University of Technology, Sydney

Faculty of Science

A STUDY OF THIN-FOIL ROLLING AND THE DEVELOPMENT OF AN AI-Fe-Mn-Si LIGHT GAUGE FOIL ALLOY

Part 2

Course: N054 Doctorate in Science – (by Thesis)

Author: Matthew Mansell

Supervisor: Dr. Greg Heness

SHIVERSITY OF TECHNOLOG LIBRARY SYDNEY Å e.,

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work presented in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

Production Note: Signature removed prior to publication.

14th December 2006.

CONTENTS

CERTIFICATE OF AUTHORSHIP/ORIGINALITY2		
CONTENTS		
LIST OF FIG	URES	6
LIST OF TAE	BLES	15
CHAPTER 8	DEVELOPMENT OF AN EXPERIMENTAL PLAN	16
8.1.	Sample Preparation	20
8.1.1.	Collection of 8150 Samples	20
8.1.2.	Preparation of AA8150 Samples	
8.2.	Surface Studies – Experimental Method	
8.2.1.	Introduction	
8.2.2.	Surface Study Techniques	27
8.2.3.	Experimental Method	29
8.3.	Microstructural Evaluation – Experimental Method	
8.2.1.	Microstructure Evaluation – Initial Analysis	
8.2.2.	Detailed Microstructure Evaluation	36
8.2.3.	Mechanical Testing for Light Gauge Samples	
RESULTS, D	DISCUSSION AND CONCLUSION	39
CHAPTER 9	ALLOY INVESTIGATION - RESULTS	40
9.1.	Surface Studies	40
9.1.1.	Surface Roughness	42
9.1.2.	Surface Oxides and Oxide Depth	53
9.1.3.	Surface Composition	62
9.2.	Microstructural Evaluation of AA8150	79
9.2.1.	Microstructure Evaluation – Initial Analysis	79
9.2.2.	Detailed Microstructure Evaluation	

	9.2.2.	Other Observations	134
	9.2.2.1.	Anneal Temperature	.134
	9.2.2.2.	The Effects of Recovery during Cold Rolling	.135
	CHAPTER 1	0 ALLOY INVESTIGATION – DISCUSSION AND CONCLUSIONS	.137
	10.1.	Surface Studies	.137
	10.1.1.	Summary	.142
	10.2.	Microstructure Evaluation	.143
	10.2.1.	Recrystallisation and Recovery	.145
	10.2.2.	Phase-Particle Discussion	.147
	10.2.3.	Synopsis	.153
	10.3.	Processing Variables	.157
	10.3.1.	Annealing Temperature	.157
-	10.3.2.	Cold Rolling Recovery – Exit Temperature	.161
	CHAPTER 1	1 SUMMATION	.162
	APPENDICE	ES	.168
	APPENDIX	1 PROPERTIES OF PURITY ALUMNIUM	.169
	APPENDIX	2 AFFECTS OF ADDITIONS TO 1XXX SERIES ALLOYS	.171
	APPENDIX	3 1145 SPECIFICATIONS.	.173
	APPENDIX	4 LUBRICANTION VISCOSITY FACTORS	.176
	APPENDIX	5 TAKING A MEVIL MEASURE	.178
	APPENDIX	6 SAMPLE PREPARATION SOP	.179
	APPENDIX	6 SAMPLE PREPARATION SOP 7 OPERATION OF A MULLENS TESTER	.179 .187
	APPENDIX APPENDIX APPENDIX	 6 SAMPLE PREPARATION SOP	.179 .187 .188
	APPENDIX APPENDIX APPENDIX APPENDIX	 6 SAMPLE PREPARATION SOP	.179 .187 .188 .188
	APPENDIX APPENDIX APPENDIX APPENDIX	 6 SAMPLE PREPARATION SOP	.179 .187 .188 .189 201
	APPENDIX APPENDIX APPENDIX APPENDIX APPENDIX	 6 SAMPLE PREPARATION SOP	.179 .187 .188 .189 .201 203

