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Abstract. Multiple myeloma (MM) is a mature B cell 
neoplasm that results in multi-organ failure. The median age of 
onset, diverse clinical manifestations, heterogeneous survival 
rate, clonal evolution, intrinsic and acquired drug resistance 
have impact on the therapeutic management of the disease. 
Specifically, the emergence of multidrug resistance (MDR) 
during the course of treatment contributes significantly to 
treatment failure. The introduction of the immunomodula-
tory agents and proteasome inhibitors has seen an increase in 
overall patient survival, however, for the majority of patients, 
relapse remains inevitable with evidence that these agents, like 
the conventional chemotherapeutics are also subject to the 
development of MDR. Clinical management of patients with 
MM is currently compromised by lack of a suitable procedure 
to monitor the development of clinical drug resistance in 
individual patients. The current MM prognostic measures fail 
to pick the clonotypic tumor cells overexpressing drug efflux 
pumps, and invasive biopsy is insufficient in detecting sporadic 
tumors in the skeletal system. This review summarizes the 
challenges associated with treating the complex disease spec-
trum of myeloma, with an emphasis on the role of deleterious 
multidrug resistant clones orchestrating relapse.
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1. Introduction

Multiple myeloma (MM) is the second most prevalent hemato-
logical malignancy worldwide, with a median onset of 60 years 
of age (1-6). MM is currently incurable, albeit clinically 
manageable and typically manifests with an accumulation of 
terminally differentiated monoclonal plasma cells (PCs) in the 
bone marrow (3). It is distinguished from solitary plasmacy-
toma by the presence of aberrant PCs at numerous skeletal 
sites (7,8).

MM can be ‘secretory’ or ‘non-secretory’ depending on the 
serum/urine levels of secreted monoclonal immunoglobulin. 
‘Secretory MM’ is characterized by the presence of abnormal 
levels of monoclonal proteins (M-protein) or paraproteins in 
circulation and urine. ‘Non-secretory’ MM accounts for 1% 
of all MM cases and lacks the hallmark of increased serum or 
urine M-protein or paraprotein. Consequently, the diagnosis 
of non-secretory MM depends rather on an increase in tumor 
burden and evidence of end organ damage (9,10). The complex 
spectrum of physiological impairment attributed to MM 
include lytic bone lesions, osteoporosis, compression fractures, 
bone pain and ultimately patient immobility. The abundance of 
malignant monoclonal PCs also severely compromises patient 
immunity and hematopoiesis (11).

The inclusion of immunomodulatory drugs (IMiDs) as part 
of high dose chemotherapy together with systemic and cyto-
genetic prognostic markers have improved patient survival in 
MM. Thalidomide, and its derivatives are currently approved 
for use across all phases of MM therapy. These drugs possess 
immunomodulatory, anti-angiogenic, anti-inflammatory and 
anti-proliferative capacity (12). Over the past few decades, a 
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30-40% complete response rate and an increase in median 
survival of 4-5 years have been achieved with these drugs 
in combination with auto-transplants in younger de novo 
patients (13).

Most MM patients respond successfully to initial induction 
therapy, however, all the patients eventually relapse, forcing a 
review of the treatment regimen (14). A significant contributor 
to treatment failure leading to clinical relapse is the emergence 
of multi-drug resistance (MDR) (15). MDR is the phenomenon 
whereby the cancer cells become resistant to a wide variety 
of structurally and functionally unrelated drugs following 
exposure to a single chemotherapeutic agent (16-18). Existing 
measures for assessing the clinical state of MM patients include 
serum markers [immunoglobulins, β2-microglobulin (B2M), 
free light chain assays, creatinine, C-reactive protein (CRP) 
and thymidine kinase] followed by confirmation with 
invasive bone marrow biopsy. however, these do not offer 
a direct measurement of the presence or the evolution of 
proteins responsible for drug resistance on malignant PCs. 
MM is characterized by the presence of multiple clones with 
differing degrees of drug sensitivity at the time of diagnosis. 
Consequently, despite complex chemotherapeutic regimes (19), 
therapeutic response is unpredictable and extremely variable 
with MM patients. Furthermore, bone marrow biopsy cannot 
assess the patchy tumor infiltrates in multiple sites associated 
with MM and provides an indirect measure of tumor burden 
distributed throughout the skeletal system. This impacts the 
quality of life for the patient and translates to highly heteroge-
neous patient survival rates ranging from a few weeks to more 
than 10 years (20).

Aside from the significant physical and emotional costs 
associated with the emergence of MDR and subsequent 
relapse, there are also significant financial costs incurred 
with the management of MDR. The drugs used at relapse 
are typically novel, costly and with associated side effects. 
The estimated cost of an effective melphalan, prednisone 
and velcade regimen approximates $119,102 (US), while a 
novel superior regimen utilizing melphalan and prednisone 
combined with lenalidomide maintenance can reach as high 
as $248,358 (US) (21). Consequently, MM remains one of the 
most costly cancers to treat when total treatment costs are 
considered (21-24).

here, we review the factors limiting the successful treat-
ment outcome in the complex multiple myeloma clinical 
setting. we focus on the persistent issue of drug resistant 
clones in MM and the major role played by ATP-binding 
cassette (ABC) transporters along with other resistance 
mechanisms in relapse in the era of novel therapeutics.

2. Normal plasma cell characteristics

MM is a hematological malignancy characterized by the 
accumulation of aberrant PCs in the bone marrow (25). PCs 
are terminally differentiated activated B cells retained in the 
G1 phase of the cell cycle (26). PCs express surface markers 
that are reflective of their elaborate maturation and differentia-
tion process. PCs typically can be distinguished from naïve 
B cells by the lack of CD10, CD19 and CD20 expression on 
their surface (27). Two specific surface antigens on PCs are 
CD38 and CD138 (28-31). CD38 is an ectoenzyme important 

in signal transduction, cell adhesion and calcium signaling, and 
is expressed across all PC developmental stages (28). CD138 
is a trans membrane proteoglycan that facilitates cell binding, 
cell signaling, cell-cell and cell-extracellular matrix interac-
tions (32). Amongst the typical markers expressed on PCs, 
CD45 is considered an early PC marker (plasma blasts) (27). 
According to the maturation stages, PCs are grouped into 
plasma blasts (CD138- CD45++), early PC’s (CD138+ CD45+) 
and mature PC’s (CD138++ CD45- or weak CD45 expression) 
based on the antigen expression on their surface (5).

PCs are prime mediators of the adaptive immune response 
(5,26). The development of a normal B cell starts in the 
bone marrow (BM) and matures following migration into 
the peripheral lymphatic organs. The maturation process is 
aided by antigen exposure, dendritic co-stimulatory signals 
and somatic mutations that ultimately result in high affinity 
antibody production (3). B cells with high affinity antigen 
receptors further differentiate into memory cells and plasma 
blasts. Eventually, highly efficient PCs that survive these 
processes (long-lived PCs) migrate back to the bone marrow 
and localize in ‘niches’, which aid in the further differentiation 
and longevity of the immune response (3,33-35).

3. Pre-malignant plasma cell characteristics - monoclonal 
gammo­pathy­of­undetermined­significance

Monoclonal Gammopathy of Undetermined Significance 
(MGUS) is a benign condition that can precede malignant 
transformation to MM (36). Clinically, MGUS is characterized 
by excessive PC growth whilst retaining a stable M-protein 
profile (37). Serum M-protein levels of <3g/dl, small amounts 
of monoclonal light chains in urine, the absence of end organ 
damage, absence of lytic bone lesions, anemia and hypocal-
caemia define the pre-malignant condition MGuS (38). The 
rate of transition from MGUS to MM is ~1%/year (36,38).

4. Malignant plasma cell characteristics

The exact cause of malignant transformation of PCs remains 
unknown. however, ras mutations are absent in pre- malignant 
MGUS and are observed in MM (39). It has been suggested 
that the myeloma clone arises from a pre-switched B cell (40), 
preconditioned as a result of prior exposure to certain triggers 
(i.e. viruses, chemicals and radiation). Other reasons proposed 
are an incompetent immune system, age and a family history 
of lymphato-hematopoietic cancer (36).

In malignant cells, the genotype is aberrant with frequent 
chromosomal deletions or hyperdiploidy (chromosomes 
3,5,7,9,11,15,19 and 21) that results in abnormal functions 
of cell cycle regulatory genes (cyclin D1, D2 and D3) (41). 
Malignant PCs also present with aberrant phenotypes at 
diagnosis. Surface markers such as CD56, CD117 and CD20 
are found in decreasing order of expression on aberrant PCs. 
Isolated strong CD56 expression is common in MM and can be 
used to distinguish MM from MGuS, while CD56- phenotype 
is said to be associated with a high risk subtype with chro-
mosomal abnormality [t(11;14)] in terms of survival (42-44). 
Malignant PCs also display an increased expression of 
various adhesion molecules compared to non-malignant PCs. 
Fibronectin receptor, very late antigen 4 (vLA-4), the lympho-
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cyte homing receptor CD44 and neural cell adhesion molecule 
(n-CAM and CD56) are abundantly expressed on malignant 
PCs (45). In contrast, vLA-5, the laminin receptor vLA-6, 
and the vitronectin receptor CD51 are weakly expressed (45). 
In advanced MM, mature PCs escape the bone marrow niche 
and are found in circulation (46). Interestingly, only 50% of 
the circulating population expresses CD138, which is widely 
considered to be an exclusive mature PC marker of hemato-
poietic origin (27,47). Consequently, circulating PCs are also 
classified according to the presence or absence of CD138 
apart from the maturation based classification of normal PCs 
mentioned above (27). The circulating CD138- PCs are thought 
to be plasma blasts as they express CD45, CD20, CD19 and 
human leukocyte antigen (hLA)-class II and more actively 
proliferating (5,47,48) (Fig. 1).

5. Multiple myeloma

Diagnosis. MM is diagnosed when M-protein or paraprotein 
exceeds 3 g/dl in serum or urine (49), when there are 10-15% 
aberrant PCs in the bone marrow and by the presence of 
skeletal lesions (5,37,50). An abnormal ratio of serum κ and λ 
free light chains above the normal range of κ/λ of 0.26-1.65 
provides an alternative criterion if the M-protein status is not 
conclusive (9,10,50). In the case of ‘non-secretory myeloma’, 
≥10% baseline clonal bone marrow PC provides the main 
criterion of diagnosis with renal and skeletal manifestations 
of MM (9,50,51).

Other clinical manifestations alone or in combination are 
also considered at diagnosis. These include elevated calcium 
levels or hypercalcemia >11.5 mg/dl/>2.65 mmol/l indicating 

defective bone physiology, renal insufficiency signified by creati-
nine >2 mg/dl/177 µmol/l or more, anemic hemoglobin levels of 
<10 g/dl or 2 g/dl < normal levels or hemoglobin <12.5 mmol/l 
or 1.25 mmol/l < normal levels, and bone lesions or pain (9). 
International uniform response criteria by International 
Myeloma working Group recommends that amyloidosis and/
or systemic light chain deposition disease (LCDD) should be 
correspondingly categorized as ‘myeloma with documented 
amyloidosis’ or ‘myeloma with documented LCDD’, requiring 
confirmation through bone marrow biopsy to ascertain the 
existence of ≥30% PCs and/or myeloma-related bone disease. 
Following diagnosis, MM patients are usually placed on induc-
tion therapy with conventional or novel agents followed by 
autologous stem cell transplant depending on eligibility of each 
patient (52). Response to treatment is subsequently evaluated 
through regular monitoring of serum and urine M-protein 
levels by immune fixation and confirmed by periodic bone 
marrow aspiration (53).

Staging criteria. MM is a highly heterogeneous disease with 
respect to survival and clinical manifestations (54), hence it 
is difficult to accommodate every criterion in one staging 
system (55). In 2005, the International Myeloma working 
Group established the International Staging System (ISS) for 
MM (Table I) (54). Until 2005, MM staging predominantly 
relied on the Durie-Salmon Staging (DSS) system, which was 
established in 1975 (56). DSS correlates various biochemical 
factors with tumor burden for staging of malignancy. This 
makes it difficult to achieve consensus across various labo-
ratories (57). The advantage of ISS is that it is a statistical 
model, which emphasizes the duration of survival based on 

Figure 1. Malignant transformation of PCs: terminally differentiated healthy PCs reside in the bone marrow and typically express CD138 and CD38. Healthy 
PCs are major components of humoral response. The pre-malignant condition monoclonal gammopathy of undetermined significance (MGuS) is characterized 
by the presence serum M-protein and monoclonal light chains in serum and/or urine, however, patients remain well. In the malignant phase, PCs have 
aneuploidy, altered surface expression and patients experience high serum/urine levels of M or paraproteins along with other classic MM manifestations. In 
relapse, the MM initiating cells or ‘side population’ cells have immature B cell phenotype than the mature PCs. Major signaling pathways are aberrant resulting 
in the clonotypic MM cells. Clonotypic MM cells are highly proliferative and over express various MDR pumps (P-gp, MRP1 and BCRP) and early B cell 
marker on their surface and transporters such as vault proteins (LRP).
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the measure of two parameters, B2M and serum albumin (55). 
ISS uses B2M as a measure of the rate of myeloma growth with 
serum albumin indicative of tumor burden (54,55,58). Since its 
launch, ISS has been validated, is statistically easier to assess 
and is more robust compared to the DSS system (55,59).

Genotype and multiple myeloma. Myeloma, unlike other 
hematological malignancies, is uniquely characterized by intri-
cate cytogenetic and molecular genetic abnormalities resonant 
of epithelial tumors (60). A de novo patient usually presents 
hyperdiploid with multiple trisomies or hypodiploid with one 
of several types of immunoglobulin heavy chain (Igh) translo-
cations (61). The importance of cytogenetic markers and gene 
profiling on therapeutic decision making is becoming increas-
ingly evident in MM (62).

