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Abstract 

The rapid growth of web technologies and the volume of Internet users provide 

excellent opportunities for large-scale online applications but also have caused 

increasing information overloading problems whereby users find it hard to locate 

relevant information to exactly meet their needs efficiently by basic Internet 

searching functions. Recommender systems are emerging to aim to handle this issue 

and provide personalized suggestions of resources (items) to particular users, which 

have been implemented in many domains such as online shopping assistants, 

information retrieval tools and decision support tools. In the current era of 

information explosion, recommender systems are facing some new challenges. 

Firstly, there are increasing tree-structured taxonomy attributes as well as freeform 

folksonomy tags associated with items. Secondly, there are increasing explicit and 

implicit social relations or correlations available for web users. Thirdly, there is 

increasingly diverse contextual information that affects or reflects user preferences. 

Furthermore, the recommendation demands of users are becoming diverse and 

flexible. In other words, users may have changing multi-objective recommendation 

requests at different times. 

This research aims to handle these four challenges and propose a set of 

recommendation approaches for different scenarios. Graph ranking theories are 

employed due to their ease of modelling different information entities and complex 

relations and their good extensibility. In different scenarios, different graphs are 
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generated and some unique graph ranking problems are raised. Concretely, we first 

propose a bipartite graph random walk model for a hybrid recommender system 

integrating complex item content information of both tree-structured taxonomy 

attributes and free-form folksonomy tags. Secondly, we propose a multigraph 

ranking model for a multi-relational social network-based recommendation system 

that is able to incorporate multiple types of social relations or correlations between 

users. Thirdly, we propose a multipartite hypergraph ranking model for a generic full 

information-based recommender system that is able to handle various parities of 

information entities and their high-order relations. In addition, we extend the 

multipartite hypergraph ranking model to be able to respond to users' multi-objective 

recommendation requests and propose a novel multi-objective recommendation 

framework. 

We conduct comprehensive empirical experiments with a set of real-word public 

datasets in different domains such as movies (Movielens), music (Last.fm), 

e-Commerce products (Epinions) and local business (Yelp) to test the proposed 

graph ranking-based recommender systems. The results demonstrate that our models 

can generally achieve significant improvement compared to existing approaches in 

terms of recommendation success rate and accuracy. By these empirical experiments, 

we can conclude that the proposed graph ranking models are able to handle well the 

indicated four key challenges of recommender systems in the current era. This work 

is hence of both theoretical and practical significances in the field of both graph 

ranking and recommender systems. 
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CHAPTER 1. INTRODUCTION 

1.1  Background 

In recent years, the explosive growth of web technologies as well as the volume of 

Internet users promotes the advent of large-scale online applications. Being exposed 

to millions of options in such applications, users find it hard to identify relevant 

information from irrelevant information so that the Web personalization technique 

has gained momentum as a means of challenging this information overloading 

problem. As a concrete example, personalization of customers aids e-Commerce sites 

to remember user preference and demands for purchase forecasting or targeted 

promotions, which will mostly facilitate customer buying decisions. As one of the 

most notable applications of Web personalization, the Recommender System (RS) 

has gained considerable attention and undergone rapid developments in recent 

decades in both academic researches (Bobadilla et al., 2013) and industry 

applications (Lu et al., 2015). A recommender system is a type of automation 

response framework whereby a requester (called user) will obtain a list of suggested 

resources (called items) with no, or at least fewer manual queries. As reviewed in the 

recent survey work by this author (Lu et al., 2015), recommender systems have been 

successfully implemented in various domains such as e-Commerce (Zhu et al., 2014), 

information resources (Li et al., 2010), online study (Wu et al., 2014a), government 

and business services (Lu et al., 2010), digital library (Bernardi et al., 2011) and 
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tourism (Al-hassan et al., 2011), from which we can find that recommender systems 

are playing three important roles as follows. 

 Online shopping assistant. Recommender systems help customers to choose the 

right products or services from a massive number of options in an e-Commerce 

site. 

 Information retrieval tool. Recommender systems help individual users to 

locate valuable Web information such as news, blogs, tweets, etc. 

 Online decision support tool. Recommender systems help users to identify the 

best decisions from alternative plans or solutions, such as study plans, tourist 

routes, etc. 

To produce precise suggestions, recommendation techniques are dedicated to 

profiling successful user preference and demand, which may be influenced by 

various sorts of information. Overall, the contributed information in a recommender 

system includes the item-side information, the user-side information and the 

third-party information (Shi et al., 2014), all of which are bringing new challenges 

for recommender systems with the dramatic development of web techniques as well 

as the popularity of diverse Internet devices such as smart phones and tablets today. 

First, the item-side information is becoming complex and high-dimensional. For 

example, a product in an e-Commerce site is usually associated with comprehensive 

multi-level descriptions from different perspectives telling people its attributes and 

functionalities. Such tree-structured item taxonomy information cannot be well 

modelled by flat vector models in traditional content-based recommender systems. In 

addition, item content information has been also greatly enriched with the 

folksonomies, i.e., tags that are freely assigned by users. In the era of Web 2.0, users 

also play as information creators but not only information consumers to assign their 

own free-form descriptions to items as supplementary of the standard taxonomy 

attributes. Clearly, combining the system-provided taxonomy and user-created 
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folksonomy can help people to better understand the overall content information of 

items. Therefore, it is necessary for a comprehensive content analysis based on both 

tree-structured taxonomy and folksonomy information, which, however, has not been 

sufficiently studied in previous recommender systems. Especially, we expect to 

import folksonomy information to construct the semantical similarities between 

taxonomy attributes to avoid manual settings of human experts as in existing studies 

(Shambour and Lu, 2012; Wu et al., 2014b). 

On the other hand, the user-side information is also becoming complex with the 

growth of diverse social network applications. Users’ social networks have been 

proven to be effective to collaborative user preferences as well as the ratings 

similarities in traditional collaborative filtering (CF) approaches. So far, various 

types of social relations or correlations between users have been incorporated to 

enhance recommender systems separately, including both explicit social connections 

(Shardanand and Maes, 1995; Golbeck, 2006; Massa and Avesani, 2007; Ma et al., 

2008; Jamali and Ester, 2009; Yang et al., 2012) and also implicit correlations 

between users (O’Donovan and Smyth, 2005; Shiratsuchi et al., 2006; Hwang and 

Chen, 2007; Liang et al., 2010; Lopes et al., 2010; Yuan et al., 2010; Shambour and 

Lu, 2012; Eirinaki et al., 2014; Katakis et al., 2014). However, there are inadequate 

studies in handling different types of social networks of users for recommendations. 

In fact, recommender system users are often connected by multiple social relations or 

correlations simultaneously (Kazienko et al., 2011). Consequently, how to model the 

multi-relational social networks of users for recommendation making needs to be 

investigated in this study. 

In addition, there is various third-party information existing in recommender systems, 

referring to any other contributed resource that may affect or reflect users’ 

acceptance of items. For example, the environmental context such as time and 

locations has been well considered in many context-aware recommender systems 

(Woerndl et al., 2009; Adomavicius and Tuzhilin, 2011). Despite environmental 
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context, the textual comment can also be considered as third-parity information that 

reflects users’ evaluations/preference to items. Although both environmental context 

(Adomavicius and Tuzhilin, 2011) and textual comments (McAuley and Leskovec, 

2013) have been utilized separately in specific recommender systems, a generic 

framework is needed to incorporate all possible third-parity information entities and 

their pairwise or high-order relationships in the field of recommender systems. 

Furthermore, the users’ changing and flexible multi-objective recommendation 

demands are also an emerging challenge not to be ignored for recommender systems. 

Traditionally, a recommender system only responds to a single user with always the 

simplest demand at each time, that is, to find the items best fitting this user’s past 

preference. In practice, however, users may have special requirements on item 

conditions, and there may be different accompanied people thereby their demands 

may change every time. A recommender system is hence required to be flexible to 

respond to such multi-objective recommendation requests of single or group users, 

which becomes another important research topic of this thesis. 

In seeking to respond to the above new challenges and also opportunities in the field 

of recommender systems, this thesis proposes a set of recommender systems in 

dealing with different scenarios. Particularly, graph models are employed to easily 

involve different information entities as the vertices and their relations as the edges 

and the recommendation problem can be naturally represented as a graph ranking 

problem that seeks for an optimal ranking order of the candidate items (vertices) for 

request users. The graph-based recommender systems have been the focus of many 

studies in recent years due to the ease of modelling and high extensibility (Fouss et 

al., 2007; Jamali and Ester, 2009; Bogers, 2010). As this study involves various 

information resources and complex relationships that cannot be well handled by 

simple graphs and conventional graph ranking models, we propose and solve some 

advanced graph ranking problems for different recommendation scenarios, which can 

be seen as of significance for the areas of both graph ranking and recommender 
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systems. 

1.2  Research Questions 

This study reviews four main emerging challenges in the field of recommender 

systems which significantly motivated the work presented in this thesis. In order to 

handle these challenges, six research questions are formalized as follows. 

In most situations, item content information is so complex and diverse that traditional 

vector-based models cannot handle it well for recommendation making. The 

following characters of item content information are considered to be challenging 

recommender systems in the current era. First, items are often described with rich 

and tree-structured taxonomy attributes such as the multi-level product taxonomies in 

e-commerce sites Amazon and eBay. A second challenge is the increasingly 

user-contributed tags that have been emerging as a new facet of content, called 

“folksonomy” information of items. In accordance with these challenges, the 

following research questions need to be addressed in this study.  

Research Question 1. How to establish the overall content similarity between 

items based on both the taxonomy and folksonomy information? 

Research Question 2. How to fuse collaborative filtering with the obtained 

overall content similarities of items to improve recommendation accuracy? 

Ratings have been utilized as the only resource for efficient CF approaches; however, 

as one of the downsides, these approaches will produce inaccurate recommendations 

if the rating data are too sparse. With the rapid outgrowth of online social networking 

tools, user social relations are gaining increasing attention as an alternative or 

additional facet for collaborative filtering. Social network-based recommender 

systems are emerging as a hot topic in this area but still need adequate studies. One 

of the most challenging issues is that users are often connected simultaneously with 
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different social networks and/or other implicit correlational networks. Existing single 

social network-based approaches encounter difficulties in handling such 

multi-relational social networks of users. Accordingly, the following research 

questions are formulated. 

Research Question 3. How to propagate the implicit relations between indirect 

users in a social network to reduce data sparsity? 

Research Question 4. How to fuse different types of social networks 

simultaneously occurred in a recommender system to improve recommendation 

accuracy? 

Today, the increasingly diverse information entities and their complex relations 

become a challenge for precise recommendations. Differing from ordinary pairwise 

relations, there are particularly high-order relations among multiple information 

entities. On the one hand, some many-to-many relations arise between users and/or 

items. For example, a group of users chose items that satisfy all members’ preference. 

These adoption relationships are arising for a set of users and items that cannot be 

well modelled as ordinary pairwise relationships. On the other hand, there are 

increasing third-party information entities that bring high-order relations. 

Considering the impact of environmental context, the original two-dimension 

user-item acceptance relationship user£ item! acceptance  becomes a three- 

dimension relationship user£ context£ item! acceptance. Despite environment 

context, the textual comments containing various evaluation topics can also be seen 

as special information entities selected by the users as personalized evaluations to 

items, illustrated as user£comment topics£ item!utility . To utilize all 

contributed information entities and high-order relations, a generic full-information 

based recommendation framework needs to be investigated, which leads to the 

following question. 

Research Question 5. How should the diverse information entities and their 
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relations be effectively utilized for full-information based recommender systems? 

Existing recommender systems can only respond to single-objective recommendation 

request, i.e., to predict generally best-fitted items for an individual user. However, 

users may have flexible and special conditions or demands each time. For example, 

people often go out for dinner not alone but with different friends or family. At each 

time, the participants may have different requirements for restaurant conditions or 

environments. Thus, a new challenge for present recommender systems is the 

flexible multi-objective request of users. Accordingly, we formulate the following 

research question. 

Research Question 6. How to model and respond to users’ multi-objective 

recommendation requests and generate flexible recommendations? 

1.3  Research Objectives 

In addressing the above research questions, this thesis aims to achieve the following 

objectives. 

Research Objective 1. To propose an overall content similarity induction 

algorithm for items based on both taxonomy and folksonomy information. 

This objective corresponds to the research questions 1 and 2. Since the taxonomy 

attributes provided by system managers are associated with almost every single item 

from the beginning when it becomes available online, while the folksonomy 

information may be absent if users have yet to tag this item; we focus on comparing 

the item taxonomy trees to induce the overall content similarity, thus a top-down 

multi-level subtree matching algorithm will be proposed. Folksonomy information 

will be utilized in the algorithm in terms of two aspects. First, tag information will be 

used to determine the most discussed attributes of an item. This finding is valuable to 
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discover the main characteristics of an item and to find other truly similar items. For 

example, if a movie is known to people by its magnificent scenes, it is appropriate to 

find another movie also featuring magnificent scenes as the similar item. Second, tag 

information can be used to discover the semantic similarity of different attributes, 

which usually need to be manually tuned by human experts (Wu et al., 2014b).  

Research Objective 2. To develop a hybrid recommender system integrating item 

taxonomy and folksonomy information. 

This objective corresponds to the research question 2. Based on the induced overall 

content similarity network of items as well as the preference relations between users 

and items, a bipartite graph is naturally constructed with users and items as the 

vertices. We expect to develop a unique random walk model on the user-item 

bipartite graph either following rating relations (which is similar to the idea of CF 

approaches) or following the item similarity correlations (which is similar to idea of 

content-based recommendation approaches).  

To achieve research objectives 1 and 2, a hybrid recommender system via bipartite 

graph random walks is proposed in Chapter 3 of this thesis, which is able to 

incorporate item content information including both taxonomy attributes and 

taxonomy tags and user rating information to alleviate the rating sparsity problem of 

traditional collaborative filtering algorithms. 

Research Objective 3. To propose a random walk-based propagation model for 

single social networks. 

This objective corresponds to the research question 3. Due to transitivity of social 

relations such as friendship and trust that have been widely adopted, social network 

propagation is an essential and effective research objective in social network analysis 

(SNA) to enrich the original sparse data. Unlike previous propagation methods that 

only focus on a micro perspective of predicting indirect trust between a pair of users, 
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we expect to propose a random walk-based graph propagation model from the 

perspective of the whole social network. The propagation model will be effective and 

efficient for different types of social networks. 

Research Objective 4. To develop a multi-relational social networks-based 

recommender system. 

This objective corresponds to the research question 4. To involve possibly multiple 

explicit social networks and implicit correlational networks of users, a multigraph 

model is naturally constructed in order to retain the original structural information. 

The search of the overall nearest neighbourhood of a target user becomes a 

multigraph ranking problem that has not been adequately studied. We will develop a 

novel multigraph ranking model in which both intra-network relations and 

inter-network diversities are considered to investigate users’ overall closeness in a 

complex multi-relational environment. Consequently, the K-nearest neighbourhood 

(KNN) recommendation technique will be applied resorting to the multigraph 

ranking result. 

To achieve the above research objectives 3 and 4, a social network-based 

recommender system via multigraph ranking is proposed in the Chapter 4 of this 

thesis, which is able to handle multiple explicit or implicit relations between users to 

enhance recommendation quality. 

Research Objective 5. To propose a unified data model to handle all information 

entities and relations that may appear in a recommender system. 

This objective corresponds to the research question 5. The possible information 

entities and relations that may appear in a practical recommender system will be 

summarized in a generic data model. With this model, a unified multipartite 

hypergraph will be constructed with the collected multi-party information entities as 

the unified vertices and their pairwise or high-order relations as the hyperedges. 
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Research Objective 6. To develop a full-information based recommender system 

using balanced hypergraph ranking. 

This objective corresponds to the research question 5. With the constructed unified 

hypergraph, the recommendation problem is transferred to a hypergraph ranking 

problem which aims to rank item vertices for a particular user vertex. An enhanced 

hypergraph ranking algorithm, named the balanced hypergraph ranking (BHR) 

algorithm will be developed as the core algorithm of a full-information based 

recommender system. 

To achieve the above research objectives 5 and 6, a unified recommender system via 

multipartite hypergraph ranking is proposed in the Chapter 5 of this thesis, which is 

able to incorporate possible information entities and high-order relationships in an 

online system for recommendations. 

Research Objective 7. To develop a multi-objective recommender system. 

This objective corresponds to the research question 7. A multi-objective 

recommendation request may involve constraints on multiple information entities 

such as user participants, item conditions and even environments. Thus we need to 

decompose multi-objective recommendation requests to a computable query set and 

query vector as the input of the expected multipartite hypergraph ranking model of 

Research Objective 6. We also hope to develop a demonstration system to show how 

multi-objective recommendation requests are generated and solved in real-world 

applications. 

To achieve the above research objective 7, the Chapter 6 of this thesis points out the 

multi-objective recommendation demands of users and proposes an initial framework 

of multi-objective recommender system. 
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1.4  Significance 

This research work has both theoretical and practical significances in the area of 

recommender systems. 

1.4.1  Theoretical Significance 

Theoretically, the research develops a set of recommendation algorithms and solves 

the three special graph ranking problems below. 

 
Figure 1-1 This research raises and solves three unique graph ranking problems 

The research objectives show that graph ranking techniques are utilized in our 

research as the main means to address the rising challenges of recommender systems. 

In particular, we propose and solve three special graph ranking problems in this 

research as the ordinary graph ranking methods are not applicable to model the new 

recommendation environments. 

 Bipartite Graph Ranking Problem. This research solves a bipartite graph 

ranking problem where the graph involves different and incomparable relations 

between different groups of vertices. Referring to the research objective 2, a 

bipartite graph is established with user-item rating relations and item-item 

content similarity relations. Note that the two types of relations are not 

comparable directly because they have different natures and also they may value 

(a) bipartite graph 
ranking

(b) multigraph 
ranking

(c) hypergraph 
ranking



1.4  Significance 

12 

in different ranges. We propose a novel bipartite random walk model which is 

able to determine which relation is selected to follow for the current node’s next 

move. This unique problem is illustrated in Figure 1-1(a), where the solid lines 

and dashed lines indicate two different relations. 

