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Abstract: Multilevel decision-making techniques aim to deal with decentralized management 

problems that feature interactive decision entities distributed throughout a multiple level hierarchy. 

Significant efforts have been devoted to understanding the fundamental concepts and developing 

diverse solution algorithms associated with multilevel decision-making by researchers in areas of 

both mathematics/computer science and business areas. Researchers have emphasized the 

importance of developing a range of multilevel decision-making techniques to handle a wide variety 

of management and optimization problems in real-world applications, and have successfully gained 

experience in this area. It is thus vital that a high quality, instructive review of current trends should 

be conducted, not only of the theoretical research results but also the practical developments in 

multilevel decision-making in business. This paper systematically reviews up-to-date multilevel 

decision-making techniques and clusters related technique developments into four main categories: 

bi-level decision-making (including multi-objective and multi-follower situations), tri-level 

decision-making, fuzzy multilevel decision-making, and the applications of these techniques in 

different domains. By providing state-of-the-art knowledge, this survey will directly support 

researchers and practical professionals in their understanding of developments in theoretical 

research results and applications in relation to multilevel decision-making techniques. 

Keywords: Multilevel decision-making, bi-level programming, fuzzy decision-making. 

1. Introduction 

Multilevel decision-making techniques, motivated by Stackelberg game theory [147] and 

presented by multilevel mathematical programming, have been developed to address compromises 

between the interactive decision entities that are distributed throughout a hierarchical organization. 

In a multilevel decision-making process, decision entities at the upper level and the lower level are 
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respectively termed the leader and the follower, and make their individual decisions in sequence 

with the aim of optimizing their respective objectives. This decision-making process means that the 

leader has priority in making its own decision and the follower reacts after and in full knowledge of 

the leader's decision; however, the leader's decision is implicitly affected by the follower's reaction. 

Since this category of hierarchical decision-making often appears in many decentralized 

management problems in the real world, multilevel decision-making has motivated a number of 

researches on decision models [101, 103], solution approaches [126] and applications [89]. 

The original appearance of multilevel decision-making can be traced back to 1973, in a paper 

authored by Bracken and McGill [25], although a wide range of related research has been 

undertaken since the 1980s under the following designations: multilevel programming, multilevel 

optimization and multilevel decision-making. Early efforts in multilevel decision-making were 

primarily devoted to addressing optimality conditions and solution algorithms for solving basic 

linear, nonlinear and discrete problems, in which only one decision entity is involved at each 

decision level with the aim of optimizing a unique objective. Although the multilevel 

decision-making problem has been proved to be NP-hard by Ben-Aved and Blair [21] and Bard [16], 

many methods/algorithms have been developed for solving typical cases in bi-level 

decision-making problems, such as extreme point algorithms, branch-and-bound algorithms, 

complementary pivot algorithms, descent methods and penalty function methods [17, 45]. These 

methods/algorithms can be considered to be traditional solution approaches for solving multilevel 

(mainly bi-level) decision-making problems. 

From a practical point of view, there are two fundamental issues in supporting a multilevel 

decision-making process: one is how to develop a multilevel decision model to describe a 

hierarchical decision-making process, and the other is how to find an optimal solution to the 

resulting decision model. For the first issue, bi-level decision-making models with multiple optima, 

involving multiple objectives, multiple leaders and multiple followers, have been proposed to 

handle different characteristics at different decision levels. Tri-level decision-making, another 

typical multilevel decision form that is more complex than bi-level decision-making, has been well 

studied in model establishment. For the second issue, a set of solution approaches has been 

developed to solve these models. In the meanwhile, attention has been paid to uncertain issues in 

both model parameter determination and solution process, and fuzzy set technique has been used in 

both multilevel decision modeling and solution approaches. 
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Multilevel decision problems have recently increasingly appeared in decentralized management 

situations in the real world and have become highly complicated and large-scale, particularly with 

the development of economic integration and in the current age of big data; for example, business 

firms nowadays usually work in a decentralized manner in a complex commercial network 

comprised of suppliers, manufacturers, sales and logistics companies, customers and other 

specialized service functions [75]. Therefore, to help researchers understand the development 

experience of multilevel decision-making techniques and to assist practitioners to handle related 

decision-making problems in practice, this paper reviews the latest research on multilevel 

decision-making involving theoretical research results and applications, which are clustered into 

four categories: bi-level decision-making, tri-level decision-making, fuzzy multilevel 

decision-making, and applications of multilevel decision-making techniques. 

Several survey papers [22, 39, 40, 89, 126, 154] on multilevel programming/decision-making 

have been published in the last 20 years. However, these papers focus on early research on basic 

bi-level decision-making, either with traditional solution approaches only or a specific domain of 

applications. For example, the survey papers by Ben-Ayed [22], Vicente and Calamai [154] and 

Colson, et al. [39, 40] presented overviews of bi-level programming, which only focused on 

traditional solution concepts and approaches for solving basic bi-level decision problems. Sakawa 

and Nishizaki [126] reviewed interactive fuzzy programming approaches for solving bi-level and 

multilevel decision problems. Kalashnikov, et al. [89] surveyed bi-level decision-making techniques 

on a specific application domain of energy networks. Although these survey papers have provided 

good references for researchers, there is an urgent need for an updated and more comprehensive 

review of recent developments in multilevel decision-making techniques. More importantly, in 

contrast to these papers that are limited to solution approaches for solving bi-level mathematical 

programming, this survey focuses on a variety of decision models, solution approaches and 

application domains from the perspective of different categories of multilevel decision-making. 

To conduct this literature review, three main types of article are carefully reviewed: Type1 - 

articles on bi-level programming/decision-making; Type 2 - articles on tri-level 

programming/decision-making and fuzzy multilevel programming/decision-making; and Type 3 - 

articles on multilevel decision-making applications. The search and selection of these articles were 

performed according to the following five steps: 

Step 1. Publication database identification and determination. Publication databases, such as 
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Science Direct, ACM Digital Library, IEEE Xplore and SpringerLink, were selected to provide 

a comprehensive bibliography of papers on multilevel decision-making. 

Step 2. Preliminary screening of articles. The search was first performed based on related 

keywords of multilevel decision-making. The articles were then selected as references if they 

satisfied one of the following criteria that they (1) proposed decision models related to 

multilevel decision-making; (2) developed solution concepts and approaches for solving 

multilevel decision problems; (3) provided a real-world multilevel decision-making application. 

Step 3. Result filtering for Type 1 articles. Based on the keywords related to bi-level 

decision-making, these papers were divided into three groups using "topic clustering": (a) basic 

bi-level decision-making involving linear, nonlinear and discrete problems; (b) bi-level 

multi-objective decision-making; and (c) bi-level multi-leader and/or multi-follower 

decision-making. These papers were selected according to three criteria: (1) novelty - published 

within the last decade; (2) impact - published in high quality (high impact factor) journals, or in 

conference proceedings or book chapters but with high citations; and (3) typicality - only the 

most typical methodologies were retained. These papers are mainly used in Section 2. 

Step 4. Type 2 article selection. The techniques in relation to tri-level and multilevel 

decision-making, and fuzzy multilevel decision-making were analyzed and the related papers 

were selected according to the three criteria: (1) novelty, (2) impact, and (3) typicality. For this 

category of technique, relevant decision models and solution approaches were carefully 

reviewed. These papers are mainly used in Sections 3 and 4. 

Step 5. Result filtering for Type 3 articles. Based on the keywords related to multilevel 

decision-making applications, these papers were divided into four groups using "topic 

clustering": (a) supply chain management; (b) traffic and transportation; (c) energy 

management, and (d) safety and accident management. These papers were selected according to 

the four criteria: (1) novelty; (2) impact; (3) coverage - reported a new or particular application 

domain; and (4) typicality - only the most typical examples related to similar applications were 

retained. These papers aim to introduce the applications of multilevel decision-making 

techniques, which are mainly used in Section 5. 

Ultimately, 179 articles in total were selected as the final reference list for this paper. 

The main contributions of this paper are: (1) the paper comprehensively and perceptively 

summarizes research achievements on multilevel decision-making techniques from the point of 
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view of theoretical research results and applications, and strategically clusters the multilevel 

decision-making techniques into four categories; (2) for each multilevel decision-making technique, 

it carefully analyzes typical decision models and effectively identifies the specific requirements for 

solution approaches in the category. This will directly motivate and support researchers and 

practitioners to promote the popularization and application of multilevel decision-making 

techniques in different domains; (3) it provides several methods for conducting the set of available 

multilevel decision-making test problems and covers very new multilevel decision-making 

technique applications; and (4) it particularly suggests several very innovative emerging research 

topics/directions in the area of multilevel decision-making. 

The remainder of this paper is structured as follows. In Section 2, the bi-level decision-making 

models and solution approaches are reviewed and analyzed. Section 3 presents the tri-level 

decision-making models and solution approaches. Section 4 addresses fuzzy multilevel (including 

bi-level and tri-level) decision-making techniques. Section 5 discusses the principal applications of 

multilevel decision-making techniques. Section 6 presents our comprehensive analysis and 

prospective research topics. 

