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Abstract. Naive Bayes (NB) has been popularly applied in many classification tasks.
However, in real-world applications, the pronounced advantage of NB is often challenged
by insufficient training samples. Specifically, the high variance may occur with respect to
the limited number of training samples. The estimated class distribution of a NB classier
is inaccurate if the number of training instances is small. To handle this issue, in this
paper, we proposed a SEIR (Susceptible, Exposed, Infectious and Recovered) immune-
strategy-based instance weighting algorithm for naive Bayes classification, namely SWNB.
The immune instance weighting allows the SWNB algorithm adjust itself to the data
without explicit specification of functional or distributional forms of the underlying model.
Experiments and comparisons on 20 benchmark datasets demonstrated that the proposed
SWNB algorithm outperformed existing state-of-the-art instance weighted NB algorithm
and other related computational intelligence methods.
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1 Introduction

As a special case of a Bayesian network, Naive Bayes (NB) [3] has been popularly applied
in many real-world learning tasks, such as text classification [7][17], web mining [19] and other
computational approach [10]. Specifically, the high variance may occur with respect to the limited
number of training samples [6][14], where the estimated class distribution of a NB classifier is
inaccurate if the number of training instances is small.

To address this research problem, instance weighted naive Bayes (IWNB), as an effective solu-
tion, assign different weight values to instances for probability value estimation can improved the
performance of NB. For example, an instance-cloned naive Bayes, which produces an expanded
training set by cloning some training instances based on their similarities to the test instance is
proposed in [5]. Moreover, Jiang [4] proposed to use instance weighting to improve the perfor-
mance of Averaged One-Dependence Estimators [12], which is another Bayesian model. For this
type of weighting method, each training instance is eagerly weighted according to the similarity
with the “model” of training dataset. These instance weight setting methods have achieved good
performance to solve domain specific problems [15]. However, for all these methods, the instance
weights are determined without taking the NB objective function into consideration and the
underlying sample distributions should be known in advance for the former approaches.

? Corresponding author.
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In this paper we propose a SEIR Immune based algorithm, which automatically calculates
the optimal instance weight values for IWNB, by directly working on IWNB’s objective function
based on SEIR immune strategy. Specifically, our method uses SEIR procedures to design an
automated search strategy to find optimal instance weight for each dataset. The SEIR immune
strategy, including initialization, clone, mutation and selection, ensures that our method can
adjust itself to the data without any explicit specification of functional or distributional form for
the underlying model.

In contrast to the conventional statistical probabilistic evaluation in NB, the SWNB algo-
rithm is a self-learning algorithm by utilizing the immunological properties, such as memory
property and clonal selection. The advantages of SWNB can be understood from the following
three aspects: SWNB is a data-driven self-adaptive method because it does not requires explicit
specification of functional or distributional form for the underlying model. The SWNB algorithm
is a nonlinear model and is flexible in modeling complex real world relationships. It inherits the
memory property of human immune mechanism and can recognize the same or similar antigen
quickly at different times.

The rest of the paper is organized as follows. In Section 2, we present a new SEIR immune
strategy and our SWNB algorithm. In Section 3, we describe the experimental conditions, process,
and results in details. Section 4 concludes the paper and outlines several directions for future
study.

2 SEIR Immune Strategy based Instance Weighted Bayes

2.1 Instance Weighted Naive Bayes

Given a training set D = {xi} with N instances, each instance contains n attribute values and
corresponds a class label. We use xi = {xi1, · · · , xij , · · · , xin, yi} to stand for the ith instance,
with xij denoting the jth attribute value and yi denoting the class label of the instance. Mean-
while, the class space Y = {c1, · · · , ck, · · · , cL} denotes the set of labels that each instance belongs
to and ck denotes the kth label of the class space. We use a = {aj} to include all the attributes
of all instances, with aj representing the jth attribute.

For a training instance xi ∈ D with its class label satisfies yi ∈ Y, the training method is
based on the IWNB model, which is formally defined as

c(xi) = arg max
ck∈Y

Pw(ck)
n∏

j=1

Pw(xij |ck). (1)

In Eq. (1), Pw(ck) denotes the probability of class ck with a certain weights set w = {wi, i ∈
[1, · · · , N ]}. Pw(xtj |ck) denotes the joint distribution of xi conditioned by the given class ck
based on w.

In this paper, we focus on the calculation of the priori probability Pw(ck) and the conditional
probability Pw(xij |ck) by using optimal instance weight value w. The Laplace-estimate instance
weighted strategy is introduced and shown in Eq. (2).

