation of Orowan looping.	.56
Figure 2.15.	Cell dislocation cellular Structures	.56
Figure 2.16.	Effects of alloy additions on aging in aluminium, (a) atomic %; (b)	
	weight %	.58
Figure 2.17.	Effects of alloy additions on UTS in aluminium	.58
Figure 2.18.	Effects of alloy additions on yield strength in aluminium	.58
Figures 2.19	- 2.20. Cold work and time/temperature factors for 1XXX alloy	.59
Figure 2.21.	Schematic Model of Oxide Film Growth for Al-Mg Alloys	.63
Figure 2.22.	SEM photos of foil surfaces 500x – bright side	.65

9

Figure 2.23.	SEM photos of foil surfaces 500x - matte side65
Figure 2.24.	Secondary ion mass spectroscopy of matte foil surface for 1145 alloy -
	free unwind
Figure 2.25.	X-ray photoelectron spectroscopy of matte foil surface for 1145 alloy -
	sticky unwind
Figure 2.26.	Aluminium - iron phase diagram69
Figure 2.27.	Aluminium – iron – silicon phase diagram70
Figure 2.28.	Aluminium – iron – manganese - silicon phase diagram71
Figure 3.1.	Major areas associated with flat rolling technology72
Figure 3.2.	Rolling regimes for different mill types74
Figure 3.3.	Slab-based rolling model76
Figure 3.4.	Roll gap geometry
Figure 3.5.	Typical roll gap profile as predicted by the Fleck and Johnson model83
Figure 3.6.	Jortner influence function normalised to have unit maximum85
Figure 3.7.	Pressure spike from roll flattening
Figure 3.8.	Conditions of strain and particle size for which PSN occurs in an
	aluminium silicon alloy93
Figure 3.9.	Particle dimensions
Figure 4.1.	Wilson – Walowitz equation106
Figure 4.2.	Stribeck curve108
Figure 4.3.	Modified Stribeck diagram110
Figure 4.4.	Variation of viscosity with temperature for mineral oils112
Figure 4.5.	Schematic illustration of the mode of action of a compound oil-based
	lubricant115
Figure 4.6.	Tensile strength versus temperature for flash annealing116
Figure 4.7.	Tensile strength versus thickness for flash annealing116
Figure 4.8.	Softening in aluminium - iron alloys, 8079 and IN30118

Figure 4.9.	Grain size effect on bending and burst strength for 8079 and IN30118
Figure 4.10.	Idealised time/temperature diagram from Dean and Hauser121
Figure 4.11.	Schematic for the development of coil stickiness and wettability 123
Figure 5.1.	Web camber126
Figure 5.2.	Wedge and profile measurements
Figure 5.3.	Ironing roll
Figure 5.4.	COF collapse130
Figure 5.5.	Web tension131
Figure 5.6.	Torque capacity132
Figure 5.7.	Clockspring schematic
Figure 5.8.	Torque calculations using the Capstan equation135
Figure 5.9.	Inertial effects – acceleration
Figure 5.10.	Inertial effects – deceleration
Figure 5.11.	Wrinkles on light film web
Figure 5.12.	Stress distribution
Figure 5.13.	Web rigidity
Figure 5.14.	Wavy edges143
Figure 5.15.	Centre buckles144
Figure 5.16.	Quarter buckle
Figure 5.17.	Hot spots146
Figure 5.18.	Hot buckling147
Figure 5.19.	Idler rolls148
Figure 5.20.	Herringbone roll149
Figure 5.21.	Curved roll
Figure 6.1.	'Normal' foil surface (x75)168
Figure 6.2.	Ladder defect (x75)169

Figure 6.3.	Ladder defect (x200)169
Figure 6.4.	Surface specimens at different rolling speeds170
Figure 6.5.	Specimen surface with penetrating lubricant pockets
Figure 6.6.	Herringbone Defect
Figure 6.7.	Mansell curve – film thickness versus film strength for 6.5µm 1145 foil
Figure 6.8.	Macrophoto of defect
Figure 6.9.	FTIR finger print for black stain for samples (a) 6.5 micron and (b) 220 micron
Figure 6.10.	EDAX analysis for the black stain on the 220 micron sample177
Figure 6.11.	Pinholes in light gauge foil
Figure 6.12.	Light box used to calculated pinholes, (a) general (b) in use182
Figure 6.13.	Roll changes per year (a mevil is coil weight divided by the width in centimeters)
Figure 6.14.	Roll Change Frequency (all values are 6.5 micron 1145 product unless stated)
Figure 6.15.	Break Rate Trials for 6.5µm 1145 foil185
Figure 6.16.	Pinhole Comparison between DBF and CCF Product186
Figure 7.1.	Variation in speed with tension189
Figure 7.2.	Exit tension – breakdown pass191
Figure 7.3.	Exit stress – breakdown pass192
Figure 7.4.	Exit tension – final single192
Figure 7.5.	Exit stress – final single
Figure 7.6.	Exit tension – double pass193
Figure 7.7.	Exit stress - double pass
Figure 7.8.	Entry tension – breakdown pass195
Figure 7.9.	Entry stress – breakdown pass195

