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Abstract—This paper considers the feature selection problem
for data classification in the absence of data labels. It first
proposes an unsupervised feature selection algorithm, which is
an enhancement over the Laplacian score method, named an
Extended Laplacian score, EL in short. Specifically, two main
phases are involved in EL to complete the selection procedures.
In the first phase, the Laplacian score algorithm is applied to
select the features that have the best locality preserving power.
In the second phase, EL proposes a Redundancy Penalization
(RP) technique based on mutual information to eliminate the
redundancy among the selected features. This technique is an
enhancement over Battiti’s MIFS. It does not require a user-
defined parameter such as β to complete the selection processes of
the candidate feature set as it is required in MIFS. After tackling
the feature selection problem, the final selected subset is then
used to build an Intrusion Detection System. The effectiveness
and the feasibility of the proposed detection system are evaluated
using three well-known intrusion detection datasets: KDD Cup
99, NSL-KDD and Kyoto 2006+ dataset. The evaluation results
confirm that our feature selection approach performs better than
the Laplacian score method in terms of classification accuracy.

Keywords—Supervised feature selection, Unsupervised feature
selection, Mutual information, Intrusion detection system.

I. INTRODUCTION

Feature selection is a technique for eliminating irrelevant
and redundant features and selecting the most optimal subset
of features that produce a better characterisation of patterns be-
longing to different classes. The feature selection problem has
been around since the early 1970’s. Due to its computational
complexity, it still remains an open problem for researchers.
Feature selection reduces computational cost, facilitates data
understanding, improves the performance of modelling and
prediction and speeds up the detection process [1].

A feature fi in a feature space is relevant to the class if it
embodies useful information about the class and its removal
degrades the performance of the classification. The irrelevant
feature is the one that does not contain any useful information
about the class and its existence degrades the performance of
the classification [2]. An irrelevant feature can be a redundant
feature or a noisy feature. The redundant feature cannot
provide any additional information to the classification after
selecting the best subset of features because another feature
has already given the same information. The noisy feature,
which is not redundant does not contain any information about
the class.

In accordance with the existence of label of data or not,
feature selection techniques are generally classified into three

groups: supervised, semi-supervised and unsupervised feature
selection. Supervised and semi-supervised methods are usually
applied on labeled data, while the unsupervised method is more
appropriate for unlabeled data [3]. However, many real-world
applications do not contain any label, hence, the unsupervised
feature selection process becoming difficult and hard to achieve
[4]. In this work the focus will be on unsupervised feature
selection.

Several attempts have been made to develop an intelligent
unsupervised feature selection technique which can utilise
unlabeled data. The variance score method is one of the
simplest unsupervised feature selection methods that calculates
the variance of each of the features individually and selects the
ones that have larger variance values [5]. Another unsupervised
feature selection method is the Laplacian score [6]. Unlike
the variance score algorithm, the Laplacian score not only
selects the features with high variances, but also investigates
the locality preserving power of every feature in the data.
In many applications (such as many real-world applications),
extracting the local structure information is very important
in order to find the best features in the data [7], [6]. These
methods, however, neglect the redundancy among selected
features, so they select many redundant features, and affect
the classification performance. This paper addresses this issue.

The key contribution of this paper is to develop an Ex-
tended version of the Laplacian score method, EL in short.
EL proposes a redundancy penalization technique to eliminate
redundancy among the selected features. This technique is an
enhancement over Battiti’s MIFS [8]. It does not require a
user-defined parameter such as β to complete the selection
processes of the candidate feature set as it is required in
MIFS. After tackling the feature selection problem, the best
selected subset of features is then used to train the classifier
and build our intrusion detection system. Finally, we verify
the effectiveness of the proposed detection system combined
with EL by several experiments on three well known intrusion
detection datasets: the KDD Cup 99, NSL-KDD and Kyoto
2006+ dataset. The experimental results of our method are
compared using classification accuracy.

