“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”



Infinite Author Topic Model based on Mixed
Gamma-Negative Binomial Process

Junyu Xuan*?, Jie Luf, Guangquan Zhang*, Richard Yi Da Xu' and Xiangfeng Luo*
*the Centre for Quantum Computation & Intelligent Systems (QCIS), School of Software,

Faculty of Engineering and Information Technology (FEIT), University of Technology Sydney (UTS), Australia
TFaculty of Engineering and Information Technology (FEIT), University of Technology Sydney (UTS), Australia
fSchool of Computer Engineering and Science, Shanghai University, China
Email: Junyu.Xuan@student.uts.edu.au; {Jie.Lu, Guangquan.Zhang, Yida.Xu} @uts.edu.au;Luoxf@shu.edu.cn

Abstract—Incorporating the side information of text corpus,
i.e., authors, time stamps, and emotional tags, into the traditional
text mining models has gained significant interests in the area of
information retrieval, statistical natural language processing, and
machine learning. One branch of these works is the so-called
Author Topic Model (ATM), which incorporates the authors’s
interests as side information into the classical topic model. How-
ever, the existing ATM needs to predefine the number of topics,
which is difficult and inappropriate in many real-world settings.
In this paper, we propose an Infinite Author Topic (IAT) model
to resolve this issue. Instead of assigning a discrete probability on
fixed number of topics, we use a stochastic process to determine
the number of topics from the data itself. To be specific, we
extend a gamma-negative binomial process to three levels in order
to capture the author-document-keyword hierarchical structure.
Furthermore, each document is assigned a mixed gamma process
that accounts for the multi-author’s contribution towards this
document. An efficient Gibbs sampling inference algorithm with
each conditional distribution being closed-form is developed for
the JAT model. Experiments on several real-world datasets show
the capabilities of our IAT model to learn the hidden topics,
authors’ interests on these topics and the number of topics
simultaneously.

Keywords—Text mining; Topic models; Bayesian nonparametric
learning

I. INTRODUCTION

Traditional text mining algorithms only model the text
corpus with two levels: document-word. Topic models are
commonly regarded as the efficient tools for the text mining
by learning the hidden topics [1]. Recently, interests have been
paid on the side information of the text corpus, which includes
the conferences of the papers [2], time stamps [3], authors
[4], [5], entities [6], emotion tags [7] and other labels [8].
The incorporation of these side information into the classical
topic models benefits a lot of real-world tasks. Among them,
Author Topic Model (ATM) [4], [5], [9] is proposed by adding
a set of variables to the original topic model aiming to indicate
and inference the interests of authors together with the hidden
topics.

The ability to jointly learn the hidden topics and authors’
interests on these topics has a variety of application scenarios.
For example, 1) an academic recommendation system can rec-
ommend authors and/or papers with similar research interests
to that of the input author; 2) detecting the most and least
surprising papers for an author [5]; 3) in an author-topic-based

paper browser, a set of papers can be ranked according to
authors and topics; 4) authors disambiguation [10].

One drawback of the existing author topic model is that
the number of hidden topics needs to be fixed in advance. This
number is normally chosen with domain knowledge. By fixing
the number of topics, ATM can then adopt Dirichlet and Multi-
nomial distributions with the pre-defined dimension. However,
limiting each document to have exactly fixed number of topics
is apparently unrealistic for many real-world applications.

In this paper, we propose an Infinite Author Topic (I-
AT) model to relax this assumption. Instead of using fixed-
dimensional distributions, stochastic processes are used: to be
specific, the gamma-negative binomial process [11] is extended
to three levels for capturing the hierarchical structure: author-
document-keyword. In this model, each document is assigned
with a gamma process to express the interest of this document
on the hidden topics instead of a vector with a fixed dimension.
This gamma process can be simply considered as an infinite
discrete distribution, and is parameterized by a base measure
(another gamma process) that denotes the interest of the author
of this document on the hidden topics. However, a document
normally has multiple authors, so we assign a document a
mixed gamma process that is based on all the gamma processes
of the authors of this document. Furthermore, introducing
mixed gamma process will lead to intricacies in terms of model
inference. Therefore, an efficient Gibbs sampling with closed-
form conditional distributions is developed for the proposed
model. Experiments on the two real-world datasets show the
capability of our model to learn both the hidden topics and the
number of topics, simultaneously.