2. Bi-level decision-making 

This section first reviews the development of techniques for solving basic bi-level 

decision-making problems. It then addresses the developments of bi-level decision-making with 

multiple optima involving bi-level multi-objective decision-making, bi-level multi-leader 

decision-making and bi-level multi-follower decision-making. 

2.1. Basic bi-level decision-making 

Basic bi-level decision-making, as found in a bi-level programming situation, has only one 

decision entity attempting to optimize a unique objective at each decision level. The general 

formulation for basic bi-level decision-making is described by a bi-level program as Definition 1. 

Definition 1 [17] For pRXx  ,
qRYy  , a general bi-level decision problem is defined 

as: 

),(min yxF
Xx

                   (1st level)                                     (1a) 

s.t. 0),( yxG ,                                                            (1b) 

    where, for each x given by the 1st level, y solves 
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),(min yxf
Yy

                (2nd level)                                    (1c) 

s.t. 0),( yxg ,                                                         (1d) 

where x, y are the decision variables of the first level and the second level respectively; 

1:, RRRfF qp   are the objective functions of the first level and the second level respectively; 

mqp RRRG : ,
nqp RRRg :  are the constraint conditions of the first level and the second 

level respectively. The sets X and Y place additional restrictions on the decision variables, such as 

upper and lower bounds or integrality requirements [17]. 

Relevant solution concepts in relation to bi-level decision problem (1) are defined as follows. 

Definition 2 [17] 

1) The constraint region of the bi-level decision problem: 

  }0),(,0),(:),{(  yxgyxGYXyxS . 

2) The feasible set of the second level for each fixed x: 

  }0),(:{)(  yxgYyxS . 

3) The rational reaction set of the second level: 

  ) ] }(:),(m i n [a r g:{)( xSyyxfyYyxP  . 

4) The inducible region of the bi-level decision problem: 

  )}(,),(:),{( xPySyxyxIR  . 

5) The optimal solution set of the bi-level decision problem: 

  ]}),(:),(min[arg),(:),{( IRyxyxFyxyxOS  . 

It is clear from Definition 2 that the constraint domain associated with a bi-level decision 

problem is implicitly determined by two optimization problems that must be solved in a 

predetermined sequence from the first level to the second level. The bi-level decision problem (1) is 

equivalent to optimizing the leader's objective F over the inducible region IR. 

Although a number of methodologies have been developed for solving basic bi-level decision 

problems involving linear, nonlinear and discrete versions, the main pursuit of this section is to 

summarize the related solution algorithms developed in the last decade, because the basic concepts, 

complexity, optimality conditions and traditional algorithms have been carefully reviewed in the 

existing surveys [22, 39, 40, 154]. 
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2.1.1. Linear bi-level decision-making 

Definition 3 [17] Based on Definition 1, for pRXx  ,
qRYy  , and 

1:, RRRfF qp  , 

the linear bi-level decision problem can be written as follows: 

ydxcyxF
Xx

11),(min 


                   (1st level)                            (2a) 

s.t. 111 byBxA  ,                                                          (2b) 

    where, for each x given by the 1st level, y solves 

ydxcyxf
Yy

22),(min 


               (2nd level)                           (2c) 

s.t. 222 byBxA  ,                                                     (2d) 

where pRcc 21, , qRdd 21, , mRb 1 , nRb 2 , pmRA 1 , qmRB 1 , pnRA 2 , qnRB 2 . 

In accordance with Definition 2, readers can easily elicit the related solution concepts for linear 

bi-level decision problem (2). Note that we only consider continuous decision variables in this 

section. 

In terms of solving linear bi-level decision problems, the traditional algorithms can be classified 

into three main categories: the vertex enumeration approaches [23, 35, 135, 152] based on an 

important characteristic of bi-level programming whereby an optimal solution occurs at a vertex of 

the constraint region; the Kuhn-Tucker approaches involving branch-and-bound algorithms [18, 19, 

60, 136] and complementary pivot algorithms [23, 85, 115], in which the upper-level problem 

includes the lower-level’s optimality conditions as extra constraints; and the penalty function 

approaches [6, 163] which append a penalty term of the lower-level problem to the objective 

function of the upper-level problem. 

In recent years, Audet, et al. [11] proposed a disjunctive cuts method for a linear bi-level 

decision problem with continuous variables. Audet, et al. [12] considered the equivalences between 

linear mixed 0-1 integer programming problems and linear bi-level decision problems, and 

proposed a finite and exact branch-and-cut algorithm for solving such problems. Glackin, et al. [71] 

addressed the relationship between linear multi-objective programs and linear bi-level programs and 

presented an algorithm for solving linear bi-level programs that uses simplex pivots on an expanded 

tableau. Calvete and Galé [30] addressed linear bi-level programs in which the coefficients of both 

objective functions are interval numbers and developed two algorithms based on ranking extreme 

points to solve such problems. Ren and Wang [121] proposed a cutting plane method to solve the 
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linear bi-level decision problem with interval coefficients in both objective functions. 

The aforementioned approaches provide ways to solve linear bi-level decision problems. 

However, these approaches are very time-consuming when solving large-scale problems; for 

example, the computational load of the Kth-Best algorithm will increase steeply with the increase in 

the mass of variables and constraints. To overcome this issue, a range of heuristic algorithms have 

been developed to solve bi-level decision problems. Gendreau, et al. [70] used an adaptive search 

method related to the tabu search meta-heuristic to solve the linear bi-level decision problem. 

Hejazi, et al. [82] proposed a method based on genetic algorithm for solving linear bi-level decision 

problems. Calvete, et al. [33] developed a genetic algorithm for solving a class of linear bi-level 

decision problems in which both objective functions are linear and the common constraint region is 

a polyhedron. Hu, et al. [84] presented a neural network approach for solving linear bi-level 

decision problems. Lan, et al. [96] proposed a hybrid algorithm that combines neural network and 

tabu search for solving linear bi-level decision problems. Kuo and Huang [94] developed a particle 

swarm optimization (PSO) algorithm with swarm intelligence to solve linear bi-level decision 

problems. In addition, Calvete, et al. [33] presented a method for the test set construction of linear 

bi-level decision problems especially for generating large-scale problems, which can be employed 

to assess the efficiency performance of related algorithms. 

2.1.2. Nonlinear bi-level decision-making 

With respect to Definition 1, if the objective functions ),( yxF , ),( yxf  or the constraint 

conditions 0),( yxG , 0),( yxg  are nonlinear formulations, the bi-level program is known as a 

nonlinear bi-level decision problem, which is much more difficult to solve than linear versions. 

In early research in solving nonlinear bi-level decision problems, Bard [14] extended the 

traditional branch-and-bound algorithm to solve nonlinear convex bi-level decision problems. 

Edmunds and Bard [51] used a branch-and-bound algorithm and a cutting-plane algorithm to solve 

various versions of nonlinear bi-level decision problems when certain convexity conditions hold. 

Al-Khayyal, et al. [1] developed a branch-and-bound algorithm and a piecewise linear 

approximation method to find the global minimum for a class of nonlinear bi-level decision 

problems based on an equivalent system of convex and separable quadratic constraints. Vicente and 

Calamai [154] introduced two descent methods for a special instance of bi-level programs where the 

second-level problem is strictly convex quadratic. 
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In recent years, Tuy, et al. [151] showed that a nonlinear bi-level decision problem can be 

transformed into a monotonic optimization problem which can then be solved by a 

branch-reduce-and-bound method using monotonicity cuts. Mersha and Dempe [109] studied the 

application of a class of direct search methods and solved bi-level decision problems containing 

convex lower level problems with strongly stable optimal solutions. Mitsos, et al. [111] presented a 

bounding algorithm for the global solution of nonlinear bi-level programs involving nonconvex 

objective functions in both decision levels. 

In regard to related heuristic algorithms, Wang, et al. [159] transformed a special nonlinear 

bi-level decision problem into an equivalent single objective nonlinear programming problem that 

can be solved by an evolutionary algorithm. Wan, et al. [157] presented a hybrid intelligent 

algorithm of PSO and chaos searching technique for solving nonlinear bi-level decision problems. 

Wan, et al. [156] also developed a novel evolutionary algorithm, called the estimation of 

distribution algorithm, for solving a special class of nonlinear bi-level decision problems in which 

the lower-level problem is a convex program for each given upper-level decision. Lv et al. [106, 

107] and He, et al. [81] proposed neural network methods for solving nonlinear bi-level decision 

problems. It is notable that Sinha, et al. [141] proposed a procedure for designing the test set of 

nonlinear bi-level decision problems and presented the corresponding computational results for 

these test problems using a nested bi-level evolutionary algorithm. Researchers can consider these 

test problems as the benchmark for examining the effectiveness of their own algorithms. 

2.1.3. Discrete bi-level decision-making 

In many bi-level decision-making problems, a subset of the variables is restricted to take on 

discrete values [17]. A problem can be considered to be a general discrete bi-level decision problem 

when the decision variables in Definition 1 are discrete, e.g. integer programming. Clearly, the 

linear bi-level decision problem (2) will become a discrete linear bi-level program if the decision 

variables are discrete rather than continuous. 