This paper is organized as follows: Section II reviews
briefly the concept of mutual information and some related
feature selection based on mutual information. Section III
provides a description of the Laplacian score algorithm. Sec-
tion IV discusses the proposed unsupervised feature selection
method. Section V details our detection framework showing
different detection stages involved in the proposed scheme.
Section VI presents the experimental details and results. Fi-



nally, a summary to the paper is drawn in Section VII.

II. BACKGROUND ON MUTUAL INFORMATION

The key concept of mutual information is from information
theory which was proposed in 1948 by Shannon [9]. It de-
scribes the amount of information shared between two random
variables. It is a symmetric measure of the relationship between
two random variables, and it yields a non-negative value [10].
A zero value of MI indicates that the two observed variables
are statistically independent. Given two random variables
X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn}, where n is
the total number of samples, the mutual information between
variables X and Y is defined as:

I(X;Y ) = H(X)−H(X|Y ) (1)

where H(X) is the uncertainty of X and H(X|Y ) is the
conditional entropy, which are defined as

H(X) = −
∑
x∈X

PX(x) logPX(x) (2)

H(X|Y ) = −
∑
x,y

PX,Y (x, y) logPX|Y (x|y) (3)

where p(x) is the probability density function of X . To
quantify the amount of knowledge on variable X provided by
variable Y (and vice versa), mutual information can be defined
as follows.

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (4)

where p(x, y) is the joint probability density function of X
and Y . From Equation (4), a high value of I(X;Y ) indicates
both X and Y are closely related; otherwise, a zero value of
I(X;Y ) means both X and Y are independent.

As stated above, a feature is relevant to the class if it
contains important information about the class; otherwise it
is irrelevant. Since mutual information is good at quantify-
ing the amount of information shared between two random
variables, it is often used to determine the relevance between
features and the output class. Under this context, features with
high predictive power are the ones that have larger mutual
information I(C; f). On the contrary, in the case of I(C; f)
equal to zero, the feature f and the Class C are proven to
be independent from each other. This suggests that feature f
contains redundant information.

Recently, mutual information has been used by a number
of researchers to develop supervised feature selection methods
[8], [11], [12], [13], [14]. Battiti in [8] harnessed MI between
inputs and outputs for a single selection of features by calculat-
ing the I(C; fi) and I(fs, fi), where fs and fi are candidate
features and C is the class label. MIFS selects the feature
that maximizes I(C; fi), which is the amount of information
that feature fi carries about the class C, and is corrected
by subtracting a quantity proportional to the MI with the
features selected previously. MIFS is a heuristic incremental
search algorithm and the selection process continues until a

desired number of R inputs are selected. Equation (5) shows
the evaluation function of MIFS.

JMIFS = I(C; fi)− β
∑
fs∈S

I(fi; fs), (5)

where β is a user-defined parameter that is apply to regulate
the relative significance of the redundancy between the current
feature and the set of previously selected features.

As can be seen, Equation (5) consists of two terms.
The left-hand side term, I(C; fi), represents the amount of
information that feature fi carries about the class C. A relevant
feature is the one that maximizes this term. The right-hand
side term, β

∑
I(fs; fi), is used to eliminate the redundancy

among the selected features.

In the follow-up research, various methods have been
proposed to enhance Battiti’s MIFS. Most of the studies have
been conducted on the right-hand side term of Equation (5).
Kwak and Choi in [11] made a better estimation of MI
between input features and output classes and proposed a
greedy selection algorithm named MIFS-U, in which U stands
for uniform information distribution. MIFS-U shows a better
estimation of I(C; fi) than MIFS. The algorithm of MIFS-U
differs from that of MIFS in the right-hand side term as shown
in Equation (6).