Pw(ck) =
nk + 1

Nk + L
, Pw(xij |ck) =

nijk + 1

nk + |aj |
,

nk =
∑

xi∈D,yi=ck

wi, Nk =
∑
xi∈D

wi, nijk =
∑

xi∈D,yj=ck,xpq∈xp∈D,xpq=xij

wp

, (2)

where |aj | is the number of distinct values of attribute aj , and L is the number of classes.
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Fig. 1. The SEIR immune procedure for IWNB

2.2 SEIR Immune Strategy for Instance Weighting

The classic model for microparasite dynamics is the flow of hosts between Susceptible (S), Ex-
posed (E), Infectious (I) and Recovered (R) compartments [20]. However, the SEIR immune
strategy could not directly applied for the IWNB classification problem. In this paper, we intro-
duce SEIR model to describe the immune strategy proposed for instance weight (i.e., antibody)
optimization. By rating the performance of instance weights, the low scorekeepers are defined
in Infectious state I, which are planned to be cloned with a set clone factor c and then move
to Recovered state R. Through mutation, weights are driven into Susceptible state S, with a
α probability to move into Exposed state E, where is in an extremely unstable state causing
movements to state I in probability β, and otherwise kept in state S.

Assume in generation t, in the proposed SWNB, the number of weight groups in S, E, I and
R are defined as |(Ws)t|, |(We)t|, |(Wi)t| and |(Wr)t|, we have the SEIR immune procedure in
Fig. 1 and corresponding formulations shown in Eq. (3).

|Wt| = |(Ws)t|+ |(Wi)t|+ 1, |(Wr)t| = 1 + c[|(Ws)t|+ |(Wi)t|],
|(We)t| = α|(Ws)t|, |(Wi)t| = αβ|(Ws)t| = c[|(Ws)t|+ |(Wi)t|],
|(Ws(j))t| = α(1− β)|(Ws)t|, |Wt| = |(Ws(j))t|+ |(Wi)t|+ 1

, (3)

where |Wt| is the total amount of weight groups in the tth immune generation. From Eq. (3),
we have α = 1

1−c , β = c.

2.3 SWNB Classifier

In this section, we first introduce some important notations and definitions, then propose our
solutions.

DEFINITION 1 (Calculation of affinity function) The affinity of the jth individual in
the tth generation wt

j is the classification accuracy that is obtained by SWNB using the wt
j to

carry out the probability estimation. The calculation of affinity function is defined as

f(wt
j) =

1

NS

∑NS

i=1
s(ct(xi), yi), (4)
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Algorithm 1 SWNB Classifier

Input:
Training dataset D; Clone Factor c; Threshold ε; Maximum Evolution Generation MaxGen.

Output:
The target class label c(xt) of a test instance xt.

1: W0 ← Initial population, which is a set of random number distributed between (0, 1].
2: while t ≤MaxGen and f(wt+1

c )− f(wt
c) ≤ ε do

3: f(wt
j)← Apply Eq. (4) to calculate affinity of wt

j for the tth generation.
4: wt

r ← The selected antibody with highest f(wt
j).

5: Wt ← The population of the tth generation.
6: (Wi)t ← The individual sets with low f(wt

j) selected as I(t) on clone factor c within Wt but
excluding wt

r.
7: (Wr)t ← The R(t) individuals consist of the antibody and the cloned (Wi)t by wt

r.
8: for all each wt

j in Wt do
9: vt+1

j ← Apply Eq. (5) to do mutation on each wt
j .

10: wt+1
j ← Apply Eq. (6) to obtain the new weights in the t+ 1th generation.

11: end for
12: (Ws)t+1 ← The S(t+ 1) individuals.
13: (We)t+1 ← The E(t+ 1) individuals contribute to (Wi)t+1 on β and (Ws(j))t+1 on 1− β.
14: Wt+1 ← (Ws)t+1 ∪ (We)t+1 ∪ (Wi)t+1 ∪ (Wr)t+1.
15: end while
16: c(xt)← Apply wt to instance xt to predict the underlying class label via Eqs. (1) and (2).

where ct(xi) is the classification result of each ith instance in the tth training generation using the
SWNB classifier based on each individual wt

j , i ∈ [1, · · · , N ]. s(ct(xi), yi) defines the similarity
between ct(xi) and yi, where s(ct(xi), yi) is 1 if ct(xi) = yi and 0 otherwise.