 Multigraph Ranking Problem. This research solves a multigraph ranking 

problem where two vertices may be connected with multiple relations. This 

problem arises from the research objective 4. Figure 1-1(b) indicates that in the 

unique graph two users can be connected by any of the three different relations. 

 Hypergraph Ranking Problem. This research solves a hypergraph ranking 

problem. A hypergraph is a generalization of an ordinary graph where edges, 

called hyperedges, can connect any number of vertices. Referring to the research 

objective 6, hyperedge model will be used in the research to model all possible 

information entities as the unified vertices and model their high-order relations as 

the hyperedges. Thus a hypergraph ranking problem is raised as a 

recommendation task to be solved in the research. 

1.4.2  Practical Significance 

Practically, the research provides guidelines of how to incorporate new emerging 

information resources in recommender systems to improve recommendation quality. 

For the item side, this research integrates both system-provided, tree-structured, 

taxonomy information and user-created folksonomy information with model-based 

CF technique to develop a hybrid recommender system. For the user side, this 

research incorporates user multi-relational social networks that can be extracted from 

any explicit social relationships or implicit correlations of users in a recommender 

system to develop an enhanced social filtering recommender system. For all other 

third-party information entities and high-order relations, this research proposes a 

generic data model and full-information based recommender system, which can be 

easily adjusted for other recommendation scenarios. Furthermore, this research 

develops a multi-objective recommender system that responds to the flexible and 
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multi-objective recommendation demands of single or group users every time. 

1.5  Research Methodology and Process 

The overall research methodology and research process are designed as follows. 

 
Figure 1-2 The proposed research methodology of this thesis 

1.5.1  Research Methodology  

Research methodology is the “collections of problem solving methods governed by a 

set of principles and a common philosophy for solving targeted problems” (Gallupe, 
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2007). This research belongs to the information system domain, for which various 

methodologies have been proposed and applied such as case study, field study, 

design research, archival research, field experiment, laboratory experiment, and 

survey and action research (Creswell, 2013; Yin, 2013; Vaishnavi and Kuechler, 

2015). 

As the research has focused on the development of new algorithms or strategies in 

the recommender system, and the soundness of these systems, techniques or 

proposed strategies must be supported by the results from the experimentations and 

evaluations. Therefore, the experimental approach integrated with the standard 

information system research cycle was chosen as the proposed research method. The 

process of the research approach used in this research is illustrated in Figure 1-2. 

1.5.2  Research Process 

This research was planned according to the methodology of design research. First, 

the subject of recommender systems was chosen as a very broad research topic of 

this research. A literature review of previous research in the topic area was 

conducted, and existing literature was retrieved and critically reviewed. The results 

of the literature review helped to identify specific research questions to be directly 

addressed in this research. As the research questions grew clearer and more definite, 

more literature closely related to the research questions was reviewed. Because the 

existing work in the literature lacks adequate study on the new graph ranking 

problems abstracted from the research questions/objectives, this research presented 

some unique graph/hypergraph models, developed corresponding graph/hypergraph 

ranking algorithms and recommender systems. Appropriate datasets are selected to 

evaluate the proposed a set of recommender systems. As indicated in Figure 1-2, 

evaluation results are fed back to previous steps so that the research outcomes are 

progressively improved until satisfying results are drawn from evaluations. Finally, 

writing up the PhD thesis is done at the end of the research. 
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Figure 1-3 The structure and contents of this thesis
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1.6  Thesis Structure and Publications 

This thesis contains seven chapters. Chapter 1 presents the research background, 

research questions, objectives, significance, research methodology and process, and 

the basic notations for recommendation problems. Chapter 2 presents the literature 

relevant to this study, including classical and the state-of-the-art recommendation 

techniques and applications, and evaluation criteria of recommender systems. 

Chapter 3 proposes a hybrid recommender system focusing on incorporating both 

taxonomy and folksonomy information of items and model-based CF techniques. 

Chapter 4 develops a multi-relational social network-based recommender system to 

incorporate possible different explicit social relations or implicit correlational 

relations of users. Chapter 5 reports a full-information based unified recommender 

system using a multipartite hypergraph model to handle all contributed information 

entities and their relations. Chapter 6 proposes a multi-objective recommendation 

framework based on the proposed data model and hypergraph model in Chapter 5 

and develops a demonstration system in food industry. Chapter 7 presents the 

conclusions and further study recommendations. The structure and contents of the 

thesis are as indicated in Figure 1-3. 

The related papers of this thesis that are being under review or published in referred 

international journals and conferences are listed below. 

1) Mingsong Mao, Jie Lu, Guangquan Zhang, Jinlong Zhang, A Multi-objective 
Recommender System using Balanced Hypergraph Ranking, Decision 
Support System (DSS). (submitted) 

2) Mingsong Mao, Guangquan Zhang, Jie Lu, Jinlong Zhang,  A Hybrid 
Random Walk-based Recommendation Approach Incorporating Taxonomy 
and Folksonomy, IEEE transactions on Cybernetics (TCYB). (2nd-round 
review) 

3) Mingsong Mao, Guangquan Zhang, Jie Lu, Jinlong Zhang, A Multigraph 
Ranking Model for Multi-Relational Social Network Recommendations, 
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IEEE transactions on Cybernetics (TCYB). (3rd-round review) 

4) Mingsong Mao, Jie Lu, Guangquan Zhang, Jinlong Zhang, A Fuzzy Content 
Matching-based e-Commerce Recommendation Approach, in proceedings of 
the 2015 IEEE International Conference on Fuzzy Systems (Fuzz-IEEE 2015), 
Istanbul, Turkey. 

5) Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, Guangquan Zhang. 
Recommender system application developments: A survey. Decision Support 
System, vol 74, pp 12–32, 2015. 

6) Mingsong Mao, Jie Lu, Guangquan Zhang, Jinlong Zhang , Hybridizing 
social Filtering for recommender systems, in proceedings of the 8th 
International Conference on Intelligent System and Knowledge Engineering 
(ISKE 2013), Shenzhen, China. 

7) Mingsong Mao, Guangquan Zhang, Jie Lu, Jinlong Zhang, A signed 
trust-based recommender approach for personalized government-to-business 
e-services, in proceedings of the 7th International Conference on Intelligent 
System and Knowledge Engineering (ISKE 2012), Beijing, China. 

1.7  Basic Notations in This Thesis 

In a recommender system, there exist a set of users who are also the recommendation 

requesters, and a set of items which are the recommendation objects, referring to all 

candidate resources or solutions in the system. The adoption relationships of users 

and items are represented as a user-item preference/rating matrix, which is the 

essential given knowledge of a recommender system. Despite special notations of the 

unique recommendation models in different chapters, some basic symbols and 

notations are formalized at first and be used throughout this thesis, as collected in the 

following table. 
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Table 1-1 Basic notations throughout all chapters 

Notation Description 

U  The user set fu1;u2; : : :g in a recommender system 

I  The item set fi1; i2; : : :g in a recommender system 

u» i or i» u Denotes that a user u has experienced/known/purchased an item i 

Ui The set of users who have experienced/known/purchased the item i 

Iu The set of items that the user u has experienced/known/purchased 

ru;i or r(u; i) The rating value given by a user u to an item i, if u» i 

r̂u;i or r̂(u; i) The predicted rating value of a user u to an item i 

¹ru The average ratings issued by a user u 

¹ri The average ratings of an item i 
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CHAPTER 2. LITERATURE REVIEW 

This chapter presents a comprehensive review and analysis of relevant studies in 

connection with this thesis, including the classical techniques in traditional 

recommender systems, the state-of-the-art techniques in recent recommender systems, 

the main recommender system applications and the most popular evaluation criteria 

for recommender systems. 

2.1  Classical Recommender Systems 

As mentioned, recommender systems advise online users on the choice of items of 

personal interest from a huge range of candidates. Early research in recommender 

systems grew out of information retrieval and filtering research (Goldberg et al., 

1992), and recommender systems emerged as an independent research area in the 

mid-1990s when researchers started to focus on recommendation problems that 

explicitly rely on the ratings structure (Resnick et al., 1994). 

The techniques for recommender systems vary according to prediction strategies of 

the preference of an individual user to a particular item, which can be classified as 

three basic ideas: collaborative filtering (CF), content-based (CB) and 

knowledge-based (KB) (Lu et al., 2015). The idea of CF techniques aims to seek for 

items that are preferred by other users with similar preferences (Resnick et al., 1994). 
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The idea of CB techniques aims to search for new items with similar attributes or 

functionalities to those items that are preferred by the request user in the past 

(Pazzani and Billsus, 2007). The idea of KB techniques aims to determine the best 

matched users and items according to existing knowledge rules (Burke, 2000). Each 

of these three ideas/strategies can be enhanced by the use of advanced computational 

intelligence (CI) such as fuzzy set theory and probabilistic models thereby a fourth 

type recommendation techniques can be concluded as CI-based (Lu et al., 2015). 

Furthermore, there are many hybrid recommendation techniques (Burke, 2002) that 

dedicate to combine two or more of CF, CB and KB ideas to overcome the 

drawbacks of single strategies such as the rating sparseness problem of CF. 

In brief, the CI techniques provide theoretical supports for the continuous 

development of CF, CB and KB techniques, whereby hybrid recommender systems 

are constructed to combine the advantages of CF, CB and KB and to alleviate the 

shortcomings of a single one. Concretely, the development and the pros and cons of 

each recommendation technology are elaborated below. 

2.1.1  Collaborative Filtering-based Recommender 
Systems 

The collaborative filtering techniques help people to make choices based on the 

opinions of other people who share similar interests (Deshpande and Karypis, 2004). 

Resnick and Varian stated that the CF approach built on a significant assumption that 

“a good way to find interesting content is to find other people who have similar 

interests, and then recommend titles that those similar users like” (Resnick and 

Varian, 1997). The CF approach not only provides new suggestions and 

recommendations to people, but also tries to provide the right information to the right 

user (Shardanand and Maes, 1995). It has been demonstrated that the CF 

recommendation approach is the most successful and widely used approach for 

recommender systems (Herlocker et al., 2002; Schafer et al., 2007; Shi et al., 2014). 
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CF-based recommender systems have been developed and used in many fields 

including recommending news, articles, movies, music, products, books and web 

pages.  

The CF-based techniques can be grouped into two general classes: memory-based 

and model-based (Adomavicius and Tuzhilin, 2005; Shi et al., 2014). Memory-based 

techniques basically are heuristics that make rating predictions based on the entire 

collection of previously rated items by the users, which include user-based and 

item-based CF approaches (Sarwar et al., 2001). The model-based CF algorithms use 

the existing ratings to build a model which is then used to make predictions for 

un-rated items. Building a model is a fundamental step for the model-based 

recommendation techniques. Different machine learning algorithms are used to 

accomplish the model building process such as the Bayesian network (Babas et al., 

2013), clustering (Xue et al., 2005) and rule-based techniques (Abel et al., 2008). 

These algorithms mainly use a probabilistic approach to compute prediction values 

for un-rated items (Adomavicius and Tuzhilin, 2005; Schafer et al., 2007).  

The memory-based CF technique can be divided into user-based and item-based CF 

approaches (Sarwar et al., 2001). The user-based CF approach recommends an active 

user those items which are most liked by the user’s nearest neighbours. First, it 

analyses the user-item matrix and creates a vector for each user which contains all 

the user’s ratings. Then, it computes the similarity between the active user’s vector 

and the vectors of other users. Next, the most similar users to the active user are 

selected as the nearest neighbours. Predictions are generated using a weighted 

average of the neighbours’ ratings to items. 

The item-based CF approach recommends the items that share similar ratings with 

the ones the active user has rated highly in the past. First, the item-based CF 

approach creates a vector for each item which contains the ratings from all users to 

the item. For a target item to an active user, it then computes the rating similarity 

between the rated items of the active user and the target item. The most similar rated 
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items to the target item are then selected as the item’s nearest neighbours. Finally, 

the prediction for the target item is generated by taking a weighted average of the 

active user’s ratings on the neighbour items. It is found that the item-based 

algorithms are able to provide the same quality of provided services as the user-based 

algorithm but with less online computation because the relationships between items 

are relatively static compared with the relationships between users (Sarwar et al. 

2001).  

For both user-based and item-based CF, the rating similarity measure between users 

or items becomes the core technique. There are a number of similarity measures, 

such as Pearson correlation-based similarity (Resnick et al. 1994) and cosine-based 

similarity (Sarwar et al., 2001). There are also many advanced similarity 

measurement proposed in literature for more precise neighbourhoods identification 

(Candillier et al., 2008), such as the constrained Pearson correlation-based (CPC) 

similarity (Shambour, 2012) and adjusted cosine-based similarity measures 

(Deshpande and Karypis, 2004).  

The main advantage of using CF recommendation techniques is that they work for 

any type of items without the need to extract textual descriptions related to the items. 

It not only suggests similar items according to user interests and preferences, but also 

suggests new items based on the other people who have the same or similar tastes 

and interests to a specific user. The major limitations of CF methods are data 

sparseness and cold-start problems (O’Sullivan et al., 2004; Adomavicius and 

Tuzhilin, 2005; Bobadilla et al., 2013). The data sparseness problem occurs when the 

number of available items increases and the number of ratings in the rating matrix is 

insufficient to generate accurate predictions. When the ratings obtained are very 

small compared with the number of ratings that need to be predicted, a recommender 

system becomes unable to locate similar neighbours and fails or produces inaccurate 

recommendations. The cold-start (CS) problem consists of the CS user problem and 

the CS item problem. The CS user problem, also known as the new user problem, 
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affects users who have a small number of ratings or none. When the number of rated 

items for the CS user is small, the CF-based approach cannot accurately find user 

neighbours using rating similarity so it fails to generate accurate recommendations. 

The CS item problem, also known as the new item problem, affects items that have 

only a small number of ratings or none. With few ratings for CS items, CF-based 

approaches cannot appropriately locate similar neighbours using rating similarity and 

will be unlikely to recommend them. 

2.1.2  Content-based Recommender Systems 

The task of a recommender system is to help customers to quickly identify items of 

interest from a large number of choices. An intuitive way to achieve this goal is to 

find items that have similar attributes to those previously preferred by a user; this 

information is usually stored as a content-based user “profile”. The basic principles 

of CB recommender systems are: (1) To analyse the description of the items 

preferred by a particular user to determine the principal common attributes 

(preferences) that can be used to distinguish these items. These preferences are stored 

in a user profile. (2) To compare each item’s attributes with the user profile so that 

only items that have a high degree of similarity with the user profile will be 

recommended (Pazzani and Billsus, 2007). 

In CB recommender systems, two techniques have been used to generate 

recommendations. One technique generates recommendations heuristically using the 

traditional information retrieval methods, such as the cosine similarity measure. The 

other technique generates recommendations using statistical learning and machine 

learning methods. This technique mainly builds models that can learn users’ interests 

from the users’ historical data (training data). Creating a learning model of a user’s 

preferences is a form of classification learning. The algorithms used in classification 

learning, such as decision tree, naive Bayesian and K-nearest neighbours, create a 

probability function that has the potential to provide the probability estimation for a 
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user’s interest to an unseen item. The attained probability can be used to provide 

users with a sorted list of recommendations (Pazzani and Billsus, 2007). Some 

examples of CB recommender systems are WebWatcher (Armstrong et al., 1995) and 

Websail (Chen et al., 2000). In early researches, item attributes and user profiles are 

represented as flat vectors, and tree-structured items contents are rarely dealt with. 

The advantages of the CB recommender systems are that they adopt semantic content 

of items and recommend to a specific user some items similar to the preferred ones. 

As a result, a CB recommender system would be able to recommend new items and 

unpopular items. Furthermore, it does not need to have information about preferences 

of other users in making recommendations, so it does not suffer from the rating 

sparseness problem. One of the main limitations of CB recommender systems is the 

new user problem. CB approach is not able to offer accurate recommendations to a 

new user since this user has few rated items to construct his/her profile. The CB 

approach also has the overspecialization problem. It can only recommend items to a 

user according to the preferred items in trained profile so it cannot recommend items 

outside the user’s profile. Additionally, in some particular cases, it may not be 

desirable for a recommender system to recommend items which are too similar to 

users, such as different news articles that describe the same event. 

2.1.3  Knowledge-based Recommender Systems 

Knowledge-based (KB) recommendation techniques offer items to users based on 

knowledge about the users and/or items. Usually, a KB recommender system retains 

a functional knowledge base that describes how a particular item meets a specific 

user’s requirement, which can be performed based on inferences about the 

relationship between a user’s need and a possible recommendation (Burke, 2000).  

Case-based reasoning (CBR) technique is a common example of KB 

recommendation techniques (Smyth, 2007). CBR systems rely on the idea of using 
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the past problem solving experiences as a primary source to solve the new problem. 

A new problem is solved by retrieving a case whose specification is similar to the 

current problem and then fitting the attained solution to match the current problem. 

Case-based recommender systems represent items as cases and generate the 

recommendations by retrieving the most similar cases to the user’s query or profile. 

Ontology-based recommender system is another classical KB recommendation 

technique. As a formal knowledge representation method, the ontology information 

represents the domain concepts and the relationships between those concepts. It has 

been used to express domain knowledge in recommender systems (Middleton et al., 

2009). Ontology-based recommender systems classify items using ontological 

classes, represent user profiles in terms of ontological terms, use ontological 

inference to improve user profiling, and use ontological knowledge to bootstrap a 

recommender system and support profile visualization to improve profiling accuracy. 

The semantic similarity between items can be calculated based on the domain 

ontology (Al-hassan et al., 2011). 