Chromosomal abnormalities associated with immuno-
globulin heavy chain translocations result in abnormal gene 
regulation in MM (63). Cell cycle regulatory genes are impaired 
in MM and the dysregulation of cyclin D1, D2 or D3 is considered 
to be an initial oncogenic pathway in MM and MGUS (64). 25% 
of Igh translocations in MM directly affect cyclin D1 (11q13), 
cyclin D2 t(4;14), cyclin D3 (6p21) or musculoaponeurotic fibro-
sarcoma (MAF) oncogene (c-MAF, 16q23 or MAF oncogene 
homolog B (MAFB), 20q11 (41,64). The recurrent translocations 
associated with MM are t(4;14)(p16;q32), and t(14;16) (q32;q23) 
which are correlated with a negative prognosis (61). Myeloma 
patients frequently present with chromosomal deletions of 
13q14 and 17p13 (63). Several other genetic components such as 
tumor suppressor genes (p53, phosphatase and tension homolog-
PTEN), retinoblastoma protein-Rb protein) and transcription 
factor, myelocytomatosis viral oncogene homolog (c-myc) also 
show abnormalities in MM, however, the exact origin of these 
genetic and epigenetic changes in the course of MM pathogen-
esis is not known yet (39).

Recently, the role of short non-coding RNAs (19-25 bp) 
in MM has been examined (65). A small number of 
microRNAs (miRNAs) are implicated in MM pathogen-
esis (65). Pichiorri et al demonstrated distinct miRnA profiles 
for malignant PCs (MGUS and MM) compared to those of 
normal PCs. In MGUS, miR-21 and miR-106b~25 clusters 
with oncogenic function are upregulated with miR-21 blocking 
apoptosis (66). miR-106b~25 has been shown to regulate 
pro-apoptotic genes and play a role in pathogenesis (67). 
It is believed that miR-21 and miR-106b~25 potentially 
initiate the lymphoproliferative transformation of PCs by 
hindering apoptosis, promoting survival of malignant cells 
and predisposing to secondary genetic abnormalities, leading 
to malignancy (65). Compared to the normal PCs, miR-32, 
miR-17~92, miR-21, miR-106~2, miR-181a and miR-181b are 
upregulated in MM. miR-15a and miR-16-1 are implicated 
in regulating tumor proliferation in MM that are located in 
13q14.3 which coincides with a frequent deletion in MGUS 
and MM cohort (65,68,69).

Disease presentation
Systemic monoclonal protein (M-protein or paraprotein). 

Monoclonal protein (M-protein or paraprotein) production, 
is a salient feature of secretory MM (70). Based on immuno-
globulin heavy chain structure, MM is classified into IgG, IgD 
and IgE subtypes of which IgG MM is most common (11).

Paraproteinemia and an associated hyperviscosity 
syndrome, arising from elevated systemic M-protein levels are 
typically associated with MM (11,71). Approximately 25% of 
MM patients present with paraproteinuria resulting in renal 
insufficiency, while ~50% have renal failure (11,37,50,72) 
resulting from direct damage and blockage to the kidney (73). 
Other MM associated renal complications include, myeloma 
cast nephropathy, amyloidosis, fibrillary glomerulonephritis, 
immunotactoid glomerular nephritis and light chain deposi-
tion disease (72).

Immune incapacity. MM patients are immunocompromized 
due to the defective hematopoiesis and the aberrant PCs 
producing clonally incompetent M-proteins. This is in addition 
to the gradual reduction in immune competence coinciding 
with late middle age (40). Yaccoby et al proposed limited 
mobility in the aged population resulting in reduced exposure 
to antigens as the potential reason for the reduced differentia-
tion rate of the memory B-lymphocytes to PCs (74,75).

The manipulative tumor cells strategically elude the 
immune watch and facilitate tumor survival. One such mecha-
nism is the phenomenon of ‘trogocytosis’ in which the surface 
antigen exchange occurs in lymphocytes creating unique cell 
phenotypes with specific function (76). The immune synapse 
facilitates unique cell types to maintain intracellular signaling 
in T cell subsets and aid in tumor-induced immune suppres-
sion (77). The phenomenon of trogocytosis is more common 
in MM compared to other mature B cell malignancies and 
T cells are more proficient in acquiring antigens from malig-
nant PCs (78). Impaired immune system in MM patients also 
leads to recurrent infections with a life-changing impact on 
patients and care givers (79).

Microenvironment-dependent disease manifestations. One 
of the characteristic features of MM is the tendency of 
aberrant PCs to be confined to the bone marrow. Malignant 
PCs favor a microenvironment analogous to normal long-
lived PCs (3,74,75) and tend to migrate to peripheral blood 
only in the terminal stage of the disease (3,45,74,75). 
These malignant PCs evolve ‘autocrine growth supporting 
loops’ at this terminal stage which facilitate microenviron-
ment independent survival (35). The adhesion of MM cell 
with bone marrow stromal cell orchestrates homing via 
adhesion to the endothelium, invasion through the sub-
endothelial membrane, and chemotactic migration within the 
bone marrow stroma (35,45) (Fig. 2).

Aberrant PC interaction with bone marrow stromal 
cells (BMSCs) and extra cellular matrix (ECM), subse-
quently alter the normal microenvironment to tumor 
advantage (80,81). Cytokines such as interleukin 6 (IL6), 
vascular endothelial growth factor (vEGF), tumor necrosis 
factor-α (TNF-α), insulin-like growth factor 1 (IGF1) support 
the growth of MM cells (82,83). Along with IL6 and IGF1, 
IL21 promote the tumor survival while vEGF plays a role in 
MM cell migration with stromal cell derived factor-1α (SDF-
1α) (84-87). The initial binding between MM cells and bone 
marrow stromal cells is mediated via adhesion receptor inte-
grins (integrin α4β1, vLA4), through their ligands [vascular 
cell adhesion molecule 1 (vCAM1)] (88,89). The binding, 
further, upregulates cytokine and/or chemokine release from 
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stromal cells to the microenvironment (Fig. 2A). In addition, 
the transcription factor nuclear factor-κB (NF-κB) plays a 
significant role in the initiation of various cell-signaling path-
ways in MM cell and BMSC following the adhesion (84,90). 
The adhesion of MM cell to stroma triggers NF-κB and 
mitogen-activated-protein kinase (MAPK) signaling cascade 
in BMSC, which in turn results in a change in phenotype of 
MM, and BMSC with co-expression of adhesion molecules. 
Subsequently, cytokines secreted from MM cells trigger 
inflammatory cytokine production and nF-κB activation in 
BMSC (IL6, TNF-α and VeGF). The inflammatory cytokines 
from BMSCs trigger signaling pathways in MM cells (MAPK, 
phosphatidyl inositol 3 kinase/protein kinase B (P13/AKT), 
Janus kinase/signal transducer and activation of transcrip-
tion 3 (JAK/STAT3) pathways which enhance proliferation, 
cell cycle modulation and tumor survival via activation of 
antiapoptotic signals (91-93) (Fig. 2B).

Osteolytic lesions, compromise mobility, can result in 
spinal cord compression and moderate to severe nerve damage 
in MM. In fact, morbidity and mortality in MM is mostly 
associated with osteolytic lesions (80,81). Abe et al (81) 
demonstrated that peripheral blood mononuclear cell-derived 
osteoclasts enhance MM cell survival and growth in primary 
MM, as well as MM cell lines than stromal cells (75,80,81). 
Receptor activator of nuclear factor κB (RANK) on the surface 
of osteoclasts and the ligand (RANKL) expressed on the BMSC 
activate the osteoclasts while osteoprotegerin on BMSCs a 
decoy ligand of RANK prevents RANK-RANKL commu-
nication (89). Manipulative MM cells stimulate RANKL 
expression on BMSCs simultaneously reduce osteoprotegerin 
expression which accordingly promotes osteoclastogenesis. 

Consequent adhesion of MM cells to osteoclasts enhances the 
production of osteopontin and IL6, which augments MM cell 
growth and survival (88,89) (Fig. 2C).

6. Therapy

Treatment of MM typically involves combination chemotherapy 
including cyclophosphamide or melphalan, a steroid (dexa-
methasone or prednisolone), a novel agent [e.g. proteasome 
inhibitor, immunomodulatory drug (IMiDs)] and may be 
followed by autologous stem cell transplant depending on the 
age at diagnosis (2). Treatment of progressive MM consists 
of induction, maintenance and supportive regimens (50). In 
patients below 65 years of age, autologous stem cell trans-
plant (ASCT) is considered (13). In many cases a single 
autologous stem cell transplant can result in progression-free 
survival in comparison with chemotherapy alone (94).

The IMiDs and the proteasome inhibitors (e.g. bortezomib 
and carfilzomib) have provided significant improvements in 
survival and quality of life in MM (95). IMiDs are structural 
and functional analogs of thalidomide that have potent immu-
nomodulatory properties, anti-myeloma activity and better 
tolerability profiles (96). Thalidomide was the first immuno-
modulatory agent approved for use in MM. It is highly active 
against MM, however, is limited by considerable toxicity, 
particularly in older patients (97). Lenalidomide, an analog of 
thalidomide, possesses more potent activity with less toxicity 
and consequently is preferred for use across phases of MM 
treatment (98).

Thalidomide monotherapy when used for induction therapy 
produces a low response rate of ~35% (99,100). In the context 

Figure 2. Microenvironment-dependent factors in MM: (A) Aberrant PCs homing to the microenvironment is mediated by integrin mediated adhesion to 
extracellular matrix (ECM) and bone marrow stromal cells (BMSCs). (B) The growth, survival and migration of an aberrant PC is cytokine mediated and 
facilitated by the adhesion of aberrant PC to the BMSC. In BMSCs, this contact triggers the cell signaling pathway and nuclear factor-κB and subsequent 
secretion of various adhesion molecules/cytokines on both cells. (C) Adhesion to the BMSC is also involved in the bone resorption. MM cells stimulate 
RANKL expression on BMSCs and reduce osteoprotegerin expression to promote osteoclastogenesis. Adhesion of MM cells to osteoclasts follows with the 
over production of osteopontin and IL6, supplementing MM cell growth and survival.
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of relapsed disease, thalidomide monotherapy results in a 
median event-free survival of 6-12 months and median overall 
survival of 14 months (101). Thalidomide’s combination with 
dexamethasone improves the rate to 60-75% and is associated 
with a high incidence of grade 3-4 toxicity (102-104). For 
relapsed MM, the addition of an alkylating agent (cyclophos-
phamide or melphalan) further increases the response rate 
to 75-80% (105,106). In comparison with the response rates 
achieved using novel agents such as bortezomib or lenalido-
mide, thalidomide monotherapy is not superlative. In addition, 
combination of thalidomide with cytotoxic agents such as doxo-
rubicin or cyclophosphamide, improves the response rate and 
quality of response further. Consequently, a three-combination 
regimen is more commonly used when thalidomide induction 
is considered (104). however, for consolidation/maintenance 
therapy, the impact of thalidomide on therapeutic outcome 
remains unclear. Results obtained from the British Myeloma 
Research Council Myeloma IX study demonstrates that 
thalidomide is associated with shorter post-relapse survival 
suggesting that thalidomide maintenance may induce drug 
resistance compromising duration of response and survival 
especially in patients with high risk genotype [t(4;14), t(14,16), 
t(14,20), 1q21amp, del(17p)] (107,108).

Other novel agents like thalidomide derivatives (lenalido-
mide) and proteasome inhibitor (bortezomib) combination 
chemotherapy increases the overall response rate to 90% or 
above (109-112).

A complete remission or complete response (CR) in MM 
is clinically defined as negative serum and urine immunofixa-
tion, no plasmacytoma and ≤5% PCs in bone marrow for at 
least 2 months (113), whereas partial response is stated by 
>50% reduction of serum M-protein and >90% of Bence Jones 
protein (113,114).

Defining clinical relapse. The malignant PCs enter a static 
phase with typically lower levels of proliferative markers 
such as thymidine kinase, high sensitive CRP marking the 
remission status of MM patient after successful induction 
therapy (115-117). however, MM cells eventually overcome 
this passive phase and become aggressive within a short 
space of time (118). This complex process is said to include 
loss of immune regulation, clonal evolution, cytokine devi-
ance, oncogene stimulation and/or tumor suppressor gene 
anomaly (118). The mechanisms underlying initiation, a 
prolonged asymptomatic stage, progression and aggressive 
transformation of PCs are not yet clear (118). The failure of the 
current chemotherapeutic regimen to eliminate the malignant 
clone in MM is considered to be one of the major causes of 
consecutive relapse (118). Relapse from a complete response 
is clinically defined by the reappearance of the serum or urine 
M-protein (paraproteinemia), ≥5% bone marrow PCs, new lytic 
bone lesions and/or soft tissue plasmacytomas, an increase in 
the size of residual bone lesions and/or the development of 
hypercalcaemia (corrected serum calcium >11.5 mg/dl) not 
attributed to another cause (114,119).

7. Patient-related predisposing factors complicating 
diagnosis and treatment in MM

Patient age and gender. The incidence and risk of developing 
MM increases with age, with predominantly 80% of affected 
patients being above the age of 60 (1,5,120). The classic disease 
manifestations in MM such as anemia, bone pain and associ-
ated fracture and renal involvement imitate the complications 
associated with ageing process (36). Consequently, patients 
discount the warning signals, which results in delayed diag-
nosis, which severely compromises the accessible therapeutic 

Figure 3. Patient and tumor specific factors impacting on predisposition and treatment in MM: (A) The demographic (age, gender and genetics) variables cause 
relative pre-disposition of MM in patients. The incidence of MM increases with age and MM manifestations mimic ageing symptoms. MM is more common 
in males than females. African Americans are more predisposed for MM in comparison with Caucasians or Asians. (B) Myeloma is incurable despite most 
patients responding to initial high-dose induction therapy and the introduction of novel class of drugs (proteasome inhibitors, IMiDs). The eventual relapse is 
a result of vigorous changes in MM biology and the development of drug resistance during the course of treatment. Currently, the emergence of MDR+ MM 
cells is overlooked in the clinical setting.
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decisions for the elderly patients. Myeloma is more common in 
men than women for reasons yet unknown (5) (Fig. 3A).

Ethnicity. The incidence MM is lowest among those of 
Asian descent, is intermediate in Caucasians and is highest 
in African Americans (25,121,122). various independent 
studies have suggested that there may be a greater genetic 
predisposition to MGUS in Africans and African Americans 
than in Caucasians (123). Although the reason for this genetic 
pre-disposition is not known, a small number of studies 
have revealed that the variation in the prevalence of immu-
noglobulin subtypes and the overexpression of either κ or λ 
free light chain ratios in different races may contribute to the 
differential cytogenetic susceptibility between races (123). 
The presence of a rare deletion of 193 bp in the long arm of 
the pseudogene [poly(ADP-ribose) polymerase-allele B] of 
chromosome 13 (negative prognosis in MM) is more frequent 
in African Americans than Caucasians (69). Although the 
etiology of MM remains unknown, a family history of hema-
tological disorders, either alone or combined with exposure 
to certain viruses, radiation and chemicals, is a proposed risk 
factor (36) (Fig. 3A).