Figure 7.10. Entry tension – final single	
Figure 7.11. Entry stress – final single	
Figure 7.12. Entry tension – doubling pass	
Figure 7.13. Entry tension – doubling pass	
Figure 7.14. Load – breakdown pass	198
Figure 7.15. Load – final single	199
Figure 7.16. Load - double pass	200
Figure 7.17. Speed increase with modified rolling parameters - 29µm	202
Figure 7.18. Speed increase with modified rolling parameters - 14µm	202
Figure 7.19. Speed increase with modified rolling parameters – 13Dµm	203
Figure 7.20. Speed versus breakrate relations – 13µm doubled product	204
Figure 7.21. Schematic of chrome nodules at work roll surface (80x)	
Figure 7.22. Micro-finished surface of work roll (40x)	207
Figure 7.23. Final work roll finish at surface of work roll (40x)	208
Figure 7.24. Pinhole count for steel and chrome rolls	

LIST OF TABLES

Table 1.1.	US aluminium foil shipments (including imports)18
Table 2.1.	Designation system and precipitates for aluminium
Table 2.2.	Atomic and nuclear properties
Table 2.3.	Effect of purity on the properties of 1xxx alloys
Table 2.4.	Effect of small additions of chromium, titanium, zirconium on the properties of AA1050 100 micron foil
Table 2.5.	Impurity summary
Table 2.6.	Filtration efficiency
Table 2.7.	Inclusions in aluminium40
Table 2.8.	Advantages/disadvantages of filtration types44
Table 2.9.	Filtration summary47
Table 2.10.	Phases present in 1xxx series alloys49
Table 2.11.	Typical mechanical properties for various tempers and purities60
Table 2.12.	Mechanical properties of aluminium-iron alloys
Table 4.1.	Wilson - Walowitz variables105
Table 4.2.	Addition film parameters106
Table 5.1.	Effect of thickness127
Table 6.1.	Typical pinhole variation with decreasing gauge179
Table 6.2.	Process flow path
Table 6.3.	Predicted tangible and financial benefits of using DBF metal187
Table 7.1.	Mill speed variables
Table 7.2.	Suggested rolling parameters – Foil Mill 2 Yennora
Table 7.3.	Effect of surface on rolling speed

ABSTRACT

There has been a trend in recent years to produce thinner but stronger thin-foil aluminium alloys at higher production velocities. This thesis discusses and examines product quality, rolling parameters, thermal treatment, web handling and alloy development in the context of the production of thin-foil aluminium products. The information is to be included in the ALCOA metallurgical database

Web failures are categorised and investigated over the life of the project. A short definition is provided followed by remedies to reduce or avoid re-occurrences. The effect of boundary lubrication between the metal and roll surfaces on web failure is summarized by the Mansell curve. The Mansell curve expresses rolling lubrication as a function of film strength and film thickness, and will be useful in determining rolling lubricant composition and temperature.

Optimal settings based on current rolling practices are determined for unwind tension/stress, lubricant viscosity, load and rewind tension/stress to achieve a consistent desired mill speed. The parameters are determined using existing rolling theory and are essential in maintaining production volume with decreasing gauge.

The improved stability of the process provides the foundation for trials on a new unique high strength alloy, AA8150 and accompanying process, developed and registered by the author. Alloy 8150 utilises a unique combination of high cold reduction, solid solution strengthening, constituent and dispersion strengthening to produce a fine grained structure with high strength and formability characteristics.

The wrought aluminium alloy 8150 contains iron, manganese and silicon at greater than 20% from the eutectic composition. High cold reduction with no intermediate thermal treatment results in highly misorientated random alignments in the deformation zone that surround large constituent particles, Al₁₂(FeMn)₃Si and (FeMn)Al₆, making them effective recrystallisation nuclei sites. The Al₁₂(FeMn)₃Si and Al₁₂(MnFe)₃Si dispersoids/precipitates that occur during thermo-mechanical processing reduce the energy of the high angle boundaries, 'pinning' the boundary causing a new boundary to be formed as it curves around the particle, enhancing the nucleation of recrystallisation sites.