DEVELOPMENT OF AN IMMUNOTOXIN INCORPORATING THE AUSTRALIAN JUMPER ANT TOXIN, PILOSULIN 1

BY

SUSAN LEMKE

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF TECHNOLOGY, SYDNEY 2007

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication.

ACKNOWLEDGEMENTS

There are many people who have helped me throughout the 'PhD years' that I would like to thank. Their wisdom, support and kindness have been truly appreciated.

Foremost, I would like to thank my supervisor, Professor Robert Raison. I have learnt so much through his extensive knowledge of immunology and in particular, how to take a very thorough and analytical approach to scientific research. He has always found time in his busy schedule to help with any PhD concerns and on a personal level, has been extremely supportive and understanding.

I would also like to extend my thanks to my co-supervisor, Associate Professor Kevin Broady who was great to 'bounce' ideas off, provide advice and teach me the many wonders of Tween!

Also to my predecessor, Andre Choo, who is an excellent scientist and taught me much of the techniques and skills I obtained in the early stages of this PhD.

Thank you also to fellow lab members, Joyce To for all her help printing this thesis, Matthew Padula for help with the HPLC work and Dr. Margarita Villavedra for advice and support. Special thanks also to Sakura Narasimhan for her assistance in the cloning of the immunotoxin constructs and long days purifying recombinant proteins.

Lastly, I would like to thank my Mum, Monica Lemke who has definitely gone through the ups and downs of a PhD with me, and has been endlessly encouraging and supportive throughout the years.

ABSTRACT

Immunotoxins are therapeutic agents that directly target toxins to specific cells and are generally comprised of an antibody or antibody fragment (Fab or scFv) linked to a toxic moiety. The assessment of a number of immunotoxins in recent Phase I and II clinical trials has been very promising, particularly for the treatment of haematological malignancies. Since the majority of these incorporate large, potent bacterial or plant toxins, their therapeutic potential is limited by dose-limiting non-specific toxicity, immunogenicity and the need to be endocytosed. An alternative approach is to incorporate cytolytic toxins such as melittin and pilosulin that are smaller, less toxic molecules that act at the cell membrane. Both melittin- and pilosulin-based immunotoxins (mel-IT and pil-IT) have been developed by our research group. These cytolytic immunotoxins, which incorporate a scFv moiety specific for the human kappa myeloma antigen (KMA) expressed on human kappa myeloma cells and the human lymphoblastoid cell line, HMy2, display specific cytotoxic activity at micromolar concentrations against the target cell line. In contrast, immunotoxins in clinical and late stage pre-clinical studies are active at picomolar concentrations and thus it was deemed necessary to enhance the specific activity of mel-IT and pil-IT to ensure they could be effective at relevant clinical doses.

The pil-IT displayed greater cytotoxic potential as peptide studies indicated that pilosulin was four times more potent than melittin against white blood cells (WBCs) and additionally, the pil-IT was shown to be twice as toxic as the mel-IT on a molar basis. In order to identify the regions of pilosulin essential for cytolytic activity and thus develop a smaller immunotoxin, two recombinant constructs were generated that encoded truncated toxin domains; $P_{1-22}F$ (incorporating the N-terminal helix of pilosulin, amino acid residues 1 to 22) and $P_{23-56}F$ (incorporating the C-terminal helix, residues 23 to 56). Unexpectedly, both recombinant constructs displayed reduced cytolytic activity compared to the parent construct (pil-IT/ $P_{1-56}F$), due to reduced specific binding of the immunotoxins to the target cells, presumably as a result of incorrect tertiary folding of the expressed proteins. In a further attempt to increase the specific activity of the pilosulin-based immunotoxin, two additional constructs were generated; $P_{121}F$ which had a longer linker arm between the full-length pilosulin peptide and the antigen-specific scFv moiety to enhance steric access of the toxin to the target

cell membrane, and $P_{A33K41}F$ which contained the C-terminal helical region of pilosulin in an enhanced helical conformation to aid membrane interaction and penetration. While preliminary studies indicated that both constructs had cytotoxicity comparable the parent, neither exhibited enhanced cytolytic activity.