The main contributions of this paper are,

1)  propose a new nonparametric Bayesian model to relax
the fixed topic number assumption of the traditional
author topic models;

2)  design an efficient Gibbs sampling inference algorith-
m for getting the solution of the proposed model.

The rest paper is structured as follows. Section 2 briefly
introduces the related work. Section 3 describes some prelimi-
nary knowledge. The IAT model is proposed and presented in
Section 4 with its Gibbs sampling inference algorithm. Section
5 describes the IAT model experimental results using real-
world datasets. Finally, Section 6 concludes this study with a
discussion on future directions.



II. RELATED WORK

In this section, we briefly review the related work of this
study. The first part is about the topic models, and the second
part is about nonparametric Bayesian learning.

A. Topic Models

Topic models [12] are Bayesian models with fixed-
dimensional probability distributions. They are originally de-
signed for the text mining task, which aim to discover the
hidden topics in the text corpus to assist document clustering
or classification. Due to their good extendibility and powerful
representation, they have been successfully applied to many
research areas, including analysis in image [13], video [14],
genetics [15] and music [16]. Among these extensions, author
topic models [4], [5], [9] were proposed to infer the hidden
topics and author interests. The documents are supposed to be
generated by its authors according to their interests over the
hidden topics. This model will be explained with more details
in Section 3.

ATM has attracted a lot of attentions from researchers
working in the text mining area, because it provides an elegant
way to incorporate the side (in this case, author) information
of the documents for topic learning. This model can be extend
to incorporate other side information of text corpus, such as
emotional tags [7] and conferences[2].

B. Nonparametric Bayesian Learning

Nonparametric Bayesian learning is a key approach for
learning the number of mixtures in a mixture model (also
called model selection problem). Without predefining the num-
ber of mixtures, this number is supposed to be inferred from
the data, i.e., let the data speak.

The idea of nonparametric Bayesian learning is to use the s-
tochastic processes to replace the traditional fixed-dimensional
probability distributions, such as Multinomial, Poisson, and
Dirichlet. In order to avoid the limitation associated with fixed
dimensions, Multinomial Process (MP), Poisson Process (PP)
[17] and Dirichlet Process (DP) [18] are used to replace former
distributions because of their infinite properties.

The merit of these stochastic processes is that they let the
data to determine the number of factors (in text mining task,
topics). DP is a good alternative for the models with Dirichlet
distribution as the prior. Many probabilistic models with fixed
dimensions have been extended to the infinite ones by the help
of stochastic processes: Gaussian Mixture Model (GMM) is
extended to Infinite Gaussian Mixture Model (IGMM) [19]
using DP; Hidden Markov Model is extended with infinite
number of hidden states using Hierarchial Dirichlet Process
(HDP) [20]. Although HDP can model the data with three
or more levels, it cannot be directly adopted for our author-
document-word modeling. The reason is that there is a mixing
relations between authors and documents which cannot be
modeled by HDP. Similarly, Partially Labeled Topic Models
(PLTM) [21] also cannot be adopted for our problem. Through
the posterior inference (i.e., Markov chain Monte Carlo (M-
CMC) [22]), the number of the mixtures can be inferred. Other
popular processes include beta process, gamma process, pois-
son process, multinomial process, negative binomial process

(NBP) [11], [23] have also been used in the machine learning
communities recently.

To summarize, nonparametric Bayesian learning [24] has
been successfully used to extend many finite models and
applied to many real-world applications. However, to the best
of our knowledge, there has not been any works proposed to
use NBP for author topic modelling. This paper addresses this
shortcoming by proposing a mixed gamma negative binomial
process to extend the finite author topic model to the infinite
one.