Discrete variables can complicate bi-level decision problems by several orders of magnitude and 

render all but the smallest instances unsolvable [17]. Bard and Moore [20], Moore and Bard [112] 

and Wen and Yang [161] therefore proposed traditional branch-and-bound algorithms for finding 

solutions to integer linear bi-level decision-making problems. Vicente, et al. [155] designed penalty 

function methods for solving discrete linear bi-level decision problems. Edmunds and Bard [50] 
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developed a branch-and-bound algorithm to solve a mixed-integer nonlinear bi-level decision 

problem. 

Recently, Köppe, et al. [87] proposed a parametric integer programming algorithm for solving a 

mixed integer linear bi-level decision problem where the follower solves an integer program with a 

fixed number of variables. Xu and Wang [165] solved a mixed integer linear bi-level decision 

problem using an exact algorithm. The algorithm relies on three simplifying assumptions, explicitly 

considers finite optimal, infeasible and unbounded cases, and is proved to terminate finitely and 

correctly. Domínguez and Pistikopoulos [49] addressed two algorithms using multiparametric 

programming techniques respectively for solving two categories of integer bi-level decision 

problems: one category consists of pure integer problems where integer variables of the first level 

appear in the linear or polynomial problem of the second level, and the other consists of 

mixed-integer problems where integer and continuous variables of the first level appear in the linear 

or polynomial problem of the second level. Sharma, et al. [134] discussed an integer bi-level 

decision problem with bounded variables in which the objective function of the first level is linear 

fractional, the objective function of the second level is linear and the common constraint region is a 

polyhedron. They proposed an iterative algorithm to find an optimal solution to the problem. Faísca, 

et al. [55] proposed a global optimization approach to solve quadratic bi-level and mixed integer 

linear bi-level problems, with or without right-hand-side uncertainty. Mitsos [110] presented an 

algorithm based on the research by Mitsos, et al. [111] for the global optimization of nonlinear 

bi-level mixed-integer programs, which relies on a convergent lower bound and an optional upper 

bound. 

In relation to heuristic algorithms for solving discrete bi-level decision problems, Wen and 

Huang [160] reported a mixed-integer linear bi-level decision-making formulation in which 

zero-one decision variables are controlled by the first level and real-value decision variables are 

controlled by the second level. An algorithm based on the short term memory component of tabu 

search, called simple tabu search, was developed to solve the problem. Nishizaki and Sakawa [114] 

presented a method using genetic algorithms for obtaining optimal solutions to integer linear 

bi-level decision problems. 

2.2. Bi-level multi-objective decision-making 

When multiple conflicting objectives for each decision entity exist in a bi-level decision 
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problem, this is known as a bi-level multi-objective (BLMO) decision problem. 

Definition 4 [42] For pRXx  ,
qRYy  , a general BLMO decision problem is 

formulated as: 

)),(,),,(),,((),(min 21 yxFyxFyxFyxF M
Xx




                 (1st level)            (3a) 

s.t. 0),( yxG ,                                                            (3b) 

    where, for each x given by the 1st level, y solves 

)),(,),,(),,((),(min 21 yxfyxfyxfyxf N
Yy




               (2nd level)           (3c) 

s.t. 0),( yxg ,                                                         (3d) 

where x, y are the decision variables of the first level and the second level respectively; 

NjMiRRRfF qp
ji ,,2,1,,,2,1,:, 1    are the conflicting objective functions of the first 

level and the second level respectively; mqp RRRG : , 
nqp RRRg :  are the constraint 

conditions of the first level and the second level respectively. The sets X and Y place additional 

restrictions on the decision variables, such as upper and lower bounds or integrality requirements. It 

is notable that Definition 2 also applies to the BLMO decision problem (3). 

Many algorithms have been developed to solve bi-level multi-objective (BLMO) decision 

problems in various versions. Ankhili and Mansouri [8] addressed a class of linear bi-level 

programs where the upper level is a linear scalar optimization problem and the lower level is a 

linear multi-objective optimization problem; they approached the problems via an exact penalty 

method. Calvete and Galé [28] presented a number of methods of computing efficient solutions to 

solve linear bi-level decision problems with multiple objectives at the upper level; all the methods 

result in solving linear bi-level problems with a single objective function at each level based on both 

weighted sum scalarization and scalarization techniques. Emam [53] proposed an interactive 

approach for solving bi-level integer fractional multi-objective decision problems. Eichfelder [52] 

discussed a nonlinear nonconvex BLMO decision problem using an optimistic approach in which 

the feasible points of the upper-level objective function can be expressed as the set of minimal 

solutions of a single-level multi-objective optimization problem. The BLMO decision problem is 

then solved by an iterative process, again using sensitivity theorems. 

From the aspect of using heuristic algorithms for solving BLMO decision problems, Alves and 

Costa [3] presented an improved PSO algorithm to solve linear bi-level decision problems with 
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multiple objectives at the upper level. Calvete and Galé [29] developed an exact algorithm and a 

metaheuristic algorithm to solve linear bi-level decision problems with multiple objectives at the 

lower level. Zhang, et al. [179] proposed a hybrid PSO algorithm with crossover operator to solve 

high dimensional bi-level multi-objective decision problems. Deb and Sinha [42] proposed a viable 

and hybrid evolutionary-cum-local-search based algorithm for solving BLMO decision problems. 

Note that Deb and Sinha [41] also presented a method for constructing the test set of BLMO 

decision problems. 

2.3. Bi-level multi-leader and/or multi-follower decision-making 

In a bi-level decision problem, multiple decision entities may exist at each level, and this is 

known as a bi-level multi-leader and/or multi-follower decision problem. A general bi-level 

multi-leader (BLML) decision problem can be defined as Definition 5. 

Definition 5 [175] For ip
ii RXx  ,

qRYy  , Li ,,2,1  , a general BLML decision 

problem in which L leaders and one follower are involved can be described as: 

),(min yxFi
Xx ii

                 (1st level)                                      (4a) 

s.t. 0),( yxGi ,                                                            (4b) 

    where, for each x given by the 1st level, y solves 

),(min yxf
Yy

               (2nd level)                                     (4c) 

s.t. 0),( yxg ,                                                         (4d) 

where ),,,( 21 Lxxxx  , xi and y are the decision variables of the ith leader and the follower 

respectively; 
11:, RRRRfF qpp

i
L   are the objective functions of the ith leader and the 

follower respectively; iL mqpp
i RRRRG 1: ,

nqpp
RRRRg L 1:  are the 

constraint conditions of the ith leader and the follower respectively. The sets X and Y place 

additional restrictions on the decision variables, such as upper and lower bounds or integrality 

requirements. It is clear in Definition 5 that, when leaders make their individual decisions, they 

need to not only take into account the implicit reaction of the follower but also consider the decision 

results given by their counterparts at the first level. 

In relation to research on bi-level multi-leader decision-making, DeMiguel and Huifu [44] 

studied a stochastic BLML decision model and proposed a computational approach to find a 
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Stochastic Multiple-leader Stackelberg-Nash-Cournot (SMS) equilibrium based on the sample 

average approximation method. Zhang, et al. [175] introduced a framework for the bi-level 

multi-leader (BLML) decision problem, in which they presented different BLML decision models 

in line with various relationships between multiple leaders. The authors also proposed a PSO 

algorithm to find a solution for BLML decision problems based on the related solution concepts. 

In contrast to the limited discussion on BLML decision-making, researchers have paid 

considerably more attention to bi-level multi-follower (BLMF) decision-making. A general BLMF 

decision problem in which one leader and k followers are involved can be defined as Definition 6. 

Definition 6 [175] For pRXx  , iq
ii RYy  , ki ,,2,1  , a general BLMF decision 

problem in which one leader and k followers are involved can be written as: 

),(min yxF
Xx

                  (1st level)                                      (5a) 

s.t. 0),( yxG ,                                                            (5b) 

    where, for each x given by the 1st level, yi solves the ith follower's problem 

),(min yxfi
Yy ii

               (2nd level)                                     (5c) 

s.t. 0),( yxgi ,                                                         (5d) 

where ),,,( 21 kyyyy  , x and yi are the decision variables of the leader and the ith follower 

respectively; 
11:, RRRRfF kqqp

i    are the objective functions of the leader and the ith 

follower respectively; mqqp RRRRG k  1: , iL nqqp
i RRRRg  1:  are the 

constraint conditions of the leader and the ith follower respectively. The sets X and Y place 

additional restrictions on the decision variables, such as upper and lower bounds or integrality 

requirements. It can be seen in Definition 6 that followers need to consider the decision results of 

their counterparts as references when making their individual decisions in view of the decision 

given by the leader. 

Anandalingam and Apprey [5] first presented a linear BLMF decision model, known as a linear 

bi-level multi-agent system, and developed a penalty function approach to solve the problem. Liu 

[98] designed a genetic algorithm for solving Stackelberg-Nash equilibrium of nonlinear BLMF 

decision problems in which there might be an information exchange between the followers. Based 

on previous research, Lu, et al. [101] proposed a general framework of BLMF decision-making that 

considers three main relationships between multiple followers: the uncooperative relationship, the 
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referential-uncooperative relationship, and the partial-cooperative relationship. The research on 

BLMF decision-making after Lu, et al. [101] was structured on the general framework. Calvete and 

Galé [27] subsequently presented a approach for solving the linear BLMF decision problem with 

uncooperative followers, which converted the BLMF problem to a bi-level problem with one leader 

and one follower. Shi et al. [137, 138] extended the Kth-best algorithm to solve linear BLMF 

decision problems with uncooperative and partial-cooperative relationships respectively between 

followers. Lu, et al. [102] and Lu and Shi [100] respectively adopted the extended Kuhn-Tucker 

algorithm and the extended branch-and-bound algorithm to solve the referential-uncooperative 

linear BLMF decision problem. 