APPENDIX 12	RECOVERY AND RECRYSTALLISATION	212
REFERENCES	•••••	223

•

LIST OF FIGURES

Figure 8.1.	Processing routes for 8150 product used in trial21
Figure 8.2.	Sample location in coil. The samples are collected 40mm in from the exposed edge, and 40mm in from the coil outer diameter23
Figure 8.3	Schematic of an X-ray photoelectron spectroscopy that employs the photoelectric effect
Figure 8.4.	'Colony' mode solidification
Figure 8.5.	Unaligned rods
Figure 9.1.	Surface roughness for shiny sample processed using 5-7 Ra roll finish – B1 (a) surface scan (b) box analysis44
Figure 9.2.	Surface roughness for matte sample processed using 5-7 Ra roll finish – B1 (a) surface scan (b) box analysis45
Figure 9.3.	Surface roughness for shiny sample processed using 14-16 Ra roll finish – B2 (a) surface scan (b) box analysis46
Figure 9.4.	Surface roughness for matte sample processed using 14-16 Ra roll finish – B2 (a) surface scan (b) box analysis47
Figure 9.5.	Surface roughness for shiny sample processed using 5 - 7 Ra roll finish – B1 (a) section scan (b) three dimensional image49
Figure 9.6.	Surface roughness for mstte sample processed using 5 - 7 Ra roll finish - B1 (a) section scan (b) three dimensional image
Figure 9.7.	Surface roughness for shiny sample processed using 14-16 Ra roll finish – B2 (a) section scan (b) three dimensional image
Figure 9.8.	Surface roughness for matte sample processed using 14-16 Ra roll finish – B2 (a) section scan (b) three dimensional image
Figure 9.9.	Depth profile for oxygen, aluminium and oxides for shiny thermal treated sample processed using 5 - 7 Ra roll finish –B1
Figure 9.10.	Three dimensional representation of peak count for shiny thermal treated sample processed using 5 - 7 Ra roll finish –B1, (a) oxygen (b) aluminium and aluminium oxide
Figure 9.11.	Depth profile for oxygen, aluminium and oxides for matte thermal treated sample processed using 5 - 7 Ra roll finish –B1
Figure 9.12.	Three dimensional representation of peak count for matte thermal treated sample processed using 5 - 7 Ra roll finish –B1, (a) oxygen (b) aluminium and aluminium oxide

Figure 9.13.	Depth profile for oxygen, aluminium and oxides for shiny thermal treated sample processed using 14 - 16 Ra roll finish -B2
Figure 9.14.	Three dimensional representation of peak count for shiny thermal treated sample processed using 14 - 16 Ra roll finish –B2, (a) oxygen (b) aluminium and aluminium oxide
Figure 9.15.	Depth profile for oxygen, aluminium and oxides for matte thermal treated sample processed using 14 - 16 Ra roll finish – B260
Figure 9.16.	Three Dimensional representation of peak count for matte thermal treated sample processed using 14 - 16 Ra roll finish –B2, (a) oxygen (b) aluminium and aluminium oxide
Figure 9.17.	General surface scans on aluminium sample processed using 5 – 7 Ra roll finish – B1 samples thermally treated at 235°C, (a) shiny surface (b) matte surface
Figure 9.18.	General surface scans on aluminium sample processed using 14 - 16 Ra roll finish – B2 samples thermally treated at 285°C, (a) shiny surface (b) matte surface
Figure 9.19.	High resolution scan for shiny sample processed using 5 - 7 Ra roll finish – B1 samples thermally treated at 235 °C, (a) aluminium (b) oxygen
Figure 9.20.	High resolution scan for shiny sample processed using 5 - 7 Ra roll finish – B1 samples thermally treated at 235 °C, (a) manganese (b) copper
Figure 9.21.	High resolution scan for shiny sample processed using 5 - 7 Ra roll finish – B1 samples thermally treated at 235 °C, (a) carbon
Figure 9.22.	High resolution scan for matte sample processed using 5 - 7 Ra roll finish – B1 samples thermally treated at 235 °C, (a) aluminium (b) Oxygen
Figure 9.23.	High resolution scan for matte sample processed using 5 - 7 Ra roll finish – B1 samples thermally treated at 235 °C, (a) manganese (b) copper
Figure 9.24.	High resolution scan for matte sample processed using 5 - 7 Ra roll finish – B1 samples thermally treated at 235 °C, (a) magnesium (b) carbon
Figure 9.25.	High resolution scan for matte sample processed using 5 - 7 Ra roll finish – B1 samples thermally treated at 235 °C, (a) nitrogen72
Figure 9.26.	High resolution scan for shiny sample processed using 14 - 16 Ra roll finish – B2 samples thermally treated at 285 °C, (a) aluminium (b) oxygen