III. PRELIMINARY KNOWLEDGE

This section briefly introduces the related models and
concepts which will be used in the rest of sections.

A. Author Topic Model

The Author Topic Model [4], [5], [9] aims to learn the
hidden topics from the papers and more importantly learn the
authors’ interests on these topics. Based on the classical LDA
[12], a set of new variables are introduced to indicate the
authors’ interests. The generative procedure is as follows,

pa % Dirichlet(a)

0, idd Dirichlet(3)
ad,n ~ Unif(aq) v
Zdﬂl ~ DiSCTete(pa<i,7z)
Wan ~ Discrete(6,, )

where {p,}7_, denote the authors’ interests on the topics
and ag denotes the authors of a document. We can see
from the Eq.(1) that the ATM is constructed by the fixed-
dimensional probability distributions. One issue of this model
is that the number of topics needs to be predefined, because
the dimensions of the probability distributions need to be
predefined. However, it is very difficult and not appropriate
to predefine the topic number in many real-world scenarios.

B. Gamma Negative Binomial Process

1) Gamma Process: A gamma process GaP(c, H) [25] is
a stochastic process, where H is a base (shape) measure and
c is the concentration (scale) parameter. It also corresponds
to a complete random measure. Let I' = {(ry,0,)}72, be a
random realization of a Gamma process in the product space
Rt x ©. Then, we have

I ~ GaP(c, H)
= 2
= _7ido, @
k=1

where §(-) is an indicator function, 7, satisfies an improper
gamma distribution gamma(0,¢), and 0, ~ H. When T is
assigned to a document, we can understand 6 as a topic
parameter and 7y, is the weight of this topic in this document.
Note that the summation of {rj}>° may not be equal to one.
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Fig. 1: Gamma-Negative binomial process topic model. The
left subfigure is related to Eq. (4) and the right hand part is
related to Eq. (5).
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2) Negative Binomial Process: A negative binomial pro-
cess NBP(p,T'g) [11] is also a stochastic process param-
eterized by a base measure I'y and p. Similar with the
gamma process, a realization of negative binomial process
X = {(n&,0k)}32, is also a set of points in product space
Z7T x ©. Then, we have

X ~ NBP(p,T)
= 3
=D _mdo, ®
k=1

where {nj} are integers, so negative binomial process is nor-
mally used for the likelihood counting model [23]. Compared
with Poisson process which is also suitable for the counting
model, negative binomial process has a better variance-to-
mean ratio (VMR) and the overdispersion level [26], [11].
For the document modeling, 05 can be understood as a topic
parameter and nj can be understand the number of words in
this document assigned to this topic.

3) Gamma-Negative Binomial Process: Normally, negative
binomial process is used as the likelihood part of a Bayesian
model. Like a negative binomial distribution x ~ NB(r, p)
which has two parameters: » > 0 and p € [0, 1], there are
two kinds of priors for a negative binomial process: one is
Gamma process [11] as shown in Eq. (3); the other is the
Beta process [23]. In this paper, we use the Gamma process
prior. A gamma-negative binomial process-based topic model
is proposed in [11] as shown in Fig. 1 and it can be represented
as,

FO ~ GCLP(CQ, H)

4
Xd NNBP(pd,Fo) ( )

where pg is a real-valued parameter within [0, 1] and the base
measure of the negative binomial process I'g is a random
measure from a gamma process. Xy is for each document,
and this hierarchial form makes the documents share a same
base measure I'y. This gamma-negative binomial process can

TABLE I: Notations used in this paper

Notation description

D number of documents

A number of authors

N number of words

K number of topics

AD author-document mapping matrix

DN document-word mapping matrix

Ay number of authors of document d

Ny number of words of document d

0 topic k

Ty a global random measure from a Gamma process
70,k the global weight of topic k

Tgq a random measure from a Gamma process for document d
Td,k the weight of topic k in document d (the interest of d on k)

Iy a random measure from a Gamma process for author a
Ta,k the weight of topic k in author a (the interest of a on k)