Nie [113] developed and characterized discrete-time dynamic bi-level multi-leader and 

multi-follower (BLMLMF) games with leaders in turn, and a dynamic programming algorithm was 

employed to solve this problem. Gao [63] developed PSO-based algorithms to solve BLML, BLMF 

and BLMLMF decision problems. Sinha, et al. [142] used a computationally intensive nested 

evolutionary algorithm to find an optimal solution for a multi-period BLMLMF decision problem 

with nonlinear and discrete variables. 

To conclude, a number of solution approaches involving exact algorithms and heuristic 

algorithms have been developed for solving a variety of bi-level decision problems. Nevertheless, 

these algorithms are still time-consuming for solving large-scale bi-level decision problems in 

nonlinear, discrete and multi-optima versions. Also, it is difficult and sometimes almost impossible 

to extend these algorithms to solve tri-level and multilevel decision problems. Therefore, it is 

necessary to develop more effective algorithms for solving large-scale bi-level problems, which can 

be also extended to solve tri-level and multilevel decision problems. 

3. Tri-level decision-making 

Decentralized decision-making problems within a hierarchical system are often comprised of 

more than two levels in many applications, which is known as tri-level and multilevel 

decision-making. 

Definition 7 [56] For pRXx  , 
qRYy  , rRZz  , a general tri-level decision 

problem is defined as: 

),,(min 1 zyxf
Xx

                         (1st level)                             (6a) 

s.t. ,0),,(1 zyxg                                                           (6b) 



15 

    where, for each x given by the 1st level, (y, z) solve the problems of the 2nd and 3rd levels: 

       ),,(min 2 zyxf
Yy

                     (2nd level)                            (6c) 

s.t. ,0),,(2 zyxg                                                      (6d) 

         where, for each (x, y) given by the 1st and 2nd levels, z solves 

),,(min 3 zyxf
Zz

                 (3rd level)                            (6e) 

s.t. ,0),,(3 zyxg                                                   (6f) 

where x, y, z are the decision variables of the three levels respectively; 
1

321 :,, RRRRfff rqp   

are the objective functions of the three levels respectively; 3,2,1,:  iRRRRg ikrqp
i  are 

the constraint conditions of the three levels respectively. 

Relevant solution concepts are proposed as follows based on the nested hierarchical structure of 

tri-level decision-making. 

Definition 8 [56] 

1) The constraint region of the tri-level decision problem: 

  }3,2,1,0),,(:),,{(  izyxgZYXzyxS i . 

2) The feasible set of the second level for each fixed x: 

  }0),,(,0),,(:),{()( 32  zyxgzyxgZYzyxS . 

3) The feasible set of the third level for each fixed (x, y): 

  }0),,(:{),( 3  zyxgZzyxS . 

4) The rational reaction set of the third level: 

  ) ] },(:),,(m i n [a r g:{),( 3 yxSzzyxfzZzyxP  . 

5) The rational reaction set of the second level: 

  ) ] },(),(),(:),,(min[arg),(:),{()( 2 yxPzxSzyzyxfzyZYzyxP  . 

6) The inducible region of the tri-level decision problem: 

  )}(),(,),,(:),,{( xPzySzyxzyxIR  . 

7) The optimal solution set of the tri-level decision problem: 

  ]}),,(:),,(min[arg),,(:),,{( 1 IRzyxzyxfzyxzyxOS  . 

While the majority of studies on multilevel decision-making have focused on bi-level 



16 

decision-making, research on tri-level decision problems has increasingly attracted investigations 

into solution approaches since tri-level decision-making can be applied to handle many 

decentralized decision problems in the real world [103]. Bard [15] first presented an investigation 

into linear tri-level decision-making and designed a cutting plane algorithm to solve such problems, 

based on which White [162] proposed a penalty function approach for linear tri-level decision 

problems. Anandalingam [4] and Sinha [143] developed Kuhn-Tucker transformation methods to 

find local optimal solutions for linear tri-level decision problems. Ruan, et al. [124] discussed the 

optimality conditions and related geometric properties of a linear tri-level decision problem with 

dominated objective functions. Faísca, et al. [56] studied a multiparametric programming approach 

to solve tri-level hierarchical and decentralized optimization problems based on parametric global 

optimization for bi-level decision-making [55]. Zhang, et al. [176] developed a tri-level Kth-Best 

algorithm to solve linear tri-level decision problems. In addition, Han, et al. [77] presented a PSO 

algorithm for solving linear and nonlinear tri-level decision problems. 

A category of approaches based on fuzzy programming has been also developed to solve 

multilevel decision problems involving bi-level and tri-level programs. Lai [95] first proposed a 

fuzzy approach to find a satisfactory solution to the linear multilevel decision problem using 

concepts of membership functions of individual optimality and the satisfactory degree of individual 

decision power. Shih, et al. [139] extended Lai’s concepts and adopted tolerance membership 

functions and multiple objective optimization to develop a fuzzy approach for solving the above 

problems. Sakawa, et al. [128] presented an interactive fuzzy programming approach for linear 

multilevel decision problems by updating the satisfactory degrees of decision entities at the upper 

level with considerations of overall satisfactory balance between all levels. Their interactive fuzzy 

programming approach overcomes the inconsistency between the fuzzy goals of objectives and 

decision variables that existed in the research developed by Lai [95] and Shih, et al. [139]. Sinha 

[144, 145] developed an alternative multilevel decision technique based on fuzzy mathematical 

programming, which considered a sequential order of the multilevel hierarchy and took into account 

the preference of the decision entity at each level. Pramanik and Roy [119] and Arora and Gupta 

[10] each proposed a fuzzy goal programming approach to solve linear multilevel decision 

problems using definitions of tolerance membership functions and satisfactory degree of decision 

entities. 

To solve tri-level decision-making problems with multiple optima, Shih, et al. [139] proposed a 
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tri-level decision model with multiple followers and developed a fuzzy approach to solve the model. 

Lu, et al. [103] presented a framework for tri-level multi-follower (TLMF) decision-making 

research and developed 64 standard situations to describe various relationships among multiple 

followers. Based on the TLMF framework, Han et al. [75, 76, 78] discussed related solution 

concepts and extended the bi-level Kth-Best algorithm to solve three categories of linear TLMF 

decision problems with cooperative, uncooperative and reference-based uncooperative relationships 

respectively between multiple followers at the same level. 

In summary, although these approaches provide ways to find solutions to tri-level decision 

problems, there are three noticeable drawbacks to adopting these approaches to solve tri-level 

decision problems. First, the existing approaches are limited to solving tri-level decision problems 

in linear format or in a special situation where all decision entities from different levels share the 

same constraint conditions and prefer to cooperate with one another. Second, the fuzzy approaches 

can only be used to find satisfactory solutions rather than optimal solutions, because cooperation is 

inhibited in classical multilevel decision-making problems, as has been commented on by Dempe 

[46]. Lastly, the efficiency of the proposed TLMF Kth-Best algorithm depends very much on the 

characteristics of the problem, that is, algorithmic performance may undergo a steeply downward 

trend in solving some TLMF decision problems. Consequently, further investigation into solution 

approaches for solving tri-level and multilevel decision problems is necessary. 

4. Fuzzy multilevel decision-making 

An important issue in modeling a multilevel decision problem is that the parameters involved 

are sometimes obtained through experiments or experts' understanding of the nature of the 

parameters. These parameters are often imprecisely or ambiguously known to the experts who 

establish the model, however, and clearly cannot be described by precise values [7]. Given this 

observation, it would certainly be more appropriate to interpret the experts' understanding of such 

parameters as fuzzy numerical data that can be represented by fuzzy sets theory. A multilevel 

decision problem in which the parameters are described by fuzzy values, often characterized by 

fuzzy numbers, is called a fuzzy multilevel decision problem [170, 175]. 

For the sake of simplicity, this section presents a general fuzzy linear bi-level decision problem 

based on Definition 3, described as Definition 9. 