Figure 9.27.	High resolution scan for shiny sample processed using 14 - 16 Ra roll finish – B2 samples thermally treated at 285 °C, (a) manganese (b) magnesium
Figure 9.28.	High resolution scan for shiny sample processed using 14 - 16 Ra roll finish – B2 samples thermally treated at 285 °C, (a) tin (b) carbon75
Figure 9.29.	High resolution scan for matte sample processed using 14 - 16 Ra roll finish – B2 samples thermally treated at 285 °C, (a) aluminium (b) oxygen
Figure 9.30.	High resolution scan for shiny sample processed using 14 - 16 Ra roll finish – B2 samples thermally treated at 285 °C, (a) manganese (b) tin
Figure 9.31.	High resolution scan for matte sample processed using 14 - 16 Ra roll finish – B2 samples thermally treated at 285 °C, (a) carbon (b) fluorine
Figure 9.32.	Stage micrometer at 500x, 1 division = 10 microns80
Figure 9.33.	Microstructure at 220µm for AA8150 – middle sample. There is a large number of darker rectangular particle as well as some lighter more oval particles
Figure 9.34.	Microstructure at 220µm for AA8150 - edge sample. Similar microstructure to the middle sample, with a large number of darker rectangular particle as well as some lighter more oval particles
Figure 9.35.	Microstructure at $145\mu m$ - pre-anneal, middle and edge sample. Like the $220\mu m$ samples, both samples appear similar in appearance83
Figure 9.36.	Microstructure at $145\mu m$ – post-anneal, middle and edge samples. There does not appear to be any significant differentiation between pre and post annealed sample, middle to edge
Figure 9.37.	Grain structure at 145µm – Sample taken at 200x to pre-anneal, middle and edge sample. 'M' represents the middle sample and 'E' the edge sample. Evidence of complete recrystallisation is present with some large in-homogenous grain growth
Figure 9.38.	Grain structure at $145\mu m$ – post-anneal, middle and edge samples at 400x. The present of a higher number of small rains is apparent on the edge samples when compared to the middle samples
Figure 9.39.	Microstructure at $63\mu m$ – pre-anneal, middle and edge sample. Like the 220 μm and 145 μm samples the structure for edge and middle samples pre anneal is similar

.

