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Abstract 

The visualization and interaction of multidimensional data always requires optimized 

solutions for integrating the display, exploration and analytical reasoning of data into a 

kind of visual pipeline for human-centered data analysis and interpretation. However, 

parallel coordinate plot, as one of the most popular multidimensional data visualization 

techniques, suffers from a visual clutter problem. Although this problem has been 

addressed in many related studies, computational cost and information loss still hamper 

the application of these techniques, which leads to large high dimensional data sets. 

Therefore, the main goal of this thesis is to optimize the visual representation of parallel 

coordinates based on their geometrical properties.  

 

At the first stage, we set out to find optimization methods for permuting data values 

displayed in parallel coordinate plot to reduce the visual clutter. We divide the dataset 

into two classifications according to the values and the geometric theory of the parallel 

coordinate plot: numerical data and non-numerical data, and missing data may exist 

between them occasionally. We apply Sugiyama’s layered directed graph drawing 

algorithm into parallel coordinate plot to minimize the number of edge crossing among 

polygonal lines. The methods are proved to be valuable as it can optimize the order of 

missing or non-numerical value to tackle clutter reduction. 

  

In addition, it is true that optimizing the order is a NP-complete problem, though 

changing the order of the axis is a straightforward way to address the visual clutter 

problem. Therefore, we try to propose in the research a new axes re-ordering method in 

parallel coordinate plot: a similarity-based method, which is based on the combination 
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of Nonlinear Correlation Coefficient (NCC) and Singular Value Decomposition (SVD) 

algorithms. By using this approach, the first remarkable axis can be selected based on 

mathematical theory and all axes can be re-ordered in line with the degree of similarities 

among them. We also propose a measurement of contribution rate of each dimension to 

reveal the property hidden in the dataset. 

 

In the third stage, we put forward a new projection method which is able to visualize 

more data items in the same display space than the existing parallel coordinate methods. 

Moreover, it is demonstrated clearly in the research that the new method enjoys some 

elegant duality properties with parallel coordinate plot and Cartesian orthogonal 

coordinate representation. Meanwhile, the mean crossing angles and the amount of edge 

crossing between the neighboring axes are utilized in this research to demonstrate the 

rationale and effectiveness of our approaches. 
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Chapter 1. INTRODUCTION  

1.1 INFORMATION VISUALIZATION 

Nowadays people always acquire, cognize and process a variety of datum from their 

informational surroundings. With the enlargement of the data volume and the growing 

of complexity of data itself, it becomes more and more difficult to process such a vast 

data and reveal the pattern behind it in short time. Visualization, as the links with human 

mind and intelligent computer, transforms data, information and knowledge into a visual 

form which helps people discover the data pattern easily in a rapid and visual way. 

Visualization research and development has fundamentally changed the way we present 

and understand large complex data sets in such an increasingly information-rich 

age(Gershon, Card et al. 1998).  

 

Scientific visualization, which aims to help people understand scientific phenomena by 

focusing on data (An example is shown in Fig. 1), and information visualization 

compose the stat-of–art visualization research and development. While information 

visualization mainly focuses on abstract information and nonphysical data in order to 

reveal the diverse patterns (See Fig. 2).  
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Figure 1.Scientific visualization for Stanford bunny(Wijk 2002). 

 

 

Figure 2. Parallel coordinate plots for car dataset. 

 

Due to the increasing difficulty of exploring and analyzing the vast volume of data, 

information visualization can do great help in finding the valuable information hidden 

in the data. As Stuart K.Card described in literature “Using Vision to Think”(Card, 
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Mackinlay et al. 1999), information visualization is the use of computer–supported, 

interactive, visual representations of abstract data to amplify cognition, which means to 

explore the meaning of complicated large volume of data when they are represented in 

graphs rather than display them in letters or numbers according to the way the human 

brain processes information. Therefore, information visualization is a clear and effective 

way to perceive information graphically, especially when data patterns are not obvious 

to people.  

 

In the past decades, a large number of well-known information visualization techniques 

have been developed in dealing with the multidimensional data. Daniel A. Keim 

presented some novel visualization methods from different aspects, such as data types, 

interaction and distortion techniques(Keim 2002). Fig. 3 shows the classification of 

information visualization in detail according to the three different criterions. The data in 

information visualization usually consists of large volume of records which own 

different attributes or dimensions especially in scale. Maybe one part of attributes is 

numerical, and the other part is non-numerical. Sometimes part of them is abstract or 

non-structural. For example, in the “Car Evaluation Data Set”(Repository) -a 

multivariate data set, each record consists of six attributes where the “origin” of the car 

is the only non-numerical attribute. Therefore, the data type to be visualized in 

information visualization research field can be classified into one-dimensional, 

two-dimensional, multidimensional data and other types like text, graphs and algorithms 

et al. And currently many kinds of visualization techniques have been proposed, which 

include the classic bar charts (standard 2D/3D displays), parallel coordinate plots 

(geometry-based visualization) and treemap (stacked display) et al. Besides the novel 

visualization techniques, interactive interfaces are usually utilized in information 
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visualization, such as “Zoom and Pan”, “Focus+Context” and “Overview+Detail” et al. 

techniques. In practical application, any information visualization technique may be 

combined with other techniques displayed in different orthogonal dimensions. For 

example, Mikkel R. Jakobsen et al. investigated the relation between information space 

and display size by implementing focus+context, overview+detail and zoom and pan et 

al. interactive visualization techniques for multi-scale navigation in maps. Fig. 4 shows 

the two experimental comparisons of zooming interface aiming to illustrating the 

interrelation between information space and display size (Jakobsen and Hornbaek 

2013). 

 

Figure 3. Classification of information visualization.(Keim 2002) 
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Figure 4. Space-scale diagrams illustrating two experimental comparisons of zooming 
interfaces with display size varied between D and 2D. (Jakobsen and Hornbaek 2013)  

 

1.2 HIGH DIMENSIONAL DATA VISUALIZATION 

In our daily life, we have to deal with the problems occurred in the data processing, 

especially when the dimensions of data are too high. For example, in the process of 

analyzing the gene expression microarray data set, we have to handle with ten or 

hundreds of experimental conditions which are considered to be different dimensions. 

Though many models and algorithms have been built and developed to mine the data 

patterns, the curse of dimensionality and the meaningfulness of the similarity measure 

in high-dimensional space are still the key challenges need to be solved(Wang and Yang 

2005). 

 

Herman Chernoff proposed that multivariate data less than 18 dimensions can be 

presented by the features in a cartoon face such as length of nose, curvature of mouth 

and size of eyes(Chernoff 1973). Fig. 5 shows the high dimensional data visualization 

by Chernoff face(Kabulov and Tashpulatova 2010). Some industrial applications based 
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on Chernoff face are proposed in recent years such as analysis of oil company 

activity(Bruckner 1979), potable water quality testing(A. Astel 2006) et al. However, 

the existing Chernoff faces are only oriented to comparison between two different 

objects or different aspects of single object. B.T. Kabulov et al. proposed an enhanced 

visualization version to make the face contain more information and easier to show the 

interval estimation of the values of parameters (Kabulov and Tashpulatova 2010). 

 

Figure 5. Chernoff face visualization on high dimensional data(Kabulov 

and Tashpulatova 2010). 

 

Scatterplot, as a statistically graphical visualization method, displays data items as 

points in the Cartesian space while the dimension of the data are represented as 
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graphical axes (See Fig. 6). Though 3D scatterplot can visualize some high dimensional 

data by assigning the points with color, size and shape, the data with much more 

dimensions are always visualized by traditional 3D scatterplot combing with some 

interactive navigations. (Elmqvist, Dragicevic et al. 2008).  

 

Figure 6.Scatterplot matrix for a 7-dimensional car dataset.(Elmqvist, 
Dragicevic et al. 2008) 

 

 

Motivated by the navigation method proposed in the literature (Elmqvist, Dragicevic et 

al. 2008),   Harald Sanftmann et al. extended the approaches to 3D axes by swapping 

one or two axes during transitions (Sanftmann and Weiskopf 2012). For example, Fig. 7 

displays us the 8D oil dataset in 3D scatterplot views, where the third dimension of the 

data is mapped to the y-axis and all 2D projections of the 3D scatterplot matrices that 



 8

preserve the y-axis mapping are projected to the back face perpendicularto the y-axis of 

the cube(Sanftmann and Weiskopf 2012). 

 

 

Figure 7. 3D scatterplot matrix showing the 8D “olive oil” data set. (Sanftmann and 
Weiskopf 2012) 

 

Daniel A. Keim etc. (Keim and Krigel 1994)  utilized visualization techniques to 

explore database by combining traditional database querying and information retrieval 

techniques and proposed a system termed VisDB, which provides valuable feedback in 

querying the database and allows the user to find results even hidden in the database by 

using of visualizing large amount of data on current displays. Fig. 8 visualizes the 

100,000 data items with five clusters. The comparable distances of different clusters are 

denoted by various regions with different colors in the visualization. 
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Figure 8. Five clusters in 2D visualization of 100,000 artificially generated 
data items(Keim and Krigel 1994). 

 

 

1.3 PARALLEL COORDINATE PLOTS 

High-dimensional data and multivariate data are becoming commonplace as the number 

of applications increases, such as statistical and demographic computation, digital 

libraries and so on. Though it can provide flexible and cost-saving IT solutions for the 

end users, it is much easier in causing a great deal of problems such as network and 

system security issues due to its sharing and centralizing computing resources. 

 

As pointed out in the literature (Claessen and van Wijk 2011), many methods have been 

proposed to provide insight into multivariate data using interactive visualization 
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techniques. Parallel coordinate plots (PCP), as a simple but strong geometric 

high-dimensional data visualization method, represents N-dimensional data in a 

2-dimensional space with mathematical rigorousness. PCP is proposed firstly by 

Inselberg (Inselberg 1985) and Wegman suggested it as a tool for high dimensional data 

analysis (Wegman 1990). Coordinates of n-dimensional data can be represented in 

parallel axes in a 2-dimensional plane and connected by linear segments. (See Fig. 2).  

 

In order to reduce the edge clutter and avoid the over-plotting in PCP, Dasgupta et al. 

(Dasgupta and Kosara 2010) propose a model based on screen-space metrics to pick the 

axeslayout by optimizing arranges of axes. Huh et al. present a proportionate spacing 

between two adjacent axes rather than the equally spaced in conventional PCP parallel 

axes. Moreover, the curves possessing some statistical property linking data points on 

adjacent axes are described in literature (Huh and Park 2008) as well. Zhou et al. (Hong 

Zhou 2008)convert the straight-line edges into curves to re-duce the visual clutter in 

clustered visualization. They also utilize the splatting framework (Zhou, Cui et al. 2009) 

to detect clusters and reduce visual clutter. To achieve the aim of avoiding over-plotting 

and preserving density information, Dang et al. proposed a visualization and interaction 

method for stacking overlapping cases (Tuan Nhon, Wilkinson et al. 2010).To filter out 

the information to be presented to the user and reduce visual clutter, Artero et al. 

develop a frequency and density plots from PCP(Artero, de Oliveira et al. 2004), which 

can uncover clusters in crowded PCP. Yuan et al. (Xiaoru, Peihong et al. 2009)combine 

the parallel coordinate method with the scatter-plots method to reduce the visual clutter. 

It plots scattering points in parallel coordinates directly with a seamless transition 

between them. The shapes of poly lines are remodeled to cooperate with the scattering 

points, resulting in the diminution of their inherent visual effects. 
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Many efforts have been put to deal with the visual clutter in completed data 

visualization (Laguna, Mart et al. 1997; Ankerst, Berchtold et al. 1998; Wei-xiang and 

Jing-wei 2001; J. Yang 2003; Peng, Ward et al. 2004; Ellis and Dix 2006; Pascale, 

Bruno et al. 2006; Ellis and Dix 2007; Hong Zhou 2008; Peihong, He et al. 2010; 

Huang and Huang 2011). In multi-dimensional data visualization, especially in the 

parallel-coordinates visualization, there are three directions for the current research of 

visual clutter reduction: 1) dimension reduction(J. Yang 2003; Peng, Ward et al. 2004) ; 

2) data clustering(Ankerst, Berchtold et al. 1998; Hong Zhou 2008; Peihong, He et al. 