Contaminant proteins were observed to be co-purifying with the immunotoxins raising a question as to whether these contaminants may have had the potential to affect the cytolytic activity of pil-IT. The most significant contaminant was identified as apoA-I, a 27-kDa hydrophobic serum protein that had previously been shown to inhibit the activity of cytolytic peptides and also to stabilise damaged membranes. As the FBS used to supplement the expression culture medium was identified as the source of apoA-I, the pil-IT immunotoxin was expressed in serum-free medium. The recombinant protein expressed under these conditions was extremely susceptible to proteolysis in the cell culture medium and attempts to block this proteolysis by supplementing the serum-free expression cultures with E-64, a specific cysteine protease inhibitor, blocked the majority of the proteolytic degradation of pil-IT and allowed affinity purification of a very pure immunotoxin preparation.

Unexpectedly, pil-IT expressed in this manner displayed significant non-specific toxicity compared to previous immunotoxin batches. It is possible that the presence of E-64 in the culture supernatant affected the tertiary fold of the immunotoxin so that it acted independently of the antigen binding specificity encoded by the scFv moiety, or that pil-IT in a very pure form is very toxic and non-specific (i.e. a true result of an 'apoA-I free'-immunotoxin preparation). Another issue requiring consideration was that the insect cell line used for expression of the non-specific toxic batches of immunotoxin in serum-free medium (High Five cells) was different to that used to express batches of specifically cytotoxic immunotoxin in serum-containing medium (Sf21 insect cells).

To address this question, the pil-IT was expressed in High Five insect cells in the presence of FBS and then affinity purified with a Tween-20 wash step to dissociate the apoA-I from the immunotoxin. While this produced a pure preparation, non-specific cytolytic activity was again observed, although to a lesser degree than that observed for

the batches expressed with E-64 supplementation. Tween-20 was found to contribute to some of this non-specific activity but was not the sole factor, as pil-IT expressed in High Five cells in the presence of FBS and purified without Tween also exhibited non-specific cytotoxicity. Thus it was likely to be a result of either (i) expressing the immunotoxin in High Five insect cells which, in contrast to Sf21 cells, may generate a tertiary fold in the immunotoxin that allows it to act non-specifically, or (ii) the absence (or low levels) of apoA-I, which when present in the immunotoxin preparation, may have inhibited its non-specific cytolytic activity and/or repaired toxin-induced cell membrane damage, with the strength of this effect varying for different cell membranes.

TABLE OF CONTENTS

Abbre	viations		i
List o	f Figures		iii
List o	f Tables		viii
Сна	PTER 1 :	INTRODUCTION	
1.1	Overvie	ew	1
1.2	Monoc	lonal antibodies (MAbs)	1
	1.2.1	Humanising	2
	1.2.2	Mode of action of MAbs	3
1.3	Immun	otoxins	4
	1.3.1	Targeting (binding) domains of immunotoxins	5
	1.3.2	Toxic moieties	10
1.4	Produc	tion of Immunotoxins	22
	1.4.1	Prokaryotic expression systems	23
	1.4.2	Eukaryotic expression systems	25
1.5	Curren	t developments of immunotoxins and future directions	28
	1.5.1	Hematologic malignancies	28
	1.5.2	Solid tumours	31
1.6	Curren	t problems and future directions in immunotoxin development	33
	1.6.1	Limitations of immunotoxins in vivo	33
	1.6.2	Improvements in immunotoxin design	34
1.7	Conclu	isions	36
1.8	Aim of	f this study	36