Definition 9 [169, 175] For pRXx  ,
qRYy  , and )(:, RFRRfF qp  , a general 
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fuzzy linear bi-level decision problem can be written as follows: 

ydxcyxF
Xx

11

~~),(min 


                   (1st level)                            (7a) 

s.t. 111

~~~
byBxA  ,                                                          (7b) 

    where, for each x given by the 1st level, y solves 

ydxcyxf
Yy

22

~~),(min 


                (2nd level)                           (7c) 

s.t. 222

~~~
byBxA  ,                                                      (7d) 

where )(~,~
21 RFcc p , )(

~
,

~
21 RFdd q , )(

~
1 RFb m , )(

~
2 RFb n , )(

~
1 RFA pm , )(

~
1 RFB qm , 

)(
~

2 RFA pn , )(
~

2 RFB qn , F(R) is the set of all finite fuzzy numbers. 

Like multilevel decision-making under certainty, the majority of the research on fuzzy 

multilevel decision-making has focused on bi-level versions that have motivated numerous solution 

approaches [175]. Zhang and Lu [169] proposed a general fuzzy linear bi-level decision problem 

and developed an approximation Kuhn-Tucker approach to solve this problem. They also presented 

an approximation Kth-Best algorithm to solve the fuzzy linear bi-level decision problem [170]. Gao, 

et al. [65] proposed a programmable λ-cut approximation algorithm to solve a λ-cut set based fuzzy 

goal bi-level decision problem. Budnitzki [26] used the selection function approach and a modified 

version of the Kth-Best algorithm to solve a fuzzy linear bi-level decision problem. Sakawa, et al. 

[129] proposed an interactive fuzzy programming approach to find a satisfactory solution to a fuzzy 

linear bi-level decision problem. Pramanik [118] adopted a fuzzy goal programming approach to 

solve fuzzy linear bi-level decision problems. 

Fuzzy bi-level decision-making with multiple optima has attracted numerous studies. Zhang, et 

al. [172] developed an approximation branch-and-bound algorithm to solve a fuzzy linear BLMO 

decision problem. Gao, et al. [67] proposed a λ-cut and goal-programming-based algorithm to solve 

fuzzy linear BLMO decision problems. Gao, et al. [64] focused on the fuzzy linear bi-level decision 

problem with multiple followers who share the common constraints and developed a PSO algorithm 

to solve the problem. Gao and Liu [62] integrated fuzzy simulation, neural network and genetic 

algorithm to produce a hybrid intelligent algorithm for solving a fuzzy nonlinear bi-level decision 

problem with multiple followers. Zhang, et al. [173] proposed a set of fuzzy linear bi-level 

multi-objective multi-follower (BLMOMF) decision models and developed an extended 

branch-and-bound algorithm to solve such problems. Zhang and Lu [171] developed an 
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approximation Kth-Best algorithm to solve fuzzy linear BLMOMF decision problems with a 

cooperative relationship among multiple followers. Zhang, et al. [174] developed an approximation 

branch-and-bound algorithm to solve a fuzzy linear BLMOMF decision problem with a partial 

cooperative relationship among multiple followers.  

In terms of the discussion about fuzzy tri-level and multilevel decision-making, Sakawa, et al. 

[129] extended their bi-level interactive fuzzy programming approach to solve fuzzy linear 

multilevel decision problems. They also extended the fuzzy approach to solve fuzzy linear 

multilevel fractional decision problems [130], fuzzy multilevel 0-1 decision problems [127] and 

fuzzy multilevel nonconvex decision problems [125]. Based on interactive fuzzy programming 

approaches, Osman, et al. [116] studied a fuzzy nonlinear tri-level decision problem with multiple 

objectives. 

In general, these above solution approaches can be used to solve a range of fuzzy multilevel 

decision problems. However, these solution approaches are limited to handling special fuzzy 

numbers, e.g. triangular fuzzy numbers, or solving fuzzy decision problems in the linear version. In 

particular, these interactive fuzzy approaches can only solve fuzzy multilevel decision problems in 

which decision entities from different levels share the same constraint conditions and prefer to 

cooperate with one another. Under this special situation, the solution approaches aim to find 

satisfactory solutions rather than optimal solutions to fuzzy multilevel decision problems. 

Consequently, it is necessary to develop solution algorithms for solving much more general fuzzy 

multilevel decision problems. 

5. Applications of multilevel decision-making techniques 

Multilevel decision-making techniques have been widely applied to handle decentralized 

decision problems in the real world, in particular in the last five years. These applications largely 

fall into the following four areas: (1) supply chain management; (2) traffic and transportation 

network design; (3) energy management; and (4) safety and accident management. 

5.1. Supply chain management 

Supply chain management (SCM) requires decentralized decisions to be made at several stages 

in a complex hierarchical system which includes the location of business firms, the acquisition of 

raw materials, production planning and operations, inventory control, and the delivery and pricing 

of commodities. It is increasingly important to develop an efficient and easily-applicable 
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decision-making methodology to handle conflict coordination and the decentralized nature of SCM 

[97, 131]. In recognition of this, multilevel decision-making techniques have been applied to deal 

with many of the decentralized decision-making problems found in SCM. 

Multilevel decision-making techniques in SCM have largely been applied to deal with the 

competitive location of facilities, production planning and operations, commodities distribution and 

pricing. With respect to the competitive location of facilities in SCM, Plastria and Vanhaverbeke 

[117] used discrete bi-level programs to adapt the competitive location model based on maximal 

covering to include the knowledge that a competitor will eventually enter the market with a single 

new facility. Küçükaydin, et al. [86] studied a problem in which a firm or franchise enters a market 

by locating new facilities near existing facilities belonging to a competitor and formulated the 

problem as a mixed-integer nonlinear bi-level decision model in which the firm entering the market 

is the leader and the competitor is the follower. Rider, et al. [123] presented a discrete bi-level 

decision model for determining optimal location and contract pricing of distributed generation in 

radial distribution systems where the upper-level optimization determines the allocation and 

contract prices of the distributed generation units, whereas the lower-level optimization models the 

reaction of the distribution company. Gang, et al. [61] proposed a bi-level multi-objective 

optimization model for a stone industrial park location problem with a hierarchical structure 

consisting of a local government and several stone enterprises in a random environment. The 

problem was solved using a bi-level interactive method based on a satisfactory solution and 

adaptive chaotic PSO. 

For decentralized production planning and operations, Lukač, et al. [104] designed a mixed 0-1 

integer bi-level decision model for a production planning problem with sequence dependent setups, 

in which the objective of the leader is to assign the products to the machines in order to minimize 

the total sequence dependent setup time, while the objective of the follower is to minimize the 

production, storage and setup cost of the machine. They developed a heuristic algorithm based on 

tabu search to solve the problem. Calvete, et al. [32] proposed a discrete bi-level program to model 

a hierarchical production-distribution planning problem in which two decision makers respectively 

controlling the production process and the distribution process do not cooperate because of different 

optimization strategies. An ant colony optimization approach was developed to solve the bi-level 

model. Kasemset and Kachitvichyanukul [90] presented a bi-level multi-objective mathematical 

model for a TOC (theory of constraints)-based job-shop scheduling problem and developed a PSO 

http://articles.lib.uts.edu.au/#search?record_id=inderscience10.1504%2FIJOR.2012.046343&page=1
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algorithm to solve the problem. 

In terms of using multilevel decision-making techniques to handle commodities distribution and 

pricing problems in SCM, Gao, et al. [66] established two nonlinear bi-level pricing models for 

pricing problems between the vendor and the buyer, designated as the leader and the follower 

respectively, in a two-echelon supply chain. They developed a PSO-based algorithm to solve 

problems defined by these bi-level pricing models. Kuo and Han [93] applied linear bi-level 

programming to model a supply chain distribution problem and developed an efficient method 

based on a hybrid of the genetic algorithm and PSO algorithm to solve the resulting decision model. 

Kis and Kovács [91] presented a discrete bi-level decision model to handle an extension of the 

classical uncapacitated lot-sizing problem with backlogs, in which two autonomous and 

self-interested decision makers constitute a two-echelon supply chain. Qiu and Huang [120] 

presented a nonlinear bi-level decision model and an enumerative algorithm to describe and solve a 

SCM problem in which a supply hub in an industrial park and manufacturers interact to make their 

decisions on pricing, replenishment and delivery. Calvete, et al. [31] addressed a mixed integer 

bi-level optimization model for the planning of a decentralized distribution network consisting of 

manufacturing plants, depots and customers, and a metaheuristic approach based on evolutionary 

algorithms was developed to solve the optimization model. Ma, et al. [108] considered a 

two-echelon supply chain system with one manufacturer and one retailer, in which the manufacturer 

first purchases raw materials from the supplier; following production and processing by the 

manufacturer, the end products are sold to the retailer. By switching the leader and follower roles 

between the manufacturer and the retailer, the authors established two nonlinear bi-level decision 

models for joint pricing and lot-sizing and developed a PSO algorithm to solve the resulting 

models. 

A number of researchers have applied multilevel decision-making techniques to handle product 

design, raw materials supply and inventory control problems in SCM. Yang, et al. [167] formulated 

a mixed 0-1 nonlinear bi-level decision model for the joint optimization of product family 

configuration and scaling design, in which a bi-level decision structure reveals coupled decision 

making between module configuration and parameter scaling. Based on a conditional value-at-risk 

(CVaR) measure of risk management, Xu, et al. [166] proposed a tri-level decision model for the 

three-echelon SCM in which the material supplier and the manufacturer maximize their own profit 

while the retailer maximizes its CVaR of the expected profit. The authors showed that the proposed 
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tri-level decision model can be transformed into a bi-level decision model that can be solved by 

existing methods. Han, et al. [75] applied a linear TLMF decision model to describe a decentralized 

inventory control problem of a three-echelon hierarchical supply chain network composed of a sales 

company, two logistics centers and two manufacturing factories attached to each logistics center. 