KB approaches are in the majority of cases applied for recommending complex 

products and services such as food menu for patients (Arwan et al., 2013). KB 

recommender systems have no cold-start problem as a case study will be conducted 

for every new user to get the knowledge of the user’s profile or demand. A KB 

recommender system generates recommendations by computing the similarities 

between the existing cases and the user’s request, so it doesn’t require the user to rate 

or purchase many items previously. KB recommender systems still have some 

limitations (Burke, 2002; Leung, 2009). For instance, a KB recommender system 

requires extensive effort to acquire and maintain the knowledge, and to retain the 

information about items and users for making recommendations. It also requires 

more feedback and involvement from an active user in order to make an appropriate 

recommendation for the user. 
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2.1.4  Computational Intelligence-based 
Recommender Systems 

The common computational intelligence techniques that have been applied for 

recommendations include Bayesian techniques, artificial neural networks, clustering 

techniques, genetic algorithms, fuzzy set techniques, etc. 

A Bayesian classifier is a probabilistic methodology for solving classification 

problems. Bayesian classifiers are popular for model-based recommender systems 

(Amatriain et al., 2011) and are often used to derive the model for CB recommender 

systems. When a Bayesian network is implemented in recommender systems, each 

node corresponds to an item, and the states correspond to each possible vote value. In 

the network, there will be a set of parent items for each item which represent its best 

predictors. A hierarchical Bayesian network has also been introduced as a framework 

for combining both CB and CF approaches (Yu et al., 2004). 

An artificial neural network (ANN) is an assembly of inter-connected nodes and 

weighted links that is inspired by the architecture of the biological brain and can be 

used to construct model-based recommender systems (Amatriain et al., 2011) . Hsu 

et al. (Hsu et al., 2007) used ANN to construct a TV recommender system by using 

the back-propagation neural network method to train a three-layered neural network. 

A hybrid recommender system combining CB and CF was proposed by Christakou et 

al. (Christakou et al., 2007) to generate precise recommendations for movies. The 

content filtering part of the system is based on a trained ANN representing individual 

user preferences. 

Clustering entails assigning items to groups so that the items in the same group are 

more similar than items in different groups. Clustering can be used to reduce the 

computation cost for finding the k-nearest neighbours, for instance in (Amatriain et 

al., 2011) . Xue et al. (Xue et al., 2005) presented a typical use of clustering in 
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recommender systems. Their method uses the clusters for smoothing the unrated data 

for individual users. The unrated items of an individual user in a group can be 

predicted by use of the rating information from a group of closely related users. 

Moreover, assuming that the nearest neighbour should also be in the Top N most 

similar clusters to the active user, only the nearest neighbours in the Top N clusters 

need to be selected, which enables the system to be scalable. The clustering 

technique is also used to address the cold start problem in recommender systems by 

grouping items (Shinde and Kulkarni, 2012). Ghazanfar and Prügel-Bennett used 

clustering algorithms to identify and solve the gray-sheep users problem (Ghazanfar 

and Prügel-Bennett, 2013).  

Genetic algorithms (GA) are stochastic search techniques which are suitable for 

parameter optimization problems with an objective function subject to hard and soft 

constraints (Kim and Ahn, 2008). They have mainly been used in two aspects of 

recommender systems (Bobadilla et al., 2011, 2013): clustering (Kim and Ahn, 2008) 

and hybrid user models (Al-Shamri and Bharadwaj, 2008). GA-based K-means 

clustering is applied to a real-world online shopping market segmentation case for 

personalized recommender systems in (Kim and Ahn, 2008), which brings improved 

segmentation performance. A genetic algorithm method is presented for obtaining 

optimal similarity functions in (Bobadilla et al., 2011). The results show that the 

obtained similarity functions provide better quality and faster results than those 

provided by traditional metrics. 

Fuzzy set theory offers a rich spectrum of methods for the management of 

non-stochastic uncertainty. It is well suited to handling imprecise information, the 

un-sharpness of classes of objects or situations, and the gradualness of preference 

profiles (Zenebe and Norcio, 2009). In (Yager, 2003), an item in a recommender 

system was represented as a fuzzy set over an assertion set. The user’s intentional 

preferences are represented as a basic preference module, which is the ordered 

weighted averaging of components that can evaluate items. Based on the 



2.1  Classical Recommender Systems 

28 

representation, the preference for an item by a user can be inferred. Cao and Li used 

linguistic terms for domain experts to evaluate the features of consumer electronic 

products and allow users to use linguistic terms to express their needs for item 

features (Cao and Li, 2007). Porcel et al. (Porcel et al., 2009) developed a fuzzy 

linguistic-based recommender system combining both CB filtering and the 

multi-granular fuzzy linguistic modelling technique, which is useful for assessing 

different qualitative concepts. Zhang et al. (Zhang et al., 2013) used fuzzy set 

techniques to deal with linguistic ratings and calculate the fuzzy CF similarities, to 

provide a solution for handling uncertainty in a telecom product/service 

recommendation process. 

2.1.5  Hybrid Recommender Systems 

To achieve higher performance and overcome the drawbacks of traditional 

recommendation techniques, a hybrid recommendation technique that combines the 

best features of two or more recommendation techniques into one hybrid technique 

has been proposed (Burke, 2002, 2007; Albadvi and Shahbazi, 2009; Shambour, 

2012; Zhang et al., 2013). According to (Burke, 2007), there are seven basic 

hybridization mechanisms of combinations used in recommender systems to build 

hybrids:  

 Weighted: scores of each of the recommendation approaches are combined 

numerically to produce a single prediction (Mobasher et al., 2000; Shambour, 

2012);  

 Mixed: results from different recommendation approaches are presented together, 

either in a single presentation or combined in separate lists (Smyth and Cotter, 

2000);  

 Switching: one of the recommendation approaches is selected to make the 

prediction when certain criteria are met using decision criteria (Billsus and 

Pazzani, 2000);  
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 Feature combination: a single prediction algorithm is provided with features 

from different recommendation approaches (Basu et al., 1998);  

 Feature augmentation: the output from one recommendation approach is fed to 

another (Melville et al., 2002);  

 Cascade: one recommendation approach refines the recommendations produced 

by another (Lampropoulos et al., 2012);  

 Meta-level: the entire model produced by one recommendation approach is 

utilized by another (Pazzani, 1999).  

The most common practice in the existing hybrid recommendation techniques is to 

combine the CF recommendation techniques with the other recommendation 

techniques in an attempt to avoid cold-start, sparseness and/or scalability problems 

(Adomavicius and Tuzhilin, 2005; Bellogín et al., 2013). 

2.2  The State-of-the-Art Recommendation 
Techniques 

With the development of recommender systems, new opportunities and challenges 

are continuously emerging that have facilitated the raise of new recommendation 

techniques that can enhance recommendations but still need adequate studies. In 

particular, we enumerate some state-of-the-art recommendation techniques including 

complex content analysis, social network analysis, graph techniques, context-aware 

and multi-criteria recommendation techniques, which are highly related to the 

research questions and objectives of this thesis. 
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2.2.1  Complex Content-based Recommendation 
Techniques 

Advanced content analysis techniques are emerging for recommender systems due to 

the growth of more rich and tree-structured taxonomy information and user-created 

folksonomy tags, as discussed separately as follows. 

 Tree-structured taxonomy information. Item taxonomies as the major source 

of content information can be taken advantage of in recommender systems, since 

they provide a means of discovering and classifying new information about the 

items to recommend, user profiles and even context (Ruiz-Montiel and 

Aldana-Montes, 2009). Despite the flat-form attributes that can be modelled by 

vector models, items in many domains are associated with rich and 

tree-structured taxonomy attributes. Recently, tree data analyses such as tree 

similarity measure, tree isomorphism, and sub-tree matching haven been 

employed in some advanced recommender systems (Arwan et al., 2013; Biadsy 

et al., 2013; Wu et al., 2014b). For example, in the food menu recommender 

system for diabetes patients proposed by Arwan et al. (Arwan et al., 2013), items, 

food menus in this case, are represented as hierarchical food ontology and users 

(the patients) are represented as weighted nutrition demanding trees. Two 

patients are then comparable using a weighted tree matching method so that for 

new patients, personal food menus can be generated according to the diet plans of 

previous similar patients. Analogously, in the content-based recommend system 

of (Biadsy et al., 2013), a single user’ preference is mapped to a weighted version 

of item taxonomy tree, and tree matching is used to find the correlation between 

users to conduct CF-liked recommendations. Wu et al. (Wu et al., 2014b) 

propose a fuzzy model to represent tree-structured user preferences as well as 

item taxonomy. The semantic (structural) comparison of user-to-user profile trees, 

item-to-item content trees and user-to-item preference trees are comprehensively 

discussed and resolved using fuzzy tree-matching techniques. 
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 User-created folksonomy information. Apart from the standard taxonomy 

information which is usually maintained by system managers, user-created tags 

are often emphasized as a kind of folksonomy (folk-taxonomy) information that 

will enrich item content greatly.  Despite being often treated as user-item 

interactions to be incorporated in some model-based CF approaches (Nanopoulos, 

2011; Rafailidis and Daras, 2013), folksonomy tags are more seen as a part of 

content information describing more attributes or functionalities of items. In (Wu 

et al., 2014b), tags are added as a new aspect of item attributes to enrich the 

original item taxonomy trees, thus it is more easy to compare the content 

similarity between items. Liang et al. (Liang et al., 2010) develop a heuristic 

recommendation approach integrating both taxonomy and folksonomy 

information. It measures the personalized weights (preference degree) to tags and 

taxonomy attributes for each user based on the user-tag-item correlations and 

item-attribute associations. As a result, content-based user similarities can be 

measured by comparing their preference to taxonomy and folksonomy, separately, 

which is further combined with traditional memory-based CF approach to 

generate recommendations. 

2.2.2  Social Network-based Recommendation 
Techniques 

The trust derived from user social networks is also believed to be effective for user 

collaboration as people often make choices resorting to friends’ suggestions. Social 

networks have been emerging as important facet of resources to replace or be 

incorporate with CF similarities to alleviate the sparseness problem. More general, a 

social network between recommender system users can be established from three 

types of resources: (1) preference correlations derived from user preference such as 

rating and purchasing behaviours, (2) explicit social relations provided by social 

networking tools in recommender systems, or (3) implicit correlations derived from 

user-contributed information and feedback data. 
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1) User preference similarity and correlations 

The rating behaviour of a user towards a particular item involves two levels of 

meanings. In the first, a quantified value represents how much the user likes this item; 

in the second, binary experience information is provided on the basis of this user’s 

use of the item, e.g., a person has watched a movie or has purchased a book and can 

thus “rate” the item. As is known, quantified preferences have been widely utilized to 

construct the preference correlations of users, such as Pearson Correlation and 

Cosine similarity measurement, in conventional CF approaches. Binary experience 

information has also been exploited for recommender systems. For example, in the 

ItemRank model proposed by Gori and Pucci (Gori and Pucci, 2007), a correlation 

network of items is built using the binary user-rates-item information. Although the 

study only considers item correlations, we believe that a correlation network of users 

can also be established based on such binary information. 

Previous studies also suggest that an implicit online trust relationship can be 

generated by the rating behaviours of users (O’Donovan and Smyth, 2005; Hwang 

and Chen, 2007; Yuan et al., 2010; Shambour and Lu, 2012; Eirinaki et al., 2014). 

Commonly, they assume that users will implicitly trust others who are found to 

consistently hold similar opinions, i.e., ratings. It assumes that a single user will 

observe and judge others’ preference, and if someone’s rating results are found 

consistently accurate, an implicit trustworthiness will then arise to this person. 

 Table 2-1 Deriving implicit trust from rating behaviours 

Timestamps t1 t2 t3 ! t 

Observed Item i1 i2 i3 : : : it 

Observer (A) 5F 1F 4F : : : ? 

Observed user (B) 5F 2F 4F : : : 1F 

An intuitive example is given in Table 2-1. In this case, the observer user A finds 

another user B always issues the same or similar ratings to their common-rated items 
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in the past time, then at next time when user A faces an unseen item, it is very 

possible that A will accept the rating of B as a pre-judgement of the item. If user A 

further find user B’s suggestion is accurate, the trustworthiness to B increases more, 

otherwise decreases. Different calculations of implicit trust are developed in different 

studies. O’Donovan et al. (2005) propose a rating-derived implicit trust 

measurements instead of rating similarities to conduct collaborative filtering for 

recommendations. Yuan et al. (2010) develop an implicit trust metric between users 

based on their rating similarities rather than deriving it directly from ratings. As a 

result, the implicit trust network is denser than the rating similarity network, so the 

sparseness problem is well eliminated. Shambour et al. (2012) also consider the 

transitivity of implicit trust. For users with no implicit trust can be calculated from 

ratings, the indirect trustworthiness is inferred using a trust propagation model. The 

enriched implicit trust network is then integrated with rating similarities for a 

trust-enhanced CF recommendation approach in their work. 

2) Explicit social relational network 

Increasingly, online systems involve social networking tools to enable customers to 

interact with each other directly, in the form of online friendships, interest groups, 

etc. Many researches (Golbeck, 2006; Ma et al., 2008; Massa and Avesani, 2007, 

2009; Yang et al., 2012) have contributed to the incorporation of social networks to 

improve recommendations, especially in the case of sparse rating data. In life, people 

often resort to their friends for suggestions. It is therefore tempting to incorporate 

users’ trust relationships in social networks to enhance collaborative filtering. 

A few systems provide weighted trustworthiness between users so that the trust 

scores can be directly utilized as the weights to find neighbour users. For example, in 

the FilmTrust recommender system proposed by Golbeck and Hendler (2006),  a 

trust rating in the range of 0 to 1 need to be indicated if a user add a new person to 

the trust list. The majority of social network-enabled systems, however, only provide 

binary relations between users such as “who follows who” or “who is linked to 
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whom”. Based on the transitivity of social relations and the need to enrich original 

networks, social network propagation is often involved as an important component in 

social network-based recommender systems. Existing approaches mostly use graph 

searching techniques to infer potential connects between indirect users, where some 

parameters need to be tuned to control the search breadth or depth. Take the 

TidalTrust model in (Golbeck and Hendler, 2006) for instance. It is a modified 

Breadth-First-Search (BFS) model that polls indirect trustworthiness from directly 

trusted persons. The polling process is started from the source user to the target user 

via all middle users with some thresholds to control search depth. A similar model 

called MoleTrust is developed by Massa et al. (2007). Multi-level trust inference 

models have also been proposed as in (Shambour and Lu, 2012) that if no one-level 

trustees know the target user, the polling process is recursively conducted at deeper 

levels. In addition, the maximum allowed searching depth is controlled by new 

parameters.  

It can be seen that existing social network propagation methods are easy to 

understand from the perspective of individual users, but they lack a global 

perspective of the whole network. Another limitation is that most existing social 

network-based recommender systems are only able to handle a single social network 

of users but cannot be applied for the users surrounding with multiple social 

relations. 

3) Implicit user correlational network 

Implicit correlational networks of users can be derived from broader user-contributed 

information such as users’ demographic information, browsing history or feedback 

data. Usually are usually thought to be related if they share common characteristics 

or have engaged in similar behaviours. Some examples are introduced below. 

In the website bookmarks recommender systems of (Shiratsuchi et al., 2006), a type 

of “co-citation” relationship network of users is established as the basis for exploring 
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the implicit correlations of users to see whether they have similar interests when 

surfing the Internet. Lopes et al. (2010) develop an academic collaboration 

recommender system to help scientists to find potential opportunities for cooperation 

and collaboration. An implicit social network of scientists is hence generated based 

on their relationships of “co-authoring” research papers. A voting advice application 

is presented in (Katakis et al., 2014), which can be used as a channel to communicate 

with other voters. A political correlation network of users can then be established 

according to their interactions; for example, whether they agree or disagree with the 

political options of others. 

In summary, with the increasing user-contributed information in recommender 

systems, more diverse correlations of users can be extracted as new resource aspects 

for conducting or enhancing collaborative filtering, particularly for systems with 

sparse rating data. 

4) Fusion methodologies for social network-based recommender systems 

Incorporating social networks with conventional user-based CF approaches has 

gained much attention in the literature, and can be categorized in the following three 

classes. 

 Post hoc combination. This means that each input resource is investigated in 

separate recommendation approaches, the results of which are later combined to 

output single result (Lampropoulos et al., 2012; Shambour and Lu, 2012). 

 Neighbourhood integration. In contrast to post hoc combinations, social relations 

and user rating similarities can be aggregated at an earlier stage to establish a 

union neighbourhood to perform KNN recommendations (Bellogín et al., 2013; 

Kazienko et al., 2011). 

 Unified framework. Unified frameworks are usually applied for the systems with 

complex networks between users, items and/or additional information entities. 
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Examples include the multipartite graph model (Jamali and Ester, 2009), 

hypergraph model (Tan et al., 2011) and cross domain multi-layer network model 

(Jiang et al., 2012). 

In general, post hoc combination approaches combine the predictions of two 

techniques using weighting functions such as Arithmetic Mean in (Claypool et al., 

1999) or Harmonic Mean in (Shambour, 2012). 

Neighbourhood interaction can be undertaken in a simple way, such as by mixing 

different neighbourhoods into a union neighbourhood (Bellogín et al., 2013). In 

(Jacob et al., 2011; Kazienko et al., 2011), different social networks are aggregated 

to one single union network and a union neighbourhood will be built for each user 

for KNN-based recommendations. One of the key concerns of these approaches is 

the lack of inter-network comparisons. In addition, tuning the weight of every social 

network may result in high cost of model configuration. 

Unified frameworks are usually extensions of the model-based CF approaches. For 

example, Jamali and Ester (2009) propose an enhanced random walks model, named 

TrustWalker, to integrate the trust relations of users with CF ideas. The model uses a 

“walk and select” manner to predict the absent rating of a pair of user and item: it 

first randomly walks to a “similar” user following the trust relations, and then 

randomly selects a “similar” item following the rating relations.  