		HELIC IMMU	CAL PROPERTIES OF PILOSULIN-BASED NOTOXIN CONSTRUCTS	
2.1	Introdu	iction		39
	2.1.1	Cytotoxi partial p	icity and membrane interactions of pilosulin and its peptides	40
		2.1.1.1	Constructs P ₂₃₋₅₆ F and P ₁₋₂₂ F	41
		2.1.1.2	Construct P _{L21} F	41
	2.1.2	Designir propertie	ng an immunotoxin construct with enhanced helical	41
		2.1.2.1	Construct P _{A33K41} F	42
	2.1.3	Producti	on of the immunotoxins in the Baculovirus expression	
		vector sy	ystem (BEVS)	42
2.2	Materi	als and Me	ethods	45
	2.2.1	Material	S	45
	2.2.2	Cloning	of recombinant DNA	46
		2.2.2.1	Primer design	46
		2.2.2.2	Polymerase chain reaction (PCR)	46
		2.2.2.3	Agarose gel analysis	46
		2.2.2.4	Gel extraction and purification of PCR products	49
		2.2.2.5	Restriction enzyme digestion	49
		2.2.2.6	Ligation of DNA fragments into cloning vectors	49
		2.2.2.7	Ethanol precipitation of DNA	49
		2.2.2.8	Transformation of plasmid DNA into electrocompetent JM109 E.coli cells	49
		2.2.2.9	Screening JM109 colonies for positive clones	50
		2.2.2.10	Plasmid amplification and purification	50
		2.2.2.11	Cells Lines	50
		2.2.2.12	Generation of recombinant virus	51
		2.2.2.13	Recombinant virus amplification	51
		2.2.2.14	PCR screening of viral stock for correct gene insertion	52
		2.2.2.15	Titration of recombinant virus concentration (plaque assay method)	52

CHAPTER 2: IMPROVING STERIC ACCESS AND ENHANCING THE

	2.2.3	Protein	expression and purification	53
		2.2.3.1	Purification of human kappa light chains	53
		2.2.3.2	Recombinant protein expression	53
		2.2.3.3	Affinity purification	53
		2.2.3.4	Protein quantification	53
	2.2.4	Analysi	s of purified constructs	54
		2.2.4.1	SDS-PAGE electrophoresis	54
		2.2.4.2	Silver staining	54
		2.2.4.3	Estimation of protein purity	54
		2.2.4.4	Immunoblotting	54
	2.2.5	Function	nal assessment of constructs	55
		2.2.5.1	Assessing the binding capacity of constructs using flow cytometry	55
		2.2.5.2	ELISA in the presence and absence of Tween-20	55
		2.2.5.3	Assessing cytotoxicity of immunotoxin constructs using	
			the lactose dehydrogenase (LDH) leakage assay	56
2.3	Results			56
	2.3.1	P ₁₋₅₆ F a	nd P ₁₋₅₆ S	57
		2.3.1.1	Expression and affinity purification of $P_{1-56}F$ and $P_{1-56}S$	57
		2.3.1.2	Functional assessment of $P_{1-56}F$ and $P_{1-56}S$	57
	2.3.2	Cloning	g of modified pilosulin-based immunotoxins	60
	2.3.3	Cloning	g of the scFv- P_{23-56} FLAG construct (P_{23-56} F)	60
		2.3.3.1	Cloning of the scFv-P1-22-FLAG construct (P1-22F)	74
		2.3.3.2	Cloning of the scFv-P _{L21} -FLAG construct (PL21F)	78
		2.3.3.3	Cloning of the scFv- pil _{A33K41} -FLAG construct (PA33K41F)	84
	2.3.4	Prelimi of the n	nary expression, purification and functional assessment nodified pilosulin-based immunotoxins	88
		2.3.4.1	P ₂₃₋₅₆ F	88
		2.3.4.2	$P_{1-22}F$ and $P_{L21}F$	97
		2.3.4.3	PAJ3KAIF	101

	2.3.5	Conclusions	104
2.4	Discuss	sion	106
	2.4.1	Cloning of the modified pilosulin-based immunotoxins	107
	2.4.2	Production of modified pilosulin-based immunotoxins	107
	2.4.3	Preliminary functional assessment of the modified pilosulin-based immunotoxins	109
		2.4.3.1 Construct P 23-56F	110
		2.4.3.2 Construct P ₁₋₂₂ F	111
		2.4.3.3 Construct P _{L21} F	112
		2.4.3.4 Construct P _{A33K41} F	113
	2.4.4	Conclusions	114
Снар	TER 3 :	CHARACTERISATION OF PROTEIN CONTAMINAN Subsequent Expression of Pil-IT in Serun Medium	гs and 1-Free
3.1	Introdu	ction	116
	3.1.1	Limitations of recombinant protein expression in BEVS	116
	3.1.2	Serum-Free Medium (SFM)	117
3.2	Materia	als and methods	117
	3.2.1	Affinity purification of pil-IT incorporating an anti-FLAG column	118
	3.2.2	De-staining of silver stained SDS-PAGE	118
	3.2.3	Ammonium sulfate precipitation	118
		3.2.3.1 Spent/unspent medium	118
		3.2.3.2 Pil-IT	119
	3.2.4	Chromatography	119
	3.2.5	N-terminal sequencing	120
	3.2.6	Maintenance of High Five [™] Insect cells	120
	3.2.7	Expression of pil-IT in High Five [™] Insect cells	120