8. Tumor and treatment-associated factors complicating 
treatment

Clonal evolution. numerous studies have confirmed the pres-
ence of tumor-initiating cells (stem cells) in the bone marrow 
and their role in disease relapse (48,124). The primary bone 
marrow contain a small population of clonotypic B cells with 
an immature phenotype (CD138-) known as ‘side population’ 
or MM initiating cells with stem-cell characteristics besides 
the malignant ‘main population’ (48). These cells contain 
more quiescent cells than ‘main population’ cells in cell cycle 
analysis. The MM stem cells or ‘side population’ (SP) cells 
are enriched source of cancer stem cells and characteristically 
show low staining of hoechst 33342 dye, have high clonogenic 
potential and possess self renewal capacity (48,125). The SP 
cells contain hypermutated Ig genes, overexpress members of 
the ABC transporter family such as permeability-glycopro-
tein (P-gp), multi drug resistance-related protein 1 (MRP1) 
and breast cancer related protein (BCRP) much like the stem 
cells (126). The self-renewal capacity of the clonotypic MM 
cells is mainly attributed to the abnormal signaling pathways 
found in MM such as hedgehog, Notch and wnt signaling 
pathways (126).

The overexpression of drug efflux pumps is known to 
compromise the treatment outcome in MM (124). As mentioned, 
the side population has high expression of MDR proteins. The 
inability of chemotherapeutics to eradicate MM clones is a 
major limitation in MM management and a major cause of 
relapse (127). The detrimental MM clone is persistent during 
the remission phase and possess high proliferating potential 
once activated (118). The presence of drug efflux pumps 
further adds to the deleterious potential of the aforementioned 
MM clone and cause inevitable relapse (124) (Fig. 3B).

Multidrug resistance. Primary or acquired drug resistance 
is a major obstacle in MM therapy. In the past, conventional 
chemotherapeutic treatment of MM, was primarily focused 

on alkylator and corticosteroid based regimens (VAD 
regimen-vincristine, adriamycin or doxorubicin, dexametha-
sone) (128). The current therapeutic regimen includes IMiDs, 
proteasome inhibitors to improve outcome in MM patients. 
However, overexpression of MDR genes, topoisomerases 
and glutathione transferases mediate drug resistance in MM 
and many cancers (129). Cell adhesion mediated drug resis-
tance (CAM-DR) and overexpression of anti-apoptotic proteins 
are typical resistance mechanisms also contributing to relapse 
in MM (130,131).

Topoisomerase II. Topoisomerase II (topo II) is a 170-173 kDa 
homodimeric protein involved in DnA replication, recombi-
nation and gene transcription (132,133). Topo II is an ideal 
drug target and anthracyclins (doxorubicin), anthracene-
dions (mitoxantrone) and intercalating agents (acridines) 
are the main topoisomerase inhibitors used in MM therapy. 
These drugs interact with topo II to form a temporary 
complex, which prevents chromosome segregation and DnA 
synthesis (129). Point mutations in essential domains of the 
malignant PCs modify the drug target topo II by epigenetic 
changes such as hypermethylation at the CpG. Island of 
promoter region affecting the gene expression (129). Structural 
changes to topo II (α to β) also contribute to drug resistance to 
topo II inhibitors used in MM therapy (129). The sub-cellular 
localization of topo II is also crucial in determining the drug 
effectiveness and is governed by the adhesion molecule- 
mediated resistance mechanism in MM (134). Turner et al 
demonstrated that tumor density plays a role in topo II resis-
tance in such a way that in high density MM tumors, majority 
of the topo II is transported away from the DnA to the cyto-
plasm and the drugs fail to form cleavable complexes resulting 
in poor therapeutic outcome (135).

Glutathione transferases. Glutathione (γ-glutamylcysteinyl-
glycine) is a tripeptide thiol present throughout the 
mammalian organ system specifically in the liver and kidney. 
Physiologically, glutathione plays a critical role in clearance 
of xenobiotics, harmful radiations and free radicals (129,136). 
Glutathione transferases (GST) are a family of detoxification 
enzymes catalyzing the non-covalent or covalent conjuga-
tion of glutathione with the diverse detrimental electrophilic 
compounds. GSTs also sequester toxic compounds and protect 
the cells from the oxidative stress through inherent organic 
peroxidase activity. The cytosolic and microsomal GST forms 
in humans are differentiated as GST-π, -α and -μ of which 
GST-π form is the most common enzyme. The conjugation 
with glutathione makes the toxic compounds water soluble 
facilitating an easy expulsion from the cells. In the malignant 
status, this effective detoxification mechanism also becomes 
unfavorable. Active GSTs are either increased in the cell or 
the expression levels of the isozymes are altered to protect the 
tumor by catalyzing the toxic chemotherapeutics (136,137). 
Alkylating agents, melphalan and cyclophosphamide used in 
myeloma therapy are inactivated by GST catalysis resulting in 
poor therapeutic outcome (129). In addition, high percentage 
of co-expression of GST-π (82%) with P-gp which is another 
class of MDR protein (72%) in MM relapse is reported by 
Petrini et al (138). This implicates co-operation of two distinct 
MDR pathways in coordinating poor therapeutic response.
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Microenvironment-mediated drug resistance. Apart from 
microenvironment-mediated pathogenesis mentioned above, 
components of the bone marrow microenvironment contribute 
to treatment unresponsiveness in MM (139,140). The microen-
vironment related resistance mechanisms could be classified 
as integrin mediated adhesion to eCM (fibronectin) disrupting 
the apoptotic stimuli through cytokine-mediated upregulation 
of cell signaling and caspase mediated apoptotic cascade in 
MM cell. Microenvironment-dependent drug resistance in MM 
is considered as a bonus mechanism in MM cells by which the 
drug resistant cells are selected early on during initial therapy 
and they later acquire more explicit drug resistance during the 
course of chemotherapy (141).

CAM-DR. CAM-DR is induced following the interaction of 
malignant PCs to the ECM (141). Aberrant PCs express a 
variety of cell adhesion molecules, which function as cell-
to-cell and cell-ECM through counter receptors. Fibronectin 
mediated adhesion has been shown to increase the tolerance 
of MM cell line (RPMI-8226) to chemotherapeutic agents and 
the induction of drug resistance in MM cells by suppressing 
apoptosis (142). Integrin molecules such as the vLA4, vLA5 
and their respective receptors govern this resistance mecha-
nism. The integrin molecules act as extrinsic factors eliciting 
intracellular response through focal adhesion points that stim-
ulate signaling pathways and cytoskeletal modification (141). 
Damiano et al (142) demonstrated that the initial integrin 
mediated adhesion to fibronectin enhances MM cell survival 
and protects against apoptotic stimuli from doxorubicin and 
melphalan aiding tumor survival (141). The mechanism of 
CAM-DR can also be through blocking a specific element of 
the caspase mediated apoptotic pathway as shown by Shain 
and Dalton (141) in MM cell line RPMI-8226. The study 
showed direct inhibition of mitoxanthrone-induced caspase-3 
and -7 cleavage. once adhered to fibronectin, the cancer cells 

use the microenvironment in a number of ways to develop 
de novo drug resistance such as overexpression of cell cycle 
regulatory protein (p27Kip1), alterations to drug target and by 
facilitating integrin mediated cell signaling and cytoskeletal 
reorganization (Fig. 4).

Cytokine-mediated drug resistance. The MM cell-BM 
microenvironment cytokines regulate apoptosis and MM cell 
survival through their participation in P13K/AKT and JAK/
STAT3 signaling pathways (84). Novel and conventional 
chemotherapeutics in MM target the caspase-mediated 
apoptosis pathways. Caspase-8/3 mediated death receptor 
pathway (IMiDs, melphalan) and caspase-9/3 mediated 
mitochondrial intrinsic pathway (dexamethasone) follow 
subsequent poly-(ADP-ribose) polymerase (PARP) cleavage 
resulting in apoptotic death of MM cells (92,143-145). 
The proteasome inhibitor class (bortezomib) targets both 
caspase-8/3 and caspase-9/3 pathways (146). The IL6 medi-
ated activation of JAK/STAT3 signaling cascade results in 
upregulation of myeloid cell leukemia sequence 1 (MCL1) and 
B cell lymphoma/leukemia family (Bcl-XL) leading to dexa-
methasone resistance (147). P13K/AKT signaling and NF-κB 
activation in MM cells are coordinated by IL6 and IGF1 
by inducing inhibitors of drug-induced apoptosis resulting 
in treatment unresponsiveness and eventual survival of the 
tumor (148,149) (Fig. 5).

In conclusion, the MM cell-ECM interactions are a 
foundation for the de novo resistance to chemotherapeutics 
and thus pave the path for more mutative transformations or 
acquisition of classical MDR mechanisms during the course 
of treatment (141,142,150) (Figs. 4 and 5).

Drug efflux. Cancer cells often develop cross-resistance (to a 
large variety of chemically and pharmacologically unrelated 
drugs leading to the phenomenon of multiple (or multi-drug) 

Figure 4. Microenvironment-mediated drug resistance in MM. The adhesion of MM cells to fibronectin in the extracellular matrix (eCM) enhances MM cell 
survival and growth. The adhesion triggers the deregulation of apoptotic stimuli and facilitates MM growth and survival through NF-κB pathway activation. 
The alteration of drug target (topo II), cytokine (IL6 and IGF1) mediated upregulation of cell signaling (JAK/STAT3 and PI3K/AKT) cascades also play a 
major role in initial drug resistance in MM.
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resistance (MDR) (17). MDR is mainly attributed to the over-
expression of ATP-dependent efflux transporters belonging 
to the ABC superfamily (17) (Fig. 6). The overexpression of 
the ATP binding cassette (ABC) transporters on the plasma 
membranes of malignant PCs contribute to MDR in MM. 
P-gp, MRP1 lung resistance protein (LRP) and BCRP are 
all members of the ABC superfamily of membrane trans-
porters and mediate MDR in MM through their drug efflux 
capacity (130).

In MM therapy, maximal response rates and improved 
survival is achieved through combination thalidomide therapy. 

Combination chemotherapy is however compromised by the 
overexpression of the multidrug transporters (P-gp, MRP1, 
BCRP and LRP) on malignant cells, which maintain intracel-
lular drug accumulation deficits in resistant cells. Although 
there is no current evidence to suggest that thalidomide itself 
is a substrate of the these drug efflux pumps, the drugs used 
in combination as part of the recommended regimens are 
themselves substrates of one or more of these efflux trans-
porters (Table II) (151-166). This contributes to compromised 
therapeutic effects, reduced rates of response and overall 
survival of the tumor.

Figure 5. Microenvironment-mediated drug resistance pathways in MM: cell adhesion-mediated drug resistance and cytokine-mediated cell signaling 
cascade activation contribute to treatment failure in both conventional and novel therapies. Fibronectin-mediated adhesion to the ECM components trigger 
the cell cycle regulatory proteins (p27kip1) limit therapeutic success with doxorubicin. Death receptor-mediated apoptotic (caspase-8/3-IMiDs, melphalan) 
and mitochondrial intrinsic pathways (caspase-9/3, dexamethasone) and proteasome inhibitor targets both these pathways. Cytokine (IL6 and IGF1) activate 
NF-κB and JAK/STAT3 pathways, disrupting the apoptotic death of tumor cells.

Figure 6. MDR proteins contributing to MM relapse: (A) The MDR+ MM clones characteristically overexpress the ABC transporters and the vault proteins 
similar to the stem cell populations. ABC tranporters maintain intracellular sub-lethal concentration of the drug resulting in relapse. (B) vault proteins (LRP), 
efflux out or sequester its substrate drugs and prevent the entry to the nucleus, which result in treatment failure and MM relapse. In addition, the transporters 
cause high systemic drug concentration causing serious side effects in patients with renal insufficiency.
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P-gp. The ABCB1 gene located on the long arm of chromo-
some 7 encodes 170 kDa P-gp (17). It is a cell surface protein 
distributed throughout the human body and is typically 
found in pharmacological interfaces protecting the cell from 
carcinogen or xenobiotic influx (17). It has been established 
that an excessive amount of ABCB1 leads to MDR in many 
cancers (17). P-gp mediated drug efflux sustains a sub-lethal 
amount of drug concentration in the intracellular environment 
enabling the cancerous cell to evade the toxic chemothera-
peutic insult resulting in the eventual survival (17).

The main components of conventional induction regimen 
in MM, the vinca-alkaloid (melphalan), anthracyclines 
(doxorubicin, daunarubicin) are common substrates of ABC 
transporters such as P-gp or MRP1 (Table II). Chemotherapeutic 
resistance in MM patients is frequently associated with the 
overexpression of P-gp (167). At least 5% of cases of untreated 
MM presents with P-gp which can compromise the induction 
therapy outcome significantly (168). In addition, the circulating 
B cells or the ‘side population’ in MM express P-gp comprising 
the resident MDR clone, which leads to MM relapse (169). 
Nuessler et al also reported that 33% of patients at relapse or 
progressive MM are positive for functional P-gp (170).

Several in vitro and in vivo pharmacogenomic and pharma-
cogenetic studies have revealed genetic polymorphisms of the 
ABC transport proteins as clinical MDR facilitators in MM. 
These polymorphisms show diverse function and manifestation 
across different ethnicities and patient cohorts (171-173). Fifty 
single nucleotide polymorphisms (SNPs) and 3 insertion/deletion 

polymorphisms have been identified for P-gp. Of these, 
three (rs1045642, rs2032582 and rs1128503) were found to 
have potential therapeutic impact in MM (171,172), though, 
only rs1045642 (C3435T) showed correlation to the overall 
survival in MM. Minimal linkage disequilibrium was shown 
for the other two SNPs (171). It is believed that rs1045642 
may alter the substrate specificity and influence therapy in 
MM (173). however, the statistical comparison within the MM 
patient group of Northern Irish ethnicity showed that although 
rs1045642 had an influence on overall survival, it was insig-
nificant in statistical comparisons between healthy controls and 
MM patients (173). Another study involving 115 post-transplant 
MM patients investigating C3435T polymorphism reported that 
C/T and T/T genotypes showed a longer overall survival than 
C/C genotype under dexamethasone, adriamycin (doxorubicin) 
and vincristine (VAD) treatment regimen (174).