They developed a TLMF Kth-Best algorithm to find an optimal solution to the resulting model. 

5.2. Traffic and transportation network design 

Severe traffic and transportation delays are incurred in most road networks as a result of 

continuously growing travel demand, increasing traffic congestion, transportation allocation 

problems between supply and demand nodes, and optimal transportation route problems. The rapid 

growth of overload in traffic and transportation networks has motivated decision makers to apply 

multilevel decision-making techniques to cope with the related decision-making and optimization 

problems in decentralized situations. 

Extensive research on the basis of multilevel decision-making has been devoted to road network 

design problems as a result of insufficient provision of link capacity for travel demand surges. Cao, 

et al. [36] used a discrete bi-level decision model to describe the relationship of the benefit-cost of 

the traffic flow guidance system (TFGS) and the equilibrium of users, and presented an arithmetic 

based on sensitivity analysis. In a system which allows buses of different sizes to be assigned to 

public transport routes, dell’Olio, et al. [43] addressed a discrete bi-level optimization model with 

constraints on bus capacity to size buses and set frequencies on each route in an attempt to optimize 

the headways on each route in accordance with observed levels of demand. Ukkusuri, et al. [153] 

formulated a combined dynamic user equilibrium and traffic signal control problem as a discrete 

bi-level optimization model and solved the problem using a solution technique based on the 

iterative optimization and assignment method. Wang, et al. [158] addressed a discrete network 

design problem with multiple capacity levels which determines the optimal number of lanes to add 

to each candidate link in a road network. They formulated the problem as a bi-level decision model, 

where the upper level aims to minimize the total travel time by adding new lanes to candidate links 

and the lower level is a traditional Wardrop user equilibrium (UE) problem. Han, et al. [79] 

proposed a nonlinear bi-level decision model for traffic network signal control, which was 

formulated as a dynamic Stackelberg game and solved as a mathematical program with equilibrium 

constraints. Angulo, et al. [7] proposed a nonlinear bi-level decision model for the expansion of a 
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highway network by adding several highway corridors within a geographical region, in which the 

upper level problem determines the location of the highway corridors by taking into account 

budgetary and technological restrictions, while the lower level problem models user behavior in the 

located transport network (choice of route and transport system). Fontaine and Minner [59] 

designed a linear bi-level decision model for the discrete network design problem which adds arcs 

to an existing road network at the leader stage and anticipates traffic equilibrium for the follower 

stage. They proposed a new fast solution method for the resulting model with binary leader and 

continuous follower variables under the assumption of partial cooperation. 

In regard to solving transportation planning and scheduling, origin-destination allocation and 

routing optimization problems, Chiou [37] proposed a nonlinear bi-level decision model for a 

logistics network design problem with system-optimized flows and developed a novel solution 

algorithm to efficiently solve the problem. Ge, et al. [69] established a discrete bi-level decision 

model to analyze an integrated inventory-transportation optimization problem and adopted a 

layer-iterative algorithm to solve the resulting model. Liu, et al. [99] presented a novel real-time 

path planning approach for unmanned aerial vehicles, in which the planning problem is described as 

a nonlinear bi-level decision model. In particular, a discretization solution algorithm embedded with 

five heuristic optimization strategies was designed to speed up the planning. Konur and Golias [92] 

studied the scheduling of inbound trucks at the inbound doors of a cross-dock facility under truck 

arrival time uncertainty and formulated this problem as a pessimistic and optimistic discrete bi-level 

decision problem respectively. They developed a genetic algorithm to solve the bi-level 

formulations of the pessimistic and the optimistic approaches. Hajibabai, et al. [73] studied an 

integrated facility location problem that simultaneously considers traffic routing under congestion 

and pavement rehabilitation under deterioration and formulated this problem as a nonlinear 

mixed-integer bi-level program with facility location, freight shipment routing and pavement 

rehabilitation decisions in the upper level and traffic equilibrium in the lower level. 

Researchers have also applied multilevel decision-making techniques to handle traffic and 

transportation problems under uncertainty. For example, Chiou [38] developed a bi-level decision 

support system for a normative road network design with uncertain travel demand in order to 

simultaneously reduce travel delay to road users and mitigate the vulnerability of the road network. 

Xu and Gang [164] investigated a transportation scheduling problem in a large-scale construction 

project under a fuzzy random environment and formulated this problem as a fuzzy and random 
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bi-level multi-objective optimization model which was solved by a PSO algorithm. Shao, et al. [133] 

proposed a nonlinear bi-level optimization model to estimate the variation in peak hour 

origin-destination traffic demand from day-to-day hourly traffic counts throughout the whole year. 

A heuristic iterative estimation-assignment algorithm for solving the bi-level optimization problem 

was proposed. 

5.3. Energy management 

Growing environmental concerns have motivated worldwide attention to energy management. 

Multilevel decision-making techniques have been applied to handle many energy management 

problems, such as energy transmission and marketing, reducing pollution and promoting cleaner 

production. 

In relation to the transmission and marketing of natural gas, Dempe, et al. [47] presented a 

mathematical framework for the problem of minimizing the cash-out penalties of a natural gas 

shipper and modeled the problem as a mixed-integer bi-level decision problem having one Boolean 

variable in the lower level problem, in which the decision making process for the shipper (leader) is 

to determine how to carry out its daily imbalances to minimize the penalty that will be imposed by 

the pipeline (follower). For the sake of justifying the daily imbalance swings made by the gas 

shipper as result of variations in the selling price of gas, Kalashnikov, et al. [88] extended the model 

presented by Dempe, et al. [47] to another bi-level optimization model, in which the upper level 

objective function includes additional terms that account for the gas shipping company’s daily 

actions with the aim of taking advantage of the price variations. Dempe, et al. [48] also adopted a 

linear bi-level decision model to describe a natural gas cash-out problem between a natural gas 

shipping company and a pipeline operator and a penalty function method was developed to solve 

the model. 

To handle marketing problems in electricity markets, Zhang, et al. [177] built a nonlinear 

bi-level optimization model for a strategic bidding problem in competitive day-ahead electricity 

markets and developed a PSO algorithm for solving the resulting model. Also, Zhang, et al. [178] 

presented a general nonlinear bi-level multi-leader one-follower decision model for strategic 

bidding optimization in day-ahead electricity markets. The resulting model allows each generating 

company to choose its biddings to maximize its individual profit; while a market operator can find 

its minimized purchase electricity fare, which is determined by the output power of each unit and 
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the uniform marginal prices. The authors then developed a PSO algorithm to solve the problem. 

Garcés, et al. [68] presented a bi-level multi-follower decision model for electricity transmission 

expansion planning within a market environment. The upper-level problem represents the decisions 

to be made by the transmission planner with the target of deciding transmission investments while 

maximizing average social welfare and minimizing investment cost. The lower-level problems 

represent a market clearing for each market scenario and consider known investment decisions. 

Using duality theory, the proposed bi-level model was recast as a mixed-integer linear programming 

problem, which was solvable by branch-and-cut solvers. Fernandez-Blanco, et al. [58] discussed an 

alternative day-ahead auction based on consumer payment minimization for pool-based electricity 

markets and solved this problem by discrete bi-level optimization. In the upper-level optimization, 

generation is scheduled with the goal of minimizing the total consumer payment while taking into 

account the fact that locational marginal prices are determined by a multiperiod optimal power flow 

in the lower level. Hesamzadeh and Yazdani [83] proposed a mixed-integer linear bi-level 

multi-follower decision model for transmission planning in an environment where there is imperfect 

competition in the electricity supply industry, and the problem was solved using Kuhn-Tucker 

optimality conditions and a binary mapping approach. Street, et al. [148] developed a tri-level 

decision model for energy reserve scheduling in electricity markets with transmission flow limits 

and found a solution using a Benders decomposition approach. Fernandez-Blanco, et al. [57] 

presented a nonlinear mixed-integer bi-level decision-making formulation for alternative 

market-clearing procedures in restructured power systems that are dependent on market-clearing 

prices rather than on offers. Taha, et al. [149] presented a nonlinear bi-level optimization 

formulation for Quasi-Feed-In-Tariff (QFIT) policy which integrates the physical characteristics of 

the power-grid, in which the upper-level problem corresponds to the policy makers, whereas the 

lower-level decisions are made by generation companies. 

Multilevel decision-making techniques have been also applied to handle water exchange 

problems in relation to the consumption of water resources and the generation of waste. Aviso, et al. 

[13] developed a fuzzy bi-level optimization model to explore the effect of charging fees for the 

purchase of freshwater and the treatment of wastewater in optimizing the water exchange network 

of plants in an eco-industrial park (EIP). Tan, et al. [150] extended the optimization model 

developed by Aviso, et al. [13] to a fuzzy bi-level decision model by modifying the role of the EIP 

authority to include water regeneration and redistribution via a centralized hub and found a 
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reasonable compromise between the EIP authority's desire to minimize fresh water usage, and the 

participating companies' desire to minimize costs. Skulovich, et al. [146] presented a discrete 

bi-level optimization approach for the placement and sizing of closed surge tanks in the water 

distribution system subjected to transient events. Based on the optimization of comprehensive social, 

economic, agricultural, environment and groundwater preservation benefits, Guo, et al. [72] 

presented a bi-level multi-objective optimization model that allocates water resources rationally 

between all sectors and prevents over-exploitation. 