	3.2.8	Supplem inhibitor	nenting expression cultures with BSA or protease s	120
	3.2.9	Analysis	s of recombinant protein	121
	3.2.10	Assessir	ng the cytotoxicity of affinity purified immunotoxin	
		preparat	ions	121
3.3	Results			121
	3.3.1	Investig immuno	ation of the contaminants co-purifying with the toxin	121
	3.3.2	Attempt immuno	s to remove the 27-kDa contaminant from the toxin preparation and identification.	130
	3.3.3	Express: subsequ	ion of the pil-IT in High Five insect cells and ent degradation of the recombinant product	134
	3.3.4	Effect o with FB degradat	f supplementing High Five expression cultures S, BSA or α_2 -macroglobulin on proteolytic tion of the immunotoxin	134
	3.3.5	Supplen Protease	nenting High Five expression cultures with Inhibitors	141
		3.3.5.1	Identifying an effective protease inhibitor	141
		3.3.5.2	Optimisation of E-64 to inhibit cysteine proteases	144
		3.3.5.3	Scale-up expression using E-64 and functional	
			analysis of Pil-IT	147
3.4	Discuss	ion		152
	3.4.1	Identific	cation of the protein contaminants	152
		3.4.1.1	ApoA-I	157
	3.4.2	The pro	duction of pil-IT in a serum-free environment	160
		3.4.2.1	Expression of pil-IT using High Five insect cells in serum-free medium (SFM)	160
		3.4.2.2	Supplementing High Five insect cell expression cultures with Protease Inhibitors	162
		3.4.2.3	Proteases characterised in insect cells and BEVS	162
		3.4.2.4	The use of protease inhibitors in BEVS/insect cell expression	163

		3.4.2.5 E-64 upplementation in serum-free expression cultures of Pil-IT	164
Сна	PTER 4 :	PRODUCTION OF AN 'APOA-I FREE' IMMUNOTOXIN PREPARATION USING TWEEN-20	
4.1	Introdu	ction	171
4.2	Materia	als and methods	171
	4.2.1	Production of an homogenous recombinant pil-IT baculovirus stock	1 71
	4.2.2	Expression of pil-IT in insect cells	171
	4.2.3	Purification of pil-IT in the presence and absence of Tween	172
	4.2.4	Analysis of recombinant protein	173
	4.2.5	Assessing the binding of immunotoxin following pre-incubation with soluble human kappa light chains	173
	4.2.6	Assessing the cytotoxicity of affinity purified immunotoxin	
		preparations	173
4.3	Results	i	173
	4.3.1	Production of an homogeneous stock of recombinant baculovirus	173
	4.3.2	Removal of ApoA-I using a non-ionic surfactant, Tween 20	175
		4.3.2.1 Optimising the amount of Tween 20 required for large scale purification	181
		4.3.2.2 Functional assessment of Tween washed, affinity purified immunotoxin (TW)	181
	4.3.3	Investigating the loss in activity of the pil-IT	198
		4.3.3.1 Assessing the production phase by expression and functional assessment of mel-IT	201

CHAPTER 5: SUMMARY AND CONCLUSIONS

5.1	Summary and conclusions		209
		×	

BIBLIOGRAPHY

217

٠.