MRP1. MRP1 is a 190 kDa protein coded by the ABCC1 
gene and located on the plasma membrane of both normal 
and malignant cells (175). Specifically, in a cell, MRP1 trans-
ports multiple organic anions (some glutathione conjugates) 
protecting against oxidative stress and is reliant on the intercel-
lular glutathione levels for anthracycline transport (176-178). 
MRP1 gene overexpression results in clinical MDR in 
patients treated with natural agents such as anthracyclines 
and vinca-alkaloids (175,179). Abbaszadegan et al reported 
frequent detectable MRP1 mRNA in MM (100%) (167). 
MRP+ve cells have been shown to accumulate lower amounts 

Table I. Current International Staging System (ISS) in multiple myeloma.

ISS  Median survival
stage Criteria in months

  I Serum β2-microglobulin <3.5 mg/l  62
 Serum albumin ≥3.5 g/dl
 II Neither stage I nor stage III 44
 Or 
 (i) Serum β2-microglobulin <3.5 mg/l and serum albumin <3.5 g/dl
 (ii) Serum β2-microglobulin 3.5 to <5.5 mg/l irrespective of serum albumin level
III Serum β2-microglobulin ≥5.5 mg/l 29

Table II. Chemotherapeutics used in MM are substrates of MDR proteins.

Drugs P-gp MRP1 BCRP LRP References

Melphalan + + - + (152-154)
Lenalidomide + - - a (155-157)
Bortezomib + + - a (158,159)
Thalidomide - - a a (160)
Prednisone/prednisolone + - a a (161,162)
Doxorubicine + + + + (163,165,166)
Idarubicin + + - a (164,167)

aInsufficient published data to comment.
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of drug relative to P-gp, potentially due to their dependence on 
glutathione metabolism (130,179). The presence of the poly-
morphism, MRP1/R723Q (p.Arg723Gln) results in changes 
in the physico-chemical properties (size and polarity) of the 
protein, and this structural change significantly increase time 
to progression, progression-free survival and overall survival 
in a group of MM patients treated with velcade and pegylated 
liposomal doxorubicin (178). It is postulated that the variance 
in capacity of MRP1/R723Q isoform in trafficking and expres-
sion may be the cause of the antitumor effect of anthracyclins 
in this study (178). The MRP1 expression and its prognostic 
significance in MM or in cancer in general is comparatively 
less studied than P-gp (180).

BCRP. Breast cancer resistance protein is another ABC 
transporter family member with a molecular weight of 72 kDa 
typically expressed at pharmacological barriers (181,182). 
Structurally, BCRP encoded by the ABCG2 gene, consists 
of a single nucleotide binding domain (nBD) and one trans 
membrane domain (TMD). Consequently, BCRP requires at 
least two nBDs to function as a drug efflux pump and usually 
exists as an oligomer (183). BCRP was initially described in 
MCF-7/AdVrp human MDR breast cancer cell line that did 
not express P-gp or MRP1 (184,185). In MM, BCRP shows 
impaired function and is not associated with drug resistance 
in de novo patients (184). however, BCRP is closely associated 
with the compounding problem of clonogenic potential of MM 
cells leading to relapse. The ‘MM stem cells’ or ‘side popula-
tion’ (hoechst 33342 low staining) have higher BCRP mRNA 
levels and functional activity compared to the rest of the MM 
cells (main population) (186). Functional BCRP expression 
in MM is inversely proportional to promoter methylation in 
ABCG2 gene in such a way that unmethylated promoter site 
results in moderate or high BCRP (ABCG2) expression (187). 
Numerous polymorphisms for BCRP have been reported in 
literature (v12M, Q141K, F208S, S248P, F431L, S441N and 
F489L) however they have not been linked to MM yet (188).

Major vault protein (LRP). LRP is a 110-kDa protein expressed 
in the kidneys, adrenal glands, heart, lungs, muscles, thyroid, 
prostate, bone marrow and testis. Most vaults are complex 
ribonucleoprotein particles comprising two large molecular 
weight proteins and a small RnA in addition to the 110 kDa 
LRP. They are mostly present in cytoplasm, with a small 
fraction present in the nuclear membrane and nuclear pore 
complex (189). They are assumed to translocate substances 
across the nucleus and cytoplasm and are said to be involved 
in MDR (130,190). Raaijmakers et al reported the prevalence 
of LRP in untreated MM patients (153). This study established 
the relevance of LRP as an independent predictor in compar-
ison with current markers (PC labeling index, serum B2M 
or lactate dehydrogenase level) for therapeutic response and 
survival in MM patients treated with melphalan (melphalan 
and prednisone) (153). Thus, screening for LRP prior to treat-
ment to identify the positive population is recommended in 
therapeutic design in de novo MM to circumvent LRP medi-
ated drug resistance (153). There are currently more than 100 
polymorphisms identified for LRP (191). LRP expression rather 
than polymorphic state have been correlated with therapeutic 
response (192-195).

Circumvention of MDR. In the past few decades, substan-
tial research has focused on the development and trial of 
agents, which can reverse the drug efflux capacity of ABC 
transporters, in particular P-gp in cancer (15,130,196,197). 
Indeed, the pharmacological inhibition of P-gp activity has 
been a major focus in many MM clinical studies (198). In 
an attempt to circumvent acquired MDR, several inhibitors 
have been used to improve treatment outcome of patients 
with MM (16,199-201). The cyclosporin A reversal effect has 
been evident in phase II studies with MM and acute myeloid 
leukemia, although phase III clinical trials failed to give the 
expected response in progression-free survival and overall 
survival (197). Since the initial successful clinical trials, 
verapamil and cyclosporin were combined with vincristine, 
adriamycin and dexamethasone (VAD) in MM, however, these 
have had disappointing results mainly due to lack of improved 
efficacy or dose related toxicity (15,196,197).

In conclusion, management of MM relies on combination 
therapy and different drug resistance mechanisms, topo IIα 
and GST-π-dependent resistance, specifically the drug 
efflux pathways pose a significant challenge in MM clinical 
setting. Conservative regime in MM, are mostly substrates of 
ABC-transporters, topo IIα and GST-π-dependent resistance 
mechanisms (170). Recent studies have reported that the novel 
agents are also substrates of ABC transporters specifically 
P-gp (154,157).

9. Discussion

herein, we explored the relevant innate and acquired challenges 
associated with the therapeutic management of MM including 
the role of MDR in therapeutic failure. Many cases of MM 
with late middle age onset fail to be accurately diagnosed early 
as recurrent infections, tiredness and bone/joint pain is often 
associated with normal ageing-related complications.

MM is currently an incurable and chronic disease, with 
‘non-secretory myeloma’ exclusively dependent on frequent 
bone marrow aspiration for the assessment of molecular, 
cytogenetic markers including aberrant PC population, 
and categorizing complete response. Secretory myeloma is 
partially dependent on bone marrow aspiration for the confir-
mation of the clinical status (9). This is largely because the 
malignancy is restricted to the bone marrow and is rarely seen 
in peripheral blood (202). Current risk stratification in MM 
is also primarily dependent on cytogenetic markers and is 
assessed using invasive bone marrow biopsy. Nevertheless, the 
BM biopsy does not provide a sensitive assessment of genetic 
abnormalities in multiple tumor sites throughout the skeletal 
system of MM patients. Therefore, even invasive biopsy is not 
comprehensive in risk profiling patients with MM.

The current ISS, although, presents with distinct advantages 
over its predecessors, the precise indication of the higher ISS 
stage (stage III) is inconclusive in terms of whether it suggests 
tumor burden/aggressiveness or the level of end-organ damage 
or both (55). There are several reliable systemic markers present 
for prognosis, like B2M, M-protein, however these markers are 
insufficient in gauging the transition from the indolent phase 
of MM to an aggressive disease state (118). In the case of 
‘non-secretory myeloma’, diagnosis and prognosis are further 
limited as it lacks the typical hallmark of the disease.
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T cells proficiently acquire antigens from MM cells 
over any other cell type and create novel cell types through 
trogocytosis (76,77). It is not understood clearly if the novel 
T regulatory cell types provide new ligands for receptors and 
regulate signaling pathways, however, this mechanism enables 
the malignant PCs to effectively evade the immune system 
recognition and thereby stimulate tumor growth (203).

we have very little understanding regarding the intricate 
cycle of dormant and malignant phase of PCs in MM or in 
other words how PCs escape the plateau phase in the remission 
status and become aggressive again in relapse. This phenom-
enon underlines the fact that even aggressive therapy is not 
successful in eliminating the neoplastic origin of MM (118). 
As discussed, the MM stem cell population (SP cells) and 
circulating CD138- PCs are said to have an aggressive prolif-
erative and dissemination capacity (5,27). In addition, they 
characteristically have self-renewal potential and overexpress 
the ABC transporters on their surface (124). The persevering 
MM clone with MDR phenotype potentially lead to treatment 
failure and currently this aspect is not routinely monitored 
in the clinical setting. Another complicating aspect of MM 
is the high heterogeneity in survival amongst patients. MDR 
phenotype, genetics of MM, including specific IgH transloca-
tions and individual immune profiles are potential players 
with a role in the disparity in survival amongst MM patients. 
Present systemic markers do not assist greatly in risk stratifica-
tion, thus, it is more reliant on the cytogenetic markers in this 
aspect. Therefore, inclusion of more systemic markers, alone 
or in combination that would aid in early detection, tailor an 
individualized approach to optimize a prognostic surveillance 
at diagnosis and after primary surgery is highly recommended 
in MM (204-207).

The derivatives of thalidomide (IMiDs) have improved 
overall survival and have increased the cost of treatment 
significantly. However, in a phase 1 clinical trial conducted 
in 2011, involving 21 patients with refractive myeloma who 
were treated with lenalidomide and temsirolimus (mTOR 
pathway inhibitor-CCI-779), a high concentration of the drug 
was detected in the blood causing toxicity. The patients experi-
enced unusual side effects such as electrolyte imbalance, rashes, 
fatigue, and neutropenia. Further investigation of the pharma-
cokinetic profiles of CCI-779 and lenalidomide suggested a 
drug-drug interaction, hinting that the disposition of CCI-779 
is arguably mediated by CYP3A4/5 and P-gp (208-210). The 
clinical trial assessed toxicity or adverse effects and response 
to treatment by serum and urine M-protein quantification 
every four weeks. There was only limited documented clinical 
evidence suggesting lenalidomide and P-gp interaction and 
this possibility was investigated through in vitro studies to 
determine whether lenalidomide can be transported by P-gp. 
The in vitro studies proved that lenalidomide is actively trans-
ported by P-gp and this effect was reversed by CCI-779 and 
verapamil. In addition, ABCB1 silencing RNA or short inter-
fering RNA (siRNA) knockdown studies in vitro also showed 
more lenalidomide uptake, supporting lenalidomide and P-gp 
drug-drug interaction (154).

In light of emerging studies that these novel drugs that 
have been incorporated to MM therapeutic management 
are substrates of ABC transporters, the situation warrants a 
re-evaluation of the manipulative power of MM cells (154). It 

is evident that opting for more aggressive chemotherapy has 
brought some promise of prolonging remission and survival in 
MM. however, this recent study serves as a reminder of aggres-
sive chemotherapy pitfalls of side effects, toxicity and eventual 
development of MDR phenotype in patients (211). More impor-
tantly out of the innate MM complications contributing to 
treatment failure, MDR is an element that can be modulated 
and targeted, which, therefore invites specific attention.

The role of polymorphisms in ABCB1 and ABCC1 in both 
the predisposition to disease and the therapeutic outcome of 
MM have in recent years been studied extensively. The three 
most common MDR1 SnPs include 2677G>T/A in exon 21 
(RefSnP ID: rs2032582), 3435C>T in exon 26 (RefSnP 
ID: rs1045642) and 1236C>T (RefSnP ID: rs1128503) in 
exon 12. The 2677G>T/A polymorphism translated into an 
amino acid exchange from Ala to Ser or Thr at codon 893, 
affecting the intracellular region of P-gp between trans 
membrane 10 and 11 (212). Both 3435C>T and 1236C>T are 
synonymous SNPs. The 3435C>T mutation results in a change 
from cytosine to thymine that translates to isoleucine. It is 
found in the second ATP binding domain, located between 
the Q-loop and the second signature motif on the intracellular 
side of the protein. This SnP is associated with altered MDR1 
expression (213). 1236C>T affects the intracellular region of 
P-gp between the first A-loop and walker A motif (212) and 
translates into a glycine residue. These three polymorphisms 
are and comprise the most common MDR1 haplotype (212). 
microRNAs, -miR-15a, miR-16-1, and miR-17-92 are also 
shown to play a role in the heterogeneity in the clinical 
outcome of MM (65,68).

In terms of the therapeutic outcome, Buda et al investi-
gated the prognostic role of MDR1 in the outcome of 115 MM 
patients treated with DAV (dexamethasone, doxorubicin and 
vincristine) followed by autologous stem cell transplant. This 
study showed that the C3435T polymorphism was prognostic 
with patients with the C/T and T/T genotypes demonstrating a 
longer overall survival compared to those with C/C genotype. 
The same polymorphism was again found to be associated with 
a longer time to progression and progression-free survival in 
relapsed and/or refractory MM patients treated with pegylated 
liposomal doxorubicin in combination with bortezomib (178). 
The T allele in SNP G2677T/A is likewise associated with a 
better response to DAV (214) and a better overall survival in 
MM (215).

The single-nucleotide polymorphism in MRP1 (rs4148356, 
R723Q) has also been shown to impact on the clinical outcomes 
of MM patients (178). The MRP1 mutation Arg723Gln has an 
effect on the protein expression and trafficking, significantly 
reducing MRP1-mediated resistance to a wide spectrum of 
drugs. The presence of R723Q results in extended time to 
progression, progression-free survival and overall survival in 
MM patients. This has been ascribed to the differential ability 
of the isoform in trafficking glutathione and/or regulating its 
expression (178). It is currently unknown whether polymor-
phisms of BCRP play a role in MM treatment outcome (216).