2010); and 3) minimization of edge crossings(Laguna, Mart et al. 1997; Wei-xiang and 

Jing-wei 2001; Pascale, Bruno et al. 2006; Huang and Huang 2011). The first approach 

is to find and filter some less important data attributes for simplifying the decision 

making or problem solving processes, and in this case,, the visual clutter and visual 

complexity will be reduced accordingly in the corresponding visual representation of 

the data; The second is data clustering, which is one of the data mining approaches to 

group data items based on a variety of rules, such as data similarity, and through data 

clustering, we can display some abstract clusters instead of the data details, and then the 

visual complexity and clutter can be reduced accordingly; The minimization of edge 

crossings is a problem of graph drawing. Through the optimization of geometric 

positions of nodes and edges to reduce the edge crossings among edges is the main 

method for visual clutter reduction. 

 

To enhance the high-dimensional data visualization, some studies on dimension 

reordering have been done to find good axes layouts in visualization techniques both in 

one- or two-dimensional arrangement (J.Bertin 1983; Johansson and Johansson 2009; 

Tatu, Albuquerque et al. 2009; Dasgupta and Kosara 2010; Bertini, Tatu et al. 2011) 
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(Hahsler, Hornik et al. 2008; Hurley and Oldford 2010) (Ankerst, Berchtold et al. 1998; 

Friendly and Kwan 2003; J. Yang 2003; Peng, Ward et al. 2004; Artero, Oliveira et al. 

2006). Mihael Ankerst et al. (Ankerst, Berchtold et al. 1998) defined similarity 

measures which determined the partial or global similarity of dimensions and argued 

that the reordering based on similarity could reduce visual clutter and do some help in 

visual clustering. Wei Peng et al.(Peng, Ward et al. 2004) introduced the definition of 

the visual clutter in parallel coordinates as the proportion of outliers against the total 

number of data points and they tried to use the exhaustive algorithm to find the optimal 

axes order for minimizing the member of edge crossings (or visual clutter). As 

mentioned in (Artero, Oliveira et al. 2006), the computational cost  ( !)n n  hampers 

applications of this technique to large high dimensional data sets. Almir Olivette Artero 

et al. (Artero, Oliveira et al. 2006) introduced the dimension configuration arrangement 

based on similarity to alleviate clutter in visualizations of high-dimensional data. They 

proposed a method called SBAA (Similarity-Based Attribute Arrangement), which is a 

straightforward variation of the Nearest Neighbor Heuristic method, to deal with both 

dimension ordering and dimensionality reduction. Other studies have been done on the 

dimension reordering based on the similarity(Friendly and Kwan 2003; J. Yang 2003; 

Tatu, Albuquerque et al. 2011) (Guo 2003) (Albuquerque, Eisemann et al. 2010).  

Michael Friendly et al.(Friendly and Kwan 2003) designed a framework for ordering 

information including arrangement of variables. However, the arrangement of variables 

is decided mainly according to the users’ desired visual effects. J. Yang et al. (J. Yang 

2003) established a hierarchical tree structure over the attributes, where the similar 

attributes were positioned near each other. Diansheng Guo (Guo 2003) developed a 

hierarchical clustering method, which was based on comparison and sorting of 

dimensions by use of the maximum conditional entropy. Georgia Albuquerque et al. 
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(Albuquerque, Eisemann et al. 2010) introduced the quality measures to define the 

placement of the dimensions for Radviz and also to appraise the information content of 

pixel and Table Lens visualizations.  

 

In addition, few approaches have been done for extensions of axes in PCP. Claessen et 

al. (Claessen and van Wijk 2011) develop flexible linked axes to enable users to define 

and position coordinate axes freely. Axes-based techniques with radial arrangements of 

the axes are developed by Tominski(Tominski, Abello et al. 2004), termed as 

TimeWheel and the MultiComb, which can combined with some conventional 

interaction techniques. With the combination between interaction techniques and PCP, 

Hauser et al. (Hauser, Ledermann et al. 2002) design a angular brushing technique to 

select data sub-sets which exhibit a data correlation along two axes. 

 

Even though the data can be represented in a novel and meaningful visualization system 

without losing any features, PCP always suffer from crowded dimensions, hardly 

figuring out the relationship between attributes in non-adjacent positions, over-plotting 

and clutter et al, which are mainly caused by the increasing size of datasets and the large 

number of dimensions. Therefore, this thesis is to study the optimization methods for 

PCP in order to improve the performance of it. 

 

1.4 RESEARCH CHALLENGES 

Though visualization techniques greatly help viewers to find the patterns and structures 

which are hidden in the large scale datasets, most visualization techniques fail to present 

the incomplete datasets. The incompleteness of data would be difficult for further 
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analysis. Therefore, in this research, we propose novel methods to reduce the visual 

clutter of incomplete multi-dimensional data (or non-numerical multi-dimensional data) 

in parallel coordinate plot. 

 

Parallel coordinate plot, as a geometry-based visualization technique, visualizes the 

dimensions of datasets into different axes. During the past years, many researches on 

the similarity of dimension have been proposed with this visual technique. However, 

these methods have been proved to be a NP-complete problem. Though the traditional 

heuristic algorithms can help in finding an optimal order of axes for one- or 

two-dimensional visualizations, most studies have not been done to a deeper 

investigation on how to determine the first dimension (the most significant dimension) 

in multi-dimensional data visualizations, and the first dimension always attracts much 

more user’s attention than the others. Therefore, we may consider the one with the 

highest contribution rate as the first dimension to simplify the traditional 

similarity-based re-ordering method and to find out the optimal order of parallel axes in 

a short time period; we will also propose the method to find out the contribution of each 

dimension in the dataset. And then, we present a similarity-based re-ordering method in 

parallel coordinate plot, which is sensitive to any relationships, including the linear 

dependence.  

 

As parallel coordinate plots was firstly introduced and suggested as a tool for high 

dimensional data analysis in the approximately 30 years, little improvements have been 

done to the algorithm itself. In our research, we also propose a new projection method 

which is able to visualize more data items in the same display space than the existing 

parallel coordinate methods. Moreover, we make a mathematical demonstration of the 

method to show our method that can enjoy some elegant duality properties with parallel 
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coordinate plot and Cartesian orthogonal coordinate representation. 

 

To reduce the visual clutter and achieve the optimized representations of data in parallel 

coordinate plot, we need conclude the following questions: 

 

 RQ1. How to optimize the visual representation and reduce the visual clutter when 

we visualize the non-numerical data in parallel coordinate plot? 

 

 RQ2. How to determine the positions of the incomplete data attribute values firstly 

when we visualize them in parallel coordinate plot? 

 

 RQ3. How to permute the incomplete data attribute values to find the optimal 

positions to reduce the visual clutter when we visualize the incomplete numerical 

data in parallel coordinate plot? 

 

 RQ4. To measure the similarity of the data items (dimensions), which algorithm is 

suitable and rational to reveal the correlation of the dimensions? 

 

 

 RQ5. In parallel coordinate plot, the first remarkable axis always attracts much 

more visual attention. How to determine the first axis in visualization when we 

propose similarity-based re-ordering method? 

 

 RQ6. Many extended parallel coordinate methods are proposed by the researchers. 

How to transplant and revise the methods we proposed in the above to the new 
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techniques based on the parallel coordinate plot? 

 

 RQ7. Except the above methods to optimize the positions of values or dimensions, 

what interactive techniques can be used in parallel coordinate to reduce the visual 

clutter? 

 

 RQ8. Combined with reducing edge crossing and enlarging the mean crossing 

angles in parallel coordinate plot, can we propose a new method to reveal the main 

characteristic of visual clutter? 

 

 

1.5 RESEARCH OBJECTIVES 

This research will be designed to focus on four primary research objectives based on the 

above research problems to optimize parallel coordinates. 

 RO1. To optimize the positions of attribute values in parallel coordinate plot, it 

is necessary to propose a novel method to position the dummy vertices and 

permute the order of vertices (aim to answer RQ1, RQ2 and RQ3). 

For dummy vertices with uncertain values, we initially position each of them at the 

crossing point of its axis and a polygonal line connecting the vertex of its left hand side 

neighboring axis through the maximization of crossing angles to increase the readability 

of graphs. 

 

Supposed that the data values in the second axis of parallel coordinates are 

non-numerical data, we can permute the order of all the crossing points (vertices) in this 
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axis to minimize the number of edge crossings between two neighboring axes, and then 

determine the best positions of data values to reduce the visual clutter and increase the 

readability effectively. In fact, if the data values in the second axis are numerical data, 

not all the data points can be reordered because of their unequal relations and practical 

meanings, whereas the new algorithms can be used to permute the order of the missing 

datum. 

 

 RO2. To measure the similarity, it is necessary to propose a method based on 

contribution to determine the first remarkable dimension in parallel coordinate 

plot; and further present a new method which can detect linear and nonlinear 

relationships between two dimensions sensitively (aim to answer RQ4 and RQ5). 

The first dimension always attracts much more user’s attention than the others. 

Therefore, we may consider the one with the highest contribution rate as the first 

dimension to simplify the traditional similarity-based re-ordering methods and to find 

out the optimal order of parallel axes in a short time period. Therefore, we will propose 

a method based on the contribution, which not only can give the theoretical support for 

the selection of the first dimension but also can visualize a clear and detailed structure 

of the dataset with the contribution of each dimension. Consequently, the computational 

complexity of clutter reduction methods can be greatly reduced and much more time 

correspondently could be saved through the new method than any other traditional 

reordering ones. 

 

The correlation of two variables (dimensions/attributes) is a statistical technique that 

can indicate the magnitude relationship between the two variables. It also shows the 

way how the two variables interact with each other. It can be easily seen in the research 
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that linear correlation can detect the dependence of two variables, while in the real 

world the correlations can also be nonlinear. So we will propose a method to measure 

the linear or nonlinear relationship between the two dimensions in multidimensional 

datasets and it is sensitivity to any relationship.  

 

 RO3. To extend the proposed methods to the improved parallel coordinate plot 

techniques, it is necessary to develop a system based on the proposed methods and 

some interaction techniques which can reduce the visual clutter easily and 

quickly (aim to answer RQ6 and RQ7). 

To propose a new projection method which is able to visualize more data items in the 

same display space than the existing parallel coordinate methods, we do some 

researches on polar coordinates to demonstrate that our method can enjoy some elegant 

duality properties with parallel coordinate plot and Cartesian orthogonal coordinate 

representation. 

 

Continuous parallel coordinates are designed and studied for visualizing the datasets on 

a continuous domain in recent years. So far the structure of the visualization in all 

parallel coordinate methods is more or less fixed, and the user can only change some 

properties of the given representations. Some researchers also propose methods to freely 

define and position coordinate axes, suitably to specify visualizations and flexibly to 

link the axes of parallel coordinate plot. To transplant our methods into these new 

techniques, we will combine some interaction techniques with our proposed methods to 

reduce the visual clutter on continuous domain, and propose a self-adapting visual clutter 

reduction method to the new improved parallel coordinate plot techniques. 
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 RO4. To demonstrate the effectiveness of our methods in visual clutter reduction, 

it is necessary to propose the method based on statistics to evaluate the visual 

representations except the traditional reducing edge crossing and enlarging the 

mean crossing angles (aim to answer RQ8). 

To show the advantages of the readability and understandability of our method, we 

propose a formula to calculate the mean angles occurring among the polygonal lines 

between two neighboring attributes. Except this method to evaluate the visual clutter, 

we will design a user study and analyze it using statistical theory. Finally we will 

develop a new evaluation system to demonstrate the effectiveness of the methods in 

reducing the visual clutter. 

 

1.6 CONTRIBUTIONS 

The uncertainty in data visualization is a new research field, which represents 

incomplete data for analysis in real scenarios. In many cases, datasets, especially 

multi-dimensional datasets, often contain either errors or uncertain values. To address 

this challenge, we may treat these uncertainties as scalar values like probability. For 

achieving visual representation in parallel coordinates, we draw a small “circle” to 

temporarily define a dummy vertex for an uncertain value of a data item at the crossing 

point between polylines and the axis of certain dimension. Furthermore, these 

temporary positions of uncertainty could be permuted to achieve visual effectiveness. 

Further, optimizing the order to uncertain values can provide a great opportunity to 

tackle another important challenge in information visualization: clutter reduction. As a 

result, optimizing the order of uncertain values will have a great opportunity to tackle 

another important challenge in information visualization: clutter reduction. Visual 



 20

clutter always obscures the visualizing structure even in small datasets. In this thesis, we 

apply Sugiyama’s layered and directed graph drawing algorithm into parallel 

coordinates visualization to minimize the number of edge crossing among polylines, 

which has been proved to significantly develop the readability of visual structure. The 

experiments made in case studies have shown clearly the effectiveness of our new 

methods for clutter reduction in parallel coordinates visualization. And they also have 

implied that besides visual clutter, the number of uncertain values and the type of 

multi-dimensional data are important attributes to affect visualization performance in 

this field. The visualization and interaction of multidimensional data always require 

optimized solutions to integrate the data presentation, exploration and also analytical 

reasoning into one visual pipeline for human-centered data analysis and interpretation. 