2.2.3  Graph Ranking-based Recommendation 
Techniques 

As a recommender system returns a sorted list of items for a request user, it can be 

seen as to seeking for an appropriate ranking for items. If we model items and/or 

other information entities in a graph as vertices and their relations as edges, the 

recommendation problem is simulated as a graph ranking problem, which has drawn 
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many studies in recent years (Belkin et al., 2004; Agarwal and Chakrabarti, 2007; 

Agarwal, 2006, 2010).  

Random walk theory is one of the popular explanation of graph ranking and has been 

increasingly employed in recommender systems, especially to handle complex 

relational networks of users, items and/or other information entities (Fouss et al., 

2007; Gori and Pucci, 2007; Jamali and Ester, 2009; Bogers, 2010). The concept of 

random walk on graph was first proposed by the PageRank algorithm (Page et al., 

1999), which simulates the surfing behaviour of web users on webpages. It assumes 

that the probability of a user randomly jumping to a new page is determined each 

time by the page currently being visited. With the transition between webpages, the 

visiting probability distribution will reach convergence as proven in (Athreya et al., 

1996) and the stationary visiting probability is used to present a particular user’s 

interest level in a webpage. The idea of random walk has also been introduced into 

recommender systems, especially to handle complex relational networks of users and 

items. A basic random walk model if performed on a bipartite graph constituted by 

user nodes (Vuser) and item nodes (Vitem), following the rating relations (Fouss et al., 

2007). In the unique model, a random walk either jumps from a user node to an item 

node, or jumps from an item node to a user node.  

Recommendations for a particular user will be generated based on the ranks of 

stationary visiting probabilities of unseen items. The ItemRank model proposed by 

Gori and Pucci (2007) performs random walks on an item-to-item correlational 

network. In this model, item correlation is established by the number of shared 

common users, i.e., the users who have rated both items. Similarly, Yildirim and 

Krishnamoorthy (Yildirim and Krishnamoorthy, 2008) present an item-based random 

walk model using the rating similarity network of items. In contrast, Jamali and Ester 

(2009) integrate the additional information of user trust relations and perform 

random walks on user network, which is further integrated with traditional 

memory-based CF approaches. Not only users and items, but also other information 
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entities such as item attributes of items have been introduced as special vertices to 

perform unified random walks on a multipartite graph (Cheng et al., 2007; Bogers, 

2010; Lee et al., 2011). Generally, let G=(Vuser;Vitem;Vcontent1;Vcontent2; : : : ;E) 

denote a multipartite graph containing users and items as well as a number of content 

attributes from different perspectives such as movie genres and actors, random walks 

will be performed by jumping between different types of vertices following the 

user-item rating relations or item-attribute association relations. A more complicated 

unified model is illustrated in (Bogers, 2010) with more parameters to control the 

weights of transitions between different types of vertices. 

Despite the ordinary simple graphs that can only include pairwise relations, a few 

hypergraph models have also been newly proposed to handle high-order relations. 

For example, Tan et al. (2011) model the tags and the music album-tracks inclusion 

relations as hyperedges in a hypergraph to produce music recommendations using 

hypergraph ranking models (Zhou et al., 2006). Going a step further, Theodoridis et 

al. (2013) consider the different contributions of different parties of information 

entities for hypergraph ranking and introduce group sparsity constraints for 

hypergraph ranking-based recommendations. 

In summary, graph models have advantages to incorporate various input information 

recourses of a recommender system by naturally modelling all related information 

entities including users, items and other objects as vertices and all complex relations 

as edges. That is to say, graph models are easily extendable for modern recommender 

systems with increasingly diverse information brought by the explosion of Web 2.0 

applications.  

2.2.4  Context-aware Recommendation Techniques 

One of the most cited definitions of context is the definition of Dey et al. (Dey et al., 

2001) that defines context as “any information that can be used to characterize the 
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situation of an entity. An entity could be a person, a place, or an object that is 

considered relevant to the interaction between a user and an application, including 

the user and the application themselves.” The context information such as time, 

geometrical information, or the company of other people (friends, families or 

colleagues for example) has been recently considered in existing recommender 

systems, for example, the information obtained with the rapid growth of using 

mobile handsets (Woerndl et al., 2009). The contextual information provides 

additional information for recommendation making, especially for some applications 

in which it is not sufficient to consider only users and items, such as recommending a 

vacation package, personalized content on a website. It is also important to 

incorporate the contextual information in the recommendation process to be able to 

recommend items to users in specific circumstances. For example, using the temporal 

context, a travel recommender system might make a very different vacation 

recommendation in winter compared to summer (Stabb et al., 2002). The contextual 

information about users in technology enhanced learning environments is also 

incorporated into the recommendation process (Verbert et al., 2012). 

In the review of Adomavicius and Tuzhilin (2011), context in the recommender 

system field is a multifaceted concept used across various disciplines, with each 

discipline adopting a certain angle and putting its “stamp” on this concept. With 

context awareness, the original two-dimension user-item adoption relationship 

user£ item!adoption becomes user£context£ item!adoption , a three- 

dimension relationship . To identify and incorporate the contextual information in 

recommender systems, three processes steps are suggested in (Adomavicius and 

Tuzhilin, 2011) including Contextual Pre-Filtering, Contextual Post-Filtering, and 

Contextual Modelling. By processing these analyses the system can detect the useful 

and compliable contextual information for recommendations. 
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2.2.5  Multi-Criteria and Group Recommendation 
Techniques 

Some unique recommender systems have been designed to extend the functionalities 

of conventional recommender systems, such as multi-criteria recommendations and 

group recommendations. 

There are some researches in recent years that model recommendation problem in 

multi-criteria environments and the Multi-Criteria Decision Making (MCDM) 

techniques are employed to help users to select items (Adomavicius et al., 2011 b; 

Shambour, 2012; Jannach et al., 2012). Generally, multi-criteria recommender 

systems allow users to issue multi-criteria ratings to evaluate items from different 

perspectives such as movie story, acting, direction, etc., which acknowledge that the 

suitability of the recommended item for a particular user will probably depend on 

more than one utility-related criterion that the user takes into consideration when 

deciding whether an item is interesting and suitable for him/her. The additional 

information that is provided by multi-criteria ratings can represent more complex 

preferences of each user and thus help to improve the quality of recommendations. 

Group recommender systems are proposed to produce suggestions for a group of 

users when the members are unable to gather for negotiation, or their preferences are 

not clear in spite of meeting each other (Jameson and Smyth, 2007). Different 

strategies have been proposed in group recommender systems to aggregating the 

different choices of group members, such as in (Gorla et al., 2013; Masthoff, 2011; 

Quijano-Sánchez et al., 2012). Clearly, group recommender systems are able to 

generate corresponding suggestions for multiple participant/request users in a 

recommender system. 
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2.3  Applications of Recommender Systems 

As mentioned, the three most important roles that recommender systems have played 

are shopping assistants, information retrieval tools, and decision supports, all of 

which have gained various applications in many domains. The development and 

functionalities of each type application are introduced as follows. 

2.3.1  Recommender Systems as Online Shopping 
Assistants 

Electronic commerce provides customers the convenience of browsing and paying 

products or services online, which is also accompanied with the explosively 

increasing volume of online items that is challenging customers to locate the right 

options in a reasonable time. In response to this information overloading problem, 

recommender systems are originally emerging as shopping assistants to predict the 

best choices for customers. 

For generic online shopping systems, rating is a common function reflecting the 

explicit user preferences. In the iTunes store, for example, customers are able to 

provide feedback by allocating a numeric value to evaluate purchased apps. In 

addition, textual comment is another way for users to express detailed evaluations for 

items. Ratings and textual comments are hence the two most important resources for 

user preference modelling that have been widely utilized in CF approaches (Shi et al., 

2014) and textual mining-based recommendation approaches (Blei et al., 2003; Li et 

al., 2010). There are also increasingly hybrid recommender systems that incorporate 

both rating and comments in a unified framework for more precise recommendations 

(Diao et al., 2014; McAuley and Leskovec, 2013). 

There are also some shopping systems where it is difficult to collect explicit user 
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preference data, knowledge-based analyses are often employed. For example, the 

Wasabi Personal Shopper (WPS) (Burke, 1999) is a domain-independent database 

browsing tool designed for online information access, particularly for electronic 

product catalogues. Fuzzy techniques are also employed in content-based e-shopping 

recommender systems such as that Cao and Li (2007) developed a fuzzy-based 

recommender system for products consisting of different components. When buying 

a laptop, for instance, shoppers may consider the individual performance of each 

component, such as the CPU, motherboard, memory, etc. In this application, the 

weights of a shopper’s needs on each component are collected and the most satisfied 

candidates are then generated according to a fuzzy similarity measure model. In the 

book recommender system of  (Mooney and Roy, 2000), a naive Bayesian text 

classifier is used to train the data abstracted from the web to build features of books 

and profiles of users and find the best matched books for a target user. Certain 

shopping assistant systems have an interest in explaining why and how the 

recommendations are generated. For example, when buying expensive goods, buyers 

expect to be skilfully steered through the options by well-informed sales assistants 

who are capable of balancing the user's various requirements. To provide an 

equivalent virtual recommendation explanation such as “why product A is better than 

B”, McCarthy et al. (2004) developed a shopping assistant website called 

Qwikshop.com on which compound critiques were used as explanations. Another 

issue for practical e-shopping system is the bundle promotion. In the systems 

developed by Garfinkel et al. (2006), a “shopbot” (shopping search engine) is 

implemented to consider purchasing plans for a bundle of items. This recommender 

system leverages bundle-based pricing and promotional deals frequently offered by 

online merchants to extract substantial savings. Zhu et al. (2014) considers the 

bundle recommendation problem as a type of Quadratic Knapsack Problem (Gallo et 

al., 1980) that has increased the purchase intention of users on an experiment of 

Walmart. 
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2.3.2  Recommender Systems as Information Retrieval 
Tools 

The information resource mentioned here refers to the content uploaded by system 

mangers or users, such as news, blogs and tweets. Online users often share 

information to the Internet so that other users can access the resources that interest 

them. Differing from keywords-based search engines, recommender systems have 

the superiorities in terms of two aspects: (1) recommender systems do not require 

users to input keywords explicitly but track user preference at background and 

predict user demands automatically; (2) recommender systems provide personalized 

results for different users.  

In most instances, textual content such as news, emails, documents and webpages is 

described as a list of keywords, which can be extracted from historic data, URLs and 

public encyclopaedias, and many recommender systems are designed on the basis of 

keywords analyses. Based on the inferred user-resource preference, memory-based 

CF techniques can be applied such as in the joke recommender system Eigentaste of 

(Goldberg et al., 2001). Model-based systems have also been developed, such as 

News Dude (Billsus and Pazzani, 2000), which builds long term preferences through 

Bayesian methods, and Foxtrot (Middleton et al., 2002), which uses k-nearest 

classification. Graph-based clustering is adopted in WinPUM (Jalali et al., 2010), in 

which the websites are modelled as graph vertices and user navigation patterns are 

classified according to session information. Recently, Nguyen et al. (2013) 

incorporate ontology and semantic knowledge to analyse session data to improve 

recommendation accurately. Apart from the keywords taken from the textual content, 

implicit and explicit feedback from users is also taken into account. In the webpage 

recommender system ArgueNet (Chesnevar and Maguitman, 2004), for example, a 

use is allowed to indicate which websites are trustworthy for him/her as an additional 

feedback. 
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In general, explicit scaled ratings are not provided in information resource 

recommender systems such that implicit user preference needs to be established from 

more widely implicit behaviours or relations such as user browsing history and item 

contents. Although some memory-based CF approaches have been applied in early 

years, it is more common that information resource recommendations are resolved by 

advanced learning algorithms such as graph and latent topic models. 

2.3.3  Recommender Systems as Online Decision 
Support Tools 

In specific domains where users do not interact with items frequently or there are no 

clear options pre-stored as the “items” for users to select, recommender systems 

become like one-time decision support systems to help users to narrow the candidate 

options of alternative plans. For example, an e-learning recommender system is 

dedicated to help each learner to make appropriate study schedules (Capuano et al., 

2014) . In the follows, we enumerate some popular applications of this type 

recommender system in different domains. 

Online learning (e-learning) recommender systems aim to assist learners to choose 

the appropriate courses, subjects, materials, and learning activities or their 

combinations. In the personalized e-learning material recommender system (PLRS) 

proposed by Lu (2004),  a computational analysis model is developed to identify the 

leaner’s learning requirement and then uses matching rules to generate a 

recommendation of learning materials. In addition, by incorporating with web usage 

mining and CF, Lu et al. (2004) developed a subject e-learning recommender system 

(SRS) to locate the right subject information for the right students according to their 

individual interests and needs in subject selection. The pedagogical rules are 

important knowledge for learning systems, which have been highlighted the 

applications of (Biletskiy et al., 2009; Cobos et al., 2013; Santos et al., 2014; Verbert 

et al., 2012). For example, Cobos et al. (2013) define an ontology to represent the 
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pedagogical patterns and their interaction with the fundamentals of the educational 

process, and applies a unified hybrid model combining CB and CF techniques to 

produce recommendations. The ontologies of learners and learning objectives are 

also discussed in (Biletskiy et al., 2009), which provide a technical solution for 

personalized searches of learning objects on the web. 

E-tourism recommender systems are designed to provide suggestions for tourists. 

Some systems focus on attractions and destinations, while others offer tour plans that 

include transportation, restaurants and accommodation. Pashtan et al. (2003) propose 

a context-aware tourist information system named CATIS to recommend 

accommodation, restaurants and attractions for tourist. The recommendations are 

generated by combining the user query and the user context information from the 

application server where a context manager module is dynamically collecting the 

context information such as time and locations. A personalized sightseeing planning 

system (PSiS) is developed by Lucas et al. (2013) to aid tourists to find a 

personalized tour plan in the city of Oporto, Portugal. Both CF and CB ideas are 

incorporated in this hybrid system as well as some computational intelligence 

techniques such as fuzzy logics for user profiling. SigTur/E-Destination (Moreno et 

al., 2013) is designed to provide personalized recommendations of touristic activities. 

Various types of information, such as user demographic details, destination context, 

geographical aspects and explicit or implicit requirements, are integrated to build 

user demand to be compared with the tourism ontology to identify the appropriate 

leisure activities. In the cost-aware travel tour recommendation proposed by Ge et al. 

(2014) , two latent factor models to recommend travel packages by considering both 

not only the tourist’s interests but also the fanatical and time cost of travel. 

There are also many specific domain-based recommender systems that help people 

for decision making. For example, Cornelis et al. (2007) propose an one-time 

recommendation framework for special items of which there is only one single 

instance (like an event). An application in trade exhibition recommendation for 
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e-government services is illustrated in their work where fuzzy logic is applied to 

estimate the similarities of new coming events with previous events. Arwan et al. 

(2013) develop a diabetic food recommender system to assist the nutrition experts to 

choose appropriate daily foods menu for diabetes patients for controlling blood sugar 

levels. In the system, domain knowledge based on food ontology including nutrition 

and caloric information is combined with a semantic search method to generate and 

identify candidate food menus.  

The above reviews show that KB techniques are mainly applied in this type of 

recommender systems, which usually have insufficient historical data for CF or CB 

algorithms. The architecture of this type of recommender systems usually consists of 

three parts: (1) determine user needs from user background information, historical 

behaviours and context information that may affect the choices; (2) collecting 

taxonomies or ontologies to generate or represent the possible options (items); (3) 

acquiring related matching rules or algorithm to evaluate the matching degree 

between users and candidate options. 

2.4  Evaluation Criteria for Recommender 
Systems 

A number of evaluation measures have been used to assess the recommendation 

quality of recommender systems, which can be classified into the following four 

categories (Bobadilla et al., 2013). 

 Recommendation success rate. It evaluates the ability of a recommender system 

to complete all recommendation tasks in experiments. 

 Rating prediction accuracy. It evaluates weather a single predicted rating is 

accurate. 

 Classification accuracy. It evaluates whether the recommended items are the 
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right items that the request user prefers. 

 Item ranking accuracy. It evaluate the ranking order of recommended items is 

accurate. 

The most used metrics for each type evaluation are detailed as follows. 

2.4.1  Recommendation Success Rate 

As a result of the data sparseness and cold-start problems, it is possible that a 

recommender system fails to predict the rating or matching rate of a single user to a 

particular item. In experiments, a recommender system is required to complete the 

recommendation tasks hidden in test set. Therefore, the ability of completing all 

recommendation tasks indicates the success rate of this recommender system, which 

is usually represented by the recommendation coverage metric as defined as follows.  

Given the test set T  containing pairs of huser; itemi and their actual ratings (or 

preference scores), a recommender system is implemented to predict a score such as 

rating or matching rate for each of such pairs. The term coverage is computed as the 

completion percentage of all prediction tasks in T : 

 coverage =

P
hu;ii2T

P(u; i)

jT j
£ 100%, (2.1) 

where P(u; i)  is a Boolean showing whether the recommender system can 

successfully predict a rating or matching rate for the user u and the item i. 

In literature, the metric coverage has been widely used to evaluate the ability of a 

recommender system for alleviating the sparseness and cold-start problems (Massa 

and Avesani, 2007; Bobadilla et al., 2013). 
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2.4.2  Rating Prediction Accuracy 

Varied by recommendation strategies, recommender systems can be classified to two 

categories: rating prediction-based and ranking-based. The prediction-based 

recommender systems predict the missing rating of a user to an unseen item, and all 

candidate items are then ranked according to the acquired predictions. The 

ranking-based recommender systems do not predict the rating values of users to 

items but directly output a sorted list of items based on unique utility scores. In 

general, KNN-based recommender systems such as memory-based CF and some 

social network-based approaches are prediction-based (Resnick et al., 1994; Massa 

and Avesani, 2009; Shambour and Lu, 2011). The majority of model-based CF or 

advanced approaches are ranking-based (Gori and Pucci, 2007; Tan et al., 2011; Shi 

et al., 2014). 