The integrin mediated (CAM-DR) drug resistance mecha-
nism is considered to enable MM cells to survive the initial 
drug toxicity, which in the course of therapy aids in selec-
tive expression of classical drug resistance pathways such as 
ABC-transporter overexpression in MM cells (65,68,142).
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Current measures of therapeutic response rely on invasive 
bone marrow biopsy, immunofixation, serum protein electro-
phoresis, quantitation, measurement of free light chain and 
CT/MRI scans (217). A full blood count, biochemistry screen, 
B2M and light chain assays are other prominent systemic 
markers along with radiology used for staging, diagnosis and 
monitoring in MM (1,58). None of the above markers, however, 
provide a direct assessment of the emergence of MDR or detect 
the expression and evolution of resistance markers, polymor-
phic variants of resistance markers or nucleic acid signatures, 
which may contribute to disease progression and individual 
therapeutic responsiveness.

10. Conclusion

Cancer biology in general is an intricate process, especially in 
MM, where individual immunological and tumor profiles change 
dynamically during the course of treatment. Despite our knowl-
edge of the MM landscape, the intrinsic challenge of heterogeneity 
provides a significant complication in the management of MM, 
necessitating individualized analysis of MM pathogenesis and 
routine monitoring of evolution of drug resistance.

References

 1. Malpas JS: Management of multiple myeloma. BMJ 2: 163-165, 
1969.

 2. Kyle RA and Rajkumar Sv: Treatment of multiple myeloma: A 
comprehensive review. Clin Lymphoma Myeloma 9: 278-288, 2009.

 3. Katz BZ: Adhesion molecules - The lifelines of multiple myeloma 
cells. Semin Cancer Biol 20: 186-195, 2010.

 4. Barlogie B, Alexanian R and Jagannath S: Plasma cell dyscrasias. 
JAMA 268: 2946-2951, 1992.

 5. Reid S, Yang S, Brown R, Kabani K, Aklilu E, ho PJ, woodland N 
and Joshua D: Characterisation and relevance of CD138-negative 
plasma cells in plasma cell myeloma. Int J Lab hematol 32: 
e190-e196, 2010.

 6. Dimopoulos MA and Terpos e: Multiple myeloma. Ann oncol 21 
(Suppl 7): vii143-vii150, 2010.

 7. Kyle RA: Multiple myeloma: how did it begin? Mayo Clin 
Proc 69: 680-683, 1994.

 8. Kyle RA: Multiple myeloma: An odyssey of discovery. Br J 
haematol 111: 1035-1044, 2000.

 9. Durie BG, Harousseau JL, Miguel JS, Bladé J, Barlogie B, 
Anderson k, Gertz M, Dimopoulos M, westin J, Sonneveld P, 
et al; International Myeloma working Group: International 
uniform response criteria for multiple myeloma. Leukemia 20: 
1467-1473, 2006.

10. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, 
Mateos Mv, Kumar S, hillengass J, Kastritis E, Richardson P, 
et al: International Myeloma working Group updated criteria for 
the diagnosis of multiple myeloma. Lancet Oncol 15: e538-e548, 
2014.

11. Martin Nh: The immunoglobulins: A review. J Clin Pathol 22: 
117-131, 1969.

12. Quach H, Ritchie D, Stewart Ak, neeson P, Harrison S, 
Smyth MJ and Prince hM: Mechanism of action of immuno-
modulatory drugs (IMiDS) in multiple myeloma. Leukemia 24: 
22-32, 2010.

13. Barlogie B, Shaughnessy J, Tricot G, Jacobson J, Zangari M, 
Anaissie E, walker R and Crowley J: Treatment of multiple 
myeloma. Blood 103: 20-32, 2004.

14. Merchionne F, Perosa F and Dammacco F: new therapies in 
multiple myeloma. Clin Exp Med 7: 83-97, 2007.

15. Sonneveld P, Schoester M and de Leeuw K: Clinical modulation of 
multidrug resistance in multiple myeloma: Effect of cyclosporine 
on resistant tumor cells. J Clin Oncol 12: 1584-1591, 1994.

16. Sonneveld P, Durie BG, Lokhorst HM, Marie JP, Solbu G, 
Suciu S, Zittoun R, Löwenberg B and nooter k; The Leukaemia 
Group of the EORTC and the hOvON: Modulation of multidrug-
resistant multiple myeloma by cyclosporin. Lancet 340: 255-259, 
1992.

17. Gong J, Jaiswal R, Mathys JM, Combes v, Grau GE and 
Bebawy M: Microparticles and their emerging role in cancer 
multidrug resistance. Cancer Treat Rev 38: 226-234, 2012.

18. Biedler JL and Riehm H: Cellular resistance to actinomycin D 
in Chinese hamster cells in vitro: Cross-resistance, radioauto-
graphic, and cytogenetic studies. Cancer Res 30: 1174-1184,  
1970.

19. Turesson I, velez R, Kristinsson SY and Landgren O: Patterns 
of improved survival in patients with multiple myeloma in the 
twenty-first century: A population-based study. J Clin oncol 28: 
830-834, 2010.

20. Decaux o, Lodé L, Magrangeas F, Charbonnel C, Gouraud w, 
Jézéquel P, Attal M, Harousseau JL, Moreau P, Bataille R, et al; 
Intergroupe Francophone du Myélome: Prediction of survival 
in multiple myeloma based on gene expression profiles reveals 
cell cycle and chromosomal instability signatures in high-risk 
patients and hyperdiploid signatures in low-risk patients: A study 
of the Intergroupe Francophone du Myélome. J Clin oncol 26: 
4798-4805, 2008.

21. Garrison LP Jr, wang ST, huang h, Ba-Mancini A, Shi h, 
Chen k, korves C, Dhawan R, Cakana A, van de Velde H, et al: 
The cost-effectiveness of initial treatment of multiple myeloma in 
the U.S. with bortezomib plus melphalan and prednisone versus 
thalidomide plus melphalan and prednisone or lenalidomide plus 
melphalan and prednisone with continuous lenalidomide main-
tenance treatment. Oncologist 18: 27-36, 2013.

22. Gaultney JG, Franken MG, Tan SS, Redekop wK, huijgens PC, 
Sonneveld P and Uyl-de Groot CA: Real-world health care costs 
of relapsed/refractory multiple myeloma during the era of novel 
cancer agents. J Clin Pharm Ther 38: 41-47, 2013.

23. Goodwin JA, Coleman EA, Sullivan E, Easley R, McNatt PK, 
Chowdhury N and Stewart CB: Personal Financial Effects of 
Multiple Myeloma and Its Treatment. Cancer Nurs 36: 301-308, 
2013.

24. Durie B, Binder G, Pashos C, khan Z, Hussein M and Borrello I: 
Total cost comparison in relapsed/refractory multiple myeloma. 
J Med Econ 16: 614-622, 2013.

25. Bergsagel D: The incidence and epidemiology of plasma cell 
neoplasms. Stem Cells 13 (Suppl 2): 1-9, 1995.

26. Chen-Kiang S: Cell-cycle control of plasma cell differentiation 
and tumorigenesis. Immunol Rev 194: 39-47, 2003.

27. Caraux A, Klein B, Paiva B, Bret C, Schmitz A, Fuhler GM, 
Bos nA, Johnsen He, orfao A and Perez-Andres M; Myeloma 
Stem Cell Network: Circulating human B and plasma cells. 
Age-associated changes in counts and detailed character-
ization of circulating normal CD138- and CD138+ plasma cells. 
haematologica 95: 1016-1020, 2010.

28. Alessio M, Roggero S, Funaro A, De Monte LB, Peruzzi L, 
Geuna M and Malavasi F: CD38 molecule: Structural and 
biochemical analysis on human T lymphocytes, thymocytes, and 
plasma cells. J Immunol 145: 878-884, 1990.

29. Ruiz-Argüelles GJ and San Miguel JF: Cell surface markers in 
multiple myeloma. Mayo Clin Proc 69: 684-690, 1994.

30. Kara IO, Sahin B, Paydas S and Cetiner S: Flow cytometric 
evaluation of bone marrow plasma cells using CD19, CD45, 
CD56, CD38, and CD138 and correlation with bone marrow 
infiltration ratio in multiple myeloma patients. Saudi Med J 25: 
1587-1592, 2004.

31. Rawstron AC: Immunophenotyping of plasma cells. Curr Protoc 
Cytom, 2006. Chapter 6: p. Unit6.23.

32. Bayer-Garner IB, Sanderson RD, Dhodapkar MV, owens RB 
and wilson CS: Syndecan-1 (CD138) immunoreactivity in bone 
marrow biopsies of multiple myeloma: Shed syndecan-1 accu-
mulates in fibrotic regions. Mod Pathol 14: 1052-1058, 2001.

33. Tokoyoda K, hauser AE, Nakayama T and Radbruch A: 
Organization of immunological memory by bone marrow 
stroma. Nat Rev Immunol 10: 193-200, 2010.

34. Moser K, Tokoyoda K, Radbruch A, MacLennan I and Manz RA: 
Stromal niches, plasma cell differentiation and survival. Curr 
Opin Immunol 18: 265-270, 2006.

35. vande Broek I, vanderkerken K, van Camp B and van Riet I: 
Extravasation and homing mechanisms in multiple myeloma. 
Clin Exp Metastasis 25: 325-334, 2008.

36. Alexander DD, Mink PJ, Adami Ho, Cole P, Mandel JS, 
oken MM and Trichopoulos D: Multiple myeloma: A review of 
the epidemiologic literature. Int J Cancer 120 (Suppl 12): 40-61, 
2007.

37. Brigden ML: The search for meaning in monoclonal protein. Is it 
multiple myeloma or monoclonal gammopathy of undetermined 
significance? Postgrad Med 106: 135-142, quiz 185, 1999.



KRIShNAN et al:  DRuG ReSISTAnCe In MyeLoMA46

38. kyle RA, Therneau TM, Rajkumar SV, offord JR, Larson DR, 
Plevak MF and Melton LJ III: A long-term study of prognosis in 
monoclonal gammopathy of undetermined significance. n engl 
J Med 346: 564-569, 2002.

39. Fonseca R, Barlogie B, Bataille R, Bastard C, Bergsagel PL, 
Chesi M, Davies Fe, Drach J, Greipp PR, kirsch IR, et al: 
Genetics and cytogenetics of multiple myeloma: A workshop 
report. Cancer Res 64: 1546-1558, 2004.

40. Pilarski LM and Belch AR: Circulating monoclonal B cells 
expressing P glycoprotein may be a reservoir of multidrug-
resistant disease in multiple myeloma. Blood 83: 724-736, 1994.

41. Bergsagel PL, Kuehl wM, Zhan F, Sawyer J, Barlogie B and 
Shaughnessy J Jr: Cyclin D dysregulation: An early and unifying 
pathogenic event in multiple myeloma. Blood 106: 296-303, 
2005.

42. Hundemer M, klein u, Hose D, Raab MS, Cremer Fw, Jauch A, 
Benner A, Heiss C, Moos M, Ho AD, et al: Lack of CD56 
expression on myeloma cells is not a marker for poor prognosis 
in patients treated by high-dose chemotherapy and is asso-
ciated with translocation t(11;14). Bone Marrow Transplant 40: 
1033-1037, 2007.

43. Chang H, Samiee S and yi QL: Prognostic relevance of CD56 
expression in multiple myeloma: A study including 107 cases 
treated with high-dose melphalan-based chemotherapy and 
autologous stem cell transplant. Leuk Lymphoma 47: 43-47, 
2006.

44. Van Camp B, Durie BG, Spier C, De waele M, Van Riet I, 
vela E, Frutiger Y, Richter L and Grogan TM: Plasma cells in 
multiple myeloma express a natural killer cell-associated antigen: 
CD56 (nkH-1; Leu-19). Blood 76: 377-382, 1990.

45. van Riet I and van Camp B: The involvement of adhesion 
molecules in the biology of multiple myeloma. Leuk Lymphoma 9: 
441-452, 1993.

46. Rawstron AC, owen RG, Davies Fe, Johnson RJ, Jones RA, 
Richards SJ, Evans PA, Child JA, Smith GM, Jack AS, et al: 
Circulating plasma cells in multiple myeloma: Characterization 
and correlation with disease stage. Br J haematol 97: 46-55, 1997.

47. o’Connell FP, Pinkus JL and Pinkus GS: CD138 (syndecan-1), 
a plasma cell marker immunohistochemical profile in hemato-
poietic and nonhematopoietic neoplasms. Am J Clin Pathol 121: 
254-263, 2004.

48. Matsui w, huff CA, wang Q, Malehorn MT, Barber J, 
Tanhehco y, Smith BD, Civin CI and Jones RJ: Characterization 
of clonogenic multiple myeloma cells. Blood 103: 2332-2336, 
2004.

49. Kyle RA and Rajkumar Sv: Criteria for diagnosis, staging, risk 
stratification and response assessment of multiple myeloma. 
Leukemia 23: 3-9, 2009.

50. Palumbo A, Attal M and Roussel M: Shifts in the therapeutic 
paradigm for patients newly diagnosed with multiple myeloma: 
Maintenance therapy and overall survival. Clin Cancer Res 17: 
1253-1263, 2011.

51. Lonial S and Kaufman JL: Non-secretory myeloma: a clinician’s 
guide. Oncology (williston Park) 27: 924-930, 2013.

52. Cavo M, Rajkumar Sv, Palumbo A, Moreau P, Orlowski R, 
Bladé J, Sezer o, Ludwig H, Dimopoulos MA, Attal M, et al; 
International Myeloma working Group: International Myeloma 
working Group consensus approach to the treatment of multiple 
myeloma patients who are candidates for autologous stem cell 
transplantation. Blood 117: 6063-6073, 2011.

53. Fernández de Larrea C, Delforge M, Davies F and Bladé J: 
Response evaluation and monitoring of multiple myeloma. 
Expert Rev hematol 7: 33-42, 2014.

54. Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, 
Bladé J, Boccadoro M, Child JA, Avet-Loiseau H, kyle RA, 
et al: International staging system for multiple myeloma. J Clin 
Oncol 23: 3412-3420, 2005.

55. Hari Pn, Zhang MJ, Roy V, Pérez wS, Bashey A, To LB, 
Elfenbein G, Freytes CO, Gale RP, Gibson J, et al: Is the 
International Staging System superior to the Durie-Salmon 
staging system? A comparison in multiple myeloma patients 
undergoing autologous transplant. Leukemia 23: 1528-1534, 
2009.