Parallel coordinate, as one of the most popular multidimensional data visualization 

techniques, is suffered from the visual clutter problem. Though changing the ordering of 

axis is a straightforward way to work it out, optimizing the order of axis is a 

NP-complete problem. In this thesis, we propose a new axes re-ordering method in 

parallel coordinates visualization, a similarity-based method, which is created on the 

basis of Nonlinear Correlation Coefficient (NCC) algorithm and Singular Value 

Decomposition (SVD) algorithm. By using this approach, the first remarkable axis can 

be selected on mathematical theory and then all axes will be re-ordered in line with the 

degree of similarities among them. Meanwhile, we would also propose a measurement 

of contribution rate of each dimension to reveal the properties hidden in the dataset. At 

last, case studies demonstrate the rationale and effectiveness of our approaches: NCC 

reordering method can enlarge the mean crossing angles and reduce the amount of 

polylines between the neighboring axes. It can reduce the computational complexity 

greatly in comparison with other re-ordering methods. 
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With the rapid growth of data communications in size and complexity, it is available to 

get data on shared data cloud computing platform, and meanwhile the threat of 

malicious activities and computer crimes have increased as well. Thus, it is urgently 

required to develop efficient data visualization techniques for visual network data 

analysis and visual intrusion detection over data intensive cloud computing. In this 

thesis, we first propose a new parallel coordinates visualization method that is 

characterized by arced-axis for high-dimensional data representation. This new 

geometrical scheme can be efficiently used to identify the main features of network 

attacks by displaying recognizable visual patterns. In addition, with the aim of 

visualizing a clear and detailed structure of the dataset according to the contribution of 

each attribute, we propose a meaningful layout for the new method based on the 

singular value decomposition (SVD) algorithm, which possesses the statistical property 

and can overcome the curse of dimensionality. Finally, we design a prototype system for 

network scan detection, on the basis of our visualization approach. The experiments 

have shown that our approach is effective in visualizing multivariate datasets and 

detecting attacks from a variety of networking patterns, such as significantly 

distinguishing the features of DDoS attacks. 

 

An arc-based parallel coordinates visualization method, termed arc coordinate plots 

(ACP), is developed to extend the axes in parallel coordinate plots. Because the length 

of arc is longer than the line segments, the density of points displayed in each axis of 

our method could be enlarged. Moreover, ACP can preserve much more geometric 

structures of the data, such as the circular data. At the second stage, we leverage 

singular value decomposition algorithm to provide a new way of looking into the 

dimensions within datasets. We propose the contribution-based visualization method 
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and a formula for contribution rate of each dimension. At last, the experimental 

evaluations demonstrate the effectiveness and rationale of our approaches especially the 

applications in security domain. 

 

To sum up, this study applies optimization techniques to reduce the visual clutter caused 

by the positions of attribute values and the order of dimensions in parallel coordinate 

plot. To combine tasks with research objectives, an intelligent visual analytics system 

will be designed for clutter reduction, which can enhance the visual readability and 

understandability. Based on the above objectives, the research expected outcomes and 

contributions will be as follows: 

 A new algorithm to reach optimization of reducing edge crossings by determining 

the optimal positions of attribute values. - 

 

 A new method to guide the parallel coordinate plot to visualize the datasets in line 

with the contribution of each dimension. 

 

 A new similarity-based reordering method, through calculating the similarity 

between the two dimensions which is sensitive to any relationships between the two 

dimensions to optimize dimension order according to the similarity in parallel 

coordinate plot. A new similarity-based reordering method: That is to optimize 

dimension order through calculating the similarity of two dimensions in parallel 

coordinate plot for being sensitive to any relationships of two dimensions. 

 

 A new method to combine the proposed methods with the improved parallel 

coordinate plot techniques. 
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1.7 THESIS ORGANIZATION 

In this thesis, we present some clutter reduction methods, propose our optimization 

approaches, discuss the implementation of optimization algorithms and demonstrate 

their capability in processing the practical problems by using of visual analysis. And 

then we evaluate the approaches based on optimization criteria and graph drawing 

aesthetics. Finally, we conduct some case studies in network security and assess the 

performance of optimized parallel coordinate plots in comparison with traditional 

parallel coordinate plots.  

 

The thesis is organized as follows: Chapter 1 describes the introduction of parallel 

coordinate plots and the visual clutter occurred in process the data using PCP; and 

related work and the challenges of these latest technologies are presented in this Chapter 

as well; the enclosure approaches on high dimensional data visualization are concluded 

in this chapter.  

 

In Chapter 2, we introduce a layered directed graph drawing algorithm into parallel 

coordinates for visualization of uncertainty.  Clutter and corresponding reduction 

methods are firstly described in Section 2.1. And then we propose our vertices 

optimization method in parallel coordinate plots and develop a multi-objective 

optimization algorithm as well in Section 2.2. Section 2.3 explains the algorithms of the 

approach by using of illustrations, examples and experimental results. At last, the 

conclusion of this chapter is described in Section 2.4. 

 

We propose a new method to improve the readability and understandability of parallel 

coordinates visualization theoretically, i.e. a new axes re-ordering method in PCP in 
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Chapter 3. Firstly, in Section 3.1, we explain the similarity measure of all axes, which 

are different attributes visualized in PCP. In the same section, we present the dimension 

re-ordering methods based on similarity as well. We present a method, named 

similarity-based reordering method, for calculating the similarity between the two 

dimensions based on the nonlinear correlation coefficient and singular value 

decomposition algorithms instead of the traditional Pearson’s correlation coefficient, 

and then visualize the optimal dimension order according to the similarity in parallel 

coordinates in Section 32. In Section 3.3, we conduct the experimental evaluations to 

demonstrate the effectiveness and rationale of our approaches: NCC reordering method 

enlarges the mean crossing angles of the whole data set and reduces the amount of 

polylines among some neighboring dimensions. In the final Section 3.4, we conclude 

the whole chapter and present the future work of this approach.  

 

As to another innovative part of this thesis, Chapter 4 presents a novel approach to 

extend the parallel axes in parallel coordinates plane theoretically, which is termed arc 

coordinate plots (ACP). Because the length of arc is longer than the line segments, the 

density of points displayed in each axis of our method could be enlarged. Moreover, 

ACP can preserve much more geometric structures of the data, such as the circular data. 

At the second stage, we leverage singular value decomposition algorithm to provide a 

new way of looking into the dimensions within datasets. We propose the 

contribution-based visualization method and a formula for contribution rate of each 

dimension. At last, the experimental evaluations demonstrate the effectiveness and 

rationale of our approaches especially the applications in security domain. 

 

From Chapter 2 to Chapter 4, we have done many case studies and achieved some good 



 25

results to demonstrate the effectiveness of our algorithms. As regards the data sets that 

we have used in our experiments, random data sets and some popular data sets available 

online for data mining research [(Irvine Machine Learning Repository) 

(http://archive.ics.uci.edu/ml/datasets/Car+Evaluation)]. In order to know about the data 

comprehensively, I list the following table to illustrate the details of the data sets we 

used in the thesis, which includes the number of dimensions and the size of the data 

sets. 

Table 1 Details of data sets used in the thesis. 

Data sets Size Selected Dimensions Used in Chapter 

Random 1 100 2 Chapter 2 

AMEXA  55 2 Chapter 2 

Forbes94 100 5 Chapter 2 

Cars  406 7 Chapter 3,4 

Liver Disorders 345 7 Chapter 3 

Random 2 50 2 Chapter 4 

KDD Cup 1999 1113 42 Chapter 4 

 

As the last part of my thesis, the conclusions and contributions what I have achieved 

during my studies in our university are presented in Chapter 5. Furthermore, I proposed 

the research problems which occurred during my research in the last part of this chapter. 

Following this chapter, I listed the papers what I have finished and published about this 

research topic. 
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Chapter2. VERTICES OPTIMIZATION 

IN PARALLEL COORDINATE PLOTS  

2.1 CLUTTER DESCRIPTION IN PCP 

Today high dimensional data analysis is becoming more and more important as the 

number of analyzing applications increases, such as the analysis of bio-informatics data, 

networking data, social network data and so on. But an important challenge is that the 

real-world datasets are often incomplete, and various reasons cause this issue, such as 

the missing of data values when collect data source, and this  incompleteness of data is 

undesirable for the analysts. Though visualization techniques greatly help the viewers to 

find the hidden patterns and structures in the large scale datasets, most visualization 

techniques fail to present the incomplete datasets. 

 

Uncertainty visualization is a new research field which is dealing with the 

representation of uncertainties in datasets, and it has  attracted many researchers during 

the last few years (Martin Theus 1997; Pang, Wittenbrink et al. 1997; Swayne and Buja 

1998; Johnson and Sanderson 2003; Cyntrica Eaton 2005; Popov 2006; Feng, Kwock et 

al. 2010; Skeels, Lee et al. 2010). In AVI’08 conference, senior Microsoft research 

scientist George Robertson and his team classified the uncertainty into five different 

levels(Skeels, Lee et al. 2010). 1) Measurement Precision; 2) Completeness; 3) 

Inference; 4) Disagreement and 5) Credibility levels. Especially inn the second level 

(completeness level), the main concern is how to recover and represent the missing data 

(or missing information), which truly exist, but their specific values are unknown by 
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people. And the uncertainties in completeness level are quite often occurred in high 

dimension datasets.  

 

Visual clutter is one of the most significant problems in visualization; especially in large 

scale data visualization, it seriously damages the quality of visualization in readability 

and understandability, and most visualization techniques need strategies to deal with 

this problem, which includes overcrowded displays, and fitting large volume of data in 

small display space. Many efforts (Laguna, Mart et al. 1997; Ankerst, Berchtold et al. 

1998; Wei-xiang and Jing-wei 2001; J. Yang 2003; Peng, Ward et al. 2004; Ellis and Dix 

2006; Pascale, Bruno et al. 2006; Ellis and Dix 2007; Hong Zhou 2008; Peihong, He et 

al. 2010; Huang and Huang 2011) have been put to deal with the visual clutter in 

completed data visualization. In multi-dimensional data visualization, especially in the 

parallel-coordinates visualization, there are three directions for the current research of 

visual clutter reduction: 1) dimension reduction(J. Yang 2003; Peng, Ward et al. 2004) ; 

2) data clustering(Ankerst, Berchtold et al. 1998; Hong Zhou 2008; Peihong, He et al. 

2010); and 3) minimization of edge crossings(Laguna, Mart et al. 1997; Wei-xiang and 

Jing-wei 2001; Pascale, Bruno et al. 2006; Huang and Huang 2011). The first approach 

is to find and filter some less important data attributes for simplifying the decision 

making or problem solving processes, and in this case,, the visual clutter and visual 

complexity will be reduced accordingly in the corresponding visual representation of 

the data; The second is data clustering, which is one of the data mining approaches to 

group data items based on a variety of rules, such as data similarity, and through data 

clustering, we can display some abstract clusters instead of the data details, and then the 

visual complexity and clutter can be reduced accordingly; The minimization of edge 

crossings is a problem of graph drawing. Through the optimization of geometric 
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positions of nodes and edges to reduce the edge crossings among edges is the main 

method for visual clutter reduction. Our research is focusing on the reduction of edge 

crossings in parallel-coordinates visualization. Visual clutter often occurs in 

parallel-coordinates visualization of multidimensional data (see Fig. 9) along with the 

growing of dimensionality and the number of data items as well. When the dimensions 

or number of data items grows higher, it is inevitable to display some clutters, no matter 

what visualization method is used(J. Yang 2003). 

 

Figure 9 Examples of visual clutter in parallel coordinates visualization. See regions 

bounded by two ellipses that contain a large number of edge crossings. 

 

In this chapter, we also use Sugiyama algorithm, which is known as layered graph 

drawing method and is one of the most effective methods that can be used to reduce 

edge crossings in visualization. It forms all edges into polylines and places all vertices 



 30

on a number of horizontal layered for optimization. It produces clear and intelligible 

layouts of hierarchical digraphs theoretically and heuristically. Vertices of each layer are 

reordered to reduce crossing numbers while holding the vertex orderings on the other 

layers. We select this method in our parallel-coordinates visualization because we could 

naturally transplant the polyline property from Sugiyama layout method into the 

parallel-coordinates visualization. In this thesis, we propose a novel method for clutter 

reduction of incomplete multi-dimensional data through the reduction of edge (polyline) 

crossings. 