JMIFS−U = I(C; fi)− β
∑
fs∈S

I(C; fs)

H(fs)
I(fi; fs) (6)

Despite the redundancy parameter β used in the afore-
mentioned methods to help to control the redundancy among
features, it remains an open question on how to choose the
most appropriate values for these parameters. If the chosen
value is too small, the redundancy between input features is
not taken into consideration and therefore both relevant and
redundant features are involved in the selection processes. If
the chosen value is too large, the algorithms only consider
the relation between input features rather than the relation
between each input feature and the class [14]. Thus, it is hard
to determine the value of the parameter. In addition, both MIFS
and MIFS-U neglect the influence of the number of selected
features. This reduces the influence of I(C; fi) on Battiti’s
MIFS and Kwak’s MIFS-U when the term on the right-hand
side in in both methods increases, which is because this term
is a cumulative sum [13]. This results in the irrelevant features
being selected into the set S.

These limitations have been studied by Amiri in [15] and
proposed Modified version of MIFS, MMIFS in short. MMIFS
set the value of parameter β to be equal to β

′
/ | S |, where

β
′

is the redundancy parameter, as shown in Equation (7).

JMMIFS = I(C; fi)− (
β
′

| S |
)
∑
fs∈S

I(fi; fs), (7)

where |S| is the cardinality of the set S, which is used to
control the influence of the number of selected features since
the right-hand side of the algorithm is a cumulative sum.



However, in the case of β = β
′
/ | S | then MMIFS are

equal to Battiti’s MIFS. Therefore, the unbalance between the
left and right hand sides in Equation (7) remains unsolved
totally in MMIFS [15]. This might result in selecting irrelevant
features. In addition, similar to Battiti’s MIFS and Kwak’s
MIFS-U, selecting an appropriate value for the parameter β

′

in MMIFS remains an open question. In addition, all of these
algorithms are supervised feature selection methods. These
methods require labeled data. However, labeled data are not
always available and also hard or expensive to obtain which
makes these methods not applied to such data [4]. Therefore,
in order to utilize unlabeled data, we propose an unsupervised
feature selection method based on mutual information. This
method removes the burden of setting an appropriate value for
β and keeps the values of the right-hand side of our evaluation
function within the range of [0,1]. This is helpful in practice
since there is no specific guide on how to select the best value
for this parameter. The proposed method is a modified version
of Laplacian Score method, which ignores the redundancy
among features. Next section introduces the Laplacian score
algorithm.

III. LAPLACIAN SCORE

To explain the Laplacian Score, we refer to the definition
proposed in [6]. Laplacian Score (LS) is fundamentally based
on Laplacian Eigenmaps [16] and Locality Preserving Projec-
tion [17]. The basic idea of LS is to evaluate the features
according to their locality preserving power. In Section III,
we re-state the algorithm to calculate the Laplacian Score as
shown in [6].

The Algorithm: Let xp = [f1p, f2p, f3p, . . . , fnp], be
the p-th traffic sample in this paper, where p = 1, 2, . . . , P .
Then, fip denotes the p-th sample of the i-th feature. Let
Li denote the Laplacian Score of the i-th feature, where
i = 1, ..., n. The algorithm can be stated as follows.

1) Construct a nearest neighbor graph with P nodes. The
p-th node is denoted by xp. We put an edge between
nodes p and q if xp and xq are “close", i.e. xp is
among k nearest neighbors of xq or xq is among k
nearest neighbors of xp. When the label information
is available, one can put an edge between two nodes
sharing the same label.

2) If nodes p and q are connected, put Spq =

e−
||xp−xq||2

t , where t is a suitable constant. Other-
wise, put Spq = 0. The weight matrix S of the graph
models the local structure of the data space.

3) For the i-th feature, we define: fi =
[fi1, fi2, ..., fiP ]T , D = diag(S1), 1 = [1, . . . , 1]T ,
L = D−S where the matrix L is often called graph
Laplacian [18]. Let

f̌i = fi −
fTi D1
1TD1

1 (8)

4) Compute the Laplacian Score of the i-th feature as
follows.