APPENDIX

Appendix I :	Baculovirus homologous recombination
Appendix II :	Nucleotide and amino acid sequence of immunotoxin constructs
Appendix III :	Standard curve for protein standards used in size exclusion chromatography
Appendix IV :	Calculation of cytotoxicity as a percentage of maximal cell lysis

ABBREVIATIONS

3'	three prime
5'	five prime
Α	amps
aa	amino acid(s)
AcNPV	Autographa californica nuclear polyhedrosis virus
ADCC	antibody-dependent cellular cytotoxicity
apoA-I	apolipoprotein A-I precursor
approx	approximately
ÂP	alkaline phosphatase
BCA	bicinchoninic acid
BCIP	5-bromo-4-chloro-3-indopyranoside
BJP	Bence Jones protein
bp	base pair
BP9	BacPAK9 vector
BSA	bovine serum albumin
СМ	complete media
СМР	complete media with 1% Pluronic acid
CNBr	cyanogen bromide
C-terminus	carboxyl terminal end
D	Dalton
dAbs	domain antibodies
dpi	days post infection
dH ₂ 0	deionised water
DNA	deoxyribonucleic acid
dNTP	deoxynucleic triphosphate
dsFv	disulfide stabilised single chain variable fragment
DT	Diphtheria toxin
E.coli	Escherichia coli
EtOH	ethanol
Fab	fragment antigen binding
FBS	Foetal bovine serum
h	hours
hni	hours post infection
HPLC	high performance liquid chromatography
IT	immunotoxin
 K	карра
 Kb	kilobasepairs
kDa	kilodalton
KMA	kappa myeloma antigen
LDH	lactate dehydrogenase
M	molar (moles/litre)
Mab	monoclonal antibody
mel	melittin
mel-IT	melittin-based immunotoxin
МеОН	methanol
MM	multiple myeloma
μg	micrograms

μl	microlitres
ml	millilitres
min	minutes
mM	millimolar
MOI	multiplicity of infection (number of virus particles
	per host cell)
MWCO	molecular weight cut-off
NBT	nitro blue tetrazolium
nM	nanomolar
nmol	nanomoles
NT	No tween wash step during purification
N-terminus	amino terminal end
p0	viral passage 0 (transfection)
p1	viral passage 1
p2	viral passage 2
PAGE	polyacrylamide gel electrophoresis
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PE	Pseudomonas exotoxin
pfu	plaque forming unit/s
pi	postinfection
pil	pilosulin
pil-IT	pilosulin-based immunotoxin
nil-IT H5	pilosulin-based immunotoxin expressed in High
	Five insect cells
pil-IT Sf	pilosulin-based immunotoxin expressed in Sf21
	insect cells
nmol	nicomoles
PVDF	nolvvinylidinedifluoride
rom	rotations per minute
RT .	room temperature
ΡΤΔ	ricin toxin A chain
RIA S	seconds
s coFy	single chain variable fragment
SULA	sodium dodecyl sulphate
SEM	serum free media/medium
SIDAMAC	Sydney University Prince Alfred Macromolecular
SUPAMAC	Analysis Centre
TAE	tris-acetic FDTA
1AE 2 D	three dimensional
	tris huffered saline
	tris(bydroxymethyl)aminomethane
	Tween wash sten during purification
	unit
	uni ultroviolet
	voriable beauty
	variable light
VL such	valiable light
W/V	weight by volume