Fz the mixed measure of measures of all authors who write d
rj k the average weight of topic k in all author @ who write document d
X a random measure from a Negative binomial process

N number of words assigned to topic k

Xa a random measure for document d from a negative binomial process
Nd,k number of words assigned to topic k in document d
Na,k number of words assigned to topic k and author a
ng number of words assigned to topic k£ and author a in document d
Zd,n the topic index assigned to word n in document d
id,n the author index assigned to word n in document d

be equivalently augmented as gamma-gamma-poisson process,

Ty ~ GaP(cy, H)

FdeaP<1_pd,Fo) 5)
Pd

X4~ PP(Ty)

where PP(T'y) is a Poisson process with parameter I';. This
augmentation, which is useful for the close-form model infer-
ence algorithm design, is equal to gamma-negative binomial
process model in distribution. In this paper, we will build
an infinite author topic model based on this gamma-negative
binomial process model.

IV. INFINITE AUTHOR TOPIC MODEL

In this section, we first propose our infinite author topic
(IAT) model, and then introduce its Gibbs sampling strategy
to inference the proposed model.

A. Model Description

Consider the gamma-negative binomial process topic mod-
el in Egs. (4) and (5) again: despite its successful, this model
however is fundamentally the same as the basic topic models,
which are used for modeling the data of two level hierar-
chy: document-keyword. Our aim is to extend topic model
into three-level hierarchy: author-document-keyword. So we
add another gamma process level to capture the additional
(author) level based on the gamma-negative binomial process
topic model in Eq.(5) analogues to the hierarchical form of
Hieratical Dirichlet Process [20],

Ty ~ GaP(co, H)
T, ~ GaP(cq,To)

Iy~ GaP((1-pa)/pa,TS)
Xy~ PP(Ty)

(6)
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Fig. 2: Gamma-Gamma-Negative Binomial Process Model
(3GNB) (left one) and Infinite Author Topic Model (IAT) (right
one)

where I', is the new added level for the authors. We call
this model three-level gamma-negative binomial process topic
model (3GNB), which is graphically shown in the left subfig-
ure of Fig. 2. However, there is a problem in 3GNB that it
requires each document with only one author.

In the 3GNB model, the global measure is

Lo =Y roxde, @)
k=1

where r( j, is the global weight of topic 6. Each document is
assigned a realization of gamma process,

oo

Iy = Zrd,k%k (8)

k=1

where 6, denotes the kth topic and r4 j is the weight of kth
topic. {rqr}3>,; can be viewed as the interest of document
d on the topics. The number of topics can potentially be
infinite and therefore justifies the infinity in the summation.
However, since the data is limited, the learned topics will
be also limited. Similar to the document, each author is also
assigned a realization of gamma process,

Ty = rards, ©)
k=1

where {7, ;}72, is the weight of interests of author a on
the topics. In the 3GNB model, the base measure for a I'; is
from its author I',. It can be seen as the ‘interest inheritance’.

Finally, the likelihood is a realization of Poisson process,

oo
Xaq= Zﬂd,k%k (10)
k=1
where ng j, is the number of words in document d assigned to
topic k.

In order to model in the setting where a document is with
multiple authors, we combine all the gamma processes of every
authors of a document together by

I8 =T ®Ta, @ 6T, (11)

where Ay is the number of authors of document d, @ is the
convex combination (each gamma process is with same weight
in this paper, and a Dirichlet prior could be simply added as the
prior of weights, which could model the different contributions
from authors to the same document) and I'? is the mixed prior
for T'y. We can see the mixed gamma process I'? as the mixed
interests of all the authors of a document. Then, the revised
model is as follow

Fo ~ GaP(Co,H)

Iy ~ GaP(cq,To)

Fg =Ta, &1, @"'@FGM
Tq ~ GaP((1 - pa)/pa,T3)
X4~ PP(Ty)

and the graphical representation is shown in Fig. 2. Some
frequently used notations are explained in Table I.