 

2.2 NEW ALGORITHM FOR CLUTTER REDUCTION 

In parallel coordinates visualization, we use m vertical axes to represent 

a m dimensional space. The ordering of these axes in the visualization is a random set. 

However, as the axes ordering changes, the drawing of polylines will also be changed. 

Different orders of axes always reveal different visual structures in multi-dimensional 

datasets. Wei Peng etc. (Peng, Ward et al. 2004) defined the visual clutter in parallel 

coordinates as the proportion of outliers against the total number of data points, and 

they tried to use the exhaustive algorithm to find the optimal axes order for minimizing 

the member of edge crossings (or visual clutter). Different from Wei Peng’s re-ordering 

approach, we propose a new method to permute the ordering of polylines (the visual 

representation of data items) to minimize the number of edge crossing. As we focus on 

the incomplete dataset, which some values are missed in particular axes, it is possible to 

alter the positions of polylines, and because the crossing points between those polylines 

with missing (or uncertain) values and the corresponding axes are changeable,we could 

optimize the positions of those crossing points to achieve the reduction of edge crossing 
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(or visual clutter).  

 

Many sources could produce uncertain (or missing) values, such as uncollected data, 

data source confidentiality, redefined data categories, mutually exclusive multivariate 

combinations and uncertainty deemed excessive(Cyntrica Eaton 2005), and normally 

they can be classified into non-numerical values and numerical values. In this section, 

we will discuss our new approaches to handle these data. Here all the algorithms are 

considered to be used for two-dimensional datasets. And these methods can be easily 

extended to the multi-dimensional datasets. 

 

Supposed that the data values in the second axis of parallel coordinates are 

non-numerical data, we can permute the order of all the crossing points (vertices) in this 

axis to minimize the number of edge crossings between two neighboring axes, and then 

determine the best positions of data values to reduce the visual clutter and increase the 

readability effectively. In fact, if the data values in the second axis are numerical data, 

not all the data points can be reordered because of their unequal relations and practical 

meanings, whereas the new algorithms can be used to permute the order of missing data. 

The following is the theoretical algorithm for the optimal positioning of vertices for 

reducing the visual clutter in parallel coordinates. 

 

Algorithm 1. Determination of positions of incomplete data 

 

In our methods, we use a small “circle” to create a dummy vertex for presenting an 

uncertain value 
,i j

ev of the thi data item in the crossing point between polyline ( )thL i and 
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the thj axis. The position of the small “circle” could be permuted. This feature provides a 

great opportunity to optimize the positions of these dummy vertices for the reduction of 

edge crossings (or visual clutter). 

 

Suppose that a n dimensional parallel coordinates’ system is given, where the points 

on the first axis are fixed and some of the vertices are dummy vertices that represent the 

missing or uncertain values with changeable positions in the second axis. We assume 

that all the values in the second axis are non-numerical in our visualization. Given a 

value set of the thi  multi-dimensional data item is 

,1 ,2 ,( , , , ), 1,2,3, ,i i i i nV v v v i m , 

where m  is the total number of data items. The thj axis (or dimension) in parallel 

coordinates is defined to be , 1,2,3, ,j j n  while , , 1,2,3, ,i jv j n  is the value 

of the thi data item in the crossing point between polyline ( )thL i and the thj axis. 

Suppose that , , , 1,2,3, , ; 2,3, ,e
i j i jv v i m j n  behaves that the value of ,i jv is 

uncertain, see the example visualization in Fig. . 

 

Figure 10 The example display of uncertain values visualized in parallel coordinates. The 

lines in red and green behave realistic and uncertain data respectively. The dummy 
vertices are shown by green circle. 
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Step1: Initial positions of dummy vertices 

We first equidistantly map vertices with certain values of all data items to axis in the 

visualization. For dummy vertices with uncertain values, we initially position each of 

them at the crossing point of its axis and use a horizontal straight line to connect the 

vertex of neighboring axis on the left hand side. 

 

If we draw a straight line between these two points, we could find that the angle 

between this straight line and two neighboring axes is90 . This is exactly expected by 

Huang, etc.(Huang and Huang 2011)in their evaluation result, which is using 

maximization of crossing angles to increase the readability of graphs. In our 

experiments, we also examine the rationality and correctness of graphs. 

 

Suppose that js  denotes the total number of uncertain values in the thj dimension j . 

The initialized positions 
,, [ ]

i j

e
i jv v of uncertain values can be calculated by the 

following nonlinear equation system: 

, 1 , , ,

2 2/ ( ) ( ) , 1,2, ,
i j i j i j i j

normal normal
j

i i
v v v v i s                      eq. 1  

 

Here we assume that the datasets in parallel coordinates are visualized after the values 

are normalized into the interval[0,1] . 
, 1i j

normalv and 
,i j

normalv denote the normalized complete 

values in ( 1)thj and thj  axes separately. 

 

Step2: Suboptimum positions of dummy vertices 

In general, the number of uncertain values is always less than certain values in data sets. 
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Therefore, we could optimize the positions of dummy vertices (uncertain value 
,i j

ev ) by 

altering their initial positions. We calculate the number of edge crossings through the 

following formula and assign a suboptimum position for the dummy vertex with 

minimum number of edge crossings with other polylines: 

,
0

arg min ( )
i j

j

e

e s
v                                 eq. 2 

where  

    ( ) : the function of edge crossing number.  

 

In the above function, the independent variable is the number of edge crossings with the 

straight line , 1 ,( , )e
i j i jL v v and other straight lines between ( 1)thj and thj neighboring 

axes. 

 

Step3: Reducing edge crossings to reach optimization 

In this step, we permute the order of vertices to minimize the number of edge crossings 

between each pair of the neighboring axes using Penalty Minimization method (PM 

method ), which is proposed by Sugiyama in (Sugiyama, Tagawa et al. 1981). The 

method is summarized below: 

 

Let , 1( )j jP denotes a set of possible pairs of values (or positions) in two neighboring 

axes j  and 1j , where some of the values in 1j are uncertain and the corresponding 

vertices are dummy. However, after the implementation of step 2 all dummy positions 

in 1j are sub-optimized. We consider the further permutation of the order of straight 

lines linking each pairs of vertices between axes j  and 1j . 
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Step 3.1  Get the map m and the matrix realization M of the data items between the two 

coordinates, and calculate the number of edge crossings; 

Step 3.2  Calculate the penalty digraph D  for 1j  ; 

Step 3.3  Obtain all the strongly connected components in penalty digraph D ; 

Step 3.4  Eliminate all the cycles in the strongly connected component, and get the 

minimum feedback arc set; 

Step 3.5  Get the optimal orders of the vertices in 1j by reversing the directions of 

straight lines; 

Step 3.6  Form the new map m and matrix realization M for the solution, and 

calculate the reduced crossing number. 

 

2.3 CASE STUDIES 

In this section, we will explain the case studies in incomplete random and real world 

datasets. The experiments were implemented in java and run on a standard Microsoft 

Windows 7 desktop PC with an Intel(R) Core(TM) 2 Duo CPU @ 2.16 GHz, 2.0GB 

memory. The comparable visualization results are illustrated in Fig. 11, 12 and 13, and 

the measurements of clutter reduction are summarized in Table 1 and 2. These examples 

will demonstrate the effectiveness of our clutter reduction approaches in 

multi-dimensional visualization of uncertainty.  

 

Taking data with two-dimension as the simplest multidimensional example, the 

experiments are conducted into two cases. First we use a random dataset (See Table 1) 

with five missing values in the second dimension 2 , where all the values are 

non-numerical, and there are mainly three steps to complete data in this case. In step 1, 
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the initial representation indicates four groups of clustered polylines, refer to Fig. 

11(a)which shows the initial positions of complete data in polylines colored with pink, 

red, yellow and blue and incomplete data colored with green, which were mapped from 

corresponding values in each dimension. And then Fig. 11(b) illustrates the suboptimum 

result of incomplete data after step 2 of our new method, and the number of edge 

crossings reduces to 1256 from the original 1312, the final step is by the use of 

permuting the vertices order in the second axis (see in Fig. 11 (c)), the number of edge 

crossings drops by 59.5% to 532. In the final visualization result, the number of dummy 

vertices has merged from 5 to 2. In the second example, we applied new method into 

stock market analysis. The dataset used is historical stock prices for AMEX stocks 

beginning with the letter A (AMEXA dataset), with two dimensions named 

“Stock_symbol” and “Volume”. Volume attribute contains numerical values with ten 

unknown values. The comparison of initial and final visualization results is presented in 

Fig. 12(a) and (b). The number of edge crossing reduces from 519 to 464 and the 

number of dummy vertices decreases from 10 to 3. 

       

(a)             
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 (b) 

 

 

(c) 

Figure 11 Case 1 - Random data in parallel coordinates: (a) The initialization of 

incomplete data items; (b)Visualization of suboptimum positions of uncertain values; (c) 
The optimal positions of vertices.        
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(a)  

  

(b) 

Figure 12 Case 2 - An incomplete dataset AMEX A visualized in parallel coordinate 

visualization: (a)The initial drawing of the given data with ten uncertain values; (b) The 
new drawing of the same given data after the implementation of our optimization method. 

The data source is available at: http://davis.wpi.edu/xmdv/datasets/amexa.html. 
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To apply the method into more complicated scenario, the third experiment has been 

extended in real data with more dimensions. Fig. 13 shows a visual performance for 

incomplete Forbes list in 1994(Forbes94 dataset), which contains five dimensions. In 

this case, we assume that the order of dimensions is fixed from company CEO to wide 

industry, industry, city of birth and age of graduate. The last dimensional attribute is 

numerical, while the rest are non-numerical. There are 5, 10, and 20 uncertain values in 

the last three dimensions 3 4 5, , respectively. As a result, total 35 dummy vertices on 

axes have reduced to 7. The clutter reduction has been achieved by decreasing the 

number of edge crossings from 7979 to 4176. The individual reduction measurement of 

each pair of dimensions 1( , ), 1,2,3,4j j j has been detailed in decomposition Table 2. 

 

Review the final visualization results, we found that  

 The approach merged dummy vertices into fewer positions on every axis, linked 

by clustered polylines in parallel coordinates, which significantly reduce the 

noise of incomplete data items with missing values. 

 The number of edge crossing become fewer and the visual quality has been 

improved, as edge crossing numbers is an important attribute for visualization 

aesthetics. Therefore, the clutter has been reduced for both complete and 

incomplete data items in visualization. 

 

In addition, Table 1 and 2 provide following insights: 

 In the first case, the total reduction percentage is almost 60% much higher than 

10.6% in the second case. In decomposition of the third case, the reductions of 

1 2( , ) 2 3( , ) 3 4( , ) are also greater than 4 5( , ) . The reason is that 

non-numerical values have more opportunities to be re-ordered, so the order of 
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incomplete numerical data is relatively fixed. Therefore, for numerical attributes, 

step 3 of the method may not be necessary in most cases. 

 Accordingly, the comparison results of clutter reduction reveal that 

multi-dimensional data with non-numerical values has more potential to reduce 

clutter than the data with numerical values. 

 The number of missing values accordingly increases from 5, to 10 and to 20, 

meanwhile, the clutter reduction of 1 2( , ) 2 3( , ) 3 4( , ) 4 5( , )  is decreased 

respectively. This illustrates that the number of uncertain values is an important 

attribute to significantly affect visualization quality as well.  
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Table 2 Clutter reduction using optimal ordering algorithm for all cases. 

Data 

properties 

Case Random AMEX Forbes94 

Data type Non-numerical Numerical Combination 

Dimensionality 2 2 5 

Uncertain 

vertex 

measurement 

Uncertain attribute           

Uncertain 

attribute 

value 

5 10 5 10 20 

Final dummy vertex 2 3 3 2 2 

Uncertain vertex reduction % 60% 70% 80% 

Edge 

crossing 

measurement 

Step1 1312 519 7979 

Step2 1256 464 N/A 

Reduction after step2 56 55 N/A 

Reduction % 4.30% 10.60% N/A 

Step3 532 464 N/A 

Overall reduction 780 55 3803 

Overall % 59.50% 10.60% 47.70% 
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Table 3 Clutter reduction in dimension decomposition for Case 3 Forbes94. 