•

LIST OF FIGURES

Structure of Antibodies and antibody fragments used as immunotoxin targeting moieties	6
Structures of ricin toxin and its modified forms	11
Schematic structure of bacterial toxins DT and PE	13
Cytolytic activity of PE toxin	14
The structure of melittin	17
Mechanisms of pore formation by membrane-active peptides	19
Predicted three-dimensional model of the Pilosulin 1 peptide	21
Predicted secondary structure of pilosulin 1	43
Site-directed mutagenesis of helix 2 in pilosulin	44
SDS-PAGE of affinity purified $P_{1-56}F$ and $P_{1-56}S$	58
Binding analysis of $P_{1-56}F$ and $P_{1-56}S$ to HMy2 cells	61
Cytotoxic analysis of $P_{1-56}F$ and $P_{1-56}S$	62
Immunotoxin constructs	63
Schematic overview of the cloning strategy used to produce modified pilosulin-based immunotoxin constructs	64
Vector map of BacPAK9 and the scFv-pil ₁₋₅₆ F insert	66
Detailed cloning strategy of P ₂₃₋₅₆ F	68
PCR amplification of the recombinant gene product $P_{23-56}F$	69
PCR screen of transformants	70
Confirmation of $P_{23-56}F$ recombinant gene insertion into the baculovirus genome	72
Western Blot of P ₂₃₋₅₆ F p1 viral stock	73
Detailed cloning strategy of P ₁₋₂₂ F	75
	Structure of Antibodies and antibody fragments used as immunotoxin targeting moietiesStructures of ricin toxin and its modified formsSchematic structure of bacterial toxins DT and PECytolytic activity of PE toxinThe structure of melittinMechanisms of pore formation by membrane-active peptidesPredicted three-dimensional model of the Pilosulin 1 peptideSite-directed mutagenesis of helix 2 in pilosulinSDS-PAGE of affinity purified P1-56F and P1-56SBinding analysis of P1-56F and P1-56S to HMy2 cellsCytotoxic analysis of P1-56F and P1-56SImmunotoxin constructsSchematic overview of the cloning strategy used to produce modified pilosulin-based immunotoxin constructsVector map of BacPAK9 and the scFv-pil1-56F insertDetailed cloning strategy of P23-56FPCR screen of transformantsConfirmation of P23-56F recombinant gene product h23-56FWestern Blot of P23-56F p1 viral stockDetailed cloning strategy of P1-22F

iii

2.15:	PCR amplification of the recombinant gene product P ₁₋₂₂ F	76
2.16:	PCR screen of transformants	77
2.17:	Confirmation of $P_{1-22}F$ recombinant gene insertion into the baculovirus genome	79
2.18:	Western Blot of P ₁₋₂₂ F p1 viral stock	80
2.19:	Detailed cloning strategy of P _{L21} F	81
2.20:	PCR amplification of the recombinant gene product $P_{L21}F$	82
2.21:	PCR screen of transformants.	83
2.22:	Confirmation of $P_{L21}F$ recombinant gene insertion into the baculovirus genome	85
2.23:	Western Blot of P _{L21} F p1 viral stock	86
2.24:	Generation of the recombinant $P_{A33K41}F$ by site-directed mutagenesis PCR	87
2.25:	Confirmation of $P_{A33K41}F$ recombinant gene insertion into the baculovirus genome	89
2.26:	Western Blot of PA33K41F p1 viral stock	90
2.27:	Affinity purification of P ₂₃₋₅₆ F	91
2.28:	Purified Immunotoxin Preparations	92
2.29:	Binding Analysis of P ₂₃₋₅₆ F to HMy2 cells	93
2.30:	Cytotoxicity of P ₂₃₋₅₆ F	95
2.31:	Analysis of P23-56F binding to soluble antigen using ELISA	96
2.32:	Affinity purified $P_{1-22}F$ and $P_{L21}F$	98
2.33:	Binding Analysis of $P_{1-22}F$ and $P_{L21}F$ to HMy2 cells	99
2.34:	Cytotoxicity of $P_{1-22}F$ and $P_{L21}F$	100
2.35:	Affinity purified P _{A33K41} F	102
2.36:	Binding Analysis of PA33K41F to HMy2 cells	103
2.37:	Cytotoxicity of P _{A33K41} F	105
3.1:	SDS-PAGE and silver staining analysis of purified batches of Pil-IT	122