For a prediction-based recommender system, it is necessary to evaluate whether the 

prediction ratings are accurate. If a recommender system successfully predicts a 

rating for a pair of hu; ii 2 T , that is, P(u; i) = 1, and the predicted rating is 

denoted as r̂u;i, the deviation/error between r̂u;i and the actual rating ru;i in the 

test set is used to evaluate the prediction accuracy of this recommender system. Two 

widely used metrics MAE and RMSE are introduced below. 

The MAE (Mean Absolute Error) is defined in the following equation: 

 MAE =

P
hu;ii2T ;P(u;i)=1

jr̂u;i ¡ ru;ijP
hu;ii2T

P(u; i)
. (2.2) 

The RMSE (Root Mean Squared Error) is defined as follows: 
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 RMSE =

vuuuut
P

hu;ii2T ;P(u;i)=1

(r̂u;i ¡ ru;i)
2

P
hu;ii2T

P(u; i)
. (2.3) 

Since the errors are squared before they are averaged, the RMSE gives a relatively 

high weight to large errors. This means the RMSE is most useful when large errors 

are particularly undesirable. 

2.4.3  Classification Accuracy 

In experiments, a recommender system can be understood as a classifier to guess the 

preferred or not-preferred items for a particular user in the test set. Thus the 

classification evaluation metrics Precision and Recall rates are imported to evaluate 

recommendation performance, as defined as follows. 

Recommendation Precision is defined as: 

 Precision =
Number of correctly recommended items

Number of recommended items
 (2.4) 

Recommendation Recall is defined as: 

 Recall =
Number of correctly recommended items

Number of actual preferred items
 (2.5) 

In addition, F1 metric is the harmonic mean of Precision and Recall: 

 F1 =
2£Precision£Recall

Precision +Recall
 (2.6) 

Average Precision (AP) is the average of precisions computed at the point of each 

correctly recommended item in the recommendation list: 
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 AP =

PN
i=1 Precision@i£ corri

Number of correctly recommended items
 (2.7) 

where Precision@i  is the measured precision at ranking position i , i.e., the 

precision level when a model recommends i items, and corri = 1 if the restaurant 

at position i is correctly recommended, otherwise corri = 0. MAP is the mean of 

AP scores over all users. 

2.4.4  Item Ranking Accuracy 

A recommender system returns the request user a sorted list of items as the final 

result. Thus we can compare the ranking order of the recommended items with the 

actual ranking order in test set as an evaluation of the recommendation performance. 

The metric NDCG (Normalized Discounted Cumulative Gain) is a widely adopted 

measure of ranking quality. First, the Discounted Cumulative Gain (DCG) 

accumulated at a particular rank position p is defined as: 

 DCG@p =

pX
i=1

2reli ¡ 1

log2(i +1)
 (2.8) 

where reli denotes the ranking score at position i. 

The NDCG is then calculated by: 

 NDCG@p =
DCG@p

IDCG@p
 (2.9) 

where IDCG is the DCG of the “ideal ranking order”, i.e., the ranking order based 

on the actual ratings in test set. 
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2.5  Summary 

This chapter reviews some highly related backgrounds which are essential for 

recommender system studies. We first review the classical ideas for recommender 

systems. This helps us to understand the main objects and constraints of 

recommender systems and grasp the main frameworks or ideas of recommendation 

making. Second, we review the advanced state-of-the-art recommendation 

techniques which give us a glance of the most recent developments in the study of 

the field of recommender systems. Next, we also conduct a comprehensive survey of 

the practical applications of recommender systems. The various applications indicate 

recommender systems have been implemented widely in our daily life as shopping 

assistants, information retrieval tools and decision support tools. The last, we 

elaborate the main evaluation criteria for recommendation approaches. As this thesis 

proposes a set of recommender systems in different scenarios, comprehensive 

evaluations from different criteria such as success rate, prediction accuracy, 

classification accuracy and ranking accuracy are needed.
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CHAPTER 3. A HYBRID 

RECOMMENDER SYSTEM VIA 

BIPARTITE GRAPH RANDOM WALKS 

3.1  Overview 

As reported in literature, hybrid recommender systems are widely applied in online 

applications to combine the advantages of different recommendation techniques and 

overcome the drawbacks of single techniques such as the rating sparseness problem 

of CF. Item content information is often incorporated with rating-based CF 

approaches in hybrid recommender systems. The following two facets of content 

information are increasingly attracting researches and applications in hybrid 

recommender systems. The first is the standard taxonomy of items. Generally, 

taxonomy is provided and maintained by system managers or sellers such as in 

e-Commerce sites, consisting of tree-structured descriptions from different 

perspectives for consumers to best know the details of the attributes and 

functionalities of items. On the other hand, the second aspect of content information 

is the user-created tag information, called “folksonomy” (folk-taxonomy), of items. 

In the era of Web2.0, users are able to freely create their own descriptions 

(taxonomies) for items in the form of single words or short phases, namely, the tags, 
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as additional remarks for items beyond the standard taxonomy attributes. 

In literature (Arwan et al., 2013; Belém et al., 2014), taxonomy and folksonomy have 

been utilized in a number of recommender systems separately, but there have been 

few studies that incorporate both of them for a comprehensive content analysis and to 

enhance recommendation quality (Liang et al., 2010). Intuitively, combining the 

system-provided taxonomy and the user-created folksonomy can help people to 

better understand and identify the overall content information of items. This 

motivates the first task of this chapter: combining tree-structured taxonomy 

information and free folksonomy information for item content analysis. 

The second part of this chapter is to propose a hybrid recommendation algorithm 

incorporating the ideas of both CF and CB approaches. We chose graph models to 

handle diverse relational networks between users and items (Gori and Pucci, 2007). 

In this research, we incorporate item taxonomy and folksonomy to establish an 

overall content similarity relationship between items (the first research task), which 

is further combined with the user-item preference (rating) relations to construct a 

user-item bipartite graph. We then propose a unique random walk model on this 

bipartite graph to produce hybrid recommendations to suggest users the appropriate 

items. 

The motivated bipartite random walk model is illustrated in Figure 3-1 using an 

example of a user browsing in a movie recommender system. At first, the overall 

content similarities between items (movies) are supposed to have been obtained by 

comparing both the taxonomy and folksonomy information of movies. Combining 

the item-item content similarity and user-item rating relations, a bipartite graph is 

constructed with users and items as the two groups of vertices. Thus, the behaviour 

of a particular user browsing movies can be simulated as a random walk process on 

the bipartite graph. In our example, let user A be the starting user and movie 3 be the 

target item. There are two directions of moving from user A to movie 3 in the unique 

bipartite graph: 
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 Reaching the target item via an item-item content similarity relation, e.g., the 

router 1 in the figure; 

 Reaching the target item via a user-item rating relation, e.g., the router 2 in 

the figure. 

  
Figure 3-1 Random walking on a user-item bipartite graph 

In this example, the router 1 essentially indicates a CB recommendation idea that 

seeks out the items similar to the ones that are known being preferred. In contrast, the 

router 2 indicates a CF idea that finds the items preferred by a neighbour user. 

Therefore, this model can be seen as a hybrid recommendation approach combining 

both the ideas of CB and CF. 

In brief, the aims and also the contributions of this chapter consist in two parts: (1) to 

design a unique random walk model on a user-item bipartite graph with their 

user-item rating relations and item-item content similarity relations; (2) to propose a 

tree matching algorithm to compare the tree-structured taxonomy and folksonomy 

information of items. We will elaborate how folksonomy tags are utilized as an 

additional resource for semantical analysis of taxonomy attributes and how item 

content information is compared using a top-down tree matching manner. 

router 1: CB idea

movie 1

movie 3

movie 2

user A

user B

Taxonomy
attributes

Folksonomy
tags
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The remainder of this chapter is organized as follows. Section 3.2 first elaborates on 

the random walking strategy on the proposed bipartite graph of users and items via 

their rating relations and content correlations. Section 3.3 proposes an overall content 

similarity induction algorithm by integrating item taxonomy and folksonomy as input 

information. Section 3.4 is a numeric example illustrating how our approach is 

implemented in real cases. In Section 3.5, empirical experiments are conducted with 

Movielens data under different sparsity levels. Our model is compared to a number 

of single and hybrid approaches. The summary of this chapter is given in the last 

section. 

3.2  User-item Bipartite Random Walk Model 

We consider a common scenario of recommendations with such given information: 

users have given numeric ratings (1 to 5, for example) to evaluate the items they 

have known; and every item is associated with its taxonomy attributes (provided by 

system) and tags (created by users). A bipartite network involving two groups of 

nodes, the users and items, is constructed to perform random walks. Clearly, a user 

node and an item node are connected via rating behaviours, indicating the degree of 

preference of the user to the item. We also believe that a content similarity relation 

can be established between items by comparing their content information including 

both taxonomy attributes and folksonomy tags. Thus, for two items i and j, their 

content similarity is derived with a comparison function of their attributes and tags: 

 simi;j = F

μ
fattributesi; tagsig;fattributesj; tagsjg

¶
 (3.1) 

At first, the induction of the above formula is left to discuss later in the following 

section; for now, we just assume a content similarity network of items has been 

obtained as given information to construct the user-item bipartite graph. 
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Note that we do not consider the directed connections between users such as social 

connection or rating similarity because it is behind the goal of this chapter to propose 

an item taxonomy and folksonomy-based hybrid recommendation model. We will 

exploit how different user-user networks are utilized to enhance recommendations in 

the next chapter. 

3.2.1  Performing Random Walks 

We perform random walks on the user-item graph starting from an active user for 

whom the recommendation is to be made. The idea is that after a long-term walking 

to convergence, the most visited items are considered as highly relevant to the 

starting user. 

Walking through the path of a pair of huser; itemi or hitem; itemi is assuming that 

the two nodes are “relevant”. Therefore, negative connections such as negative 

ratings or low item similarities should be pruned to avoid harmful information. In our 

study, two thresholds μr and μc are introduced. The ratings less than μr and the 

item similarities less than μc will be omitted for performing random walks. 

The visiting position at a certain step is at either a user node or an item node. Thus 

we have the following two situations for concrete walking manners. 

1) Current position is a user node 

If a user node u 2U is the current visiting position at time t, we assume that there 

are two options for the next move: 

Option 1.  With probability ®, the runner continues to walk, and randomly moves 

to an item node preferred by the current user u. 

Option 2.  With probability 1¡®, the runner jumps back to the starting node to 



3.2  User-item Bipartite Random Walk Model 

58 

restart the walk. 

Note that the random walk with restarting models have been widely adopted in 

existing studies by importing a decay parameter ®2 (0;1) (Gori and Pucci, 2007; 

Shi et al., 2014)1. 

In the case of the first option, user u selects one of his/her preferred items to move. 

The probability of selecting a particular item i» u is:  

 p(iju) =
ru;iP

j»u ru;j
 (3.2) 

2) Current position is an item node 

On the other hand, if the runner is currently at an item node i 2I, the options of 

next move are as follows. 

Option 1.  With probability ®, the walk is continued. 

Since an item node may connect to both user nodes via the rating 

relations and also item nodes via the content correlations, there are 

further two options of the next move considering whether to choose a 

user node or an item node to visit. We introduce a switch variable s 

with Bernoulli distribution that if s = 0  we walk to a user node, 

otherwise s = 1 we walk to a similar item node. Thus we have: 

 If s = 0, the runner randomly moves to a user that prefers this item; 

 If s = 1, the runner randomly moves to a similar item. 

Option 2.  With probability 1¡®, restart the random walk from the starting user. 

Formally, if the runner is at an item node i and choses to move to a related user 
                                                 
1 Generally, parameter ® is optimized at 0.8 to 0.85. 
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node, the probability of moving to a certain user u » i (here the symbol » denotes 

the relationship of “preferring”) is: 

 p(uji; s = 0) =
ru;iP
v»i rv;i

 (3.3) 

Otherwise if the runner choses to move to another item node, the probability of 

moving to a similar item j » i (here the symbol » denotes the relationship of 

“similar to”) is: 

 p(jji; s = 1) =
simi;jP
k»i simi;k

 (3.4) 

Combining the equations (3.2) to (3.4), the visiting probability of the bipartite graph 

vertices is updated as follows. 

 For a user node u 2U  that only connects with item nodes via the rating 

relations, the probability of being visited at the next step is: 

 p(t+1)(u) =
X
i»u

p(uji; s = 0)p(t)(i)p(s = 0) (3.5) 

 For an item node i 2I that may connect to both item and user nodes, the 

visiting probability of next step is: 

 p(t+1)(i) =
X
j»i

p(ijj; s = 1)p(t)(j)p(s = 1) +
X
u»i

p(iju)p(t)(u), (3.6) 

where, p(t)(u) and p(t)(i) denote the visiting probabilities of a user u and an item 

i at the current time/step t respectively; p(t+1)(u) and p(t+1)(i) are their updated 

probabilities at the next time/step t + 1. 
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3.2.2  Graph Ranking and Recommendation Making 

Random walks are widely applied to rank graph vertices in accordance with their 

stationary visiting probability. In our model, we consider the ranking orders of only 

item nodes since our goal is to identify the most related items as recommendations. 

Thus we combine Equations (3.5) and (3.6) and obtain the updating formula for only 

item nodes in the following form: 

 

p(t+1)(i) =
X
j»i

p(ijj; s = 1)p(t)(j)p(s = 1)

+
X
u»i

p(iju)
X
j»i

p(ujj; s = 0)p(t¡1)(j)p(s = 0)
 (3.7) 

Like all other random walk models, we can present our model in matrix-vector 

notations. First, the rating matrix R of size jUj£jIj is imported. We also define a 

matrix S of size jIj £ jIj denoting the content similarity matrix of items, in which 

each element is the similarity of two items, that is, Sij = simi;j. Here we allow 

asymmetric similarity relationship between items. In particular, we let Sii = 0 on 

the diagonal. 

For the rating matrix/network, the vertex degrees ± of a user node u 2U and an 

item node i 2I are defined respectively as follows. 

 ±(u) =
X
i2Iu

ru;i (3.8) 

 ±(i) =
X
u2Ui

ru;i (3.9) 

Two diagonal matrices DjUj£jUj
u  and DjIj£jIj

i  are then defined with the rating vertex 

degrees of users and items on the diagonal, respectively. 
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In addition, we also define the vertex degree ¼ of an item i 2I  in the content 

similarity network of items as follows. 

 ¼(i) =

jIjX
j=1

Sij (3.10) 

The corresponding diagonal matrix is denoted as ¦jIj£jIj
i . 

Simply, we assume p(s = 1) = ¯ 2 (0;1) thus p(s = 0) = 1¡¯ , and define a 

vector p(t) = [p(t)(i1); p(t)(i2); : : : ; p(t)(ijIj)]T  denoting the probability distribution 

of all item nodes at a certain time t. Equation (3.7) can then be used to produce the 

updating formula of visiting probabilities of all item nodes as follows: 

 p(t+1) = ¯ST¦¡1
i p(t) +(1¡¯)RTD¡1

u RD¡1
i p(t¡1) (3.11) 

As mentioned, it has a probability of 1¡® to jump back to the starting node at 

every step such that the distribution will be restored to p(0) at the starting time. In 

our model, however, the starting node is only the single active user such that the 

initial probability of every item node is zero, i.e., p(0) = 0. Due to this reason, we 

use q = p(1) as the restarting condition instead of p(0). According to Equation 

(3.11), we have: 

 qi =

(
ru0;i=±(u0); if i » u0

0; otherwise
, (3.12) 

where u0  denotes the starting user, i.e., the request user for whom we make 

recommendations. 

Summing up the above discussions, the stationary probability distribution of items 

can be obtained by recursively applying the following equation: 
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 p(t+1) = ®

μ
¯Ap(t) + (1¡ ¯)Bp(t¡1)

¶
+ (1¡®)q, (3.13) 

where two matrices are defined as follows. 

 

(
A = ST¦¡1

i

B = RTD¡1
u RD¡1

i

 (3.14) 

The stationary distribution p¤  will be obtained when Equation (3.13) reaches 

convergence (proven in (Athreya et al., 1996)).  

Let p(t+1) =p(t) =p(t¡1) =p¤, the following result can be obtained via some 

algebraic operations: 

 

p¤ = (1¡®)

·
I¡®

μ
¯A¡ (1¡ ¯)B

¶¸¡1

q

/

μ
I¡®¯A¡®(1¡ ¯)B

¶¡1

q  (3.15) 

In the above equation, the positive constant (1¡®) is omitted as it does not affect 

the ranking order of p¤. 

Next, all candidate items can be ranked according to the stationary visiting 

probabilities, and the top-N items are selected as recommendations to the active user. 

So far, the whole recommendation process of our random walk-based 

recommendation model is completed for a single request user, as illustrated in Figure 

3-1. 
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3.3  Representations of Item Taxonomy and 
Folksonomy 

The item content similarity correlations constitute an important component in the 

proposed random walk model in the last section. We have emphasized that the items 

are usually associated with tree-structured taxonomy attributes, and also possibly a 

number of folksonomy tags. This section uncovers the difference and relationship 

between taxonomy attributes and folksonomy tags, and propose a tag-derive 

semantic analysis for item contents. 

3.3.1  Taxonomy Attributes 

The item taxonomy information usually consists of various attributes from different 

perspectives, which construct the top-level branches of item taxonomy trees. For 

example, a movie in MovieLens.com1 is associated with descriptions from its genres, 

directors, actors, etc.; a book selling in Amazon.com2 contains descriptions of its 

category, author, language, etc.; while a restaurant in Yelp.com3 is described in the 

aspects of category, trading hours, cuisine, etc. We denote these special top-level 

concepts as the concept layer of item taxonomy trees. Every concept attribute 

dominates a subtree with single or multiple levels of attributes that describe the 

functionalities of items within this aspect. We call all other attributes except the 

concept attributes the attribute layer, and it is further identified as level 1 attribute 

layer, level 2 attribute layer, etc., according to the taxonomy depth. Figure 3-2 and 

Figure 3-3 show two example taxonomy trees of a movie and a book. It can be found 

that the depth of the subtree under each concept attribute can be different. Taking the 

book taxonomy for instance, the branch of category has three level attributes, while 

                                                 
1 https://movielens.org/ 
2 http://www.amazon.com/b/ref=txtb\_surl\_textbooks/ 
3 http://www.yelp.com.au/c/sydney/restaurants 
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the branch of author has only one level attributes. 