 

 

 

Forbes94 Case study 

Dimension decomposition Each dimension clutter reduction measurement 

Dimension Data type Uncertain 

value 

Edge 

crossing 

number 

After 

optimization 

Crossing 

Reduction 

Reduction in 

dimension 

% 

Overall 

reduction 

 

1 2( , )
 

Non-numerical 0 2329 814 1515 65.0% 19.0% 

2 3( , )
 

Non-numerical 5 2087 636 1451 69.5% 18.2% 

3 4( , )
 

Non-numerical 10 2024 1257 767 37.9% 9.6% 

4 5( , )
 

Combination 20 1539 1469 70 4.5% 0.9% 

Total 

 

Combination 35 7979 4176 3803 N/A 47.7% 
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(a) 
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(b)                                                                

Figure 13: Case 3 - Forbes 94, a dataset with 5 variables visualized in parallel 

coordinate visualization: (a) Original plot; (b) after clutter reduction. Data from 

http://www-stat.wharton.upenn.edu/ waterman/fsw/datasets/txt/Forbes94.txt 
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2.4 SUMMARY 

In this section, we leverage a layered directed graph drawing algorithm into parallel 

coordinates for visualization of uncertainty. In the first stage, a nonlinear equation 

system is deployed to obtain the initial positions for all uncertain values. In the second 

stage, a multi-objective optimization algorithm is adapted to relocate positions for the 

dummy vertices. In the final stage, the penalty minimization method finalizes 

ordering of all vertices. 

 

The case studies showed the clutter reduction among polylines and demonstrated the 

effectiveness of the method with better visual structure in parallel coordinates 

visualization. These experiments also illustrated that the number of edge crossings, 

uncertain values and the attributes of multi-dimensional data could play important 

roles in affecting visualization performance. 

 

In order to advance technology towards information visualization of uncertainty, 

formal evaluation needs to be conducted in the future. Based on the evaluation results, 

we will not only work on visual quality but also further modify the algorithm in order 

to reduce complexity of computing time for larger datasets. 
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Chapter 3. NEW AXES RE-ORDERING 
METHOD IN PARALLEL COORDINATE 
PLOTS  

3.1  SIMLARITY MEASURE AND DIMENSION 

RE-ORDERING METHODS 

Multi-dimensional data analysis is becoming a commonplace as the number of 

applications increases, such as statistical and demographic computation, digital 

libraries and so on. However, traditional visualization techniques for these datasets 

usually require dimensionality reduction or selection to generate the meaningful visual 

representations. Dimensionality reduction, as Sara Johansson et.al pointed out, is 

always employed prior to visualization for dealing with the data with a large number of 

attributes(Johansson and Johansson 2009).  Currently, many dimensionality reduction 

methods are able to preserve the information inside the data as much as they can by 

removing some less relevant data items or attributes from the original dataset. While 

dimension selection is mainly referred to dimension re-ordering which means that the 

corresponding axe of the dimension in a parallel coordinate visualization can be 

positioned in accordance to some effective rules such as similarity of dimensions to 

achieve good visual structures and patterns. This chapter focuses on the dimension 

re-ordering rather than dimension reduction to address the problems of visual clutter 

and computational complexity. 
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3.1.1  SIMLARITY MEASURE 

In 1998, Mihael Ankerst et al. [2] presented a method which uses the similarity of 

dimensions to improve the quality of visualization of multidimensional data, using 

global and partial similarities for one or two-dimensional visualization methods. 

Pearson’s Correlation Coefficient (PCC) is one of the most commonly used 

measurements for measuring similarity between two dimensions. PCC can be used for 

dimension reduction, clutter reduction and clustering et al. in visualization. At the same 

time, it has also been proved that the PCC based re-ordering problem is a NP-complete 

problem. Therefore, many researchers have applied heuristic algorithms to find out an 

optimal order of axes (or dimensions) in multi-dimensional visualization.  

 

Though the traditional heuristic algorithms can help in finding an optimal order of 

axes for one- or two-dimensional visualizations, most studies have not done a deeper 

investigation on how to determine the first dimension (the most significant dimension) 

in multi-dimensional data visualizations. The first dimension always attracts much 

more user’s attention than the others. Therefore, we may consider the one with the 

highest contribution rate as the first dimension to simplify the traditional 

similarity-based re-ordering methods and to find out the optimal order of parallel axes 

in a short time period.  

 

In the section, we firstly propose a method based on the Singular Value 

Decomposition (SVD) to find out the contribution of each dimension in the dataset. 
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And then, we present a similarity-based re-ordering method in parallel coordinates 

which is based on the combination of a Nonlinear Correlation Coefficient (NCC) and 

the SVD algorithms, which is sensitive to any relationship, including the linear 

dependence (Zhiyuan, Qiang et al. 2011). In our experiments, we show the 

effectiveness of our new method by visualizing the patterns and enlarging the mean 

crossing angles for better visual representation. It should be noticed that the proposed 

method can be easily applied to the other visualization techniques.  

 

3.1.2  DIMENSION RE-ORDERING METHODS 

An effective way to improve the quality of multi-dimensional visualizations is to 

re-order the dimension axes in parallel coordinates based on similarity of data 

attributes.  In this section, we summarize the previous research works done in the 

area of high-dimensional visualization. 

 

Parallel coordinates(Inselberg 1985; Wegman 1990), scatter plot matrix(Becker and 

Cleveland 1987), table lens(Rao and Card 1994) and pixel-oriented display(Keim 

2000) et al. are well-known and accepted visualization techniques for 

high-dimensional datasets. Similarity measure as one aspect of quality metrics in 

high-dimensional data visualization has been addressed in the past few years 

(Johansson and Johansson 2009; Tatu, Albuquerque et al. 2009; Dasgupta and Kosara 

2010; Bertini, Tatu et al. 2011; Tatu, Albuquerque et al. 2011). It is worth noting that 
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Enrico Bertini et al.(Bertini, Tatu et al. 2011) systematically presented an overview of 

quality metrics in many visualization techniques through a literature review of nearly 

20 papers and considered correlation between two or more dimensions to be the main 

characteristic of similarity measure. Sara Johansson(Johansson and Johansson 2009) 

introduced a weighted quality metrics to their task-dependent and user-controlled 

dimensionality reduction system, where small correlation values were ignored to 

reduce the dataset that preserved the important structures within the original dataset. 

Andrada Tatu et al. proposed similarity-based function for classified and unclassified 

data based on Hough Space transform on the resulting image of parallel coordinates 

(Tatu, Albuquerque et al. 2009; Tatu, Albuquerque et al. 2011). Aritra Dasgupta et al. 

(Dasgupta and Kosara 2010) introduced binned data model and branch-and-bound 

algorithm as the screen-space metrics for parallel coordinates to reduce the 

computations and find the optimal order of axes.  

 

To enhance the high-dimensional data visualization, some studies on dimension 

reordering have been done to find good axes layouts in visualization techniques both 

in one- or two-dimensional arrangement(J.Bertin 1983; Johansson and Johansson 

2009; Tatu, Albuquerque et al. 2009; Dasgupta and Kosara 2010; Bertini, Tatu et al. 

2011) (Hahsler, Hornik et al. 2008; Hurley and Oldford 2010) (Ankerst, Berchtold et 

al. 1998; Friendly and Kwan 2003; J. Yang 2003; Peng, Ward et al. 2004; Artero, 

Oliveira et al. 2006). Mihael Ankerst et al. (Ankerst, Berchtold et al. 1998) defined 

similarity measures which determined the partial or global similarity of dimensions 
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and argued that the reordering based on similarity could reduce visual clutter and do 

some help in visual clustering. Wei Peng et al.(Peng, Ward et al. 2004) introduced the 

definition of the visual clutter in parallel coordinates as the proportion of outliers 

against the total number of data points and they tried to use the exhaustive algorithm 

to find the optimal axes order for minimizing the member of edge crossings (or visual 

clutter). As mentioned in (Artero, Oliveira et al. 2006), the computational cost  

( !)n n  hampers applications of this technique to large high dimensional data sets. 

Almir Olivette Artero et al. (Artero, Oliveira et al. 2006) introduced the dimension 

configuration arrangement based on similarity to alleviate clutter in visualizations of 

high-dimensional data. They proposed a method called SBAA (Similarity-Based 

Attribute Arrangement), which is a straightforward variation of the Nearest Neighbor 

Heuristic method, to deal with both dimension ordering and dimensionality reduction. 

Other studies have been done on the dimension reordering based on the 

similarity(Friendly and Kwan 2003; J. Yang 2003; Tatu, Albuquerque et al. 2011) 

(Guo 2003) (Albuquerque, Eisemann et al. 2010).  Michael Friendly et al.(Friendly 

and Kwan 2003) designed a framework for ordering information including 

arrangement of variables. However, the arrangement of variables is decided mainly 

according to the users’ desired visual effects. J. Yang et al. (J. Yang 2003) established 

a hierarchical tree structure over the attributes, where the similar attributes were 

positioned near each other. Diansheng Guo (Guo 2003) developed a hierarchical 

clustering method, which was based on comparison and sorting of dimensions by use 

of the maximum conditional entropy. Georgia Albuquerque et al. (Albuquerque, 
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Eisemann et al. 2010) introduced the quality measures to define the placement of the 

dimensions for Radviz and also to appraise the information content of pixel and Table 

Lens visualizations.  

 

To sum up, most of the current dimension reordering methods are based on Pearson’s 

correlation coefficient. From the statistics point of view, PCC is a method for 

measuring the linear correlation between the two random variables. Therefore, it is 

partial that we reorder the dimensions according to their similarity only depending on 

the calculation of PCC. Though Pargnostics, proposed by Aritra Dasgupta et al. 

in(Johansson and Johansson 2009), is the most similar with our approach, the 

probability and joint probability during the computational process are both denoted as 

their special axis histograms, which lack the support by mathematical theories. 

Moreover, it can be seen from the definition of the mutual information that it does not 

range in a definite closed interval as the correlation coefficient does, which ranges in 

[ 1,1].  

 

Hence, it is of great importance that a comprehensive and useful method should be 

proposed for correlation analysis among the dimensions for conveying better visual 

structures and patterns. In this thesis, we propose similarity-based reordering method 

for dimensions reordering in parallel coordinates to solve the above problems. 
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3.2 NEW APPROACH FOR DIMENSION 

RE-ORDERING 

The ordering of dimensions has large impact on how easily we can perceive different 

structures in the data(Ankerst, Berchtold et al. 1998). Completely different displays 

and conclusions may be obtained if we interactively switch between different 

dimension reordering. How to reorder the dimensions in high-dimensional datasets 

meaningfully is one of the most significant problems of the researches on quality 

metrics in data visualization due to its influences on the quality of visualization in 

terms of readability and understandability. In this chapter, we visualize them in a more 

rational way rather than arrange them only according to the empiricism.  

 

Throughout this chapter the following notation is used: a dataset D is composed of n  

dimensions (variables) with m  data items for each one. In some cases we need to 

measure the statistical characters between the two dimensions X andY , where 

 1 2( , , , )T
nX x x x , 1 2( , , , )T

nY y y y . 

 

3.2.1  Linear/Nonlinear Correlation 

The correlation of two variables (dimensions/attributes) is a statistical technique that 

can indicate the magnitude relationship between the two variables. It also shows how 

the two variables interact with each other. In this section, we present the reordering 

methods based on the two correlation measures: Pearson’s correlation and nonlinear 
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correlation information measures. 

 

Pearson’s Correlation Coefficient (Rodgers and Nicewander 1988), as one of the most 

popular similarity measures in visualization of multidimensional data, is a linear 

correlation measurement for each pair of random variables: 

xy

xx yy

S
r

S S
                                           eq. 3 

where 2

1
( )

n

xx i
i

S x x ,   2

1

( )
n

yy i
i

S y y , 

1

( )( )
n

xy i i
i

S x x y y , x  and y behave the mean of variables X and Y respectively.  

The value of PCC ranges in the closed interval [-1, 1], which indicates the linear 

correlation degree of the two variables. When the PCC value is close to 1 or -1 it 

denotes a strong relationship and if it close to 0 it means a weak relationship between 

the two variables. A positive and negative correlation coefficient denotes that both 

variables are in the same way or in the opposite way 

 

Although, linear correlation can detect the relationship between two dependence 

variables, in the real world the correlations can also be nonlinear. Mutual Information 

can be thought of as a generalized correlation analogous to the linear correlation 

coefficient, but sensitive to any relationship, not just linear correlation. Moreover, 

NCC is a method that can measure nonlinear relationship based on mutual 

information(Matsuda 2000; Zheng Rong and Zwolinski 2001) and redundancy(Drmota 

and Szpankowski 2004), which is sensitive to any relationship, not just the linear 
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dependence(Zhiyuan, Qiang et al. 2011).  Zhiyuan Shen et al.(Wang, Shen et al. 2005; 

Zhiyuan, Qiang et al. 2011) did further researches on the effects of statistical 

distribution to it and made it range in a closed interval[0,1] . 