56. Durie BG and Salmon Se: A clinical staging system for multiple 
myeloma. Correlation of measured myeloma cell mass with 
presenting clinical features, response to treatment, and survival. 
Cancer 36: 842-854, 1975.

57. Salmon Se and Durie BG: Cellular kinetics in multiple myeloma. 
A new approach to staging and treatment. Arch Intern Med 135: 
131-138, 1975.

58. Palumbo A, Bringhen S, Falco P, Cavallo F, Ambrosini MT, 
Avonto I, Gay F, Caravita T, Bruno B and Boccadoro M: Time to 
first disease progression, but not beta2-microglobulin, predicts 
outcome in myeloma patients who receive thalidomide as salvage 
therapy. Cancer 110: 824-829, 2007.

59. hungria vT, Maiolino A, Martinez G, Colleoni Gw, Coelho EO, 
Rocha L, Nunes R, Bittencourt R, Oliveira LC, Faria RM, 
et al; International Myeloma working Group Latin America: 
Confirmation of the utility of the International Staging System and 
identification of a unique pattern of disease in Brazilian patients 
with multiple myeloma. haematologica 93: 791-792, 2008.

60. Kuehl wM and Bergsagel PL: Multiple myeloma: Evolving genetic 
events and host interactions. Nat Rev Cancer 2: 175-187, 2002.

61. Sawyer JR: The prognostic significance of cytogenetics and 
molecular profiling in multiple myeloma. Cancer Genet 204: 
3-12, 2011.

62. Stewart AK and Fonseca R: Prognostic and therapeutic signif-
icance of myeloma genetics and gene expression profiling. J Clin 
Oncol 23: 6339-6344, 2005.

63. Liebisch P and Döhner H: Cytogenetics and molecular cytoge-
netics in multiple myeloma. Eur J Cancer 42: 1520-1529, 2006.

64. Kuehl wM and Bergsagel PL: Early genetic events provide the 
basis for a clinical classification of multiple myeloma. Hematology 
Am Soc hematol Educ Program 2005: 346-352, 2005.

65. Pichiorri F, De Luca L and Aqeilan RI: MicroRnAs: new players 
in multiple myeloma. Front Genet 2: 22, 2011.

66. Bartel DP: MicroRnAs: Genomics, biogenesis, mechanism, and 
function. Cell 116: 281-297, 2004.

67. Petrocca F, visone R, Onelli MR, Shah Mh, Nicoloso MS, 
de Martino I, Iliopoulos D, Pilozzi e, Liu CG, negrini M, et al: 
E2F1-regulated microRNAs impair TGFbeta-dependent cell-
cycle arrest and apoptosis in gastric cancer. Cancer Cell 13: 
272-286, 2008.

68. Roccaro AM, Sacco A, Thompson B, Leleu X, Azab AK, Azab F, 
Runnels J, Jia X, Ngo hT, Melhem MR, et al: MicroRNAs 
15a and 16 regulate tumor proliferation in multiple myeloma. 
Blood 113: 6669-6680, 2009.

69. Cao J, hong Ch, Rosen L, vescio RA, Smulson M, Lichtenstein AK 
and Berenson JR: Deletion of genetic material from a poly(ADP-
ribose) polymerase-like gene on chromosome 13 occurs frequently 
in patients with monoclonal gammopathies. Cancer Epidemiol 
Biomarkers Prev 4: 759-763, 1995.

70. Lopes da Silva R, Monteiro A and veiga J: Non-secretory 
multiple myeloma relapsing as extramedullary liver plasma-
cytomas. J Gastrointestin Liver Dis 20: 81-83, 2011.

71. Mehta J and Singhal S: hyperviscosity syndrome in plasma cell 
dyscrasias. Semin Thromb hemost 29: 467-471, 2003.

72. Brown JH and Doherty CC: Renal replacement therapy in 
multiple myeloma and systemic amyloidosis. Postgrad Med J 69: 
672-678, 1993.

73. Goldschmidt H, Lannert H, Bommer J and Ho AD: Multiple 
myeloma and renal failure. nephrol Dial Transplant 15: 301-304, 
2000.

74. Yaccoby S: The phenotypic plasticity of myeloma plasma cells 
as expressed by dedifferentiation into an immature, resilient, and 
apoptosis-resistant phenotype. Clin Cancer Res 11: 7599-7606, 2005.

75. Yaccoby S: Advances in the understanding of myeloma bone 
disease and tumour growth. Br J haematol 149: 311-321, 2010.

76. Brown R, Kabani K, Favaloro J, Yang S, ho PJ, Gibson J, Fromm P, 
Suen H, woodland n, nassif n, Hart D and Joshua D: CD86+ 
or hLA-G+ myeloma cells are associated with poor prognosis 
and once acquired by trogocytosis create novel Tregacq cells. 
Blood 120: 2055-2063, 2012.

77. osborne DG and wetzel SA: Trogocytosis results in sustained 
intracellular signaling in CD4(+) T cells. J Immunol 189: 
4728-4739, 2012.

78. Cook G: has the T cell bitten off more than it can chew? 
Blood 120: 1966-1967, 2012.

79. nau kC and Lewis wD: Multiple myeloma: Diagnosis and 
treatment. Am Fam Physician 78: 853-859, 2008.

80. Tanaka Y1, Abe M, hiasa M, Oda A, Amou h, Nakano A, 
Takeuchi k, kitazoe k, kido S, Inoue D, et al: Myeloma cell-
osteoclast interaction enhances angiogenesis together with bone 
resorption: a role for vascular endothelial cell growth factor and 
osteopontin. Clin Cancer Res 13: 816-823, 2007.

81. Abe M, hiura K, wilde J, Shioyasono A, Moriyama K, 
hashimoto T, Kido S, Oshima T, Shibata h, Ozaki S, et al: 
Osteoclasts enhance myeloma cell growth and survival via 
cell-cell contact: A vicious cycle between bone destruction and 
myeloma expansion. Blood 104: 2484-2491, 2004.



INTERNATIONAL JOURNAL OF ONCOLOGY  49:  33-50,  2016 47

 82. Hideshima T, Chauhan D, Schlossman R, Richardson P and 
Anderson KC: The role of tumor necrosis factor alpha in the 
pathophysiology of human multiple myeloma: Therapeutic 
applications. Oncogene 20: 4519-4527, 2001.

 83. Ge NL and Rudikoff S: Insulin-like growth factor I is a dual 
effector of multiple myeloma cell growth. Blood 96: 2856-2861, 
2000.

 84. hideshima T and Anderson KC: Molecular mechanisms of 
novel therapeutic approaches for multiple myeloma. Nat Rev 
Cancer 2: 927-937, 2002.

 85. Brenne AT, Ro TB, waage A, Sundan A, Borset M and 
hjorth-hansen h: Interleukin-21 is a growth and survival factor 
for human myeloma cells. Blood 99: 3756-3762, 2002.

 86. Podar k, Tai yT, Davies Fe, Lentzsch S, Sattler M, Hideshima T, 
Lin Bk, Gupta D, Shima y, Chauhan D, et al: vascular endothelial 
growth factor triggers signaling cascades mediating multiple 
myeloma cell growth and migration. Blood 98: 428-435, 2001.

 87. Hideshima T, Chauhan D, Hayashi T, Podar k, Akiyama M, 
Gupta D, Richardson P, Munshi n and Anderson kC: The 
biological sequelae of stromal cell-derived factor-1alpha in 
multiple myeloma. Mol Cancer Ther 1: 539-544, 2002.

 88. Sanz-Rodríguez F and Teixidó J: vLA-4-dependent myeloma 
cell adhesion. Leuk Lymphoma 41: 239-245, 2001.

 89. Michigami T, Shimizu n, williams PJ, niewolna M, Dallas SL, 
Mundy GR and Yoneda T: Cell-cell contact between marrow 
stromal cells and myeloma cells via vCAM-1 and alpha(4)
beta(1)-integrin enhances production of osteoclast-stimulating 
activity. Blood 96: 1953-1960, 2000.

 90. Abdi J, Chen G and Chang H: Drug resistance in multiple 
myeloma: Latest findings and new concepts on molecular 
mechanisms. Oncotarget 4: 2186-2207, 2013.

 91. ogata A, Chauhan D, Teoh G, Treon SP, urashima M, 
Schlossman RL and Anderson KC: IL-6 triggers cell growth via 
the Ras-dependent mitogen-activated protein kinase cascade. 
J Immunol 159: 2212-2221, 1997.

 92. Hideshima T, nakamura n, Chauhan D and Anderson kC: 
Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling 
in multiple myeloma. Oncogene 20: 5991-6000, 2001.

 93. Burger R, Le Gouill S, Tai YT, Shringarpure R, Tassone P, 
neri P, Podar k, Catley L, Hideshima T, Chauhan D, et al: Janus 
kinase inhibitor INCB20 has antiproliferative and apoptotic 
effects on human myeloma cells in vitro and in vivo. Mol Cancer 
Ther 8: 26-35, 2009.

 94. kumar A, Galeb S and Djulbegovic B: Treatment of patients 
with multiple myeloma: An overview of systematic reviews. 
Acta haematol 125: 8-22, 2011.

 95. Andhavarapu S and Roy v: Immunomodulatory drugs in 
multiple myeloma. Expert Rev hematol 6: 69-82, 2013.

 96. knight R: IMiDs: A novel class of immunomodulators. Semin 
Oncol 32 (Suppl 5): S24-S30, 2005.

 97. Ludwig h, Adam Z, Tóthová E, hajek R, Labar B, Egyed M, 
Spicka I, Gisslinger H, Drach J, kuhn I, et al: Thalidomide 
maintenance treatment increases progression-free but not overall 
survival in elderly patients with myeloma. haematologica 95: 
1548-1554, 2010.

 98. Palumbo A, Miguel JS, Sonneveld P, Moreau P, Drach J, 
Morgan G and Einsele h: Lenalidomide: A new therapy for 
multiple myeloma. Cancer Treat Rev 34: 283-291, 2008.

 99. Richardson P and Anderson K: Thalidomide and dexa-
methasone: A new standard of care for initial therapy in multiple 
myeloma. J Clin Oncol 24: 334-336, 2006.

100. Rajkumar SV, Dispenzieri A, Fonseca R, Lacy MQ, Geyer S, 
Lust JA, Kyle RA, Greipp PR, Gertz MA and witzig TE: 
Thalidomide for previously untreated indolent or smoldering 
multiple myeloma. Leukemia 15: 1274-1276, 2001.

101. Prince hM, Schenkel B and Mileshkin L: An analysis of 
clinical trials assessing the efficacy and safety of single-agent 
thalidomide in patients with relapsed or refractory multiple 
myeloma. Leuk Lymphoma 48: 46-55, 2007.

102. Cavo M, Zamagni e, Tosi P, Cellini C, Cangini D, Tacchetti P, 
Testoni N, Tonelli M, de vivo A, Palareti G, et al: First-line 
therapy with thalidomide and dexamethasone in preparation 
for autologous stem cell transplantation for multiple myeloma. 
haematologica 89: 826-831, 2004.

103. Rajkumar SV, Blood e, Vesole D, Fonseca R and Greipp PR; 
Eastern Cooperative Oncology Group: Phase III clinical trial of 
thalidomide plus dexamethasone compared with dexamethasone 
alone in newly diagnosed multiple myeloma: A clinical trial 
coordinated by the Eastern Cooperative Oncology Group. J Clin 
Oncol 24: 431-436, 2006.

104. wu P, Davies Fe, Horton C, Jenner Mw, krishnan B, 
Alvares CL, Saso R, McCormack R, Dines S, Treleaven JG, 
et al: The combination of cyclophosphomide, thalidomide and 
dexamethasone is an effective alternative to cyclophosphamide 
- vincristine - doxorubicin - methylprednisolone as induction 
chemotherapy prior to autologous transplantation for multiple 
myeloma: A case-matched analysis. Leuk Lymphoma 47: 
2335-2338, 2006.

105. Dimopoulos MA, Hamilos G, Zomas A, Gika D, efstathiou e, 
Grigoraki v, Poziopoulos C, Xilouri I, Zorzou MP, 
Anagnostopoulos N, et al: Pulsed cyclophosphamide, 
thalidomide and dexamethasone: An oral regimen for previously 
treated patients with multiple myeloma. hematol J 5: 112-117, 
2004.

106. García-Sanz R, González-Fraile MI, Sierra M, López C, 
González M and San Miguel JF: The combination of thalidomide, 
cyclophosphamide and dexamethasone (ThaCyDex) is feasible 
and can be an option for relapsed/refractory multiple myeloma. 
hematol J 3: 43-48, 2002.

107. Morgan GJ, Jackson GH, Davies Fe, Drayson MT, owen RG, 
Gregory wM, Cohen DC, Szubert AJ, Bell Se, Ross F and  
Child JA: Maintenance thalidomide may improve progression 
free but not overall survival; results from the Myeloma IX 
Maintenance Randomisation. Blood (ASh Annual Meeting 
Abstracts) 112: 656, 2008.

108. Morgan GJ, Gregory wM, Davies Fe, Bell Se, Szubert AJ, 
Brown JM, Coy NN, Cook G, Russell Nh, Rudin C, Roddie h, 
Drayson MT, owen RG, Ross FM, Jackson GH and Child JA; 
National Cancer Research Institute haematological Oncology 
Clinical Studies Group: The role of maintenance thalidomide 
therapy in multiple myeloma: MRC myeloma IX results and 
meta-analysis. Blood 119: 7-15, 2012.

109. oakervee He, Popat R, Curry n, Smith P, Morris C, Drake M, 
Agrawal S, Stec J, Schenkein D, esseltine DL, et al: PAD 
combination therapy (PS-341/bortezomib, doxorubicin and 
dexamethasone) for previously untreated patients with multiple 
myeloma. Br J haematol 129: 755-762, 2005.

110. Popat R, Oakervee hE, hallam S, Curry N, Odeh L, Foot N, 
esseltine DL, Drake M, Morris C and Cavenagh JD: Bortezomib, 
doxorubicin and dexamethasone (PAD) front-line treatment of 
multiple myeloma: Updated results after long-term follow-up. Br 
J haematol 141: 512-516, 2008.