 
Figure 3-2 An example of movie taxonomy tree in MovieLens 

 
Figure 3-3 An example of book taxonomy tree in Amazon 

With all above illustrations, the definition of taxonomy trees and related 

characteristics are given as below. 

Definition 3-1 (Taxonomy Tree). The taxonomy tree of a single item is defined as a 
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directed graph ¡ = fA; ,!g with no cycles, where A= fa1; a2; : : :g is a finite set 

of taxonomy attributes, and ,! is the “parent-child” relationship. For two nodes 

a1; a2 2 A, if a1 ,! a2, then we say a2 is a child attribute of a1 and a1 is the 

parent attribute of a2. Note that a node can have multiple (or zero) child nodes, but it 

can only have one unique parent node. A virtual distinguished root node root(¡) is 

annotated to represent this item itself, and for any other node a 2 A, there exists one 

and only one path in ¡ from root(¡) to a. 

Clearly, the direct child nodes of the root node are the concept nodes constricting the 

concept layer. Suppose that we collect K  concept attributes in total of entire item 

taxonomy trees as the global concept attributes set C = fc1; c2; : : : ; cKg. Due to 

information incompleteness, a single item taxonomy tree may not include all concept 

attributes. For consistence, if a concept attribute c 2 C does not appear in a single 

item taxonomy tree, we add this concept node to the tree and let it has no child nodes. 

Consequently, every single taxonomy tree contains all K  concept attributes at the 

first level. 

3.3.2  Folksonomy Tags 

Despite the standard taxonomy information, many online systems enable users to 

freely create their own descriptions for items in the form of single words or short 

phrases, which are called folksonomy tags. Tags have enriched content information 

such that other users can better identify items. As well as creating new tags, users 

also can select existed tags in the systems to classify items. As a result, an item can 

be assigned with a same tag repeatedly, and the count of co-occurrence of a pair of 

hitem; tagi represents the strength of how much this item is relevant to the tag. 

We denote the whole tag set as T = ft1; t2; : : :g. After pruning some trivial tags that 

only occurs one time, the metric tf-idf (Term Frequency-Inverse Document 

Frequency) (Salton and McGill, 1986) is widely used to represent the item-tag 
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relevance, defined as follows. 

 tf-idf(i; t) = tf(i; t)£ log
jIj

jItj
 (3.16) 

Here, tf(i; t) is the count of a tag t being assigned to an item i by different users, 

It denotes the set of items that contain tag t. With this setting, the tags appearing in 

majority of items are penalized as they are thought unable to discriminate items very 

well. 

Compared with taxonomy attributes, folksonomy information is relatively 

incomplete if users have yet to create sufficient tags for items. We conduct an 

empirical analysis on the latest Movielens dataset1. In this dataset, about thirty 

percent of items have no tags and for the rest 70% items, we present the item-tag 

frequency distributions in Figure 3-4. From this figure, we can find the long tail of 

tag distribution that a large number of items only have a few tags. We also present 

the item frequency associated for tags in Figure 3-5, which shows that there are also 

many tags only occurring in a small number of items.

                                                 
1 http://grouplens.org/datasets/movielens/ 
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Figure 3-4 The number of associated tags per item (Movielens dataset) 

 
Figure 3-5 The number of associated items per tag (Movielens dataset) 
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To summarize, taxonomy attributes represent the standard description given by 

system managers. It is usually inflexible and of fixed and relatively small dimension. 

In contrast, user-created tags are usually arbitrary, flexible, and of incremental and 

large dimension. Table 3-1 shows a brief comparison of taxonomy attributes and 

folksonomy tags. 

Table 3-1 A brief comparison of taxonomy and folksonomy 

 Taxonomy attributes Folksonomy tags 

Creator: system managers users 

Standardization: standard free 

Information completeness: complete incomplete 

Dimension: fixed, small incremental, large 

3.3.3  Tag-based Semantic Similarity of Attributes 

We can link a pair of an attribute a 2 A and a tag t 2 T  via the common items 

that are associated with both of them, as follows: 

 f(a; t) =
X

i:a2¡i

tf-idf(i; t), (3.17) 

where ¡i is the taxonomy tree of a single item i 2I . 

A tag, represented by a single word or short phrases, can be seen as an additional 

description of item content from a particular taxonomy perspective such as movie 

genres or actors, which is corresponding to a unique concept attribute of the item 

taxonomy tree. For example, when a user issues a tag “future” to a sci-fi movie, this 

user is very likely using his/her own words to describe the genre of this movie. Thus, 

the tag “future” is actually a user-created attribute from the perspective of genre. In 

our study, we call this relationship as the “domination” of tags, that is, a tag t is 

dominated by a concept attribute c 2 C if this tag is issued as a description from the 
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perspective of c, notated as tÁ c. To identify the domination relationships, we 

define the follows. 

 t Á argmax
c2C

max
a:c,!a

f(a; t) (3.18) 

Equivalently, the above formula defines that a tag is dominated by the concept that 

contains the most relevant attributes of this tag. It can be explained by such an 

example: based on the tag-attribute correlation metric of Equation (3.17), if a tag 

“future” is found most associated with a taxonomy attribute “sci-fi”, which is a child 

node of the concept attribute genre, then we think this tag is dominated by the 

concept attribute genre, meaning that this tag is a description about the genre, rather 

than other perspectives such as the directors, etc. 

Figuring out the dominated concepts of tags is helping to find the main 

characteristics of particular items. For example, summing up the dominated concepts 

of all related tags of a movie, we can have a glance of that which aspect, such as 

genre, director or cast, is most discussed or emphasized by people. This finding can 

be used to conduct more precise comparison between item contents, as discussed 

later in Section 3.4. 

In literature, taxonomy attributes are related and compared based on their semantic 

meanings. In the tree-based recommender system developed by (Wu et al., 2014b), 

for example, the so-called “conceptual similarity” is evaluated manually for every 

pair of attributes by domain experts. The main concern is that extra human resources 

are needed to manually identify and compare the semantic meanings of multiple 

levels of attributes. In this chapter, however, we incorporate folksonomy information 

to derive semantic similarity of taxonomy attributes to avoid manual settings. The 

following definition is hence given. 

Definition 3-2 (Tag-based Semantic similarity). The tag-derived semantic 
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similarity of two taxonomy attributes a1;a2 =2C  (not the concept attributes) is 

computed by the following equation. 

 ss(a1; a2) =

P
t2T f(a1; t)f(a2; t)pP

t2T f(a1; t)
pP

t2T f(a2; t)
 (3.19) 

Here the Cosine correlation is used to produce a decimal value ss(a1; a2) 2 [0;1] as 

the semantic similarity of the two attributes a1 and a2. Equation (3.19) can find the 

hidden correlations between attributes from different perspectives. For example, we 

may find the director James Cameron is found much related to the genre Adventure 

as these two attributes are often associated with same tags. 

3.4  Computing Item Content Similarity 

Since tagging information of a particular item may be absent, we compare the 

taxonomy trees of two items to induce their content similarities. With our data model, 

the item taxonomy tree contains K  top-level subtrees corresponding to several 

concept attributes c1; c2; : : : ; cK . Thus we first compare the subtree under each 

concept attribute separately, and then aggregate the results as the final output.  

For a host item ihost and a guest item iguest with two taxonomy trees, denoting 

M[ck](¡host;¡guest) the matching result of the subtrees under a particular concept 

attribute ck; k = 1;2; : : : ;K, the following aggregating equation is given to compute  

the overall content similarity sim(ihost; iguest) between the two items. 

 sim(ihost; iguest) =
1PK

k=1 wi

KX
k=1

wkM[ck](¡host;¡guest), (3.20) 

where wk > 0 is the corresponding weighting of each concept attribute ck 2 C. 
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3.4.1  Generating Weightings from Tags 

To aggregate the comparing result under each concept, a weighting value wi is 

introduced to indicate the importance of the attributes under a particular concept ci

tanking place in the comparison of all attributes. Meanwhile, the tag domination 

information mentioned in last section is imported to automatically generate the 

weighting set. Intuitively, if people always concern and discuss a particular aspect of 

items, this hot aspect of content information should be emphasized when comparing 

item taxonomy attributes. Still taking movie items for instance, if the actor 

information is more concerned by people than the director information, it is 

appropriate to increase the weight of the actor information when comparing movies.  

Summarizing the tagging information of the entire items, a global weighting set 

wglobal of each concept c 2 C is given as follows. 

 wglobal(c) =

P
tÁc

P
i2I tf(i; t)P

c2C

P
tÁc

P
i2I tf(i; t)

 (3.21) 

The global weighting set does not consider the distinguish characters of a particular 

item. For a single item with sufficient tag information, we can propose a private 

weighting set for this single item, as follows. 

 w[ihost](c) =

P
tÁc tf(ihost; t)P

c2C

P
tÁc tf(ihost; t)

 (3.22) 

With private weightings, the content similarity computed by Equation (3.20) 

becomes an asymmetric relationship between items. 

The choice of private or global weightings can be determined in the following two 

cases: if the host item has insufficient tag information, global weighting wglobal is 

used; otherwise if the host tag has rich tagging information (e.g., more than 50 tags 
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are assigned to this item as our setting in this study), private weighting wprivate is 

used. 

3.4.2  Subtree Matching Algorithm 

A top-down matching manner is proposed to compare the subtrees under a particular 

concept attribute of the taxonomy trees of two items, which is illustrated in Figure 

3-1. It can be found that there are two tasks at each level of matching: 

 Task 1: To connect every shared common node for the next-level matching 

process. 

 Task 2: To determine the best-matched non-common nodes. Deeper-level 

comparisons are not conducted for these nodes. 

The above two tasks are performed at every level of comparison until no common 

nodes are found. At the current level l, we compute the overall difference of this 

level comparison as follows. 

 ±l =
ļ

P
(1¡ ss(paired noncommon nodes))

jcommnon nodesj+ jpaired noncommon nodesj
 (3.23) 

Here a positive parameter ¸2 [0;1] is set to be the weight of each level comparison. 

It is appropriate to set a decreasing value of ¸ along with increasing matching levels, 

e.g., we let ļ = 1=l. In Figure 3-6(a), the first level comparison of subtrees under 

concept c1, the attribute 1 is the shared common node, while node 2 and node 3 are 

the paired non-common nodes, so we have jcommon nodesj= 1 and 

jpaired noncommon nodesj= 1 in this level comparison. 

Concretely, the best matched pairs of non-common nodes are determined using the 

following scheme. In this level comparison, suppose the shared parent node of the 

two subtrees is par , and the child nodes in the two subtrees are denoted as 
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child[¡1](par) and child[¡2](par), respectively, then we have the non-common nodes 

in tree ¡1 can be denoted as X1 = child[¡1](par)¡ child[¡2](par), similarly, the 

non-common nodes in tree ¡2 are X2 = child[¡2](par)¡ child[¡1](par). Clearly, we 

have X1 \X2 = ;. At each time, we select one node from each side of X1 and X2 

and assess the matching degree between the two selected nodes based on the 

semantic similarity proposed in Section 3.3.3. The two nodes with the highest 

semantic similarity among are matched and the semantic similarity is returned as the 

matching degree. Recursively, other two most similar nodes are selected from the 

rest unmatched nodes as a new pair, until no more match can be made, which 

happens when the semantic similarities of all possible pairs of nodes are zero or there 

is no more unmatched nodes in either X1 or X2. Thus, the maximum number of 

pairs of non-common nodes is minfjX1j; jX2jg. 

The above discussion of finding the best matched nodes at each time can be 

expressed as follows. 

 hx¤1; x
¤
2i Ã argmax

x12X1;x22X2

ss(x1; x2) (3.24) 

In Figure 3-6(c), two pairs of nodes h11;13i and h9;12i are successfully matched 

as they have relatively higher semantic similarities. Once all level comparisons are 

completed, the matching result of the two subtrees under the k-th concept attribute 

ck can be summarized as follows. 

 M[ck](¡1;¡2) =
Y

l

(1¡ ±l) (3.25) 

A recursive function named subtreeMatch is proposed to conduct the multi-level 

comparison process, as shown in Algorithm 3-1. 
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(a) level-1 comparison 

 
(b) level-2 comparison 

 
(c) level-3 comparison 

Figure 3-6 The proposed top-down subtree matching manner  
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Algorithm 3-1 The subtree matching function 

Function M[par] = subTreeMatch(par;¡1;¡2; l) 
Preparation: get current parent node: par; 
   get current matching level: l; 
N1 Ã child[¡1](par); //the child nodes in tree ¡1 
N2 Ã child[¡2](par); //the child nodes in tree ¡2 
if N1 = ; or N2 = ; then 
 set M[par] = 1; // stop comparison 
else 
 Nco ÃN1 \N2; //shared common nodes 
 X1 ÃN1 ¡N2; //uncommon nodes in ¡1 
 X2 ÃN2 ¡N1; //uncommon nodes in ¡2 
 initialize ¢ = 0; ´ = 0; 
 while X1 6= ; and X2 6= ; 
  update hx¤1; x¤2i Ã argmax

x12X1;x22X2

ss(x1; x2); 

  update ¢Ã¢+(1¡ss(x¤1;x
¤
2)); 

  update ´ Ã ´ + 1; 
  delete x¤1 from X1; 
  delete x¤2 from X2; 
 end while 
 get ±l Ã ļ ¢

¢
´+jNcoj

; //Equation (3.23) 
 if Nco = ; then 
  set M[child] = 1; //no common nodes, stop deeper-level matching 
 else 
  initialize TM[child] = 0; 
  for every common node cnode2Nco 
   update TM[child] ÃTM[child] +subTreeMatch(cnode;¡1;¡2; l +1) 
  end for 
  get M[child] Ã

TM[child]

jNcoj
; 

 end if 
 get M[par] Ã (1¡±l)M[child]; //Equation (3.25) 
end if 
Return M[par]; 
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Consequently, each level comparison of the example in Figure 3-6 is obtained as 

follows. The level-1 difference is ±1 = 0:1; level-2 difference is ±2 = 0:167; level-3 

difference is ±3 = 0:183, and the overall semantic similarity from the perspective of 

the concept attribute c1 is: 

 M[c1](¡1;¡2) = (1¡ ±1)(1¡ ±2)(1¡ ±3) = 0:61. 

This result indicates that the overall matching degree of the subtrees of ¡1 and ¡2 

under the concept c1 is 0.61, which can be seen as the content similarity of the two 

corresponding items in terms of the particular aspect of c1. 

3.4.3  Overall Content similarity 

As indicated in Equation (3.20), the overall content similarity of two items is induced 

by aggregating the marching results of all taxonomy subtrees under all concept 

attributes with private or global weightings. A content similarity induction algorithm 

is hence proposed as below. 

So far, we can establish the overall content similarity correlations between the entire 

items based on both taxonomy and folksonomy information. This result will be 

imported as an important component into the hybrid random walk model proposed in 

Section 3.2 to generate recommendations for users. 
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Algorithm 3-2 Content Similarity Induction 

Algorithm Content Similarity Induction 
Data: two items i1, i2; 
Return: content similarity sim(i1; i2); 
get taxonomy tree ¡1 of i1; get taxonomy tree ¡2 of i2; 
for k =1 to K  
 get current concept attribute ck; 
 sc[ck](¡1;¡2)ÃsubTreeMatch(ck;¡1;¡2;1); 
end for 
get tag set Thost ÃTi1

; 
if jThostj < mintag then 
 for k =1 to K  
  w(ck)Ã Equation (3.21); 
 end for 
else 
 for k =1 to K  
  w(ck)Ã Equation (3.22); 
 end for 
end if 
Return sim(i1; i2)Ã Equation (3.20); 

3.5  A Numeric Example 

In this section, we use a numeric example to illustrate how the proposed random 

walk-based recommendation approach is implemented step by step based on diverse 

input information such as item attributes, tags and ratings. In this example, we are 

given two users and four items. The users have rated some items and the items are 

associated with standard tree-structured taxonomy attributes and free tags. 

3.5.1  Item Overall Content Similarity 

At first, we establish the semantic similarities of taxonomy attributes from the tag 

information based on Equation (3.19), as well as a global weighting set for different 

concept attributes by Equation (3.21). We then apply Algorithm 3-2 to compute the 

overall similarity of each (directed) pair of items. 
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Figure 3-7 The complete tree matching result between item 1 and item 2 

The full taxonomy trees of items i1 and i2 are illustrated in Figure 3-7 as an 

example. Assuming that item i1 has sufficient tags and its private weightings of 

concept attributes are computed as w(c1) = 0:4  and w(c2) = 0:6  based on 

Equation (3.22), while m2 has few tags so the global weights  w(c1) = 0:7 and 

w(c2) = 0:3  computed by Equation (3.21) are used. The asymmetric content 

similarities between them are then aggregated as follows, referring to Equation 

(3.20). 

sim(i1; i2) =0:4£ (1¡
1¡ 0:8

2£ 1
)£ (1¡

1¡ 0:6

2£ 2
) +0:6£ (1¡

1¡ 0:9 + 1¡ 0:3

3£ 1
)

=0:764;

sim(i2; i1) =0:7£ (1¡
1¡ 0:8

2£ 1
)£ (1¡

1¡ 0:6

2£ 2
) +0:3£ (1¡

1¡ 0:9 + 1¡ 0:3

3£ 1
)

=0:787:  

Once the overall content similarity of each pair of the four items is obtained, a 

similarity network is constructed to connect the four items, as illustrated by the 

dashed lines in Figure 3-8. 
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Figure 3-8 The constructed user-item bipartite graph 

3.5.2  Recommendations based on Bipartite Random 
Walks 

By incorporating both of the user-item rating relations and the content similarity 

network of items, a bipartite graph consisting of user and item nodes is constructed 

as in Figure 3-8. In our example, the user u1 is assumed to be the request user for 

whom we want to recommend an unknown item from i3 and i4. The random walk 

model proposed in last subsection is performed and the visiting probability 

distribution of item nodes is updated at every step by applying Equation (3.11). With 

the initial parameter setting of ® = 0:8 and ¯ = 0:5, the updated distribution vector 

p at every step is collected in Table 3-2., which shows that p reaches convergence 

after 50 steps of random walking. Comparing the visiting probabilities of the target 

items i3 and i4, we find that i4 acquires higher visiting probability when walking 

depths is longer than 10. The converged visiting probabilities are p(i3) = 0:149 and 

p(i4) = 0:152 finally. Thus the item i4 should be more likely accepted by the 

request user u1 than the item i3. We select i4 as the recommendation for the 

request user u1. 
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Table 3-2 Visiting probability at every step of random walks (only item nodes) 

step/time 0 1 2 3 4 5 10 20 >50 

p(i1) 0.556 0.110 0.359 0.233 0.322 0.284 0.330 0.349 0.355 

p(i2) 0.444 0.098 0.319 0.233 0.292 0.277 0.316 0.337 0.344 

p(i3) 0 0.173 0.056 0.130 0.097 0.125 0.133 0.146 0.149 

p(i4) 0 0.119 0.066 0.124 0.097 0.125 0.134 0.148 0.152 

sum 1 0.5 0.8 0.72 0.808 0.811 0.913 0.980 ¼ 1 

To summarise, the proposed hybrid recommendation approach is completed for this 

numeric case by using the unique bipartite graph random walk model in Section 3.2 

and the content similarity induction algorithm proposed in Section 3.4. 