Figure 9.40.	Microstructure at $63\mu m$ – post-anneal, middle and edge samples. There does not appear to be any significant difference in appearance between middle and edge. The presence of fine precipitates in both samples is evident on close inspection
Figure 9.41.	Grain structure at $63\mu m$ – sample taken at 200x to pre-anneal, middle and edge sample. 'M' represents the middle sample and 'E' the edge sample. Evidence of complete recrystallisation is present with large in-homogenous grain growth occurring in the M samples
Figure 9.42.	Grain structure at $63\mu m$ – post-anneal, middle and edge samples at 400x. The present of a higher number of small grains is apparent on the edge samples when compared to the middle samples
Figure 9.43.	Microstructure at $12\mu m (500x) - B1 (235^{\circ}C \text{ for } 100 \text{ hours}) \text{ post-anneal taken } 40\text{mm} inform edge. The intermetallic particles are aligned in the rolling direction, with some several microns in length. There is a fine distribution of dispersoid particles through the matrix$
Figure 9.44.	Microstructure at $12\mu m (500x) - B2a (285^{\circ}C \text{ for } 2 \text{ hours})$ post-anneal taken 40mm inform edge. The intermetallic particles are aligned in the rolling direction, with some several microns in length. There is a fine distribution of dispersoid particles through the matrix
Figure 9.45.	Grain structure at $12\mu m (200x) - B1 (235^{\circ}C \text{ for } 100 \text{ hours})$. Evidence of complete recrystallisation with large in-homogenous grain growth across the full width of the sample
Figure 9.46.	Grain structure at $12\mu m (200x) - B2a (285^{\circ}C \text{ for } 2 \text{ hours})$. The present of a higher number of small homogenous grains which are less than half width of the sample
Figure 9.47.	Grain structure at $12\mu m (400x) - B1 (235^{\circ}C \text{ for } 100 \text{ hours})$ Closer inspection of the sample confirms complete recrystallisation with large in-homogenous grain growth across the full width of the sample
Figure 9.48.	Grain structure at $12\mu m (400x) - B2a (285^{\circ}C \text{ for } 2 \text{ hours})$. Closer inspection of the sample confirms complete recrystallisation the presence of a higher number of small grains less than half sample width
Figure 9.49.	EDX analysis with Particle inset (2975x) for 2.7mm sample exit hot rolling. Bright rectangular particles aligned in rolling direction with fracture evident. Particles found to be composed of aluminium, iron, manganese and silicon
Figure 9.50.	Micrograph of 2.7mm structure showing large bright rectangular particles up to 20um with high aspect ratios. Fracture is evident93

Figure 9.51.	Micrograph of 2.7mm structure showing high volume of large bright rectangular particles in aluminium matrix
Figure 9.52.	EDX analysis with Particle inset (1488x) for 220µm sample in W- temper. Bright feather shaped particle aligned in rolling direction with fracture evident. Particles found to be composed of aluminium, iron, manganese and silicon
Figure 9.53.	Micrograph of 220µm structure showing large bright rectangular particles up to 20µm. Fracture is evident
Figure 9.54.	Micrograph of 220µm structure showing high volume of large bright rectangular particles in aluminium matrix with aspect ratios up to 10
Figure 9.55.	EDX analysis with Particle inset (2975x) for 145µm sample in O temper. Bright rectangular particle aligned in rolling direction with multiple fractures evident. Particles found to be composed of aluminium, iron, manganese and silicon
Figure 9.56.	Micrograph of 145µm structure showing large bright rectangular particles with multiple fractures and aspect ratios between 5-1097
Figure 9.57.	Micrograph of 145µm structure showing high volume of large bright rectangular particles in aluminium matrix up to 10µm in length97
Figure 9.58.	EDX analysis of dark areas with Particle inset (1488x) for 63µm sample. Bright rectangular particles aligned in rolling direction generally less than 10µm with aspect ratio around 5. Dark area found to voids in aluminium matrix
Figure 9.59.	Micrograph of 63µm structure showing large bright rectangular particles with multiple fractures. The larger one were measured and found to be below 10µm with aspect ratios around 5
Figure 9.60.	Micrograph of 63µm structure showing high volume of large bright rectangular particles in aluminium matrix generally below 10µm in length. No evidence of precipitation or dispersoids. Bright rectangular particles contrast smaller duller, no oval particles
Figure 9.61.	EDX analysis with Particle inset (2975x) for 12µm sample in O temper at 285°C for 2 hours. Bright rectangular particle aligned in rolling direction with multiple fractures evident. Particles found to be composed of aluminium, iron, manganese and silicon. No evidence of dispersoids or precipitates in matrix
Figure 9.62.	Micrograph of 12µm structure showing bright and dull particles in aluminium matrix below 10µm in length. No evidence of precipitation or dispersoids102