5.4. Safety and accident management 

Safety and accident management has increasingly attracted concern in relation to man-made 

disasters such as terrorist attacks and hazmat leakage, and natural disasters such as hurricanes and 

earthquakes. Multilevel decision-making techniques have been widely applied to assist authorities 

in making decisions associated with safety and accident management, e.g. electric power network 

defense, hazmat transportation, pollution abatement and emergency evacuation. 

From the aspect of the prevention and defense of man-made and natural disaster, Yao, et al. 

[168] built a tri-level optimization model for resource allocation in electric power network defense 

which identifies the most critical network components to defend against possible terrorist attacks, 

and a decomposition approach was proposed to find an optimal solution to the resulting model. 

Alguacil, et al. [2] applied a tri-level decision model to describe an electric grid defense planning 

problem and solved it using a novel two-stage solution approach. Erkut and Gzara [54] proposed a 

discrete bi-level decision model for the problem of network design for hazardous material 

transportation where the government designates a network and the carriers choose the routes on the 

network. The authors developed a heuristic solution method that always finds a stable solution. 

Bianco, et al. [24] proposed a linear bi-level decision model for a hazmat transportation network 

design problem which was then transformed into a single-level mixed integer linear program by 

Kuhn-Tucker conditions for finding an optimal solution. Scaparra and Church [132] developed a 

mixed-integer bi-level program for critical infrastructure protection planning in which the 

upper-level problem involves the decisions about which facilities to fortify to minimize the 

worst-case efficiency reduction due to the loss of unprotected facilities, whereas worst-case 

scenario losses are modeled in the lower-level interdiction problem. He, et al. [80] presented two 

mixed integer bi-level decision-making models for integrated municipal solid waste management 
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and greenhouse gas emissions control. Shih, et al. [140] applied nonlinear bi-level programming to 

determine a subsidy rate for Taiwan's domestic glass recycling industry. Hajinassiry, et al. [74] 

presented a new adaptive discrete bi-level optimization approach to solve a short-term hydrothermal 

coordination problem with AC (alternating current) network constraints. 

To achieve emergency evacuation and provide rapid aid after a catastrophic disaster, Lv, et al. 

[105] proposed a bi-level optimization model to reduce traffic congestion of the transportation 

network while evacuating people to safe shelters during disasters or special events, in which the 

upper level aims to minimize the total evacuation time, while the lower level functions on the basis 

of user equilibrium assignment. A solution method based on discrete PSO and the Frank-Wolfe 

algorithm was employed to solve the bi-level optimization problem. Camacho-Vallejo, et al. [34] 

proposed a linear bi-level decision model for humanitarian logistics to optimize decisions related to 

the distribution of international aid after a catastrophic disaster. Apivatanagul, et al. [9] introduced 

nonlinear bi-level optimization for risk-based regional hurricane evacuation planning where the 

upper level develops an evacuation plan to minimize both risk and travel time while the lower level 

is a dynamic user equilibrium traffic assignment model. Ren, et al. [122] proposed a bi-level 

bi-objective decision model based on the concept of robust optimization for determining flows on 

emergency evacuation routes and traffic signals at intersections in the presence of uncertain 

background travel demands. A non-dominated sorting genetic algorithm was employed to determine 

the Pareto solutions of this optimization problem. 

6. Comprehensive analysis and prospective research topics 

In this survey, we have reviewed 179 papers and reported the new developments in multilevel 

decision-making techniques involving bi-level decision-making, tri-level decision-making, fuzzy 

multilevel decision-making, and their applications in handling real-world cases. These papers 

demonstrate the following features. 

First, a large number of solution approaches involving exact algorithms and heuristic algorithms 

have been developed to solve different categories of multilevel decision problems. Detailed 

comparisons for the existing algorithms in relation to each category of multilevel decision problems 

are reported in Tables 1-7, which present advantages and disadvantages of the existing algorithms. 

It can be found that intelligence-based heuristic algorithms have been extensively used to solve 

various multilevel decision-making formulations in recent years especially for large-scale problems. 
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In addition, researchers have proposed several new methods of constructing the set of usable 

multilevel decision-making test problems, which can be employed to illustrate the effectiveness of 

the proposed heuristic algorithms. 

Second, motivated by the constant complexity of decision-making situations, an increasing 

number of papers are devoted to advanced multilevel decision-making techniques that involve 

bi-level decision-making with multiple optima, tri-level decision-making, and fuzzy multilevel 

decision-making. A range of decision models and effective solution algorithms have been 

developed to handle these complex situations. 

Third, multilevel decision-making techniques have been widely applied to handle real-world 

problems. The application domains and multilevel decision-making techniques used in applications 

are summarized in Table 8, which shows the number of each category of multilevel 

decision-making techniques applied in each domain. Although the majority of these application 

papers use basic bi-level decision-making techniques, advanced multilevel decision-making 

techniques have been increasingly applied in recent years since many real-world cases occur in 

highly complex decision situations, e.g. where multiple followers are involved and there is 

uncertainty in data. Moreover, the number of papers in respect of applications (47 papers) has 

experienced a faster upward trend than the number of theoretical research papers (36 papers) since 

2010. 

Although multilevel decision-making techniques have been the subject of great developments, 

several challenges still require further research. 

First, computational complexity is a crucial issue in solving multilevel decision problems. 

Although many solution algorithms have been developed, it is necessary and urgent to develop 

much more efficient algorithms for solving advanced multilevel decision problems, in particular in 

large-scale versions. Moreover, many multilevel decision problems in applications may have no 

optimal solutions based on existing solution concepts. How to find an usable or satisfactory solution 

to those real-world multilevel decision problems is also an emerging research topic with respect to 

computational complexity. 

Second, multilevel decision problems nowadays often appear in highly complex and diversified 

decision environments where decision makers sometimes need to make an optimal or a wise 

decision from big data with uncertainty; thus, advanced multilevel decision-making techniques need 

to be explored in depth. This also requires further research on how to wisely model such problems 
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and implement data-driven decision-making in the current age of big data by means of a multilevel 

decision support system. 

Lastly, many multilevel decision problems in the real world cannot be modeled as mathematical 

programming formulations. Consequently, it is another challenge to break through mathematical 

programs and integrate the principle of multilevel decision-making with other decision-making 

techniques to handle a much wider range of decision problems. 

Two important features of the paper clearly distinguish it from other survey papers in the area of 

multilevel decision-making. On the one hand, in contrast to other survey papers that only review 

early research on basic bi-level programming, this survey targets the latest multilevel 

decision-making techniques and their comprehensive development, in particular new developments 

in bi-level decision-making with multiple optima, tri-level decision-making, and fuzzy multilevel 

decision-making. On the other hand, it systematically examines the real-world application 

developments of multilevel decision-making techniques and clusters the applications into four 

major domains. We believe that this paper provides researchers and practitioners with 

state-of-the-art knowledge on the development of multilevel decision-making techniques and gives 

guidelines about how to apply multilevel decision-making techniques to deal with various decision 

activities in different domains. 
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Table 1 Summary of algorithms developed for solving linear bi-level decision problems 

Algorithm Type Algorithm name Reference Period Advantage Disadvantage 

Exact algorithm Vertex enumeration 

Branch-and-bound 

Complementary pivot 

Penalty function 

Disjunctive cuts 

[23, 35, 135, 152] 

[18, 19, 60, 136] 

[23, 85, 115] 

[6, 163] 

[11] 

1982-2005 

1981-2006 

1984-1993 

1990-1993 

2007 

Can find an optimal solution if it exists. Time-consuming for solving large-scale problems. 

Exact algorithm Branch-and-cut [12] 2007 Outperforms the branch-and-bound algorithm in 

terms of computing times. 

Time-consuming for solving large-scale problems. 

Exact algorithm Simplex pivots [71] 2009 More effective than the branch-and-bound algorithm 

when the number of leader variables is small. 

Time-consuming for solving large-scale problems. 

Exact algorithm Ranking extreme points 

Cutting plane 

[30] 

[121] 

2012 

2014 

Can solve problems with interval coefficients in 

objective functions. 

Time-consuming for solving large-scale problems. 

Heuristic algorithm Tabu search 

Genetic algorithm 

[70] 

[33, 82] 

1996 

2002,2008 

Is applied to solve large-scale problems. May be convergent to a local solution; 

Are limited to solving linear problems that all 

decision entities share the same constraint conditions. 

Heuristic algorithm Neural network and Tabu search 

PSO 

[96] 

[94] 

2007 

2009 

Can find a solution. May be convergent to a local solution; 

Are limited to solving linear problems that all 

decision entities share the same constraint conditions;  

Are not applied to solve large-scale problems. 