iv

3.2:	Pil-IT prior to and after filter sterilisation	123
3.3:	SDS-PAGE and Western Blot analysis of Pil-IT purified on immobilised human kappa light chains	125
3.4:	Affinity purification of pil-IT using immobilised human kappa light chains or immobilised anti-FLAG monoclonal antibody	126
3.5:	Variability in detection of the 27-kDa contaminant by silver staining	128
3.6:	Detection of the 27-kDa protein in the insect cell medium	129
3.7:	Size exclusion chromatography of affinity purified pil-IT.	131
3.8:	SDS-PAGE analysis of pil-IT fractions following size exclusion chromatography	133
3.9:	Identification of the protein contaminant by N-terminal sequencing.	135
3.10:	Expression of pil-IT in High Five insect cells in serum-free media (SFM).	136
3.11:	Supplementation of High Five insect cell/pil-IT expression cultures with FBS.	137
3.12:	Western blot and SDS-PAGE analysis of High Five [™] /pil-IT cultures supplemented with increasing concentrations of BSA.	139
3.13:	Western blot analysis of High Five/pil-IT expression cultures supplemented with α 2-macroglobulin.	140
3.14:	Effect of protease inhibitors at reducing the proteolytic degradation of Pil-IT during expression in serum-free medium.	142
3.15:	Viability of High Five/pil-IT cultures in the presence and absence of protease inhibitors.	143
3.16:	Western blot analysis of High Five/pil-IT serum-free cultures supplemented with different concentrations of E-64.	145
3.17:	Viability of High Five [™] /Pil-IT cultures supplemented with different concentrations of E-64 protease inhibitor.	146
3.18:	SDS-PAGE analysis of purified pil-IT that was produced in serum-free medium supplemented with 5 μ g/ml of E-64 protease inhibitor.	148
3.19:	SDS-PAGE analysis of affinity purified pil-IT that was expressed in SFM supplemented with 20 μ g/ml of E-64 protease inhibitor.	149
3.20:	Cytotoxic effect of purified immunotoxin that was expressed in SFM supplemented with 20 μ g/ml of E-64	150
		v

3.21:	Non-specific cytotoxicity of immunotoxin that was expressed in SFM supplemented with 20 μ g/ml of E64.	151
3.22:	Cytotoxicity of diluent from a simulated purification run	153
3.23:	Theoretical molecular weight of the components of pil-IT and possible fragments that may result from proteolytic cleavage of the immunotoxin in the linker or pilosulin	156
3.24:	The structure of human apolipoprotein A-I (apoA-I)	158
4.1:	Western blot analysis of supernatant from pil-IT p1 clones 1-6.	174
4.2:	Removal of apoA-I during affinity purification of Pil-IT using a mild non-ionic detergent.	176
4.3:	Cytotoxicity of pil-IT that had been washed with increasing concentrations of Tween 20 during affinity purification	178
4.4:	Binding analysis of Tween washed-affinity purified pil-IT (TW)	179
4.5:	Assessing the toxicity of Tween 20 at a range of dilutions	180
4.6:	Optimising the 0.1% Tween 20 washing of column bound pil-IT	182
4.7:	Affinity purified preparations of pil-IT	183
4.8:	Cytotoxic activity of affinity purified/Tween washed Pil-IT (TW)	184
4.9:	NT and TW immunotoxin preparations	186
4.10:	Titration of the cytotoxicity of TW and NT immunotoxin preparations	187
4.11:	Binding Analysis of TW and NT immunotoxin preparations	189
4.12:	Purified Pil-IT preparations	190
4.13:	Cytotoxicity of Pil-IT expressed in Sf21 or High Five insect cells	192
4.14:	Binding analysis of Pil-IT expressed in Sf21 or High Five insect cells	193
4.15:	Binding analysis of Pil-IT expressed in Sf21 or High Five insect cells pre-incubated with human kappa light chains	195
4.16:	Analysis of immunotoxin binding to soluble antigen by ELISA	197
4.17:	PCR amplification of the pil-IT gene from recombinant baculovirus	199
4.18:	Affinity purified pil-IT expressed in a new batch of Sf21 insect cells	200

4.19:	Titration of the cytotoxicity of the pil-IT expressed in the new batch of Sf21 cells	202
4.20:	Binding analysis of pil-IT expressed in the new batch of Sf21 cell	203

.

LIST OF TABLES

Recombinant (R) and Chemically conjugated (CC) Immunotoxins Tested in Clinical Trials in recent years	29
Cytotoxicity and α -helical content of pilosulin and its partial peptides	40
Primer Sequence (5' to 3' Orientation)	48
Estimated molecular weights of pilosulin-based immunotoxin constructs	59
	 Recombinant (R) and Chemically conjugated (CC) Immunotoxins Tested in Clinical Trials in recent years Cytotoxicity and α-helical content of pilosulin and its partial peptides Primer Sequence (5' to 3' Orientation) Estimated molecular weights of pilosulin-based immunotoxin constructs