Figure 9.63.	Micrograph of 12µm O temper structure showing high volume of large bright rectangular particles and duller more oval particles in aluminium matrix generally below 10µm in length. No evidence of precipitation or dispersoids. Bright rectangular particles contrast smaller duller, no oval particles
Figure 9.64.	SEM micrograph of 2.7mm sample (1000x). Intermetallic's are generally rectangular in shape, with several larger more rounded phases present. The matrix appears to have undergone particle and possibly full recrystallisation
Figure 9.65	SEM micrograph of 2.7mm sample (2000x). Large bright block- shaped intermetallic particle shows multiple fraction sites. Above right is a duller, more rounded intermetallic which shows signed of plastic deformation. The matrix appears to have undergone particle and possibly full recrystallisation with intermittent dull spherical dispersoids visible
Figure 9.66.	Spectrum of matrix is essentially purity aluminium with pseudo- silicon reading
Figure 9.67.	EDS spectrum of large bright particle show high percentage of iron and some secondary manganese and silicon readings109
Figure 9.68.	EDS spectrum of dull oval particle show iron and some secondary manganese and silicon readings
Figure 9.69.	EDS spectrum of spherical dispersoids contain manganese and possibly silicon, with lower levels of iron111
Figure 9.70.	The measured area distribution of particle sizes for the cold-rolled 220 μ m sample. There is a notable increase in particle count for particles with areas below 6μ m ² . The average aspect ratio falls below three for particles less than 1μ m ² implying a change in the morphology of the predominate phase
Figure 9.71.	SEM micrographs of 220µm sample (x400). Intermetallic's are evenly distributed across the matrix, varying in size and shape. They are generally rectangular in shape with several larger more rounded particles
Figure 9.72.	SEM micrograph of 220µm sample (2000x). Several brighter particles are fracturing in several locations resulting in intermetallic stringers in the rolling direction. The matrix has a elongated grain structure with intermittent dull spherical dispersoids visible114
Figure 9.73.	SEM micrograph of 220µm sample (5000x). Dispersoids are clearly seen intermittently spread through the matrix. Particles showing multiple fracture sites with some voiding visible

Figure 9.74.	EDS spectrum of large bright particles show a high percentage of iron and some secondary manganese and silicon readings115
Figure 9.75.	EDS spectrum of dull oval particle show iron and some secondary manganese and silicon readings
Figure 9.76.	EDS spectrum of spherical dispersoids contain manganese and possibly silicon, with lower levels of iron117
Figure 9.77.	The measured area distribution of particle sizes for the foil rolled $12\mu m$ sample pre-annealed. There is a notable increase in particle count for particles with areas below $1\mu m^2$ and a further increase for particles with area below $0.40\mu m^2$
Figure 9.78.	SEM micrograph of 12µm pre-annealed sample (1000x). Intermetallic's are generally rectangular in shape aligned in the direction of rolling
Figure 9.79.	SEM micrograph of $12\mu m$ pre-annealed sample (2000x). Bright and dull intermetallic particles 'string' in the rolling direction. The matrix has an un-recrystallised sub-grain type structure of less than $1\mu m$, with random spherical dispersoids visible
Figure 9.80.	SEM micrograph of $12\mu m$ pre-annealed sample (5000x). Dispersoids are clearly seen intermittently spread through the matrix with a mean spacing of between $2\mu m$ to $10\mu m$
Figure 9.81.	SEM micrograph of $12\mu m$ pre-annealed sample (9000x). The microstructure yields an un-recrystallised sub-grain type structure of less than $1\mu m$. Spherical dispersoids less than $0.1\mu m$ in size are clearly seen intermittently spread randomly the matrix with a mean spacing of between $2\mu m$ to $10\mu m$
Figure 9.82.	EDS spectrum of large bright particles show a high percentage of iron and some secondary manganese and silicon readings
Figure 9.83.	EDS spectrum of dull oval particle show iron and some secondary manganese and silicon readings
Figure 9.84.	EDS spectrum for the spherical dispersoids show higher levels of iron than manganese. This implied that the precipitation of iron rich particles have occurring during foil processing
Figure 9.85.	The measured area distribution of particle sizes for the foil rolled $12\mu m$ sample post-annealed. There is a notable increase in particle count for particles with areas below $0.40\mu m^2$ and a corresponding decrease in average aspect ratio
Figure 9.86.	SEM micrograph of 12µm post-annealed sample (1000x). Intermetallic's are generally rectangular in shape aligned in the direction of rolling126

