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ABSTRACT

Carbon dioxide (CO2) emission through human activities is one of the most critical 

issues affecting the entire globe. Among the solutions, carbon sequestration is an 

important way to reduce atmospheric CO2. Vegetated coastal habitats – seagrasses, 

saltmarshes, and mangroves – are among the most effective carbon sinks of the world.

These habitats capture and store (sequester) large quanties of organic carbon (Corg),

termed ‘blue carbon’. The rapid decline of seagrass in many areas around the world, 

especially in Southeast Asia has motivated us to study the carbon-sink capacity of

tropical Blue Carbon habitats, as well as the impact of the loss of seagrass. This study 

comprised of three major aims: 1) to investigate the impact of seagrass loss on blue 

carbon sink capacity; 2) to investigate the influence of seagrass species-specific canopy 

structure on blue carbon sink capacity; and 3) to investigate the feasibility of using 

artificial seagrass for blue carbon restoration.

Seagrass meadows at Haad Chao Mai National Park, Trang, Thailand trap 

allochthonous (externally-produced) carbon into sediment reaching up to 90% of Corg

stored. At a pristine meadow, seagrass densities play a major role in determining the 

sediment Corg stock. Seagrass canopy height was found to be not important when 

comparing Corg sink capacity between Thalassia hemprichii (medium-sized species) and 

Enhalus acoroides (large-sized species) in this study. On the other hand, seagrass 

densities influenced the trapping capacity of allochthonous carbon. The sediment 
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organic carbon sources of T. hemprichii and E. acoroides beds for all densities tested 

were similar (dominated by suspended particulate matter and mangrove for the top 15 

cm of sediment). High shoot densities of seagrass could promote the settlement of 

suspended particles by increasing the chance of particle to contact directly with leaf 

blade. Seagrass biomass influenced the community metabolism. The Net Community 

Production (NCP) of seagrass meadows was higher with increased above-ground 

biomass. NCP measured in meadows with 75% cover of T. hemprichii (104.59 ± 21.72 

mmol C m-2 d-1) and E. acoroides (166.92 ± 12.32 mmol C m-2 d-1) were higher than 

these of NCP measured in meadows with 12% cover of T. hemprichii (63.54 ± 5.53 

mmol C m-2 d-1), E. acoroides (78.09 ± 4.63 mmol C m-2 d-1) and unvegetated sediment 

(53.36 ± 4.11 mmol C m-2 d-1). Seagrass loss following elevated sedimentation and 

increasing water turbidity lead to the loss of 89% of sediment organic carbon (Corg)

stock. Loss of seagrass resulted in the loss of allochthonous carbon trapped by the 

seagrass canopy. Loss of seagrass also altered the sediment grain size distribution. 

Elevation of coarse grains was found in a denuded site compared to a pristine meadow.

About 50% of sediment grain size from the pristine meadow consisted of fine sane 

(0.125 – 0.25 mm), while 50% of sediment from the pristien meadow consisted of very 

fine sane (0.0625 – 0.125 mm). The evidence of a weakened blue carbon sink due to 

seagrass loss was also found as a reduction of carbon sequestration. The level of Net 

Community Production (NCP) at a denuded site (21.13 ± 8.30 mmol C m-2 d-1) was 

lower than the NCP measured at a pristine meadow (53.36 ± 4.11 mmol C m-2 d-1).

While the negative impact of seagrass loss on blue carbon sink capacity was evaluated,

artificial seagrass was shown to be an innovative technique to enhance particle- and 

organic carbon deposition. The particle deposition measured at the denuded site with 

artificial seagrass was 3-times higher than the particle deposition rate measured at the 
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denuded site without artificial seagrass. The organic carbon trapped by artificial 

seagrass was 12-times higher than occurred at these denuded sites without artificial 

seagrass. There was no significant difference in the particle deposition rate and organic 

carbon deposition rate between an artificial seagrass experiment and the natural pristine 

seagrass meadows. Thus, artificial seagrass is an effective tool to recover blue carbon 

sink capacity where the allaochthonous carbon is a major carbon source, artificial 

seagrass is an effective tool in the recovery of blue carbon sink capacity – it enables a 

more rapid recovery and requires less effort than other restoration techniques.For better 

estimates of blue carbon sink capacity, seagrass abundance was recommended as an 

appropriate monitoring indicator because it influences the sediment Corg stock, while 

species-specific canopy height did not play an important role determining sediment Corg

stock in this particular study. 
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