 

Corresponding to the literature(Ankerst, Berchtold et al. 1998), we mainly apply NCC 

to compute the partial similarity measures of dimensions in multidimensional data 

visualization, while SVD is used for measuring the global one. We introduce the 

detailed NCC in the following paragraphs.  Mutual information plays an important 

role in the computation of NCC, which is defined as  

( ; ) ( ) ( ) ( ; )I X Y H X H Y H X Y eq. 4

where ( )H X  is the information entropy of variable X :  

1
( ) ln

n

i i
i

H X p p  

( ; )H X Y  is the joint entropy of the variables X and Y : 

1 1
( ; ) ln

n n

ij ij
i j

H X Y p p  

ip denotes the probability distribution that random variable X takes the value ix , and 

ijp  denotes the joint probability distribution ( , )i ip X x Y y of the discrete random 

variables X and Y .  

After revising joint entropy of the two variables X and Y , 

1 1
( ; ) log

b b
ij ijr

b
i j

n n
H X Y

n n
                           eq. 5 

in which b b  rank grids are used to place the sample pairs 1 1
( , )i i n
x y . ijn is the 

number of samples distributed in the ijth rank grid,  Wang et al. (Wang, Shen et al. 

2005) proposed the calculation method for nonlinear correlation coefficient as follows: 
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1 1

( ; ) ( ) ( ) ( ; )

2 log

r r r

b b
ij ij

b
i j

NCC X Y H X H Y H X Y
n n
n n

                       eq. 6 

 

In the following section 3.2.2, we apply the above formula to measure the linear or 

nonlinear relationship between the two dimensions in multidimensional datasets 

because of its sensitivity to any relationship.   

3.2.2  Similarity-based Reordering 

Since the problem of dimension reordering is similar to the Traveling Salesman 

problem, many researchers applied heuristic algorithms, such as genetic algorithms, 

colony optimization and nearest neighbor heuristic method etc. (Ankerst, Berchtold et 

al. 1998; Artero, Oliveira et al. 2006), to overcome exhaustive time. In the method 

SBAA proposed by Almir Olivette Artero et al.(Artero, Oliveira et al. 2006), the 

largest value ,i js  in their similarity matrix s (lower diagonal) is considered to be the 

initial dimension “ ij ” in the new order. And then, they try to search for the 

dimensions which will be positioned in the left and the right of it. It seems rational 

that we just reorder all the dimensions in line with this similarity. However, some 

dimensions always attract much more concentrations from the whole visual structure. 

For example, in parallel coordinates, the first and the last dimensions can draw much 

more attention than the other axes do. Therefore, different from the existed methods, 

we propose a new dimensions reordering algorithm based on the NCC and SVD 

algorithms. These methods help users reduce the computation complexity and 
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improve the visual readability greatly.  

 

We define the similarity matrix s , which is symmetric, as follows: 

11 12 1

21 22 2

1 2

n

n

n n nn

s s s
s s s

s

s s s

 

where ij jis s ( )i j , which are calculated by use of nonlinear correlation coefficient. 

iis ( 1,2, , )i n  (We also can denote them as 1iv ) behaves the contribution value of the 

ith dimension to the whole data values, which is calculated by SVD algorithm. 

 

Algorithm 2. Similarity-based Reordering Algorithm 

Step1. Form the matrix D  of the data sets. 

Step2. Calculate the singular value decomposition (Golub and Loan 1983) of matrix D , 

and get the contribution factors , 1,2, ,iis i n . 

Step3.Compute the other elements ijs of similarity matrix s , using our nonlinear 

correlation coefficient method, besides iis , 1,2, ,i n  which have calculated in step2. 

Step4. Choose the largest value of iis , 1,2, ,i nas the extreme left attribute to start 

display the data sets. We denote this attribute as  

llS , 1, 2, ,l n . 

Step5. Get the largest value 
llS from ,liS l i . Therefore, the 

1r th attribute is appended 

to the lth attribute. We get the first two elements of neighbouring sequence
1,NS l r . 

Step6. Repeat step5 using the 1r th  attribute as the left neighbouring attribute 
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from
1 1,r iS r i  until inserting all attributes into the NS .  

 

It is worth noting that this visualization method can not only provide us the 

similarities between each pair of dimensions, but also express some ideas of the 

self-property of each dimension. During the computation process of the nonlinear 

correlation coefficient, we chose the b b rank grids according to the empirical 

formula, which is mentioned in (Zhuang Chu Qiang 1992):  

                  2
51.87 ( 1)b n                                eq. 7 

 

Moreover, it is natural that we can compute the contribution rate of each dimension to 

the whole dataset using the following possible measure: 

                       1

1
1

100%j
i n

j
j

v
C

v

                          eq. 8 

 

This approach not only provides us a new reordering method helping us take much 

more insights into the dataset but also gives rise to the following new method which 

can help in determination of the first dimension with the most contribution. 

3.3  CASE STUDIES 

To demonstrate the effectiveness of our rational dimension reordering methods, we 

analyzed many datasets in this section, Cars and Liver Disorders data set for our 

similarity-based reordering method. All of these data sets we tested come from the 
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literature (Irvine Machine Learning Repository).According to the literature [30], 

larger crossing angle the two polylines make, the less cognitive load and the better 

visualization efficiency is. Therefore, to show the advantages in the readability and 

understandability of our method, we calculated the mean angles occurred among the 

polylines between two neighboring attributes using the following formula: 

   __
_ sin
total anglemean angle

total edge cros g
. 

3.3.1  Cars dataset 

Based on the theory in section 3, the similarity matrix of Cars data set was calculated 

as the following S . 

0.0067 0.5950 0.3236 0.0561 0.9078 0.8104 0.0302
0.5950 0.0018 0.5806 0.5028 0.8944 0.0261 0.6288
0.3236 0.5806 0.0354 0.1313 0.5223 0.9544 0.0104
0.0561 0.5028 0.1313 0.9991 0.3389 0.6968 0.0302
0.9078 0.8944 0.5223 0.3389 0.0047

S
0.9598 0.0197

0.8104 0.0261 0.9544 0.6968 0.9598 0.0235 0.0117
0.0302 0.6288 0.0104 0.0302 0.0197 0.0117 0.0004

    

After positioning the first dimension “Weight”, which enjoys its significant 

contribution to the whole data set, we try to find out the one from the unordered 

dimensions with the largest similarity value to this dimension: 46 0.6968s . Therefore, 

the 6 th  dimension is considered to be the strongest correlation with the4 th  one. 

And then, we make the  6 th  attribute to be appended to the 4 th  one. Similar to 

this process, we can get the final rational dimension order, which is  

4 6 5 1 2 7 3  
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Corresponding to the initial Cars dataset, the reordering dimensions calculated using 

our algorithm is 

Weight Year Acceleration MPG Cylinders Origin Horsepower  

The reordering results after our analysis are visualized in parallel coordinates in Fig. 

14(a).  

We visualize Car dataset using the traditional reordering method-Pearson’s 

Correlation Coefficient in Fig. 14(b). The corresponding order of dimensions is as 

follows: 

Weight Cylinders Horsepower MPG Year Acceleration Origin  

Comparing with these two images in Fig. 14, we can find that visualization structures 

between the Cylinders  and Origin  dimensions with our method are clear and 

simple. In the visualization graph of NCC, the mean angle between the attributes 

“Acceleration” and “MPG” gets to 22.359 . Moreover, the mean angle between 

“Cylinders” and “Origin” attributes is 28.162 .Compared to the mean angle of the 

overall polylines produced in the PCC reordering method,0.422 , the angle in NCC 

reordering one is 21.2 times larger than it. Therefore, we can find the visual effect of 

our reordering method is much better than the traditional one. 

Table 3 presents the detailed comparisons between the similarity values of attributes, 

which are calculated using PCC and NCC. The numbers from 1 to 7 denote the 

dimensions: MPG, Cylinders, Horsepower, Weight, Acceleration, Year and Origin  

separately. Note that no matter which method we use, the similarities between the two 
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dimensions are the same, that is ij jis s ( )i j . It is obvious that there are big 

differences between the similarity values with two methods.  For example, to our 

knowledge, the similarity between the 3 th  (“Horsepower”) and 7 th  (“Origin”) 

dimensions of the dataset is not strong enough at all.  However, the result of PCC is 

0.4552, comparing to ours result 0.0104. 

3.3.2  Liver disorders dataset 

Liver Disorders dataset consists of 345 instances with 7 dimensions. Fig. 15 illustrates 

us the final visualization result of the whole dataset according to their similarities 

calculated by NCC and PCC  methods respectively, where the dimension “MCV” 

enjoys its most significant contribution to the whole dataset and occupies the first 

place in the two reordering visualization. 

It is easy to find that the polylines among the “SF” and “DN” attributes are much less 

than any others among the neighboring attributes no matter in Fig. 15 (a) or (b). The 

mean crossing angle of these two dimensions, 43.515 , as the largest one in the 

dimensions reordering visualizations as well, simplifies the visual representation 

greatly. The mean crossing angle of our NCC reordering method to this dataset is 

12.322 , which is 3.722  larger than the result calculated using PCC method. 

We also tested the other datasets such as Nursery, Iris et al. large scale ones to 

illustrate the advantages of our methods, which all showed us that our methods can 

enlarge the mean crossing angles for better visualization. 
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Weight Year Acceleration MPG Cylinders Origin Horsepower 

 

(a) Measurement with NCC        

Weight Cylinders Horsepower MPG Year Acceleration Origin

 (b) Measurement with PCC. 
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MPG Cylinders Horsepower Weight Acceleration Year Origin

 

(c) Original dimension arrangement visualization 

Figure 14 Cars dataset visualization in parallel coordinates.   

MCV SF DN GGT SGOT AAP SGPT

                                 (a) Measurement with NCC. 
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MCV DN GGT SGPT SGOT SF AAP

 

(b) Measurement with PCC. 

MCV AAP SGPT SGOT GGT DN SF

 

(c) Original dimension arrangement visualization 

Figure 15.  Axes reordering visualization of Liver Disorders dataset. 
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 Table 4 The comparison of the similarity values using PCC and NCC to Cars dataset.   

 

3.4  SUMMARY 

In this chapter, we proposed a new method to improve the readability and 

understandability of parallel coordinates visualization theoretically. At the first stage, 

we propose a new way of looking into the dimensions within datasets based on the 

singular value decomposition algorithm. At the second stage, we present a method, 

named similarity-based reordering method, for calculating the similarity between the 

two dimensions based on the nonlinear correlation coefficient and singular value 

decomposition algorithms rather than the traditional Pearson’s correlation coefficient, 

and then visualize the optimal dimension order according to the similarity in parallel 

coordinates.  We have conducted the experimental evaluations to demonstrate the 

effectiveness and rationale of our approaches: NCC reordering method enlarges the 

mean crossing angles of the whole data set and reduces the amount of polylines 

between some neighboring dimensions. 
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During the process of calculation for nonlinear correlation coefficient, the more exact 

choice of rank grids will do much more help in the speed of calculation. Therefore, 

we consider this problem to be our first future work.  And then we will apply our 

methods with interactive techniques to more real-world datasets and help users 

analyze the datasets using visualization. 
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Chapter 4. USING ARCED AXES IN 
PARALLEL COORDINATE GEOMETRY 

4.1 ANALYSIS OF PCP 

The rapid growth of data communication through the Internet and World Wide Web 

has led to vast amounts of information available online. In addition, business and 

government organizations create large amounts of both structured and unstructured 

information which needs to be processed, analyzed, and linked. Cloud computing 

plays a popular and important role in providing on demand services for handling such 

large volumes of online datasets. Some previous research works have well done in 

data intensive cloud computing, especially in the field of data privacy in cloud 

computing (Xuyun, Chang et al. 2013; Zhang, Liu et al. 2013; Xuyun, Yang et al. 

2014).   

 

Consequently, high-dimensional data and multivariate data are becoming 

commonplace as the number of applications increases, such as statistical and 

demographic computation, digital libraries and so on. Though it can provide flexible 

and cost-saving IT solutions for the end users, it is much easier in causing a great deal 

of problems such as network and system security issues due to its sharing and 

centralizing computing resources. 

 

However, there is no absolute way to secure the data and data transformations in large 
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scale networking systems. The existing techniques and tools of securing a network 

system still rely heavily on human experiences. Most of them require human 

involvement in analyzing and detecting anomalies and intrusions. To enhance the 

human perception and understanding of different types of network intrusions and 

attacks, network visualization has become a hot research field in recent years that 

attempts to speed up the intrusion detection process through the visual analytics. 

Unlike the traditional methods of analyzing textual log data, visualization approach 

has been proven that can increase the efficiency and effectiveness of network 

intrusion detection significantly by the reduction of human cognition process. 