Li =
f̌Ti Lf̌i
f̌Ti Df̌i

(9)

IV. MODIFIED LAPLACIAN SCORE

To ensure the values of Li and mutual information are
not vary greatly, both values are adapted to the range [0,1].
Therefore, in this paper, a linear transformation normalisation
to the value of Li in Equation (9) is used as follows.

NLi =
Li − Lmin

Lmax − Lmin
(10)

where Lmin and Lmax are the minimum and maximum values
of {L1, L2, ..., Ln}, respectively.

As discussed above, the Laplacian score does not take
into consideration the redundancy among selected features.
To address this issue, a scheme is proposed to eliminate
redundancy among the selected features based on mutual
information and appended to the Laplacian score.

Given a features set F = {f1, f2, . . . , fn}, where n is the
total number of features, the task is to select the best subset
of features G = {g1, g2, . . . , g|G|}, where |G| is the number
of selected features. The scheme is to normalise the value of
mutual information between a candidate feature and the set of
previously selected features by the entropies of the selected
features as shown in Equation (11) in order to select the m-th
feature, gm, from F \ {g1, g2, ..., gm−1}.

RPI(fi;G) =
1

m− 1

m−1∑
j=1

I(fi; gj)

H(gj)
. (11)

g(m) = argmax
fi

(NLi −RPI(fi;G)), (12)

where NLi represents the normalised Laplacian score of the
i feature as shown in Equation (10).

The overall procedure of EL algorithm is as follows.

Algorithm 1 Overall procedure of EL
Input: Feature set F = {fi, i = 1, ..., n}, R : the number of

selected features, R ≤ n.
Output: G- the selected feature subset.
1. Initialization: set G = φ.
2. Calculate NLi (i = 1, ..., n) according to Equation (9) and
Equation (10) for each feature in F .
3. Select the feature fi that maximises NLi.
Set F ←− F\ { fi }; G←− G ∪ { fi }.
4. while |G| < R do

for each feature fi ∈ F do
Calculate RPI(fi;G) in Equation (11) for all pairs of
(fi;G).

end
Using Equation (12) select g(m).
Set F←− F \ { g(m) } and G ←− G ∪ { g(m) }.

end
return G



Fig. 1: The framework of the proposed intrusion detection system

V. INTRUSION DETECTION BASED ON UNSUPERVISED
FEATURE SELECTION

The framework proposed in this chapter differs from the
ones proposed in the previous chapters in the pre-selection
stage, in which the proposed unsupervised feature selection
is applied. The framework of the proposed detection model
is shown in Figure 1. It can be seen from the figure that the
detection framework is comprised of four main stages:

• Data Collection. It is the first and most important stage
to intrusion detection where a sequence of network
packets is collected.

• Data Pre-processing. In this stage, the obtained train-
ing and test data from the data collection stage are first
pre-processed to generate basic features. This phase
involves three main steps. The first step is data trans-
ferring, in which every symbolic feature in a dataset is
first converted into a numerical value. The second step
is data normalisation, in which each feature in the data
is scaled into a well-proportioned range to eliminate
the bias in favour of features with greater values from
the dataset. The third step is feature selection, in which
the proposed feature selection algorithm is used to
nominate the most important features that are then
used to train the classifier and build the intrusion
detection model.

• Classifier Training. In this stage, the classifier is
trained. Once the best subset of features is selected,
this subset is then passed into the classifier training
stage where a specific classification method is em-
ployed.

• Attack Recognition. In this stage, the trained model
is used to detect intrusions on the test data. After
completing all the iteration steps and the final classifier
is trained which includes the most correlated and
important features, the normal and intrusion traffics
can be recognised by using the saved trained classifier.
The test data is then taken through the trained model
to detect attacks.

One can find more details about these stages in [19].

