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ABSTRACT 

Imrnunotoxins are therapeutic agents that directly target toxins to specific cells and are 

generally comprised of an antibody or antibody fragment (Fab or scFv) linked to a toxic 

moiety. The assessment of a number of imrnunotoxins in recent Phase I and 11 clinical 

trials has been very promising, particularly for the treatment of haematological 

malignancies. Since the majority of these incorporate large, potent bacterial or plant 

toxins, their therapeutic potential is limited by dose-limiting non-specific toxicity, 

imrnunogenicity and the need to be endocytosed. An alternative approach is to 

incorporate cytolytic toxins such as melittin and pilosulin that are smaller, less toxic 

molecules that act at the cell membrane. Both melittin- and pilosulin-based 

imrnunotoxins (mel-IT and pil-IT) have been developed by our research group. These 

cytolytic imrnunotoxins, which incorporate a scFv moiety specific for the human kappa 

myeloma antigen (KMA) expressed on human kappa myeloma cells and the human 

lymphoblastoid cell line, HMy2, display specific cytotoxic activity at micromolar 

concentrations against the target cell line. In contrast, imrnunotoxins in clinical and late 

stage pre-clinical studies are active at picomolar concentrations and thus it was deemed 

necessary to enhance the specific activity of mel-IT and pil-IT to ensure they could be 

effective at relevant clinical doses. 

The pil-IT displayed greater cytotoxic potential as peptide studies indicated that 

pilosulin was four times more potent than melittin against white blood cells (WBCs) 

and additionally, the pil-IT was shown to be twice as toxic as the mel-IT on a molar 

basis. In order to identify the regions of pilosulin essential for cytolytic activity and 

thus develop a smaller imrnunotoxin, two recombinant constructs were generated that 

encoded truncated toxin domains; P1-22F (incorporating the N-terminal helix of 

pilosulin, amino acid residues 1 to 22) and P23-s~ (incorporating the C-terminal helix, 

residues 23 to 56). Unexpectedly, both recombinant constructs displayed reduced 

cytolytic activity compared to the parent construct (pil-IT/ Pt-s~), due to reduced 

specific binding of the imrnunotoxins to the target cells, presumably as a result of 

incorrect tertiary folding of the expressed proteins. In a further attempt to increase the 

specific activity of the pilosulin-based imrnunotoxin, two additional constructs were 

generated; P121F which had a longer linker arm between the full-length pilosulin peptide 

and the antigen-specific scFv moiety to enhance steric access of the toxin to the target 



cell membrane, and P A33K4tF which contained the C-terminal helical region of pilosulin 

in an enhanced helical conformation to aid membrane interaction and penetration. 

While preliminary studies indicated that both constructs had cytotoxicity comparable 

the parent, neither exhibited enhanced cytolytic activity. 

Contaminant proteins were observed to be eo-purifying with the immunotoxins raising a 

question as to whether these contaminants may have had the potential to affect the 

cytolytic activity of pil-IT. The most significant contaminant was identified as apoA-1, 

a 27-kDa hydrophobic serum protein that had previously been shown to inhibit the 

activity of cytolytic peptides and also to stabilise damaged membranes. As the FBS 

used to supplement the expression culture medium was identified as the source ofapoA-

1, the pil-IT immunotoxin was expressed in serum-free medium. The recombinant 

protein expressed under these conditions was extremely susceptible to proteolysis in the 

cell culture medium and attempts to block this proteolysis by supplementing the 

cultures with BSA or a2-macroglubulin were ineffective. However, supplementing the 

serum-free expression cultures with E-64, a specific cysteine protease inhibitor, blocked 

the majority of the proteolytic degradation of pil-IT and allowed affinity purification of 

a very pure immunotoxin preparation. 

Unexpectedly, pil-IT expressed in this manner displayed significant non-specific 

toxicity compared to previous immunotoxin batches. It is possible that the presence of 

E-64 in the culture supematant affected the tertiary fold of the immunotoxin so that it 

acted independently of the antigen binding specificity encoded by the scFv moiety, or 

that pil-IT in a very pure form is very toxic and non-specific (i.e. a true result of an 

'apoA-1 free'-immunotoxin preparation). Another issue requiring consideration was 

that the insect cell line used for expression of the non-specific toxic batches of 

immunotoxin in serum-free medium (High Five cells) was different to that used to 

express batches of specifically cytotoxic immunotoxin in serum-containing medium 

(Sf21 insect cells). 

To address this question, the pil-IT was expressed in High Five insect cells in the 

presence of FBS and then affinity purified with a Tween-20 wash step to dissociate the 

apoA-1 from the immunotoxin. While this produced a pure preparation, non-specific 

cytolytic activity was again observed, although to a lesser degree than that observed for 



the batches expressed with E-64 supplementation. Tween-20 was found to contribute to 

some of this non-specific activity but was not the sole factor, as pil-IT expressed in 

High Five cells in the presence of FBS and purified without Tween also exhibited non­

specific cytotoxicity. Thus it was likely to be a result of either (i) expressing the 

immunotoxin in High Five insect cells which, in contrast to Sf21 cells, may generate a 

tertiary fold in the immunotoxin that allows it to act non-specifically, or (ii) the absence 

(or low levels) of apoA-1, which when present in the immunotoxin preparation, may 

have inhibited its non-specific cytolytic activity and/or repaired toxin-induced cell 

membrane damage, with the strength of this effect varying for different cell membranes. 
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