 

As pointed out in the literature (Claessen and van Wijk 2011), many methods have 

been proposed to provide insight into multivariate data using interactive visualization 

techniques. Parallel coordinate plots (PCP), as a simple but strong geometric 

high-dimensional data visualization method, represents N-dimensional data in a 

2-dimensional space with mathematical rigorousness. PCP, together with scatterplot 

and the radar chart have been widely adopted for visualizing multivariate datasets 

(Claessen and van Wijk 2011). In this thesis, we propose an arc-based parallel 

coordinates visualization method, termed as arc coordinate plots (ACP). In our novel 

method, segments of curve, rather than the line segments, are considered as the 

coordinate axes. In the same coordinates system, such as Cartesian coordinates system, 

the length of arc is longer than the line segments if their x-coordinates are set with the 

same interval and thus it can visualize much more data items in the same screen space. 
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Furthermore, besides visualizing the original data sets to reveal the patterns, ACP can 

preserve much more geometric structures of the data, especially the data with circular 

properties. In addition, we leverage singular value decomposition algorithm to 

provide a new way of looking into the dimensions within datasets. We propose the 

contribution-based visualization method and a formula for contribution rate of each 

attribute. Finally, we visualize some real data sets such as KDD99 security data by use 

of ACP to detect the intrusions. In our system, abnormal network activities are 

extracted from a large volume of network flows and their patterns. By using our 

approach, we can easily detect the unusual patterns from network scans, port scans, 

the hidden scans, and DDoS attacks et al. 

 

The rest of this chapter is organized as follows. Section 2 gives an overview of 

existing enhancements in PCP. Section 3 presents the arc-coordinate geometry 

theoretically in the novel coordinates system in detail. To overcome the curse of 

dimensionality in coordinates visualization methods, this section describes the 

attributes contribution method as well. The experimental evaluation of our new 

approaches is explored in Section 4. Finally, conclusions and future work are 

presented in section 5. 

4.2 OVERVIEW OF APPROACHES ON PCP 

Parallel coordinate plots, as one of the most popular methods, is proposed firstly by 

Inselberg(Inselberg 1985) and Wegman suggested it as a tool for high dimensional 
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data analysis(Wegman 1990). Coordinates of n-dimensional data can be represented in 

parallel axes in a 2-dimensional plane and connected by linear segments. It enjoys 

some elegant duality properties with Cartesian plots. As mentioned in the 

literature(Wegman 1990), a point ( , )M a ma b  in Cartesian coordinates (See Fig.16) 

can be mapped into a line l  in parallel coordinates. While line :l y mx b  

joining the two points in Cartesian coordinates can be mapped into point P  in 

parallel coordinates. In fact, lines l and :l y mx b in parallel coordinates which 

are determined by two points in Cartesian plot, intersect at a point 1( , )
1 1

bP
m m

; 

where 1m . Moreover, the literature (Wegman 1990)also discussed some other cases 

of m . Therefore, duality property between two different coordinates is shown in 

theory. Thus parallel coordinate representation is often used to visualize and analyze 

high dimensional data. 

 

Even though the data can be represented in a novel and meaningful visualization 

system without losing any features, PCP always suffer from crowded dimensions, 

hardly figuring out the relationship between attributes in non-adjacent positions, 

over-plotting and clutter et al, which are mainly caused by the increasing size of 

datasets and the large number of dimensions. Several enhancements have been 

proposed to overcome these artifacts. 

 

In order to reduce the edge clutter and avoid the over-plotting in PCP, Dasgupta et al. 

(Dasgupta and Kosara 2010)propose a model based on screen-space metrics to pick 
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the axeslayout by optimizing arranges of axes. Huh et al. present a proportionate 

spacing between two adjacent axes rather than the equally spaced in conventional 

PCP parallel axes. Moreover, the curves possessing some statistical property linking 

data points on adjacent axes are described in literature (Huh and Park 2008) as well. 

Zhou et al. (Hong Zhou 2008)convert the straight-line edges into curves to reduce the 

Figure 16. Duality property between points and lines in Cartesian and parallel 

coordinate plots(Wegman 1990). 

visual clutter in clustered visualization. They also utilize the splatting framework 

(Zhou, Cui et al. 2009) to detect clusters and reduce visual clutter. To achieve the aim 

of avoiding over-plotting and preserving density information, Dang et al. proposed a 

visualization and interaction method for stacking overlapping cases (Tuan Nhon, 

Wilkinson et al. 2010).To filter out the information to be presented to the user and 

reduce visual clutter, Artero et al. develop a frequency and density plots from 

PCP(Artero, de Oliveira et al. 2004), which can uncover clusters in crowded PCP. 

Yuan et al. (Xiaoru, Peihong et al. 2009)combine the parallel coordinate method with 

the scatter-plots method to reduce the visual clutter. It plots scattering points in 
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parallel coordinates directly with a seamless transition between them. The shapes of 

poly lines are remodeled to cooperate with the scattering points, resulting in the 

diminution of their inherent visual effects. 

 

To enhance the high-dimensional data visualization, some studies on dimension 

reordering have been done to find good axes layouts in PCP. Wei Peng et al. (Peng, 

Ward et al. 2004)introduce the definition of the visual clutter in parallel coordinates as 

the proportion of outliers against the total number of data points and they tried to use 

the exhaustive algorithm to find the optimal axes order for minimizing the number of 

edge crossings. As mentioned in(Artero, de Oliveira et al. 2006), the computational 

cost ( !)o n n hampers applications of this technique to large high dimensional data sets. 

Almir Olivette Artero et al. (Artero, de Oliveira et al. 2006)present the dimension 

configuration arrangement based on similarity to alleviate clutter in visualizations of 

high-dimensional data. They propose a method called Similarity-Based Attribute 

Arrangement (SBAA), which is a straightforward variation of the nearest neighbor 

heuristic method, to deal with both dimension ordering and dimensionality reduction. 

By analyzing the structures displayed in subspaces of the full feature space in PCP to 

obtain the dimension ordering, Ferdosi et al.(Ferdosi and Roerdink 2011) argue that 

they can identify the cluster and noise dimensions to improve the readability. 

 

In addition, few approaches have been done for extensions of axes in PCP. Claessen et 

al.(Claessen and van Wijk 2011)develop flexible linked axes to enable users to define 
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and position coordinate axes freely. Axes-based techniques with radial arrangements 

of the axes are developed by Tominski(Tominski, Abello et al. 2004), termed as 

TimeWheel and the MultiComb, which can combined with some conventional 

interaction techniques. With the combination between interaction techniques and PCP, 

Hauser et al. (Hauser, Ledermann et al. 2002)design a angular brushing technique to 

select data sub-sets which exhibit a data correlation along two axes. 

 

Even though these approaches can enhance the quality of visualization to some extent, 

the corresponding extensions for the axes in PCP still focus on the line segments and 

the main contributions lie in the ordering of axes and the curves jointing the vertices 

between the two adjacent axes. In this thesis, we propose a novel axes in parallel 

coordinates visualization, termed as arc coordinate plots (ACP). We take arc axes into 

account, rather than the line segments, as the coordinate axes in parallel coordinates 

plane. Besides visualizing the original data sets for reveal the patterns, ACP can 

preserve much more geometric structures of the data and can visualize much more 

data items in the same screen space than PCP. On the other hand, we propose a 

contribution-based layout of our ACP to overcome the curse of dimensionality by 

filtering the less important features among the original ones. Finally, we test our 

models in several datasets and find they are effective in revealing the patterns in the 

perspectives of density of points and rationale of the original geometric data 

properties. 

 



 74

4.3 ARC-BASED PARALLEL COORDINATES 

GEOMETRY 

4.3.1 Optimizing Length of Arced Axis 

To avoid the intersecting between the line segments and arc-axes, it is a nontrivial 

thing to calculate curvature of these parallel arcs. 

 

Without loss of generality, we argue that the origin of Cartesian coordinates is (0,0) , 

where the center of the first axis in PCP lies in it. The distance between 

axes 1X and 2X is one. Given the length of each axis in PCP is 2T , where T is a 

non-negative real number. It is another hypothesis that these axes are divided into two 

equal line segments vertically by one horizontal line. Meanwhile, we set the point 

1 0( ,0)O x as the center of the circle which generates the first arc axis, where 0x , as its 

radius, is a non-negative real number as well. The geometric structures of these three 

coordinates have been displayed in Fig.17.From the notification we can find that the 

coordinates of 1X  is (0, )T . The position of upper end point of the second axis 

2X is (1, )T . Hence, we try to find the optimum radius based on the theory that arc 

axes do not act as a hindrance to data visual representation. 

 

Based on the Cartesian coordinates, the equation of the first circle is  

2 22
0 0x x y x                             eq. 9 

Similarly, the second one is 
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2 2
0 2 01 ( )x x y x                          eq. 10 

In equation (1), we assume that y T , then 

2 22
0 0x x T x                           eq. 11 

Therefore, 2 2
0 0Mx x x T . The position of points M  and N  can be 

defined in x and y coordinates system as: 

2 2
0 0 ,M x x T T ; 2 2

0 01 ,N x x T T  

The slope of line 1O M  is
1 2 2

0

O M
Tk

x T
 ; Meanwhile, 2 2

1MN
Tk T .If there 

is only one intersection point between any line segment and arc axis, what the line 

1O M  is perpendicular to line segment MN  is the boundary condition. i.e, 

1
1O M MNk k  

Therefore, we have 2
0 4 1x T T . 

 

Referring to the knowledge of geometry, we know that curvature of one circle is the 

reciprocal of the radius. Larger the radius is, the less the degree of bending is. This 

reduces the amount of intersections occurred by arc axis. Hence, we have the 

following property: 

 

Property: To plot the arc-axes, the radius of the circle needs to satisfy: 2
0 4 1x T T . 

 

For simplicity, we assume the distance of each pair of neighboring parallel coordinate 

axes equals to one, i.e. 1
2

T . Based on the above analysis, the equations of the first 
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and second arc-axes can be simplified as 
2

22 1
2 2

x y and 

2

22 11
2 2

x y respectively. Likewise, the equation of i th arc axis can be 

termed 

2

22 1
2 2

x i y  , where 0,1, 2, .i n n N .         eq. 12 

Without loss generality, we propose arc-coordinate plots based on this simplified 

equation. 

 

Figure 17. The rationale of arc coordinates plane. 

4.3.2 Arc-Coordinate Geometry 

The parallel coordinates plot, as a popular projective geometric visualization method, 

enjoys some elegant duality properties with usual Cartesian orthogonal coordinate 
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representation (Inselberg 1985; Wegman 1990). In fact, it is to be noticed that the axes 

in the traditional plot (PCP) are constructed by parallel line segments. Considering 

that the arc is longer than line segment when they start/end with the same points, we 

propose a property to show the extension rate of arc-coordinate plot to visualize more 

data items than PCP and it can keep better geometric structure of some circular data 

sets. Therefore, we obtain one to one mapping between the Cartesian coordinates and 

arc-coordinates in line with the transitivity of these bi-relations. According to the 

above assumption, we consider the first arc-based axis as our projection example to 

map the vertices in PCP to ACP. 

 

Property: Comparing these two different visualization systems, the extension rate of 

the axis length from PCP to ACP is 2
4

. 

Proof: From Fig.17, we easily notice that 

1 1 0
2| | | ' | | |

2
O M O M x while| ' | 2 1MM T . 

Hence, 1 'O MM  is a right angled isosceles triangle. The length of arc 'MM  

equals to one quarter of the perimeter of a circle exactly, i.e. 0 2
2 4
x

.Therefore, 

we finish the proof of extension rate is 2
4

. 

 

As we all know, there is only one straight line which passes through the points outside 

and inside the known line. To our visualization projection, there is one intersection 
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1 ''A  when we draw a line between the arc axis and the line segment joining 1O to 1A . 

In the similar manner, we can define the other intersections. It is to be noticed that it is 

a straightforward way defining the intersection 1 ''A  as the projection of the vertex 

1A  from PCP to ACP. On the other hand, considering that the extension rate of the 

axis-length from PCP to ACP is 2
4

, we utilize increment of the arc length to project 

1 ''A  to another vertex 1 'A  in the arc. In the following, we analyze the computation 

of increment of it in detail. 

 

To simplify the computational complexity, we study the projection of vertices just in 

the positive semi-axis 1 'OX  of PCP and arc 'OM in Fig. 17. Infact, the result of 

negative semi-axis is the same expression as the positive one. The slope of line 

1 1 'O X  is 2
2

 , while the angle of 'OM  is just right the half of the right angle, 
4

. 