VI. EXPERIMENTS AND RESULTS

To demonstrate the effectiveness of the proposed fea-
ture selection algorithm, three well-known intrusion detection
datasets are used to assess and compare the performance of
the proposed algorithm against the Laplacian score method.
These datasets are the KDD Cup 99 datasets [20], NSL-
KDD datasets [21] and Kyoto 2006+ datasets [22]. The results
achieved by the proposed algorithm are compared with the
results obtained by the Laplacian score and one of the existing
unsupervised anomaly IDSs. To evaluate the effectiveness
of the proposed algorithm, we perform binary classification
and multi-classification. Two classifiers are used to serve the
purpose of evaluations and comparisons, and they are the
nearest neighborhood classifier (1NN) and Support Vector
Machine (SVM) (LIBSVM package [23]). The details of the
datasets are listed in Table I.

During the experiments, the value of R is given by the user
in advance. To select the best value of k we have conducted
several experiments and we set k = 4 for both the Laplacian
Score and our proposed EL algorithm.

TABLE I: Summary of Datasets used in our experiments

Dataset # Sample # feature # Class
KDD Cup 99 100,000 41 5
NSL-KDD 100,000 41 2
Kyoto 2006+ 100,000 23 2

A. Benchmark datasets

Currently, there are only a few number of public datasets
for intrusion detection evaluation. Therefore, we select the
aforementioned datasets for our experiments since all of them
are frequently used in literatures.

The KDD Cup 99 dataset is one of the most popular
intrusion detection datasets that is widely applied to evaluate



Fig. 2: Effect of number of selected features on IDS datasets with the two classifiers

the performance of IDSs [24]. It contains training data, “10%
KDD Cup 99", with approximately five millions data connec-
tion records and test data, “kddcup testdata", with about two
millions data connection records. KDD Cup 99 consists of five
different classes, normal and four types of attack (i.e., DoS,
Probe, U2R, R2L).

The NSL-KDD is a new revised version of KDD Cup 99
that has been proposed by Tavallaee et al. in [21]. This dataset
addresses some to the problems included in the KDD Cup
99 dataset such as the huge number of redundant records in
KDD Cup 99 data. The training and test datasets of NSL-
KDD dataset consist of approximately 125,973 and 22,544

connection records respectively. Similar to the KDD Cup
99 datasets, each record in these datasets has 41 different
quantitative and qualitative features.

The Kyoto 2006+ dataset was presented by Song et al.
[22]. The dataset covers over three years of real traffic data
collected from both honeypots and regular servers that are
deployed at Kyoto University. It consists of approximately
50,033,015 normal sessions, 43,043,255 attack sessions and
425,719 sessions were unknown attacks. Each connection in
the dataset is unique with 23 features. For our experiments,
we select samples form the data of the days 2009 August 27,
28, 29, 30 and 31, which contain the latest updated data.



TABLE II: Detection accuracy of the two IDSs based on EL and the Laplacian score algorithms using 1NN and SVM classifier

#R 1NN SVM
IDS + Laplacian Score IDS + Proposed EL IDS + Laplacian Score IDS + Proposed EL

KDD Cup 99 (n = 41)
4 57.29 ± 2.39 68.39 ± 2.19 59.95 ± 4.73 69.93 ± 3.49
8 65.22 ± 1.95 80.22 ± 1.68 67.08 ± 3.56 82.19 ± 3.04
12 72.42 ± 1.42 84.42 ± 1.04 76.88 ± 3.09 87.58 ± 2.33
16 73.33 ± 0.89 87.33 ± 0.59 88.13 ± 1.51 90.36 ± 1.17
NSL-KDD (n = 41)
4 50.19 ± 3.35 59.29 ± 3.33 56.73 ± 4.81 67.19 ± 3.85
8 60.35 ± 2.47 79.13 ± 2.92 65.99 ± 3.32 79.79 ± 3.43
12 71.14 ± 2.28 83.09 ± 1.09 74.17 ± 2.99 86.17 ± 2.32
16 75.95 ± 2.02 85.19 ± 0.93 83.90 ± 2.51 89.35 ± 2.15
Kyoto 2006+ (n = 23)
2 59.35 ± 2.10 90.38 ± 1.46 60.18 ± 2.17 87.12 ± 1.26
4 62.91 ± 1.16 93.12 ± 1.23 63.21 ± 1.92 88.03 ± 1.23
6 64.99 ± 1.02 94.66 ± 0.80 65.10 ± 1.40 89.12 ± 1.12
8 71.33 ± 0.48 96.38 ± 0.46 72.03 ± 1.31 90.46 ± 0.56