B. Model Inference

It is difficult to perform posterior inference under infinite
mixtures, a common work-around solution in nonparametric
Bayesian learning is to use a truncation method [27], [28].
Truncation method is widely accepted, which uses a relatively
big K as the (potential) maximum number of topics. Under
the truncation, the model can be expressed below as a good
approximation to the infinite model,

Yo ~ Gamma(%, 1/f0)
Yo, Co ~ Gamma(’Yo/Ka 1/60)

To,k
Ta k|70, Co ~ Gamma(ro , 1/cq)
pa ~ beta(ag, by)
rik =Ta;,k DTay kb D
Tdk|Ta, Pd ~ Gamma(rik7pd/(1 — pa))
nd,k ~ PO?;S(T'ng)

K
Ng = E N4k
k=1

1
ol:K ~—H
0

5
Zam ~ Multi(ran/ Y ra,raz/ Y raras/ Dy ra )

wdvn ~ sz,n

where vg = f dH is the total mass of measure H, and the
parameters are given the appropriate priors. Here, H is a N-
dimensional Dirichlet distribution, and each 6 is a topic that
is a IN-dimensional vector.



The difficult part of the inference for this model is the
mixed part 'Y or r?. Since ¢ = r,, @ r,, ® --- is the
mixed value, 1t is hard to infer the posterior of r, through its
likelihood. In order to resolve this issue, we firstly introduce
the Additive Property of the negative binomial distribution,

Theorem 1: If X, follows a negative binomial distribution
with parameters r; and p and if the various X, are indepen-
dent, then Y X; follows a negative binomial distribution with
parameters Y . 7; and p.

In the model, we have

ral{ra},pa ~ Gamma(re ., pa/(1 — pa))

12
ndJc ~ POZ'S(T[L]C) ( )

(in distribution) equal to

nay ~ NB(rd . pa) (13)
and according to THEOREM 1, it is further (in distribution)

equal to
Ta,k
~NB
N,k (A ,pd)

N,k = § nd,k
a

where A, is the number of authors in document d.

(14)

We have split ng; the number of words assigned to
topic k in document d into a number A, of independent
variables {ng ,}. Here, ng, denotes the number of words
assigned to topic k£ from author a in document d. From
Eq.(14), we can see that we have the likelihood part of the
Tq, SO we can update/inference the 7, using n§. Introducing
the auxiliary variables {ngk} helps us resolve the difficult
inference problem brought by the mixed gamma process. Note
that the independence between the elements of {ng Lt 1s very
important, which facilitates us update each ng ; independently.

According to the relationship between the negative bino-
mial distribution and the gamma-poisson distribution, for each
ng j» we have:

NNB(A 7pd)

v~ Gamma( 5% pa/(1 = pa). i ~ Pois(rte)
15)
We want to highlight that rg , is different from rd % :rd  is the
mixed Gamma process of multiple author Gamma processes
I’ of Gamma process I'y of document d and rg ; is the interest
of document d on topic k inherited from author a.

Due to the non-conjugacy of gamma distribution and
negative binomial distribution, it is difficult to update r, with
a gamma prior. In order to make the inference with only close-
formed conditional distributions, we use the following results
on the negative binomial process,

Theorem 2: [11] If X follows a negative binomial distri-
bution X ~ NB(r,p) with parameters r and p, then X can
also be generated from a compound poisson distribution as

1
X = Zut, up A Log(p), | ~ poiss (—rin(1 — p))

t=1
(16)

where Log() is a Logarithmic distribution. Furthermore, this
poisson-logarithmic bivariate count distribution, p(X,!), can
be expressed as

X ~ NB(r,p), | ~ CRT(X,r) (17)

where CRT denotes Chinese restaurant Table distribution.