DEFINITION 2 (Antibody clone) We select wt
r as the antibody of the tth generation

with the best affinity performance of f(wt
j) sorting from Wt. After that, we use the antibody to

replace the weight groups (Wi)t with low affinity according to the same rate of a set clone factor
c. As a result, wt

i ∈ (Wi)t are cloned by wt
r and move to (Wr)t.

DEFINITION 3 (Antibody mutation) The mutate operation is used to treat all indi-
viduals in the tth populationWt and for training preparation onWt+1 in the t+1th generation.
For any individual wt

j , the new variation vt+1
j is generated as

vt+1
j = wt

j + [1− f(wt
j)] ∗N(0, 1) ∗ (wt

r −wt
j), (5)

where N(0, 1) is a normally distributed random variable within the range of [0, 1], and

wt+1
j = vt+1

j , f(vt+1
j ) > f(wt

j); or wt
j , f(vt+1

j ) ≤ f(wt
j). (6)

3 Experiments

3.1 Experimental Conditions and Baselines

We validate the performance of the proposed method on 20 benchmark datasets from UCI data
repository [2]. Because naive Bayes based classifiers are designed for categorical attributes, in
our experiments, we first replace all missing attribute values using unsupervised attribute filter
ReplaceMissingValues in WEKA [13]. Then, we apply unsupervised filter Discretize in WEKA
to discretize numeric attributes into nominal attributes. In our experiments, the algorithms are
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Table 1. Experimental results for SWNB vs. baselines: classification accuracy %

Dataset SWNB IWNB [4] NB [3] SBC [9] C4.4 [11] KNN [1]

anneal 97.04 95.93 93.70 91.48 80.37 92.96
anneal.ORIG 91.11 88.52 90.37 84.07 88.89 84.07
balance-scale 92.91 89.84 89.84 89.84 64.17 83.42
breast-cancer 81.76 71.76 70.59 70.59 69.41 75.29
colic.ORIG 84.09 74.55 79.09 71.82 73.64 70.00
credit-a 88.54 84.54 84.54 85.02 85.02 84.54
credit-g 78.67 74.67 74.33 72.00 70.00 72.00
diabetes 85.65 76.09 77.39 76.96 71.30 70.87
heart-c 92.42 86.81 86.81 85.71 80.22 82.42
heart-h 93.76 91.01 86.52 85.39 78.65 85.39
heart-statlog 83.95 83.95 83.95 82.72 71.60 81.48
hepatitis 91.11 85.11 89.36 78.72 80.85 82.98
ionosphere 88.67 86.67 88.57 84.76 83.81 88.57
kr-vs-kp 98.67 81.67 81.67 94.00 93.00 88.00
labor 94.12 88.24 87.34 88.24 88.24 82.35
letter 69.56 61.00 57.67 60.67 50.00 45.67
lymph 88.64 84.09 84.09 81.82 79.55 79.55
segment 89.74 87.42 84.11 85.43 83.44 80.46
soybean 93.20 92.68 91.71 88.78 89.76 87.80
waveform 85.67 79.67 80.33 80.33 65.33 72.00

evaluated in terms of classification accuracy via 10 runs of 10-fold cross validation. Besides, the
three parameters maximum iteration MaxGen, threshold ε, and the clone factor c in Algorithm
1 are set to 50, 0.001 and 0.1 respectively. Moreover, all experiments are conducted on a Linux
cluster node with an Intel(R) Xeon(R) @3.33GHZ CPU and 3GB fixed memory size.

For comparison purposes, we use the following baseline algorithms in our experiments.

1) NB: The standard naive Bayes classifier with conditional attribute independence assumption
[3].

2) IWNB: Instance weighted naive Bayes with the weighting method based on the instance
similarity [4].

3) SBC: A bagged decision-tree based attribute selection filter for naive Bayes [9].
4) C4.4: A specially designed tree to improve C4.5 performance [11] on classification ranking.
5) KNN : The k-Nearest Neighbors algorithm [1] with k value been set to 10.

3.2 UCI Standard Classification Task

The initial important task is to analyze the performance between the IWNB with the related
instance weighting strategy in literature and NB, in terms of classification accuracy, which is
calculated by the percentage of successful predictions on domain specific problems [16][18]. Be-
sides, some other types of algorithms that have been well used in real-world applications have
also been used for comparison. Specifically, we compare the effect of IWNB [4] with the standard
NB [3], SBC [9], C4.4 [11], and KNN [1]. The purpose of the second experiment is to compare
the proposed self-adaptive instance weighted Naive Bayes, namely SWNB, with each other types
of baseline approaches in literature.