For experimental purposes, we randomly select 100,000
samples from each dataset. In order to decrease the random
selection effect, all the experimental results in this paper are
the averages of 10 runs. To avoid the bias in favor of features
with greater values in all datasets, every feature within each
record is normalized by the respective maximum value and
falls into the same range of [0,1].

B. Results and discussion

In order to investigate the performance of our proposed
feature selection algorithm, we build two intrusion detection
systems based on our EL and the Laplacian score method.
The aim is to further examine the advantages of removing
redundancies among the selected features. We conducted our
experiments on the three IDS datasets and compare the results
achieved by the two detection systems. The experimental
results about classification accuracies on these datasets are
presented in Figure 2 and Table II.

Figure 2 plots the classification accuracies of 1NN and
SVM achieved using both EL and the Laplacian score with
R increasing from 1 to n. The x axis represents the number
of selected features and y axis represents the classification
accuracy. The figure shows that, in general, the classification
accuracy improves when the number of selected features
increases. It can be seen from the figure that the curve of our
proposed EL method is above the curve of the Laplacian score
method in all three datasets for almost all R values. That is
because EL takes into consideration the redundancies among
features and thus can select features with smaller redundancies.
Note that when R = n, both systems achieved almost the same
accuracy.

Table II summarizes the average classification accuracies
using four different values of R on each dataset. The table
shows clearly that the results obtained using EL are better
than those obtained from the Laplacian Score method on all
datasets in most of the cases.

C. Additional Comparison

The performance of our detection model using EL method
is further compared with an unsupervised anomaly IDS,
varGDLF in short, proposed by Fan et al. in [25]. Based on our

knowledge, there is a small effort has been done to develop IDS
that can utilized unlabeled data. The varGDLF system is based
on mixture model with localized feature selection method.
The system has been evaluated on KDD Cup 99 datasets and
achieved an accuracy of 85.2%, which means that our detection
approach enjoys better accuracy, with 16 features, of 87.33 %
and 90.36 for 1NN and SVM respectively.

VII. CONCLUSION

In this paper, we have proposed an unsupervised feature
selection algorithm, which is an enhancement over Laplacian
score method. We name our algorithm an Extended Laplacian
score, EL in short. More specifically, two main phases are
involved in EL during the selection processes. In the first
phase, a k-nearest neighbor graph is used to capture the locality
preserving power of each feature. In the second phase, a
Redundancy Penalization (RP) function is used to eliminate
redundancies among selected features. RP is based on the
principle of mutual information.

In order to investigate the effectiveness of the proposed
method, two intrusion detection systems based on EL and the
Laplacian score algorithms are developed. Three different IDS
datasets involved in the evaluation processes, the KDD Cup
99, NSL-KDD and Kyoto 2006+ datasets. The performance of
EL is compared against the results obtained using Laplacian
Score method. Experimental results have shown that our IDS
with EL has achieved encouraging results on all datasets
and outperformed the Laplacian Score algorithm in terms of
classification accuracies.

Although the proposed feature selection algorithm EL
has shown good efficiency, it could be further enhanced. For
example, adoptive learning algorithms can be used to select an
appropriate value for the parameter k. This will be very useful
since the proposed method is sensitive to the selection of this
parameter. We will put this into consideration to enhance our
method.
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