With THEOREM 2, the Eq. (15) is also equal to
Ta,k
[ NB( . apd)

Aqg
13,k
= Nk ~ ZlOQ(Pd)7 lg . ~ POZS(_Td In(1 = pa))
1
Ta,k Ta,k
= lg,k ~ CRT(ng,ka Ay )7 ”3,1@ ~ NB( i 7pd)
(18)
Finally, we can update all ng’ A
a - pl a Taks Tk Tk
(nd}k‘17nd}k27"' 7nd3()NMult(’l’Ld7 T17 Tz’... , " )
=SS
a k
(19)

and for each word n in a document d, we can assign it to a
topic k£ and author a by

Tgk
P(zdn = k,lgn =a) x —=

ndk—z5 Zin = k)

Na,k = ZZ(S Zdn = k AND idm = a)

With these changes of variables, the original model is re-
formulated as,

Yo ~ Gammal(eo, 1/ fo)
70,k |70, co ~ Gamma(yo/K,1/co)

pa ~ beta(aq,o,ba,0)
Tak|T0, Ca ~ Gamma(rox, 1/cq)

Tik =Tayk O Taz ke B
Td.k|Ta, Pa ~ Gamma(r gk,}?d/(l —Pd))
5 pa/(1 - pa)),

Ta Kk~ Gamma( A ac A

a

Zdn NDzscrete(Tdk,--~)

ndk—Z(S (zan = k)

na,kzzz(szd,n:kAND ign = a)
d n

ngj = 25(2(17” =k AND iz, =a)

No=>_D 2in

In the following, a Gibbs sampling algorithm is designed
for the posterior inference and all the conditional distributions
are listed.




Sampling z

P(zan =k ian =al ) o Opn - 1g [©3))
Sampling 7§
Tq “
Pl ) o Gamma( 3= + i opa)  (22)
Sampling [§
a a Ta,k
p(lgxl--) o< ORT (ndJc’ 2 ) (23)
d

Sampling p,
T = Taik ®Tag e @

p(pd|--+) «x Beta (ao + anh bo + erzl,k> (24)

k k
S ) o Gamma(rg’k + N,k D)

P(Td,k:

Sampling r,

p(Ta,k| . )
1
x Gamma | 7o 1 + 1 ks
( dwzit;a ca_ZdWithaALd'ln(l_pd)
(25)
Sampling [,
plag|--+) < CRT ( > 1 m) (26)
d with a
Sampling 7 ;.
(rok| ) x Gamma /K+Zl 1
P70,k Yo 8 a’k’CO—Zaln(l—pa)
(27
where )
=2 d with a len(l — Pd)
Pa = 1 (28)
Ca = 2_d with o A7t — Pa)
Sampling [,
p(l]--+) o CRT (Zla,k,%/K> (29)

Sampling v,

1
G l, — 30
ot G (e S ) o

where
WIS SLILE N
co— Y, n(l—pg)

€2y

Sampling 6;,

p(Ox] ) o< H(04) ] 00—k (32)
d

Algorithm 1: Gibbs Sampler for IAT
Input: D, A, N, AD, DN
Output: K,cq, {0}, {ra}, {ra}
initialization;
while iter < max;i., do
ford=1;d <D do
for n =1;n < Ny do
| Update z4,, and iq, by Eq. (21);
fora=1;a < Ay do
Update r§ , by Eq. (22);
L Update I3, by Eq. (23);
| Update 74 and pg by Eq. (24);
fora=1;a < A do
Update r, 1 by Eq. (25);
| Update I, by Eq. (26);
Update 7 3 by Eq. (27);
Update [;, by Eq. (29);
Update o by Eq. (30);
Update 6 by Eq. (32);
| iter + +;
Identify K, cqi;
Select the sample with largest likelihood and
K = Keal:
return {0}, {rq}, {ra};

TABLE II: Statistics of Datasets

Datasets D A N
NIPS 1,740 2,037 13,649
DBLP 28,569 28,702 11,771

We can see from these conditional distributions that all
of them are closed-form which is very easy to updated and
implemented. Note C'RT'() denotes a Chinese Restaurant
distribution, and its definition and sampling can be found in
[11]. The whole procedure is summarized in Algorithm 1.
Since the Gamma-Negative binomial process is a completely
random measure [29], [11], {rq.x } 5, (similar with {rq ,}5_ ;)
are independent with each other given the observations, so we
can sample them in parallel. (HDP is not a completely random
measure).