Figure 9.87.	SEM micrograph of $12\mu m$ post-annealed sample (2000x). Bright and dull intermetallic particles are aligned in the rolling direction. The matrix has a recrystallised grain structure of generally greater than $1\mu m$ and below $5\mu m$ with random spherical precipitates and dispersoids visible
Figure 9.88.	SEM micrograph of 12µm post-annealed sample (5000x). Dispersoids are clearly seen intermittently spread through the matrix with a mean spacing below 1µm
Figure 9.89.	SEM micrograph of 12µm post-annealed sample (9000x). The precipitates/dispersoids are randomly distributed in the homogenously recrystallised matrix
Figure 9.90.	SEM micrograph of 12µm post-annealed sample (9000x). The accelerate voltage is reduced from 15kV to 10kV to emphasize the precipitates/dispersoids embedded in the matrix
Figure 9.91.	EDS spectrum of large bright particles show a high percentage of iron and some secondary manganese and silicon readings129
Figure 9.92.	EDS spectrum of dull oval particle show iron and some secondary manganese and silicon readings
Figure 9.93.	EDS spectrum of spherical dispersoids return to higher concentrations of manganese and possibly silicon, with lower levels of iron131
Figure 9.94.	The distribution of Mullen's results for 8150 alloys demonstrates the sensitivity of mechanical properties to final annealing temperature. The red results are for a 20°C higher annealing temperature than the blue
Figure 9.95	Erickson results of 120um 8150 product versus time. The Erickson values decrease by over 10% once the rolling temperatures exceeded 160°C
Figure 9.96.	Metallurgical comparison of 8150 rolled at below 160°C compared to those rolled at greater than 160°C. The presence of Large Random Grains at 100x and 200x explains the Loss in Strength via the Hall- Petch Relationship
Figure 10.1.	Mansell Curve – Film thickness versus film strength expressed as a function of rolling lubricant temperature. Thinner gauges reduce the "good" operational window, increasing the likelihood of ladder, herringbone or both occurring
Figure 10.2.	TEM of an 8150 type alloy (1.35%Fe, 0.6%Mn) cold rolled to 130µm and partially annealed. A well defined substructure exists with particles pinning many of the boundaries
Figure 10.3.	Al-Fe-Mn compositional limits using a two dimensional chart to based on the 8150 alloy compositional boundaries155

•

Figure 10.4.	Al-Fe-Mn-Si compositional limits using a three dimensional graph based on the 8150 alloy composition boundaries
Figure 10.5	Microstructural comparison of alloy 8150 annealed at different temperatures

LIST OF TABLES

Table 8.1.	Composition of AA8150 cast block20
Table 8.2.	Additional rolling parameters for the sample trial metal22
Table 8.3.	Definitions of surface roughness measures used in defining surface roughness
Table 8.4.	Registered composition limits of AA 8150 alloy35
Table 9.1.	Additional rolling parameters for the sample trial metal
Table 9.2.	Operational thin-foil rolling boundaries used at Yennora to produce aluminium foils41
Table 9.3.	Image and box analysis results for surface roughness for matte and shiny surfaces of samples annealed at 235 °C and 285°C
Table 9.4.	Section analysis results for surface roughness for the matte and shiny surfaces of samples annealed at 235 °C and 285°C48
Table 9.5.	Summary of XPS quantification (atomic %) for surface composition of samples thermally treated at 235 °C and 285°C
Table 9.6.	Burst test comparison between AA1145 and AA8150 (B2a) samples thermally treated at 285°C
Table 9.7.	Void Fraction Results
Table 9.8.	Aspect Ratio Fraction Results104
Table 9.9.	EDS summary for 2.7mm 8150 alloy106
Table 9.10.	EDS Summary for 0.22mm 8150 alloy112
Table 9.11.	EDS Summary for 12µm Pre-annealed 8150 alloy118
Table 9.12.	EDS Summary for 12µm Post-annealed 8150 alloy125
Table 9.13.	Phases in 8150 alloy during thermo-mechanical processing133
Table 10.1.	8150 Alloy Composition Used on Trial Coils160