Instance Weighted NB vs. Standard NB Table 1 reports the detailed results of SWNB and
other baseline algorithms, respectively. Besides, Table 2 illustrates the compared results about
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Table 2. Winning or losing statistical analysis on 20 UCI datasets

KNN [1] C4.4 [11] SBC [9] NB [3] IWNB [4]

C4.4 [11] 9/1/10
SBC [9] 13/3/4 14/2/4
NB [3] 16/2/2 17/0/3 12/3/5
IWNB [4] 16/1/3 16/1/3 14/2/4 8/6/6

SWNB 20/0/0 20/0/0 20/0/0 19/1/0 19/1/0

∗ All analyses are under two-tailed t-test with a 95% confidence level.

the winning-or-losing statistical analysis (i.e., two-tailed t-test with a 95% confidence level) on
those benchmark datasets. Based on the statistical theory, the difference is statistically significant
only if the probability of significant difference is at least 95 percent, i.e., the p-value for a t-test
between two algorithms is less than 0.05. In Table 2, each entry w/t/l means that the algorithm
in the corresponding row wins in w datasets, ties in t datasets and loses in l datasets on the 20
UCI datasets, compared to the algorithm in the corresponding column. Overall, the results can
be summarized as follows:

1) Instance weighting IWNB outperforms NB (8 wins and 6 losses). In particular, for the dataset
“letter” with 20000 instances and 26 classes, the classification accuracy for IWNB (61.00%)
is higher than NB (57.67%). Because the 26 classes make the classification task particularly
difficult, the 3.33% superiority on 20000 samples become significant.

2) Instance weighting IWNB greatly outperforms SBC with (14 wins and 4 losses) on the 20
UCI benchmark datasets.

3) Instance weighting IWNB significantly outperforms decision tree C4.4 and lazy learning
approach KNN both with (16 wins and 3 losses).

SWNB vs. Baselines Our experimental results from Tables 1 and 2 indicate that SWNB has
very significant gain compared to the state-of-art instance weighting strategy and other types of
methods. In summary, our experimental results can be listed as:

1) SWNB significantly outperforms existing instance weighted IWNB and unweighted NB both
with (19 wins and 0 losses). For the dataset “letter” with 26 classes, the SWNB can achieve
a high classification accuracy (69.56%), which is 8.56% and 11.89% higher than IWNB and
NB, respectively.

2) SWNB greatly outperforms selected naive Bayes SBC with (20 wins and 0 losses) on the 20
UCI benchmark datasets.

3) SWNB also significantly outperforms decision tree C4.4 and lazy learning approach KNN
both with (20 wins and 0 losses).

3.3 Convergence and Learning Curves

In order to investigate the convergence of the SWNB algorithm, we report the relationship
between the number of iterations and error rate on the 9 datasets, and the results are shown in Fig.
2. Each point in the curves corresponds to the accuracy under the underlying iteration with the
current optimal instance weight values. Fig. 2 shows that SWNB converges quickly. Although the
curves are not quite smooth, they converge well, which accords with the immunization strategy
in SWNB.
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Fig. 2. Convergence learning curves by error rate of SWNB for 9 datasets

For additional insight into our experiment, we observe the “kr-vs-kp” for example. It is
a high-dimensional dataset (37 attributes) with 3196 instances. In addition, strong attribute
dependencies have been found in this dataset by Kohavi [8]. Our results show that SWNB achieves
98.67% classification accuracy, which is significantly higher accuracy than instance weighted and
unweighted NB on the same dataset (81.67%). The accuracy of the final convergence is also much
better than selected naive Bayes SBC (94.00%), decision tree C4.4 (93.00%), and lazy learning
KNN (88.00%). Similar levels of improvement can also be observed from other datasets.

4 Conclusion and Future Work

In this paper, we proposed a novel algorithm to train weighted instances for naive Bayes classifi-
cation, namely SWNB, by extending the classical SEIR immune strategy. The SWNB algorithm
calculates the probability values by using the adaptively instance weighting approach. Consid-
ering real-world applicabilities, experiments and comparisons taken on the 20 benchmark UCI
datasets, with respect to the classification accuracy performance, show that SWNB outperforms
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existing NB instance weighting models and other related algorithms, such as classification ranking
tree, k-Nearest Neighbors, etc.

The proposed immune strategy based instance weighting for naive Bayes can also be extended
to Bayesian networks and applied to other dynamic social networks. Our further study will focus
on dynamic Bayesian network applications.
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