Note that after we obtain all the samples of the posterior

p(aarzurdar()v Zg,napdafy()»ng’k|Nd7ADv DN; €0, an €0, Ca, A0, bO)

of latent variables and remove the burn-in stage, we firstly
identify the topic number with largest frequency as the
K, eqi, and then find the sample with largest likelihood and
K = K,¢q from these samples. The output of Gibbs sampler
are the latent variables 6, r, and 74 in this sample.

V. EXPERIMENTS

In this section, we evaluate the proposed infinite author
topic model (IAT), and compare it with the finite author-topic
model (ATM)' on different datasets.

I The implementation of ATM is from:

http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm



A. Datasets

Two public datasets used in this paper are:

e  NIPS papers’ This dataset contains papers from the
NIPS conferences between 1987 and 1999. More
description can be found in the [5];

e DBLP papers’ The abstracts and authors of papers
are extracted through DBLP interface from four ar-
eas: database, data mining, information retrieval and
artificial intelligence. More description can be found
in the [30].

Some statistics of two datasets are shown in Table II.
For each dataset, we randomly select some documents as
training data and test data. The number of selected training
documents are around 1000, and the number of test documents
are about 30 percent of the number of training documents. The
requirements of selections is: the training and test documents
must share some authors and some words. This requirement
makes sure the learned topics and authors’ interests can be
used to predict the test documents.

B. Evaluation Metrics

In order to evaluate the performance of the proposed
model, we calculate the perplexity of the test documents
using the learned topics and author interests on these topics.
Perplexity is widely used in language modeling to assess the
predictive power of a model [5], [12]. It is a measure of how
surprising the words in the test documents are from the model’s
perspective. It can be computed as,

Perplexity = exp <— Z Zp(wd|9k>p(0k|ad)> (33)
4k

where a4 is the authors of test document d. The smaller the
value of perplexity is, the better the predictive ability of a
model has. Since we use the same test documents for different
models, the normalization is not considered because it does not
influence the model comparisons. Another evaluation metric is
the training data likelihood,

logLikelihood = _log p(walf,7a,7a) (34)
d

This is a measure of the probability of the training document
under the learned latent variables 6, r, and r4. It can be
understood as ‘how the model fits the training data’. The
bigger the value of likelihood is, the better a model fits the
training data. Likelihood in Eq. (34) is to show the ability
to model the training data and Perplexity in Eq. (33) is to
show the ability to predict the test data. We think these two
commonly-adopted and complementary metrics are sufficient
for the models comparison.

C. Results Analysis

For the DBLP dataset, the results are all shown in Fig. 3.
Each row of the Fig. 3 denotes a group of DBLP dataset. The
left subfigures show the comparison on the data log-likelihood.

Zhttp://www.datalab.uci.edu/author-topic/NIPs.htm
3http://www.cs.uiuc.edu/ hbdeng/data/kdd201 1.htm

Here, we adjust different active topic numbers for the ATM,
including K = 100, K = 200, K = 300, K = 400 and
K = 500. From these subfigures, the proposed IAT model
(The hyper-parameters are set as following by experiences for
the rest of this section: ag = 1,bp = 1,eg =1, fy=1,¢cg =1
and ¢, = 1) outperforms the ATM on different preset topic
numbers. It means that IAT fits the training documents better
than the ATM, and, more importantly, IAT does not depend
the domain knowledge to predefine the active topic number,
making the method widely applicable.

The middle subfigures in Fig. 3 indicate the changing of
active topics during the iteration of the IAT (The number of
active topics is set as the number of training documents at the
initialization step of the model). These curves show that the
number of active topics dramatically drops down at the burn-
in stage of the sampling, and began to stabilize after about
200 iterations. Since the documents are different in content
but similar in numbers amongst the groups, the learned topic
number is differ slightly amongst each others. These numbers
are: group 1: K = 519; group 2: K = 332; group 3: K = 493;
group 4: K = 465; group 5: K = 504.