111. Mateos MV, Hernández JM, Hernández MT, Gutiérrez nC, 
Palomera L, Fuertes M, Díaz-Mediavilla J, Lahuerta JJ, 
de la Rubia J, Terol MJ, et al: Bortezomib plus melphalan and 
prednisone in elderly untreated patients with multiple myeloma: 
Results of a multicenter phase 1/2 study. Blood 108: 2165-2172, 
2006.

112. Rajkumar SV, Hayman SR, Lacy MQ, Dispenzieri A, Geyer SM, 
Kabat B, Zeldenrust SR, Kumar S, Greipp PR, Fonseca R, 
et al: Combination therapy with lenalidomide plus dexa-
methasone (Rev/Dex) for newly diagnosed myeloma. Blood 106: 
4050-4053, 2005.

113. Bladé J, Samson D, Reece D, Apperley J, Björkstrand B, 
Gahrton G, Gertz M, Giralt S, Jagannath S and Vesole D; 
Myeloma Subcommittee of the EBMT. European Group for 
Blood and Marrow Transplant: Criteria for evaluating disease 
response and progression in patients with multiple myeloma 
treated by high-dose therapy and haemopoietic stem cell trans-
plantation. Br J haematol 102: 1115-1123, 1998.

114. Alexanian R, Delasalle k, wang M, Thomas S and weber D: 
Curability of multiple myeloma. Bone Marrow Res 2012: 
916479, 2012.

115. Boccadoro M, Gavarotti P, Fossati G, Pileri A, Marmont F, 
Neretto G, Gallamini A, volta C, Tribalto M, Testa MG, et al: 
Low plasma cell 3(h) thymidine incorporation in monoclonal 
gammopathy of undetermined significance (MGuS), smoul-
dering myeloma and remission phase myeloma: A reliable 
indicator of patients not requiring therapy. Br J haematol 58: 
689-696, 1984.

116. Brown RD, Joshua De, nelson M, Gibson J, Dunn J and 
MacLennan IC: Serum thymidine kinase as a prognostic 
indicator for patients with multiple myeloma: results from the 
MRC (UK) v Trial. Br J haematol 84: 238-241, 1993.

117. Lust JA, Lacy MQ, Zeldenrust SR, Dispenzieri A, Gertz MA, 
witzig TE, Kumar S, hayman SR, Russell SJ, Buadi FK, et al: 
Induction of a chronic disease state in patients with smoldering 
or indolent multiple myeloma by targeting interleukin 1{beta}-
induced interleukin 6 production and the myeloma proliferative 
component. Mayo Clin Proc 84: 114-122, 2009.



KRIShNAN et al:  DRuG ReSISTAnCe In MyeLoMA48

118. Joshua De, Gibson J and Brown RD: Mechanisms of the escape 
phase of myeloma. Blood Rev 8: 13-20, 1994.

119. Lonial S, Mitsiades CS and Richardson PG: Treatment options 
for relapsed and refractory multiple myeloma. Clin Cancer 
Res 17: 1264-1277, 2011.

120. Alexanian R, Barlogie B and Dixon D: High-dose glucocorticoid 
treatment of resistant myeloma. Ann Intern Med 105: 8-11, 1986.

121. McPhedran P, heath Cw Jr and Garcia J: Multiple myeloma 
incidence in metropolitan Atlanta, Georgia: Racial and seasonal 
variations. Blood 39: 866-873, 1972.

122. Clark Dw and MacMahon B: The incidence of multiple 
myeloma. J Chronic Dis 4: 508-515, 1956.

123. Greenberg AJ, Vachon CM and Rajkumar SV: Disparities in 
the prevalence, pathogenesis and progression of monoclonal 
gammopathy of undetermined significance and multiple myeloma 
between blacks and whites. Leukemia 26: 609-614, 2012.

124. Matsui w, wang Q, Barber JP, Brennan S, Smith BD, Borrello I, 
McNiece I, Lin L, Ambinder RF, Peacock C, et al: Clonogenic 
multiple myeloma progenitors, stem cell properties, and drug 
resistance. Cancer Res 68: 190-197, 2008.

125. Du J, Liu S, He J, Liu X, Qu y, yan w, Fan J, Li R, Xi H, Fu w, 
et al: MicroRNA-451 regulates stemness of side population cells 
via PI3K/Akt/mTOR signaling pathway in multiple myeloma. 
Oncotarget 6: 14993-15007, 2015.

126. Agarwal JR and Matsui w: Multiple myeloma: A paradigm 
for translation of the cancer stem cell hypothesis. Anticancer 
Agents Med Chem 10: 116-120, 2010.

127. Pilarski LM, Mant MJ and Belch AR: Drug resistance in multiple 
myeloma: Novel therapeutic targets within the malignant clone. 
Leuk Lymphoma 32: 199-210, 1999.

128. koskela k, Pelliniemi TT and Remes k: VAD regimen in the 
treatment of resistant multiple myeloma: Slow or fast infusion? 
Leuk Lymphoma 10: 347-351, 1993.

129. Harris AL and Hochhauser D: Mechanisms of multidrug 
resistance in cancer treatment. Acta Oncol 31: 205-213, 1992.

130. Sonneveld P, Lokhorst HM and Vossebeld P: Drug resistance 
in multiple myeloma. Semin hematol 34 (Suppl 5): 34-39, 1997.

131. Tucci M, Quatraro C, Dammacco F and Silvestris F: Role of 
active drug transporters in refractory multiple myeloma. Curr 
Top Med Chem 9: 218-224, 2009.

132. wang JC: DnA topoisomerases. Annu Rev Biochem 65: 
635-692, 1996.

133. Liu LF: DnA topoisomerase poisons as antitumor drugs. Annu 
Rev Biochem 58: 351-375, 1989.

134. Oloumi A, MacPhail Sh, Johnston PJ, Banáth JP and Olive PL: 
Changes in subcellular distribution of topoisomerase IIalpha 
correlate with etoposide resistance in multicell spheroids and 
xenograft tumors. Cancer Res 60: 5747-5753, 2000.

135. Turner JG, Marchion DC, Dawson JL, emmons MF, 
Hazlehurst LA, washausen P and Sullivan DM: Human multiple 
myeloma cells are sensitized to topoisomerase II inhibitors by 
CRM1 inhibition. Cancer Res 69: 6899-6905, 2009.

136. Campling BG, Baer k, Baker HM, Lam yM and Cole SP: Do 
glutathione and related enzymes play a role in drug resistance in 
small cell lung cancer cell lines? Br J Cancer 68: 327-335, 1993.

137. Garel MC, Domenget C, Caburi-Martin J, Prehu C, Galacteros F 
and Beuzard Y: Covalent binding of glutathione to hemoglobin. 
I. Inhibition of hemoglobin S polymerization. J Biol Chem 261: 
14704-14709, 1986.

138. Petrini M, Di Simone D, Favati A, Mattii L, Valentini P and 
Grassi B: GST-pi and P-170 co-expression in multiple myeloma. 
Br J haematol 90: 393-397, 1995.

139. Manier S, Sacco A, Leleu X, Ghobrial IM and Roccaro 
AM: Bone marrow microenvironment in multiple myeloma 
progression. J Biomed Biotechnol 2012: 157496, 2012.

140. Meads MB, Gatenby RA and Dalton wS: environment-
mediated drug resistance: A major contributor to minimal 
residual disease. Nat Rev Cancer 9: 665-674, 2009.

141. Shain kH and Dalton wS: Cell adhesion is a key determinant 
in de novo multidrug resistance (MDR): new targets for the 
prevention of acquired MDR. Mol Cancer Ther 1: 69-78, 2001.

142. Damiano JS, Cress Ae, Hazlehurst LA, Shtil AA and 
Dalton wS: Cell adhesion mediated drug resistance (CAM-DR): 
Role of integrins and resistance to apoptosis in human myeloma 
cell lines. Blood 93: 1658-1667, 1999.

143. Mitsiades CS, Treon SP, Mitsiades N, Shima Y, Richardson P, 
Schlossman R, hideshima T and Anderson KC: TRAIL/Apo2L 
ligand selectively induces apoptosis and overcomes drug 
resistance in multiple myeloma: Therapeutic applications. 
Blood 98: 795-804, 2001.

144. Mitsiades n, Mitsiades CS, Poulaki V, Chauhan D, 
Richardson PG, hideshima T, Munshi NC, Treon SP and 
Anderson KC: Apoptotic signaling induced by immunomodu-
latory thalidomide analogs in human multiple myeloma cells: 
Therapeutic implications. Blood 99: 4525-4530, 2002.

145. Chauhan D, Pandey P, Hideshima T, Treon S, Raje n, Davies Fe, 
Shima Y, Tai YT, Rosen S, Avraham S, et al: ShP2 mediates 
the protective effect of interleukin-6 against dexamethasone-
induced apoptosis in multiple myeloma cells. J Biol Chem 275: 
27845-27850, 2000.

146. Hideshima T, Richardson P, Chauhan D, Palombella VJ, 
Elliott PJ, Adams J and Anderson KC: The proteasome inhibitor 
PS-341 inhibits growth, induces apoptosis, and overcomes drug 
resistance in human multiple myeloma cells. Cancer Res 61: 
3071-3076, 2001.

147. Dalton wS and Jove R: Drug resistance in multiple myeloma: 
Approaches to circumvention. Semin Oncol 26 (Suppl 13): 
23-27, 1999.

148. Mitsiades CS, Mitsiades N, Poulaki v, Schlossman R, 
Akiyama M, Chauhan D, Hideshima T, Treon SP, Munshi nC, 
Richardson PG, et al: Activation of NF-kappaB and upregu-
lation of intracellular anti-apoptotic proteins via the IGF-1/Akt 
signaling in human multiple myeloma cells: Therapeutic impli-
cations. Oncogene 21: 5673-5683, 2002.

149. Hideshima T, Chauhan D, Richardson P, Mitsiades C, 
Mitsiades n, Hayashi T, Munshi n, Dang L, Castro A, 
Palombella v, et al: NF-kappa B as a therapeutic target in 
multiple myeloma. J Biol Chem 277: 16639-16647, 2002.

150. nefedova y, Landowski TH and Dalton wS: Bone marrow 
stromal-derived soluble factors and direct cell contact contribute 
to de novo drug resistance of myeloma cells by distinct mech-
anisms. Leukemia 17: 1175-1182, 2003.

151. Kühne A, Tzvetkov Mv, hagos Y, Lage h, Burckhardt G and 
Brockmöller J: Influx and efflux transport as determinants of 
melphalan cytotoxicity: Resistance to melphalan in MDR1 over-
expressing tumor cell lines. Biochem Pharmacol 78: 45-53, 2009.

152. Doyle L and Ross DD: Multidrug resistance mediated by the 
breast cancer resistance protein BCRP (ABCG2). Oncogene 22: 
7340-7358, 2003.

153. Raaijmakers hG, Izquierdo MA, Lokhorst hM, de Leeuw C, 
Belien JA, Bloem AC, Dekker Aw, Scheper RJ and Sonneveld P: 
Lung-resistance-related protein expression is a negative 
predictive factor for response to conventional low but not to 
intensified dose alkylating chemotherapy in multiple myeloma. 
Blood 91: 1029-1036, 1998.

154. Hofmeister CC, yang X, Pichiorri F, Chen P, Rozewski DM, 
Johnson AJ, Lee S, Liu Z, Garr CL, hade EM, et al: Phase I trial 
of lenalidomide and CCI-779 in patients with relapsed multiple 
myeloma: Evidence for lenalidomide-CCI-779 interaction via 
P-glycoprotein. J Clin Oncol 29: 3427-3434, 2011.

155. Tong Z, Yerramilli U, Surapaneni S and Kumar G: The 
interactions of lenalidomide with human uptake and efflux 
transporters and uDP-glucuronosyltransferase 1A1: Lack 
of potential for drug-drug interactions. Cancer Chemother 
Pharmacol 73: 869-874, 2014.

156. Jiang Y: Pharmacokinetic and pharmacodynamic studies 
of lenalidomide and pomalidomide. (Electronic Thesis or 
Dissertation). Retrieved from https://etd.ohiolink.edu/.

157. O’Connor R, Ooi MG, Meiller J, Jakubikova J, Klippel S, 
Delmore J, Richardson P, Anderson k, Clynes M, Mitsiades CS, 
et al: The interaction of bortezomib with multidrug trans-
porters: Implications for therapeutic applications in advanced 
multiple myeloma and other neoplasias. Cancer Chemother 
Pharmacol 71: 1357-1368, 2013.

158. Nakamura T, Tanaka K, Matsunobu T, Okada T, Nakatani F, 
Sakimura R, hanada M and Iwamoto Y: The mechanism of 
cross-resistance to proteasome inhibitor bortezomib and over-
coming resistance in Ewing’s family tumor cells. Int J Oncol 31: 
803-811, 2007.

159. Zimmermann C, Gutmann H and Drewe J: Thalidomide does not 
interact with P-glycoprotein. Cancer Chemother Pharmacol 57: 
599-606, 2006.

160. Dilger k, Alberer M, Busch A, enninger A, Behrens R, koletzko S, 
Stern M, Beckmann C and Gleiter Ch: Pharmacokinetics and 
pharmacodynamic action of budesonide in children with Crohn’s 
disease. Aliment Pharmacol Ther 23: 387-396, 2006.

161. karssen AM, Meijer oC, van der Sandt IC, De Boer AG, 
De Lange eC and De kloet eR: The role of the efflux trans-
porter P-glycoprotein in brain penetration of prednisolone. 
J Endocrinol 175: 251-260, 2002.



INTERNATIONAL JOURNAL OF ONCOLOGY  49:  33-50,  2016 49

162. Shapiro AB and Ling v: Positively cooperative sites for drug 
transport by P-glycoprotein with distinct drug specificities. eur 
J Biochem 250: 130-137, 1997.

163. Cole SP and Deeley RG: Transport of glutathione and gluta-
thione conjugates by MRP1. Trends Pharmacol Sci 27: 438-446, 
2006.

164. Robey Rw, Shukla S, Finley eM, oldham Rk, Barnett D, 
Ambudkar Sv, Fojo T and Bates SE: Inhibition of 
P-glycoprotein (ABCB1)- and multidrug resistance-associated 
protein 1 (ABCC1)-mediated transport by the orally administered 
inhibitor, CBT-1((R)). Biochem Pharmacol 75: 1302-1312, 2008.