3.6  Experiments 

Empirical experiments are conducted to compare the performance of our proposed 

approach with other benchmark models. The “Movielens-HetRec 2011” dataset 

(Cantador et al., 2011) is used for our experiments. This dataset is an extension of the 

standard MovieLens10M dataset by importing rich content attributes of movies in 

different aspects such as genres, actors, directors, etc. 

3.6.1  Experiment Setup 

There are in total 2113 users and 10109 movies in the whole dataset. The movies are 

associated with taxonomy attributes from five perspectives of their genre, director, 

actor, production country and location. Accordingly, there are five concept attributes 

in the top level of the movie taxonomy tree. With necessary data cleaning, there are 

in total 46720 folksonomy tags assigned to these movies, with an average per movie 

of 7.1 tags. 

The selected dataset has been widely applied for testing CF approaches due to the 
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dense rating data. There are about 855,000 rating records, giving an average per user 

of 405 ratings. With so rich rating data, the sparseness problem of CF is not evident, 

so we dilute the rating data and test recommendation approaches under different 

sparsity levels. The dilution is conducted as follows: the whole rating data is selected 

as Group 1, then from Group 1, we randomly select half of the ratings to build a 

Group 2 dataset, and then select half of Group 2 to build Group 3, and so on. We 

conduct this procedure five times to generate six data groups. The sparsity level of 

each group is 96%, 98%, 99%, 99.5%, 99.7% and 99.9%, respectively. We conduct 

separate experiments with each of the six groups, and apply five-folder validations.  

Some related studies are selected for comparison. First, pure CF approach (Resnick 

et al., 1994) is implemented. Besides, the ItemRank model proposed by Gori et al. 

(2007) is selected as a pure random walk-based model. A multipartite random walk 

model inspired by (Cheng et al., 2007) is also implemented, denoted as MultiRW for 

short. Moreover, two hybrid recommendation approaches, the tree-based algorithm 

of (Wu et al., 2014b) and the combined model of (Liang et al., 2010), that both 

incorporate taxonomy and folksonomy information are compared. We name them 

TreeSim and TFCB, respectively. Our hybrid recommendation approach is denoted 

as TFRW (Taxonomy and Folksonomy-integrated Random Walk model) for short. 

From the perspective of information fusion, the selected data set contains three types 

of input information: user-item ratings, item taxonomy attributes and item 

folksonomy tags. Table 3-3 distinguishes which information is utilized as input 

resource for each compared single or hybrid recommendation approach. 
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Table 3-3 The involved input information of each compared approach 

Information CF ItemRank MultiRW TreeSim TFCB TFRW(ours) 

Rating 
p

 
p

 
p

 
p

 
p

 
p

 

Taxonomy   
p

 
p

 
p

 
p

 

Folksonomy    
p

 
p

 
p

 

We select two metrics to evaluate the recommendation performance. First, the 

recommendation coverage is used to compare the success rate a recommendation 

approach. Second, the NDCG metric is used to compare the ranking accuracy of the 

generated recommendation list of each approach. Error-based metrics like MAE and 

RMSE are not applicable because not all approaches output rating predictions. 

We implement each approach on all the six data groups with different rating sparsity 

levels. In particular, the restarting parameter ® for random walk models, ItemRank, 

MultiRW and TFRW, are all set to be 0.8. The parameter ¯ for TFRW is set to 0:5 

initially, such that we have equivalent choices of walking via a rating relation or a 

content similarity relation in the bipartite graph, referring to the two routes in the 

example of Figure 3-1. 

3.6.2  Performance Comparison 

Figure 3-9 demonstrates the coverage variation of each approach with increasingly 

rating sparsity. This result shows that our approach TFRW maintains the best and 

stable coverage rate compared to all other approaches. In general, recommendation 

coverage of a particular approach falls when ratings become sparser. For the first 

group dataset with the richest ratings (averagely 405 ratings per user), it can be seen 

that every approach performs perfectly with high coverage of almost 100%. When 

the rating data becomes sparser, single approaches CF and ItemRank lose their 

coverage rates sharply, and hybrid approaches are also impacted at different degrees. 
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Figure 3-9 Comparison of the coverage rates under different sparsity levels 

We also have the following two findings from Figure 3-9. First, hybrid models, 

MultiRW, TreeSim, Combine and TFRW, can improve recommendation coverage 

compared to single resource-based approaches CF and ItemRank. This demonstrates 

the success of the incorporation of content information to alleviate the sparseness 

problem of rating data. Second, we find that the random walk-based approaches 

TFRW and MultiRW generally perform higher coverage rates than KNN-based 

approaches such as TreeSim and TFCB. The reason may be that there are insufficient 

data in sparse environment for KNN approaches to identify precise neighbour users 

or items. 

The comparison NDCG measurements is presented in Table 3-4, which evidently 

shows that the proposed approach TFRW reaches the best performance in most data 

groups, especially for the sparser groups. Among other compared approaches, CF 

acquires high accuracy when ratings are as rich as in the first two groups, while it 

loses the superiority quickly in sparser data groups. The other single model ItemRank 

also suffers the sparseness problem heavily in the sparse groups. In contrast, hybrid 

approaches are able to maintain relatively higher ranking accuracy by incorporating 
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item taxonomy and/or folksonomy information when rating data are sparse, referring 

to the performance of MultiRW, TreeSim, TFCB and TFRW. In particular, the 

superiority of our approach compared to other two hybrid models TreeSim and 

TFCB with exactly the same input resources indicates that the proposed random walk 

model is more effective to incorporate item taxonomy and folksonomy for improving 

recommendations. 

Table 3-4 Comparison of the NDCG* scores 

Group Sparsity  CF   ItemRank   MultiRW   TreeSim   TFCB   TFRW(ours) 

#1 96%  0.737 0.633 0.659 0.727 0.711 0.733 

#2 98%  0.647 0.565 0.555 0.597 0.577 0.659 

#3 99%  0.463 0.467 0.507 0.491 0.487 0.583 

#4 99.5%  0.505 0.419 0.519 0.479 0.459 0.617 

#5 99.7%  0.356 0.286 0.376 0.434 0.406 0.542 

#6 99.9%  0.128 0.118 0.276 0.326 0.316 0.436 
*NDCG@10, bold typeset indicates the best result under the current sparsity level. 

Summarizing all above comparisons, we can conclude that the proposed hybrid 

recommendation approach is effective in improving recommendation performance in 

terms of both the success rates and ranking accuracy, especially for sparse 

environments with no sufficient explicit ratings. 

3.6.3  Parameter Optimization  

In the proposed random walk model, a special variable s»Bernoulli(¯)  is 

introduced to determine whether the runner that currently locates at an item node 

should move to a user node following the user-item preference relations (can be seen 

as a CF characteristic) or move to another item node following the content similarity 

correlations (can be seen as a content-based characteristic), referring to Equation (3.3) 

and Equation (3.4). The Equation (3.11) indicates that a higher value of ¯ means 
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that the runner has a higher probability to move to item nodes via item content 

similarity correlations such that the content-based characteristic is more emphasized 

in the hybrid recommendation framework. Inversely, a lower value of ¯ indicates 

that the CF side idea is more considered. In our experiment, we tune the value of 

parameter ¯ from 0.1 to 0.9 to seek for the best performance for different data 

groups. 

Figure 3-10 illustrates the ranking accuracy varying with the values of the parameter 

¯ for different data groups. It can be found that the optimized value of ¯  shifts 

with data sparsity. First, for the data groups with denser ratings (for example, the first 

two groups), highest performance is achieved when ¯ is relatively small (e.g., 0.2). 

This demonstrates that the proposed hybrid recommendation approach should 

emphasize the CF idea when rating data is sufficient enough to sketch precise user 

profile. In contrast, in sparse environments such as in the sixth data group, ¯  should 

be tuned higher to consider more of the item content information such as the 

taxonomy attributes and folksonomy tags for recommendation making.
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Figure 3-10 Adjusting the model parameter for different data groups
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3.7  Summary 

This chapter proposes a hybrid recommendation approach by performing graph 

ranking on a user-item bipartite graph. This approach incorporates various input 

information including user-item ratings, item taxonomy attributes and folksonomy 

tags. This work is constituted by two main components. First, we develop a random 

walk model on a bipartite graph involving both users and items as the vertices and 

their connections in terms of user-item ratings and item-item similarity correlations 

as the edges. Second, we present a tree matching model to incorporate both 

taxonomy and folksonomy information of items to establish content similarity 

correlations between items. 

In the proposed random walk model, the runners surf between users and items either 

following the user-item rating relations or the item-item similarity correlations. The 

former route is similar to the idea of CF approaches, while the latter one is similar to 

the idea of content-based recommendation approaches; thus the random walk model 

can be seen as a hybrid recommendation approach that incorporates CF and CB ideas. 

In addition, a random variable s is introduced to switch walking between the two 

options. Therefore, our model is considered to provide a natural parameter to adjust 

the balance between the CF characteristic and CB characteristic. 

To incorporating increasingly diverse content information in terms of both taxonomy 

attributes and folksonomy tags for our hybrid recommendation approach, we 

proposed a tree matching algorithm to produce more precise similarity measurement 

of items. Differing with other studies, the tag information plays an important role in 

our content analysis. In this study, we utilize the tag information to identify the 

semantical similarity between taxonomy attributes, which was often manually 

evaluated by human experts in previous studies. Another advantage of using tags to 

estimate attribute similarity is that we can discover the possible stringing connections 

between two attribute that are seemingly unrelated at all in the taxonomy tree. This 
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study also use tags to sketch the most “featured” attributes of items, which can be 

used for producing more precise similarity measurement between items. Still taking 

movie items for instance, if a particular movie is found most discussed by people 

about its cast members, it is appropriate to elevate the weight of movie actors when 

seeking other similar movies. In brief, the tag information is well utilized in the study 

of this chapter to (1) generate the semantical similarity of attributes and (2) identify 

the distinctive attributes of items, both of which are the essences of the proposed 

item overall content similarity induction algorithm.  

A numerical case is given as an example to show all the steps of implementing our 

bipartite random walk model for recommendations. The approach has also been well 

tested and compared with existing single or hybrid approaches on a public dataset of 

Movielens. The results support the advantages of our model in alleviating the 

sparseness problem with robust and high performance. Particularly, the parameter ¯ 

of our bipartite random walk model, which adjusts the balance of CF idea and CB 

idea in the hybrid recommendation approach, has been finely tuned with different 

data groups. The results provide a general guideline of leveraging the CF and 

content-based characteristics for hybrid recommendation approaches in different 

situations.
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CHAPTER 4. A SOCIAL 

NETWORK-BASED RECOMMENDER 

SYSTEM VIA MULTIGRAPH RANKING 

4.1  Overview 

With the recent outgrowth of social networking tools, user-user correlations are 

increasingly emerging as another facet of resource for amalgamating peoples’ 

opinions and naturally being incorporated to overcome the rating sparseness problem 

of CF-based recommender systems. In recent years, various types of user-user 

connections have been incorporated for making recommendations separately, 

including both the explicit social relations (Yang et al., 2012) and also more implicit 

user correlations (Shambour and Lu, 2012). Despite the success of each single 

approach, a new challenge is that people are often surrounded in multiple types of 

relations simultaneously. This complex relationship of users is usually referred to in 

the area of (social) network analysis as multi-relational/layer/dimensional networks 

(Salehi et al., 2014). In recommender systems, however, there are few studies that 

seek to handle such multiple user networks for enhancing recommendations 

(Kazienko et al., 2011). Motivated by the need to attempt this, this chapter presents a 

multigraph model to involve users and their various types of relations, and develops 
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a multigraph ranking model to determine potentially interested items for users. 

 
Figure 4-1 Modelling multi-relational social networks using union graph vs. multigraph 

We present the multi-relational social networks of users using an example in Figure 

4-1, which illustrates the generation of a multigraph for four persons who are 

connected by three types of relationships: friendship, neighbourhood and colleagues. 

A union (simple) graph is also constructed by aggregating the relations of each pair 

of persons into a union relation as the comparison. Compared to the union graph, the 

multigraph model preserves the structural information of each single network  with 

no information loss (Gjoka et al., 2011). 

This chapter proposes a multigraph ranking model to identify the nearest neighbour 

users in a multi-relational social network to produce KNN-based recommendations 

like conventional CF-based recommender systems. This work has two main 

components and innovations as follows. (1) It presents a random walk-based social 

network propagation model to infer indirect relations in a single social network. (2) 
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Based on the propagated single social networks, a multigraph ranking model is 

proposed to establish the overall nearest neighbours of a particular user. In other 

words, the social network propagation model is used as a preliminary process to 

enrich the data of original user relations, while the multigraph ranking model 

undertakes the next step to identify the overall closeness for users. 

The rest of this chapter is organized as follows. A random walk-based social network 

propagation model is first presented in Section 4.2. In Section 4.3, a multigraph 

model constructed by different user networks is defined. In particular, we propose an 

inter-network measurement to assess the structural diversity between single social 

networks, which can be used for pre-screening the diverse input resources. Next, a 

multigraph ranking model is developed in Section 4.4, where the regularization 

framework of simple graph ranking theory is employed and improved. In Section 4.5, 

empirical experiments are conducted with two real-world datasets including the 

product review data of Epinions.com and the social music sharing data of Last.fm. 

The results demonstrate the superiority of our approach in terms of both 

recommendation coverage and accuracy. We then summarize our findings in the last 

section. 

4.2  Single Social Network Propagation 

The transitivity of social relations such as “friendship” and “trust” has been adopted 

as a main topic in existing social network-based recommendation approaches 

(Golbeck, 2006; Massa and Avesani, 2007; Shambour and Lu, 2012). In particular, 

we apply the social transitivity for not only the explicit social relations but also for 

the general user-to-user correlations, e.g., the rating similarity correlation of users. It 

is well known that rating similarity of two users is computed from the common 

ratings to their both rated items such that the result will be unavailable or inaccurate 

if they share none or insufficient common items. However, we can infer the “indirect” 

similarity of them via a third user if both of them are found having similar ratings to 
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the third user. Based on this assumption, this section proposes a random walk-based 

propagation model for each collected user relational network constructed from 

explicit social relations or implicit correlations, as reviewed in Section 2.2.2. 

Formally, a single social network of the entire users in a recommender system is 

represented by a graph defined as follows. 

Definition 4-1 (Single social network). In a recommender system, a social network 

of users is denoted as a graph G = fU;Eg, where U  is the population of users 

handled as the graph vertices and EμU £U is a set of edges where a directed pair 

of users [u1;u2] 2E indicates there is a connection from u1 to u2 in the graph. 

As reviewed, user-to-user networks may have different forms such as directed or 

undirected, weighted or binary relations. Uniformly, an undirected relation can be 

decomposed to two one-way directed relations. Also, the binary social networks can 

be treated as special weighted networks with same weightings for all edges. For a 

weighted network, the edges are natively associated with a weighting function 

w : E! [0;1] after normalization. For a binary network, a weighting function is 

assumed to be w : E ! 1 that gives a constant weight to every visible edge. 

Correspondingly, we denote a weighting adjacency matrix W of size jUj£jUj for 

a social graph G = fU;Eg with each element Wij = w([ui; uj]) if the directed 

path [ui; uj] 2 E and 0 otherwise. In our study, we always use [ui; uj] to denote a 

directed vertex-to-vertex path from the vertex ui to another vertex uj. 

4.2.1  Performing a Single Random Walk 

To infer the missing edges in a single graph, we use a “walk and select” manner 

following the work of Jamali and Ester (Jamali and Ester, 2009) to perform random 

walks on this graph. This unique model is elaborated in the following steps. 
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Given a source user usou  and a target user utar , for whom we know 

[usou;utar] =2E, i.e., there is no edge from usou to utar in the original graph. To 

infer the indirect relation and estimate an appropriate value of the weighting 

~w([usou; utar]), a single random walk is performed starting from the source user 

usou. Assuming a runner randomly moves from one node to another node each time 

in the graph, and at a time t it has moved to a certain user ui. At this time, the 

runner can choose to keep moving to another node or otherwise to terminate this 

walk. This process refers to the walking part in our model. If the runner decides to 

terminate the walk, the value of w([ui; utar]) is just returned as the prediction of 

~w([usou; utar]), and this process is called the selection part. To summarize, the 

walking mana performs the search of similar users in the social network while the 

selection manner polls the suggestions of the similar user’s closeness to the target 

user. 