In order to show the effectiveness of the proposed model,
we also compare the performances of two models (IAT and
ATM) on the test documents prediction using perplexity in
Eq. (33). Since the training and test documents share some
authors, we can compute the perplexity of the test documents
according to the learned topics and authors’ interests on them.
At each step of iterations, the perplexity of test documents is
computed using the latent variables, {0}, {r,} and {r,}, at this
iteration. The results are shown in right subfigures of Fig. 3. In
each subfigure, the first bar denotes the mean of perplexities
of all iterations except the burn-in stage (1 ~ 200 iterations)
of the proposed model IAT and the others denote ATM with
different (predefined) topic numbers. The standard deviations
are also shown in the subfigures. The proposed model gets the
best performance (smallest perplexity). The standard deviation
of IAT is relatively bigger than ATM. The reason is because
the number of active topics will change during the iteration
but it will not change in ATM, so in theory, the random-walk
space of Gibbs sampler of IAT can be larger than that of ATM.
Even with this relatively larger standard deviation, the mean
of perplexity of IAT is smaller than ATM.

For the NIPS dataset, the results are all shown in Fig. 4.
Same with the DBLP dataset, the log likelihoods of IAT and
ATM with different predefined active topic numbers are shown
in the left side of the Fig. 4. Unsurprisingly, the subfiguers in
the middle column show the convergence of IAT (group 1: 367;
group 2: 529; group 3: 354). Specially, we found that the log-
likelihoods of ATM increases when topic number decreases.
Therefore, we have compared with ATM with only two (the
minimum number) topics as shown in the left subfigures in
Fig. 4. It can be seen that the proposed IAT model also gets
larger log likelihood and smaller perpetuity when compared
with ATM except the case where ATM is set to have 10 topics
in group 2. Even so, the ATM in group 2 with 10 topics has
almost same performance with IAT on the Log-likelihood of
training documents. Moreover, we can see that it takes 800
iterations to reach this stability for the ATM with 10 topics,
but IAT only takes less than 50 iterations to reach the same
stability.
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Fig. 3: Results from IAT and ATM on five groups of DBLP dataset. Each row denotes a group. In each row, the left subfigure
shows the Log-likelihoods comparison between IAT and ATM with different (predefined) topic numbers: K = 100, K = 200,
K = 300, K =400, and K = 500; The middle subfigure shows the change of active topic number of IAT during the iteration
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Fig. 4: Results from IAT and ATM on three groups of NIPS dataset. Each row denotes a group. In each row, the left subfigure
shows the Log-likelihoods comparison between IAT and ATM with different (predefined) topic numbers: K = 2, K = 10,
K =100, K =200, K =300, K =400, and K = 500; The middle subfigure shows the change of active topic number of IAT
during the iteration of Gibbs sampling; the right subfigure shows the perplexity comparison between IAT and ATMs.



It is worth to mention that ATM achieves its best perplexity
when only two topics involved. The reason is that the Per-
plexity in Eq. (33) inherently prefers smaller K due to its
definition/equation in this paper. This is not only unique to our
work which uses Gamma-Nonnegative Binomial Processes to
obtain an optimal K. The comparisons made in the previous
topic model which uses fixed K also has this phenomenon.

VI. CONCLUSIONS AND FURTHER STUDY

We have developed an infinite author topic model that can
automatically learn completely the latent features of the author-
document-keywords hierarchy, which include hidden topics,
authors’ interests on these topics and the number of topic
from text corpora. The stochastic processes are adopted instead
of the fixed-dimensional probability distributions. The model
uses a mixed author gamma process as the base measure of
the document gamma process to capture the author-document
mapping. We have demonstrated that the designed Gibbs
sampling algorithm can be used to learn such infinite author
topic model based on the various real-world datasets.

Other potential applications of this work include multi-
label learning[31]. The ‘authors’ can be seen as labels, and the
inference of the model can be seen as the training of the multi-
label classifier. Another further study is to design a variational
inference algorithm for the proposed model. Current Gibbs
sampling-based inference cannot scale well to the big data.
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