The length of the arc is from 2 2arctan
2 2

 to 2
8

.The increment of it 

is
24arctan

2

. To all vertices in the positive semi-axis, this increment is taken into 

account as our extension rate. In addition, due to the symmetric property of the axes 

in PCP and ACP, we can term this extension rate to the negative semi-axis. The 

explanation of this is illustrated in Fig. 18. 

 

In conclusion, we propose the following function to project the point 0,i y  in the 

1i th  PCP axis to the ACP one: 



 79

 0
cos 2 2: , , sin

2 22
f i y i , where

0arctan 2

24arctan
2

y
.     eq. 1

3 

Here we adopt two steps for building the projection method: 

In the first stage, we obtain the intersection coordinates between the line and arc by 

solving the following nonlinear system. 

0 0

2

2

2 ,

2 1 .
2 2

y y y x i

x i y
                       

eq. 14 

The 0
22
00

1 2 ,
2 2 12 2 1

yi
yy

 coordinates can be obtained from the above 

nonlinear system. 

In the second stage, we leverage the thought that extension rate
24arctan

2

,as our 

extension factor, and multiplies the arc length which starts from the point ,0i  in the 

horizontal axis and ends with the intersection coordinates. This makes the final 

projection vertex of the original point 0,i y . To get the final coordinates, we have to 

link the arc length with the coordinate system. Therefore, we have the following 

system: 

0 0

2

2
0 0

2cot ,
2

2 1 .
2 2

y x i

x i y
                       

eq. 15 
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Finally, we get the result of projection cos 2 2, sin
2 22

i , 

where
0arctan 2

24arctan
2

y
. 

 

4.3.3 Contribution-Based Layout 

In the research field of matrix computation, singular value decomposition plays an 

important role for its revealing interesting and attractive algebraic properties, and 

conveying important geometrical and theoretical in-sights about transformations. The 

entries of each matrix obtained by the SVD algorithm have their special physical 

significances. Here we apply these significances of matrix to our method to measure 

the contribution of each dimension to the dataset. 

 

For an M M  matrix D , the singular value decomposition of it is defined as the 

following form(Golub and Van Loan 1996): *D U V , where U  and V  (V is the 

conjugate transpose of V )are m m and n n  unitary matrices respectively. is an 

m n  rectangular diagonal matrix with nonnegative real numbers (singular values of 

D )in order of decreasing magnitude on the diagonal. 

  

There are many properties of SVD  for the matrices, such as the singular values of 

the matrix D  are the square roots of eigenvalues of matrix TD D ; the Euclidean 

norm of D  is equal to the largest singular value and so on. Among these properties, 
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what impressed us most are that the columns of the matrices U and V form the 

orthonormal bases for the space spanned by the columns and rows of D .For example, 

in the literature(Krzysztof.Simek 2003), characteristic modes are defined to 

reconstruct the gene expression patterns based on this property. By combining and 

analyzing these properties, we can conclude the following property in perspective of 

the numerical properties for matrix: 

 

 Property: The entries of the first column of V  in the singular value 

decomposition, which are denoted as 1 , 1,2, ,jv j n , show the contributions of 

columns of D  to the space spanned by them, 1 2. . , , , ni e span d d d , id  is the ith  

column of D . 

  

By setting the contribution rate, as one of the simplest techniques, to retain as much 

characteristics of the whole data set as possible, we will get six attributes which retain 

up to 99.8% of the overall information. The order of the axis from left to right 

indicates the contribution rate of attributes, as shown in the subscript of axis in Fig. 20. 

Moreover, from the visualization shown in Fig. 20. we can easily find out two 

different attacks among 1113 data items. Therefore, we can visualize large volume of 

data using this approach effectively and can retain the main characteristics of data. 

From the perspective of data values, this method provides us effective and clear 

visualization structure of the data. It can help us take deeper insight into the dataset. 
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It is natural that we can compute the contribution rate of each dimension to the whole 

dataset using the following possible measure: 

1

1
1

100%j
n

j
j

v
Ci

v
                            

eq. 16 

This approach not only provides us a new reordering method helping us take much 

more insights into the dataset but also gives rise to the following new method which 

can help in determination of the first dimension with the most contribution. 

 

4.4 CASE STUDIES 

This section presents examples of how ACP can be used to analyze multivariate data. 

We tested three different datasets on the novel method and compare it to conventional 

PCP, one describing random data set to illustrate that the rational geometric structure 

could be preserved in ACP. Another two about KDD Cup 1999 and Cars models for 

contribution-based and arc-based visualization. These two data sets we tested come 

from the literature. 

 

4.4.1 Random and Car Datasets 

At the first stage, we generated 50 data items with two dimensions randomly, which 

satisfy the equation of circle:
2

22 1
2 2

x y . Using inverse mapping of our 

method, we project these data to one axis in parallel coordinates plane. As shown in 
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Fig.18, the density of points is different in two visualization plane. By using of ld
n

, 

where d , l , n  behaves the density, length of each axis and the number of points with 

different values. 

 

Therefore, we can obtain the mean densities0.0222 , 0.0200  of two different graphs 

respectively. 

 

From the readability perspectives, the ellipse in the graph presents the points 

illustrated by our method are sparser than the PCP. Without loss generality, the mean 

extension rate of points can be calculated by the following formula: 

arc

parllel

lR
l

, in which l  is the length of each axis in two different coordinates 

system. Moreover, the geometric property of the data can be displayed in the arc axis 

rather than in line segment. 

 

Figure 18. Random data represented in two different coordinates 

systems 
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In Fig. 19, we visualize the Car dataset in both arced-axis parallel coordinates 

geometry and the traditional PCP. The comparison shows that our arced-axes parallel 

coordinate geometry can represent all datasets as the same quality as they are 

represented in the traditional vertical-line based parallel coordinate geometry. The 

arced-axes do not distort (or affect) the quality of visualization at all. In addition, our 

arced-axes approach could enlarge the mean density of points in the geometry that 

improves the readability of visualization. 

 

To the three clusters in the dataset, they can be easily shown in the new system. From 

the comparison, it is to be noticed that our method can perform as same as PCP to this 

common dataset. Hence, our approach can not only do the same performance in 

visualizing the general datasets but also can do better in some circular datasets 

because of preserving the geometric structure of data. 

 

4.4.2 Case Study in Network Security Domain 

In this section, we utilize KDD 1999 data sets to show the effectiveness of our 

contribution-based method in ACP. Firstly, part data from KDD 1999 consisting of 

1113 data items with 42 attributes (including "normal" and "abnormal" labels) are 

analyzed in Fig.20. 
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To the whole 42 attributes, we use contribution-based method as a dimension 

reduction step for visualizing data set. By setting the contribution rate as one of the 

simplest techniques to retain as much characteristics of the whole data set as we can, 

we get the six attributes who retain the 99.8% of the overall information. It can be 

easily found that there are two different attacks in these 1113 data items: red lines and 

green lines represent Smurf and Neptune attacks respectively. From the polylines 

among the attributes " _ _ "dst host count and " "count , we can find there is a big 

fluctuation between the normal and abnormal lines. As we all know, Smurf attack is 

represented by traffic-based features, such as count and _srv count . While, Neptune 

attack quite distinct in src_bytes and count attributes. Hence, it is interesting that these 

patterns of attacks are totally presented in ACP. 

 

                             (a) 
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                              (b) 

Figure 19. Car dataset visualized in PCP and ACP respectively 

 

Figure 20. Detecting DDoS attacks using ACP:Red and green lines 

describe the Smurf and Neptune attacks respectively  
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4.5 SUMMARY 

In this chapter, we propose a novel approach to extend the parallel axes in parallel 

coordinates plane theoretically. At the first stage, an arc-based parallel coordinates 

visualization method, termed as arc coordinate plots (ACP), is developed to extend 

the axes in parallel coordinate plots. Because the length of arc is longer than the line 

segments, the density of points displayed in each axis of our method could be 

enlarged. Moreover, ACP can preserve much more geometric structures of the data, 

such as the circular data. At the second stage, we leverage singular value 

decomposition algorithm to provide a new way of looking into the dimensions within 

datasets. We propose the contribution-based visualization method and a formula for 

contribution rate of each dimension. At last, the experimental evaluations demonstrate 

the effectiveness and rationale of our approaches especially the applications in 

security domain. 

 

We plan to implement some real circular datasets in cloud computing to the 

experiments to demonstrate our method. And try to prove the property in the section 4 

theoretically. Moreover, we consider combing some interaction techniques with our 

approach and strengthen our visualization system. 
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Chapter 5. CONCLUSION AND 
FUTURE WORK 

We leverage a layered directed graph drawing algorithm into parallel coordinates for 

visualization of uncertainty. In the first stage, a nonlinear equation system is deployed 

to obtain the initial positions for all uncertain values. In the second stage, a 

multi-objective optimization algorithm is adapted to relocate positions for the dummy 

vertices. In the final stage, the penalty minimization method finalizes ordering of all 

vertices. 

 

The case studies showed the clutter reduction among polylines and demonstrated the 

effectiveness of the method with better visual structure in parallel coordinates 

visualization. These experiments also illustrated that the number of edge crossings, 

uncertain values and the attributes of multi-dimensional data could play important 

roles in affecting visualization performance. 

 

In order to advance technology towards information visualization of uncertainty, 

formal evaluation needs to be conducted in the future. Based on the evaluation results, 

we will not only work on visual quality but also further modify the algorithm in order 

to reduce complexity of computing time for larger datasets. 

 

We proposed a new method to improve the readability and understandability of 

parallel coordinates visualization theoretically. At the first stage, we propose a new 
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way of looking into the dimensions within datasets based on the singular value 

decomposition algorithm. At the second stage, we present a method, named 

similarity-based reordering method, for calculating the similarity between the two 

dimensions based on the nonlinear correlation coefficient and singular value 

decomposition algorithms rather than the traditional Pearson’s correlation coefficient, 

and then visualize the optimal dimension order according to the similarity in parallel 

coordinates.  We have conducted the experimental evaluations to demonstrate the 

effectiveness and rationale of our approaches: NCC reordering method enlarges the 

mean crossing angles of the whole data set and reduces the amount of polylines 

between some neighboring dimensions. 

 

During the process of calculation for nonlinear correlation coefficient, the more exact 

choice of rank grids will do much more help in the speed of calculation. Therefore, 

we consider this problem to be our first future work.  And then we will apply our 

methods with interactive techniques to more real-world datasets and help users 

analyze the datasets using visualization. 

 

We propose a novel approach to extend the parallel axes in parallel coordinates plane 

theoretically. At the first stage, an arc-based parallel coordinates visualization method, 

termed as arc coordinate plots (ACP), is developed to extend the axes in parallel 

coordinate plots. Because the length of arc is longer than the line segments, the 

density of points displayed in each axis of our method could be enlarged. Moreover, 
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ACP can preserve much more geometric structures of the data, such as the circular 

data. At the second stage, we leverage singular value decomposition algorithm to 

provide a new way of looking into the dimensions within datasets. We propose the 

contribution-based visualization method and a formula for contribution rate of each 

dimension. At last, the experimental evaluations demonstrate the effectiveness and 

rationale of our approaches especially the applications in security domain. 

 

As to the future research work, firstly, to the uncertainty problems in information 

visualization, we will not only work on visual quality but also further modify the 

algorithm in order to reduce complexity of computing time for larger datasets. 

 

Secondly, during the process of calculation for nonlinear correlation coefficient, the 

more exact choice of rank grids will do much more help in the speed of calculation.  

 

Thirdly, we plan to implement some real circular datasets in cloud computing to the 

experiments to demonstrate our methods, and try to prove the property in the Chapter 

4 theoretically.  

 

Moreover, we consider combing some interaction techniques with our approaches and 

strengthen our visualization system. And then we will apply interactive techniques to 

more real-world datasets and help users analyze the datasets using parallel coordinates 

visualization. 
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At last, based on the approaches we achieved, we will try to implement all systems in 

real time and use them to reveal the patterns in real time such as in detecting the 

DDoS attacks and so on. Beside, formal evaluation needs to be conducted to evaluate 

the approaches we proposed in the future as well.  
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APPENDIX 
To make the thesis easy to be read, the following abbreviations are the terms we 

used in the thesis:  

 

 PCP -Parallel coordinate plots; 

SBAA -Similarity-Based Attribute Arrangement; 

PCC-Pearson’s Correlation Coefficient; 

NCC- Nonlinear Correlation Coefficient; 

SVD- Singular Value Decomposition; 

NS-Neighbouring Sequence; 

ACP -Arc Coordinate Plots. 
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