165. Kitazono M, Sumizawa T, Takebayashi Y, Chen ZS, Furukawa T, 
Nagayama S, Tani A, Takao S, Aikou T and Akiyama S: Multidrug 
resistance and the lung resistance-related protein in human colon 
carcinoma Sw-620 cells. J Natl Cancer Inst 91: 1647-1653, 1999.

166. kang w and weiss M: Digoxin uptake, receptor heterogeneity, 
and inotropic response in the isolated rat heart: A comprehensive 
kinetic model. J Pharmacol Exp Ther 302: 577-583, 2002.

167. Abbaszadegan MR, Futscher Bw, Klimecki wT, List A and 
Dalton wS: Analysis of multidrug resistance-associated 
protein (MRP) messenger RNA in normal and malignant hema-
topoietic cells. Cancer Res 54: 4676-4679, 1994.

168. Duhem C, Ries F and Dicato M: what does multidrug 
resistance (MDR) expression mean in the clinic? oncologist 1: 
151-158, 1996.

169. Pilarski LM and Belch AR: Intrinsic expression of the 
multidrug transporter, P-glycoprotein 170, in multiple myeloma: 
Implications for treatment. Leuk Lymphoma 17: 367-374, 1995.

170. Nuessler v, Gieseler F, Gullis E, Pelka-Fleischer R, Stötzer O, 
Zwierzina h and wilmanns w: Functional P-gp expression in 
multiple myeloma patients at primary diagnosis and relapse or 
progressive disease. Leukemia 11 (Suppl 5): S10-S14, 1997.

171. Drain S, Flannely L, Drake MB, kettle P, orr n, Bjourson AJ, 
Catherwood MA and Alexander HD: Multidrug resistance gene 
expression and ABCB1 SNPs in plasma cell myeloma. Leuk 
Res 35: 1457-1463, 2011.

172. Li yH, wang yH, Li y and yang L: MDR1 gene polymorphisms 
and clinical relevance. Yi Chuan Xue Bao 33: 93-104, 2006.

173. Drain S, Catherwood MA, orr n, Galligan L, Rea IM, 
Hodkinson C, Drake MB, kettle PJ, Morris TC and Alexander HD: 
ABCB1 (MDR1) rs1045642 is associated with increased overall 
survival in plasma cell myeloma. Leuk Lymphoma 50: 566-570, 
2009.

174. Buda G, Maggini v, Galimberti S, Martino A, Giuliani N, 
Morabito F, Genestreti G, Iacopino P, Rizzoli v, Barale R, 
et al: MDR1 polymorphism influences the outcome of multiple 
myeloma patients. Br J haematol 137: 454-456, 2007.

175. Barrand MA, Bagrij T and Neo SY: Multidrug resistance-asso-
ciated protein: A protein distinct from P-glycoprotein involved 
in cytotoxic drug expulsion. Gen Pharmacol 28: 639-645, 1997.

176. Davey RA, Longhurst TJ, Davey Mw, Belov L, Harvie RM, 
Hancox D and wheeler H: Drug resistance mechanisms and 
MRP expression in response to epirubicin treatment in a human 
leukaemia cell line. Leuk Res 19: 275-282, 1995.

177. versantvoort Ch, Broxterman hJ, Bagrij T, Scheper RJ and 
Twentyman PR: Regulation by glutathione of drug transport in 
multidrug-resistant human lung tumour cell lines overexpressing 
multidrug resistance-associated protein. Br J Cancer 72: 82-89, 
1995.

178. Buda G, Ricci D, Huang CC, Favis R, Cohen n, Zhuang SH, 
Harousseau JL, Sonneveld P, Bladé J and orlowski RZ: 
Polymorphisms in the multiple drug resistance protein 1 and 
in P-glycoprotein 1 are associated with time to event outcomes 
in patients with advanced multiple myeloma treated with bort-
ezomib and pegylated liposomal doxorubicin. Ann hematol 89: 
1133-1140, 2010.

179. Grant Ce, Valdimarsson G, Hipfner DR, Almquist kC, Cole SP 
and Deeley RG: overexpression of multidrug resistance-asso-
ciated protein (MRP) increases resistance to natural product 
drugs. Cancer Res 54: 357-361, 1994.

180. Lehne G: P-glycoprotein as a drug target in the treatment of 
multidrug resistant cancer. Curr Drug Targets 1: 85-99, 2000.

181. Bart J, hollema h, Groen hJ, de vries EG, hendrikse Nh, 
Sleijfer DT, wegman TD, Vaalburg w and van der Graaf wT: 
The distribution of drug-efflux pumps, P-gp, BCRP, MRP1 
and MRP2, in the normal blood-testis barrier and in primary 
testicular tumours. Eur J Cancer 40: 2064-2070, 2004.

182. Cooray hC, Blackmore CG, Maskell L and Barrand MA: 
Localisation of breast cancer resistance protein in microvessel 
endothelium of human brain. Neuroreport 13: 2059-2063, 2002.

183. Xu J, Liu Y, Yang Y, Bates S and Zhang JT: Characterization 
of oligomeric human half-ABC transporter ATP-binding 
cassette G2. J Biol Chem 279: 19781-19789, 2004.

184. Raaijmakers Mh, de Grouw EP, heuver Lh, van der Reijden BA, 
Jansen Jh, Scheffer G, Scheper RJ, de witte TJ and 
Raymakers RA: Impaired breast cancer resistance protein 
mediated drug transport in plasma cells in multiple myeloma. 
Leuk Res 29: 1455-1458, 2005.

185. Doyle LA, yang w, Abruzzo LV, krogmann T, Gao y, Rishi Ak 
and Ross DD: A multidrug resistance transporter from human 
MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95: 
15665-15670, 1998.

186. Jakubikova J, Adamia S, kost-Alimova M, klippel S, Cervi D, 
Daley JF, Cholujova D, kong Sy, Leiba M, Blotta S, et al: 
Lenalidomide targets clonogenic side population in multiple 
myeloma: Pathophysiologic and clinical implications. Blood 117: 
4409-4419, 2011.

187. Turner JG, Gump JL, Zhang C, Cook JM, Marchion D, 
Hazlehurst L, Munster P, Schell MJ, Dalton wS and Sullivan DM: 
ABCG2 expression, function, and promoter methylation in 
human multiple myeloma. Blood 108: 3881-3889, 2006.

188. Tamura A, wakabayashi K, Onishi Y, Takeda M, Ikegami Y, 
Sawada S, Tsuji M, Matsuda Y and Ishikawa T: Re-evaluation 
and functional classification of non-synonymous single 
nucleotide polymorphisms of the human ATP-binding cassette 
transporter ABCG2. Cancer Sci 98: 231-239, 2007.

189. Izquierdo MA, Scheffer GL, Flens MJ, Shoemaker Rh, 
Rome Lh and Scheper RJ: Relationship of LRP-human major 
vault protein to in vitro and clinical resistance to anticancer 
drugs. Cytotechnology 19: 191-197, 1996.

190. Feller N, Kuiper CM, Lankelma J, Ruhdal JK, Scheper RJ, 
Pinedo hM and Broxterman hJ: Functional detection of 
MDR1/P170 and MRP/P190-mediated multidrug resistance in 
tumour cells by flow cytometry. Br J Cancer 72: 543-549, 1995.

191. Sherry ST, ward Mh, Kholodov M, Baker J, Phan L, 
Smigielski EM and Sirotkin K: dbSNP: The NCBI database of 
genetic variation. Nucleic Acids Res 29: 308-311, 2001.

192. henríquez-hernández LA, Moreno M, Rey A, Lloret M and 
Lara PC: MvP expression in the prediction of clinical outcome 
of locally advanced oral squamous cell carcinoma patients 
treated with radiotherapy. Radiat Oncol 7: 1-6, 2012.

193. Litviakov nV, Cherdyntseva nV, Tsyganov MM, Denisov eV, 
Garbukov EY, Merzliakova MK, volkomorov vv, vtorushin Sv, 
Zavyalova Mv, Slonimskaya EM, et al: Changing the expression 
vector of multidrug resistance genes is related to neoadjuvant 
chemotherapy response. Cancer Chemother Pharmacol 71: 
153-163, 2013.

194. van den heuvel-Eibrink MM, Sonneveld P and Pieters R: The 
prognostic significance of membrane transport-associated 
multidrug resistance (MDR) proteins in leukemia. Int J Clin 
Pharmacol Ther 38: 94-110, 2000.

195. herlevsen M, Oxford G, Owens CR, Conaway M and 
Theodorescu D: Depletion of major vault protein increases 
doxorubicin sensitivity and nuclear accumulation and disrupts 
its sequestration in lysosomes. Mol Cancer Ther 6: 1804-1813, 
2007.

196. Sikic BI, Fisher GA, Lum BL, halsey J, Beketic-Oreskovic L and 
Chen G: Modulation and prevention of multidrug resistance by 
inhibitors of P-glycoprotein. Cancer Chemother Pharmacol 40 
(Suppl 1): S13-S19, 1997.

197. Sikic BI: Pharmacologic approaches to reversing multidrug 
resistance. Semin hematol 34 (Suppl 5): 40-47, 1997.

198. Yang hh, Ma Mh, vescio RA and Berenson JR: Overcoming 
drug resistance in multiple myeloma: The emergence of 
therapeutic approaches to induce apoptosis. J Clin Oncol 21: 
4239-4247, 2003.

199. Fisher GA, Lum BL, hausdorff J and Sikic BI: Pharmacological 
considerations in the modulation of multidrug resistance. Eur J 
Cancer 32A: 1082-1088, 1996.

200. Dalton w and Lehnert M: Dexverapamil: A clinical approach 
to circumvention of multidrug resistance. J Cancer Res Clin 
Oncol 121: R1-R1, 1995.

201. Berenson JR, Crowley JJ, Grogan TM, Zangmeister J, 
Briggs AD, Mills GM, Barlogie B and Salmon Se: Maintenance 
therapy with alternate-day prednisone improves survival in 
multiple myeloma patients. Blood 99: 3163-3168, 2002.

202. Urashima M, Chen BP, Chen S, Pinkus GS, Bronson RT, 
Dedera DA, Hoshi y, Teoh G, ogata A, Treon SP, et al: The 
development of a model for the homing of multiple myeloma 
cells to human bone marrow. Blood 90: 754-765, 1997.



KRIShNAN et al:  DRuG ReSISTAnCe In MyeLoMA50

203. Brown R, Suen h, Favaloro J, Yang S, ho PJ, Gibson J and 
Joshua D: Trogocytosis generates acquired regulatory T cells 
adding further complexity to the dysfunctional immune response 
in multiple myeloma. OncoImmunology 1: 1658-1660, 2012.

204. Duffy MJ: Serum tumor markers in breast cancer: Are they of 
clinical value? Clin Chem 52: 345-351, 2006.

205. Allin Kh, Nordestgaard BG, Flyger h and Bojesen SE: Elevated 
pre-treatment levels of plasma C-reactive protein are associated 
with poor prognosis after breast cancer: A cohort study. Breast 
Cancer Res 13: R55, 2011.

206. Guo L, Abraham J, Flynn DC, Castranova V, Shi X and Qian y: 
Individualized survival and treatment response predictions 
for breast cancers using phospho-EGFR, phospho-ER, 
phospho-hER2/neu, phospho-IGF-IR/In, phospho-MAPK, and 
phospho-p70S6K proteins. Int J Biol Markers 22: 1-11, 2007.

207. Sargent DJ, Conley BA, Allegra C and Collette L: Clinical trial 
designs for predictive marker validation in cancer treatment 
trials. J Clin Oncol 23: 2020-2027, 2005.

208. Kumar G, Lau h and Laskin O: Lenalidomide: In vitro eval-
uation of the metabolism and assessment of cytochrome P450 
inhibition and induction. Cancer Chemother Pharmacol 63: 
1171-1175, 2009.

209. Lampen A, Zhang Y, hackbarth I, Benet LZ, Sewing KF and 
Christians U: Metabolism and transport of the macrolide immu-
nosuppressant sirolimus in the small intestine. J Pharmacol Exp 
Ther 285: 1104-1112, 1998.

210. Sattler M, Guengerich FP, Yun Ch, Christians U and Sewing KF: 
Cytochrome P-450 3A enzymes are responsible for biotransfor-
mation of Fk506 and rapamycin in man and rat. Drug Metab 
Dispos 20: 753-761, 1992.

211. Joshua De, Brown RD and Gibson J: Multiple myeloma: why 
does the disease escape from plateau phase? Br J haematol 88: 
667-671, 1994.

212. Fung KL and Gottesman MM: A synonymous polymorphism in 
a common MDR1 (ABCB1) haplotype shapes protein function. 
Biochim Biophys Acta 1794: 860-871, 2009.

213. hoffmeyer S, Burk O, von Richter O, Arnold hP, Brockmöller J, 
Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, et al: 
Functional polymorphisms of the human multidrug-resistance 
gene: Multiple sequence variations and correlation of one allele 
with P-glycoprotein expression and activity in vivo. Proc Natl 
Acad Sci USA 97: 3473-3478, 2000.

214. Dumontet C, Landi S, Reiman T, Perry T, Plesa A, Bellini I, 
Barale R, Pilarski LM, Troncy J, Tavtigian S, et al: Genetic 
polymorphisms associated with outcome in multiple myeloma 
patients receiving high-dose melphalan. Bone Marrow 
Transplant 45: 1316-1324, 2010.

215. Maggini v, Buda G, Martino A, Presciuttini S, Galimberti S, 
orciuolo e, Barale R, Petrini M and Rossi AM: MDR1 diplotypes 
as prognostic markers in multiple myeloma. Pharmacogenet 
Genomics 18: 383-389, 2008.

216. natarajan k, Xie y, Baer MR and Ross DD: Role of breast cancer 
resistance protein (BCRP/ABCG2) in cancer drug resistance. 
Biochem Pharmacol 83: 1084-1103, 2012.

217. Dispenzieri A, kyle R, Merlini G, Miguel JS, Ludwig H, Hajek R, 
Palumbo A, Jagannath S, Blade J, Lonial S, et al; International 
Myeloma working Group: International Myeloma working 
Group guidelines for serum-free light chain analysis in multiple 
myeloma and related disorders. Leukemia 23: 215-224, 2009.