Heuristic algorithm Neural network [84] 2010 Can find a solution. May be convergent to a local solution; 

Is not applied to solve large-scale problems. 
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Table 2 Summary of algorithms developed for solving nonlinear bi-level decision problems 

Algorithm type Algorithm name Reference  Period Advantage Disadvantage 

Exact algorithm Branch-and-bound 

Decent method 

Monotonic optimization 

Direct search 

[1, 14, 51] 

[154] 

[151] 

[109] 

1988-1992 

1994 

2007 

2011 

Can find an optimal solution if it exists. Time-consuming for solving large-scale problems; 

Cannot solve problems in which the lower-level 

problem is nonconvex programming. 

Exact algorithm Bounding algorithm [111] 2008 Can solve problems involving nonconvex objective 

functions in both decision levels. 

Time-consuming for solving large-scale problems. 

Heuristic algorithm Evolutionary algorithm 

PSO and chaos search 

Neural network 

[159] 

[157] 

[81, 106, 107] 

2005 

2013 

2008-2014 

Can find a solution. May be convergent to a local solution; 

Is not applied to solve large-scale problems; 

Cannot solve problems in which the lower-level 

problem is nonconvex programming. 

Heuristic algorithm Estimation of distribution algorithm [156] 2014 Can find a solution; 

Is applied to solve large-scale problems. 

May be convergent to a local solution; 

Cannot solve problems in which the lower-level 

problem is nonconvex programming. 
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Table 3 Summary of algorithms developed for solving discrete bi-level decision problems 

Algorithm type Algorithm name Reference Period Advantage Disadvantage 

Exact algorithm Branch-and-bound 

Penalty function 

Parametric programming 

[20, 112, 161] 

[155] 

[55, 87] 

1990-1992 

1996 

2007, 2010 

Can solve discrete linear problems. Time-consuming for solving large-scale problems; 

Cannot solve discrete nonlinear problems. 

Exact algorithm Branch-and-bound [50] 1992 Can solve discrete nonlinear problems involving 

convex objective functions in both decision levels. 

Time-consuming for solving large-scale problems. 

Exact algorithm Multiparametric programming 

Bounding algorithm 

[49] 

[110] 

2010 

2010 

Can solve discrete nonlinear problems. Time-consuming for solving large-scale problems. 

Exact algorithm The algorithm AlgBMILP [165] 2014 Can solve discrete linear problems; 

Is applied to solve large-scale problems. 

Cannot solve discrete nonlinear problems. 

Exact algorithm Iterative algorithm [134] 2014 Can solve discrete linear problems in which the 

objective function of the first level is linear fractional. 

Cannot solve discrete nonlinear problems; 

Time-consuming for solving large-scale problems. 

Heuristic algorithm Simple tabu search [160] 1996 Can find a solution to discrete linear problems. May be convergent to a local solution; 

Is not applied to solve discrete nonlinear and 

large-scale problems. 

Heuristic algorithm Genetic algorithm [114] 2005 Can find a solution to discrete linear problems; 

Is applied to solve large-scale problems. 

May be convergent to a local solution; 

Is not applied to solve discrete nonlinear problems. 
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Table 4 Summary of algorithms developed for solving bi-level multi-objective decision problems 

Algorithm type Algorithm name Reference Period Advantage Disadvantage 

Exact algorithm Exact penalty method [8] 2009 Can solve linear bi-level decision problems where the 

lower level is a multi-objective optimization problem. 

Is not applied to solve nonlinear and large-scale problems. 

Exact algorithm Weighted sum 

scalarization methods and 

scalarization methods 

[28] 2010 Can solve linear bi-level decision problems where the 

upper level is a multi-objective optimization problem. 

Is not applied to solve nonlinear and large-scale problems. 

Exact algorithm Interactive approach [53] 2013 Can solve integer fractional BLMO problems. Is not applied to solve nonlinear and large-scale problems. 

Exact algorithm Iterative method using 

sensitivity theorems 

[52] 2010 Can solve nonlinear nonconvex BLMO problems Is not applied to solve nonlinear and large-scale problems. 

Heuristic algorithm PSO [3] 2014 Can solve linear bi-level decision problems where the 

upper level is a multi-objective optimization problem; 

Is applied to solve large-scale problems. 

May be convergent to a local solution. 

Heuristic algorithm Genetic algorithm [29] 2011 Can solve linear bi-level decision problems where the 

lower level is a multi-objective optimization problem; 

Is applied to solve large-scale problems. 

May be convergent to a local solution. 

Heuristic algorithm PSO 

Evolutionary-cum-local-search 

[179] 

[42] 

2013  

2010 

Can solve nonlinear BLMO decision problems; 

Is applied to solve large-scale problems. 

May be convergent to a local solution. 
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Table 5 Summary of algorithms developed for solving bi-level multi-leader and/or multi-follower decision problems 

Algorithm type Algorithm name Reference Period Advantage Disadvantage 

Exact algorithm Kth-Best  

Kuhn-Tucker 

Branch-and-bound 

[137, 138] 

[102] 

[100] 

2005, 2007 

2007 

2007 

Can solve linear BLMF decision problems with different 

relationships between multiple followers. 

Is not applied to solve nonlinear and large-scale 

problems. 

Heuristic algorithm PSO [63] 2010 Can solve linear and nonlinear BLML, BLMF and 

BLMLMF decision problems; 

Is implemented into a decision support system (software). 

May be convergent to a local solution; 

Is not applied to solve large-scale problems. 

 Evolutionary algorithm [142] 2014 Can solve BLMLMF decision problems with nonlinear and 

discrete variables; 

Is applied to solve large-scale problems. 

May be convergent to a local solution. 

 

Table 6 Summary of algorithms developed for solving tri-level decision problems 

Algorithm type Algorithm name Reference Period Advantage Disadvantage 

Exact algorithm Cutting plane 

Penalty function 

Kuhn-Tucker 

Multiparametric programming 

[15] 

[162] 

[4, 143] 

[56] 

1984 

1997 

1988, 2001 

2007 

Can find a solution to linear problems. May find a local solution rather than an optimal 

solution; 

Cannot solve nonlinear problems; 

Is not applied to solve large-scale problems. 

Exact algorithm Kth-Best [176] 2010 Can find an optimal solution to linear problems; 

Is implemented into a decision support system 

(software). 

Cannot solve nonlinear problems; 

Is not applied to solve large-scale problems. 

Fuzzy approach Interactive fuzzy programming 

Fuzzy goal programming 

[95, 128, 139, 144, 145] 

[10, 119] 

1996-2003 

2007, 2009 

Can find a solution to linear problems. Are limited to solve problems where all decision 

entities prefer to cooperate with one another; 

May find a satisfactory solution rather than an 

optimal solution; 

Are not applied to solve large-scale problems. 

Heuristic algorithm PSO [77] 2015 Can find a solution to linear and nonlinear problems; 

Can find better solutions than fuzzy approaches. 

May be convergent to a local solution; 

Is not applied to solve large-scale problems. 
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Table 7 Summary of algorithms developed for solving fuzzy multilevel decision problems 

Algorithm type Algorithm name Reference Period Advantage Disadvantage 

Approximation  

approach 

Approximation Kuhn-Tucker [169] 2005 Can solve fuzzy linear bi-level decision problems. Are limited to handling special membership 

functions; 

Are not applied to solve nonlinear and 

large-scale problems. 

 Approximation Kth-Best [26, 170, 171] 2007-2013 Can solve fuzzy linear bi-level decision problems 

and fuzzy linear BLMOMF decision problems. 

 Approximation branch-and-bound [172-174] 2007-2008 Can solve fuzzy linear BLMO decision problems 

and fuzzy linear BLMOMF decision problems. 

 Programmable λ-cut approximation [65, 67] 2008, 2010 Can solve fuzzy linear bi-level decision problems 

and fuzzy linear BLMO decision problems; 

Is implemented into a decision support system 

(software). 

Fuzzy approach Interactive fuzzy programming [116, 125, 

127, 129, 130] 

2000-2004 Can solve fuzzy linear bi-level decision problems, 

fuzzy linear multilevel fractional decision 

problems, fuzzy multilevel 0-1 decision problems, 

fuzzy multilevel nonconvex decision problems and 

fuzzy nonlinear tri-level decision problems with 

multiple objectives. 

Are limited to solve problems where all decision 

entities prefer to cooperate with one another; 

May find a satisfactory solution rather than an 

optimal solution; 

Are not applied to solve large-scale problems. 

 Fuzzy goal programming [118] 2014 Can solve fuzzy linear bi-level decision problems. 

Heuristic algorithm PSO [64] 2009 Can solve fuzzy linear BLMF decision problems. May be convergent to a local solution; 

Is not applied to solve nonlinear and large-scale 

problems. 

Heuristic algorithm Neural network and genetic algorithm [62] 2005 Can solve fuzzy nonlinear BLMF decision 

problems. 

May be convergent to a local solution; 

Is not applied to solve large-scale problems. 
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Table 8 Summary of multilevel decision-making techniques in each application domain 

 Decision-making techniques 

Application domains Linear bi-level Nonlinear bi-level Discrete bi-level BLMO BLML/BLMF Tri-level Fuzzy multilevel No. of listed references 

Supply chain management 1 3 8 2  2  16 

Traffic and transportation network design 1 5 7    2 15 

Energy management 1 2 6 1 2 1 2 15 

Safety and accident management 2 2 5 1  2  12 

Total 5 12 26 4 2 5 4 58 
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