Concretely, the two options at time t when the runner is located at user ui are as 

follows. 

Option 1.  With probability Át, the random walk is terminated, and w([ui; utar]) is 

returned as the result of this single walk. If ui is neither linked to utar 

such that w([ui; utar]) is not available, zero is returned. 

Option 2.  With probability 1¡Át , the walk is continued, and another node 

connected by ui will be randomly reached at the next step. 

Here, the notation Át is the termination probability with regarding to the walking 

time/step t. Similar to all other random walk models, the transition probability of 

moving from the current user ui to another user uj is given by: 

 p(ujjui) =
Wij

d(ui)
, (4.1) 
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where d(ui) denotes the vertex degree of user ui, which is defined as follows. 

 d(ui) =

jUjX
j=1

Wij (4.2) 

A diagonal matrix DjUj£jUj can be constructed with Dii = d(ui) on the every 

diagonal place. We define a row vector p(t) as the probability distribution of all 

users at time t, that is, the i-th element p(t)
i  is the probability of that the user ui is 

being visited at time t. The transition matrix of the walking process is the same of 

traditional random walk models as follows. 

 T = D¡1W (4.3) 

If the random walk keeps moving from the current time t to the next time t + 1, the 

distribution vector will be updated once as follows. 

 p(t+1) =p(t)£T (4.4) 

Note that the above equation has a different form as in traditional random walk 

models because we use a row vector p instead of a column vector to record the 

probability distribution. 

So far, we have completed a single random walk and returned a suggestion of the 

indirect edge from the source user to the target user. For precise predictions, we can 

start a number of random walks separately from the source user and aggregate the 

returned result as the final results, which is detailed in the following section. 

4.2.2  Performing More Random Walks 

More random walks are started from the source user to seek more suggestions of the 
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prediction of ~w([usou; utar]). We define a new variable s as the total walking length 

of a terminated single walk, for which we can obtain a distribution vector p(s) by 

recursively applying the updating Equation (4.4). We also denote a column vector 

W:tar, i.e., the corresponding column in the weighting matrix W for the garget user

utar. Clearly, W:tar actually represents the weightings of the in-linked edges for the 

target user. The expectation of returned result of a single random walk terminated at 

time s should be as follows. 

 ~w([vsou; vtar])js = p(s)W:tar (4.5) 

Aggregating all random walks that starts from the source user, the global expectation 

of returned values will be: 

 
~w([vsou; vtar]) =p(s = 1)p(1)W:tar +p(s = 2)p(2)W:tar

+ p(s = 3)p(3)W:tar + : : :
 (4.6) 

At beginning, the starting distribution is q = p(0). As all random walks start from the 

particular source user usou, q  actually has only one positive element q(vsou) = 1

and all others are zeros. Combining Equation (4.4) and (4.6), we have the following 

simplification. 

 

~w([vsou; vtar]) =Á1qTW:tar + (1¡ Á1)Á2qT2W:tar

+ (1¡ Á1)(1¡ Á2)Á3qT3W:tar + : : :

=
1X

t=1

Át

t¡1Y
i=1

(1¡ Ái)qTtW:tar

=
1X

t=1

Ã(t)qTtW:tar

 (4.7) 

In the above equation, a new notation Ã(t) is introduced to denote the probability of 

that a single random walk is terminated at time t, computed as follows. 
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 Ã(t) = p(s = tjÁ) = Át

t¡1Y
i=1

(1¡ Ái) (4.8) 

The Formula (4.7) predicts the indirect connections between two particular users. 

From the perspective of the whole network, we obtain an inferred weighting matrix 

~W, where ~Wij is the predicted weighting value of the edge from the user ui to the 

user uj. 

 ~W =
1X
t=1

Ã(t)TtW (4.9) 

We can prevent walking that is too long term by adjusting the termination parameter 

Á. Based on the idea of “six degrees of separation” (Jamali and Ester, 2009; Milgram, 

1967), most users will be reachable with a walk that is at most six steps in length. 

Hence, if a walk has reached six steps, we force it to terminate, that is, let Á6 = 1. 

Thus the Equation (4.9) can be replaced by the following form. 

 ~W =
6X

t=1

Ã(t)TtW (4.10) 

Table 4-1 An example setting of the termination parameter 

t 1 2 3 4 5 6 

Át 0.5 0.6 0.7 0.8 0.9 1 

p(s = tjÁ) 0.5 0.3 0.14 0.048 0.0108 0.0012 

p(s· tjÁ) 0.5 0.8 0.94 0.988 0.9988 1 

Furthermore, it is appropriate to assume the termination probability becomes higher 

when the random walk goes to deeper levels, that is, the parameter Á increases with 

time t. Simply, we let Át increase from 0.5 to 1 in the first six steps, as shown in 

Table 4-1, in which the distribution of walking length Ã is also computed. We find 
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that most (80%) random walks will stop at the first two steps. Based on the Pareto 

Principle (also known as the 80-20 rule), a fast and approximate solution of (4.10) is 

obtained based only on the first two steps, as follows. 

 ~W= 0:5TW+0:3T2W (4.11) 

Note that we only need to predict the indirect relations, so the final enriched 

weighting matrix Ŵ after propagation is: 

 Ŵ = W+(J¡H) ± ~W (4.12) 

where ± is entry-wise production, J is a matrix with all element equalling to one 

with size jUj£jUj and H is the adjacent matrix of the graph with Hij = 1 if there 

is an edge from the i-th user ui to the j-th user uj and Hij = 0 otherwise. 

We conduct an empirical analysis to evaluate the precision of the alternative 

calculation of (4.11) on a real-world dataset of the Last.fm (Cantador et al., 2011). 

Tow-relational networks of users are collected from the dataset. One is the explicit 

Friendship network of users. The other is a preference similarity network derived 

from the listening counts of users. Each network is propagated using the full 

propagation equation (4.10) and the alternative propagation equation (4.11), 

respectively. The experimental results are compared in Table 4-2. First, for the 

similarity network that already has denser original relations, the density 

improvements of the two propagators are very close (79.2% vs 79.1%) and the mean 

deviation of the inferred relations is very small (0.047). Moreover, the average 

strength of the omitted edges of the alternative propagator (the ones inferred by the 

full propagator but ignored by the alternative propagator) is only 0.006. For the 

friendship network, though the improvements of the two propagators in network 

density vary (77% vs 39%), the mean deviation and omitted values are both trivial 

(0.006 and 0.001, respectively). These comparisons demonstrate that the 
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approximation Equation (4.11) is a good alternative to Equation (4.10) for 

simplifying the calculation. 

Table 4-2 Result comparison of the full and alternative propagators 

User relations Similarity Friendship 

Original graph density 22.4%   0.6% 

Density after propagation (full) 79.2%   77% 

Density after propagation (alternative) 79.1%   39% 

Mean deviation of both-inferred edges 0.047   0.006 

Mean value of omitted (unpredicted) edges 0.006   0.001 

collected from Last.fm dataset 

In summary, the proposed social network propagation will be applied to every 

collected single network of users as a pre-processing step to enrich the input data of 

our multi-relational social network-based recommender system. For convenience of 

expression, we still use the original notations like W instead of Ŵ in the reminder 

of this chapter unless specified. 

4.3  Multi-Relational Social Networks 

Let us assume that multiple social networks have been initialized for users from a 

range of resources such as user behaviours, preference, social interactions or implicit 

feedback information. This section discusses how a multigraph model is generated 

and measured for the perpetration of recommendations. 

4.3.1  Multigraph Generation 

Formally, let graphs G1 = fU;E1;w1g, G2 = fU;E2;w2g, …, GZ = fU;EZ;wZg 

denote the collected and propagated Z  different social networks on a common user 
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set U = fu1;u2; : : :g, which is the population of users in a recommender system, 

and E1;E2; : : : ;EZ μU£U are respectively the edge sets of each graph. Each 

graph  Gk  is associated with a weighting function wk  and correspondingly a 

weighting matrix WjUj£jUj as denoted in Section 4.2.  

A simple way to handle different social networks is to aggregate different user 

relations to build a union graph, which can be defined as follows. 

Definition 4-2 (Union Graph). A union graph G0 = fV;E0;w0g is also an ordinary 

simple graph on the vertex set U , in which the edges are given by the union set of all 

single edge sets, i.e., E0 =
SZ

k=1 Ek. Correspondingly, a union weighting function 

w0 : E0 ! [0;1] is associated to aggregate the available edge weightings of single 

graphs: 

 w0(e) = F

μ
w1(e);w2(e); : : : ; wZ(e)

¶
;8e 2 E0, (4.13) 

where F  is an aggregating function such as linear averaging in the study of Jacob et 

al. (2011). 

In contrast, a multigraph that retains the original structures of single graphs is 

defined as follows (Gjoka et al., 2011) . 

Definition 4-3 (Multigraph). A multigraph G = fU;Eg is a special graph on V , 

where the edge set E =
ZU

k=1

Ek is given by the multiset of the edge sets of all single 

graph G1 to GZ. 

As shown in the above definition, a multigraph can be seen as to overlap all single 

graphs rather than to merge them to one simple graph. In the following, we use the 

subscript symbols i; j to index vertices (users) and k; l to index single graphs. 
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4.3.2  Inter-Network Comparison 

Compared to the union graphs that simply merge different types of user relations, the 

multigraph model retains the original structures of single networks, which helps to 

identify the structural difference between single networks. In the field of network 

study such as network sampling, the inter-network comparisons have acquired much 

study (Marceau et al., 2011; Zhao et al., 2014). We introduce the  Average 

Similarity of Neighbours (ASN) as a measurement of the structural similarity of 

two networks, defined as ASN(A;B) =
P

i KAB(i)=
P

i KA(i) +KB(i)¡KAB(i), 

where KA(i) (respectively KB(i)) is the number of neighbours of node vi in single 

graph A (respectively B) and KAB(i) is the number of common neighbours of the i

-th node in both graphs A and B. This metric was not originally proposed for 

weighted graphs, thus we modify it to the following form. 

 ASN(A;B) =

P
i DEGAB(i)P

i DEGA(i) +DEGB(i)
, (4.14) 

where DEGA(i) and DEGB(i) are respectively the out degrees of the i-th node in 

graph A and graph B and DEGAB(i) denotes the summation of the out degrees of 

this node to the common neighbours in both graphs. Clearly, we have that 

DEGAB(i)·DEGA(i)+DEGB(i) and the equation holds only if the node has the 

exactly same out-linked neighbours in both graphs. 
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 (a) all three types of relations (b) friendship + similarity 

   
 (c) friendship + tagging (d) similarity + tagging 

(red: friendship; blue: preference similarity; green: co-tagging relations) 

Figure 4-2 Inter-network comparisons with Last.fm dataset 

For recommender systems, we put emphasis on the structural “diversity” rather than 

the “similarity” measurement of different user networks, given as follows. 

 ±(A;B) = 1¡

P
i DEGAB(i)P

i DEGA(i) +DEGB(i)
: (4.15) 

The proposed inter-network diversity measurement can be used to pre-screen the 

various input networks. For example, we adopt only one of the two social networks if 

they have very small diversity (e.g. ± < 0:1) for the following two reasons:  
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 First, the two networks have very similar structure such that the sparseness 

problem is not further alleviated if both are incorporated; 

 Second, incorporating duplicate networks with too similar structure is 

equivalent to reusing a same information resource, which renders it unfair for 

other input resources. 

Figure 4-2 visually illustrates the network-to-network comparisons. We import the 

complex relationships of the first 50 users in the Last.fm dataset mentioned in the last 

section. Three relational networks between users are initialized from different 

resources including the explicit friendships, the preference similarities, and the 

co-tagging relations. The overall multigraph structure is presented in Figure 4-2(a) 

by overlapping all three kinds of relations together. We compare each pair from the 

three single networks to measure their structural diversity in the subfigures (b), (c) 

and (d), respectively. Intuitively, Figure 4-2(b) shows that the friendship and the 

similarity networks share a small part of edges. Figure 4-2(c) presents the friendship 

network and tagging network together and illustrates that these two networks are also 

well distinguished. Figure 4-2(d) indicates the similarity and tagging networks have 

more common edges compared to the former two figures. We calculate the 

inter-network diversity measurement of Equation (4.15) for each pair of the three 

networks and obtain the following results. 

 

8><>:
±(friendship; similarity) = 0:82

±(friendship; tagging) = 0:83

±(similarity; tagging) = 0:42

 (4.16) 

The result supports our intuitive observations of that the friendship and similarity 

networks are different in structure as well as the friendship and the tagging networks, 

while the diversity between the similarity and the tagging networks is lower, in other 

words, these two networks are more similar in the structure. 

It should be noticed that the proposed inter-network diversity measurement does only 
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evaluate the difference in structural rather than the quantitative weights of edges. In 

other words, “high diversity” here indicates that two networks have complementary 

structures, i.e., they share a small part of the common edges, while it does not mean 

that their edge weights differ with each other. Admittedly, we would like to utilize 

more complementary input information to alleviate the sparseness problem of a 

single user network. 

In this section, we present a multigraph model that can involve multi-relational social 

networks of users. A novel measurement of the inter-network structure diversity is 

proposed and illustrated using a real-world dataset. In the next section, we focus on 

how to identify the overall closeness of users from the multigraph structure to 

improve recommendation precision. 

4.4  Multigraph Ranking and Recommendations 

One of the key tasks of CF-based recommender systems is to identify the closed 

neighbour users who are thought to have similar preference. There are various of 

user relationships that have been imported as clues to evaluate the closeness between 

users such as the rating-based similarity/trust (O’Donovan and Smyth, 2005; Resnick 

et al., 1994), explicit social connections (Massa and Avesani, 2009) and implicit 

correlations (Lopes et al., 2010). Differing from the most existing studies that only 

apply to a single type of social relations, this section proposes a multigraph ranking 

model to be able to identify the nearest neighbours from multiple social networks. 

To illustrate the need and the advantage of multigraps, we start this section with a 

two-moons ranking problem shown in Figure 4-3(a). In this example, the users are 

connected with three types of relations, namely, similarity, friendship and tagging 

correlations as in the previous example of the Last.fm dataset. User nodes are placed 

in a geometric figure with regarding to the average strength of the three types of 

relations to the query user. In addition, those users who are strongly connected with a 
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particular type of relations are marked with a unique surrounding colour such as blue 

for similarity, red for friendship and green for tagging correlations, thereby we can 

find several small groups of users surrounded with different colours in the figure. 

Putting all these small groups together, we obtain a two-moons pattern of the whole 

structure indicating that two large partitions are generated by different adjacent small 

groups of users. Thus we call this problem as a two-moons multi-relational social 

network ranking problem. The goal of our study is to identify the overall nearest 

neighbours for the particular query user marked in the figure. In the following 

subfigures (b) to (d), three different ranking ideas are compared. Note that the marker 

sizes are proportional to the ranking scores of a particular ranker. 

The conventional single network-based approaches will find the nearest neighbours 

who are connected to the query user with a particular type of relations. For example, 

Figure 4-3(b) presents the expected ranking result of CF approach using the 

preference similarity of users. Due to data sparsity, CF method can only find a small 

number of neighbours, which is thereby not a successful ranker as many users are 

failed to assess. Figure 4-3(c) is the ranking result of a union graph-based ranker that 

use the averaged Euclidian distance. As this ranker compares the average closeness 

of the candidate users to the query user independently that the connections between 

the candidates are ignored. As a result, the two-moons pattern is not able to be 

recognized by this kind of ranker. Figure 4-3(d) shows the ideal ranking result that 

we expect to obtain by proposing a multigraph ranking model. This ranker can 

identify that the users in a same partition constituted by adjacent small groups with 

different types of relations. 
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Figure 4-3 Ranking on a multi-relational network with a two-moons pattern 

In the following, a brief preliminary study of simple graph ranking is needed to grasp 

the key idea of ranking graph data, which we then expand to the multigraph 

environment. 

4.4.1  Simple Graph Ranking 

The graph ranking problem has been studied in considerable depth in recent years 

that some solutions have been readily adopted in the area of network sampling 

(Belkin et al., 2004; Zhou and Schölkopf, 2004; Agarwal, 2006; Mao et al., 2014). 

This problem is given by a weighted graph G = (V;E;w), where V = fv1; : : : ; vng 

is a set of vertices, EμV £V  a set of edges, and w : E! [0;1] the weighting 

function, together with an input query vector y2Rn, in which the i-th element yi 

denotes the initial query score of the node vi. The query vector can be seen as a 

given (input) ranking function y : V !R on the vertex space such that y(vi) = yi. 

(b) Ranking by CF similarity (c) Union graph-based ranking (d) Multigraph-based ideal ranking

relation 1

relation 2

relation 3

: Query user

(a) Two-moons partition of multi-relational networks
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The ranking problem can then be thought of as seeking a new function f : V !R
that is smooth and simultaneously close to the given function y. The graph ranking 

problem is usually formalized to an optimization problem to minimize the following 

cost function. 

 min
f:V!R

Q(f) =

½
S(f) + ¹R̂(f ;y)

¾
 (4.17) 

In the above cost function, the first term S(f) in the right-hand side measures the 

smoothness of the ranking function f ; the second term R̂(f;y) measures the 

empirical error of f  compared with y. A trade-off parameter ¹ > 0 is imported to 

balance the two terms. 

The ranking error R̂(f;y) is usually computed using the `2 norm variance k ¢ k 

and written in matrix-vector form as follows. 

 R̂(f;y) = kf ¡ yk2 = (f ¡y)T(f ¡y) (4.18) 

A good ranking function f  shall not vary greatly across two vertices that are 

“closely related”. By importing the weighting matrix W and degree matrix D of 

graph G, the regularization framework first proposed in (Zhou and Schölkopf, 2004) 

gives the smoothness function as: 

 S(f) = fT(I¡A)f , (4.19) 

where a new matrix A=D¡1=2WD¡1=2 is defined. Consequently, requiring the 

gradient of Q(f) to vanish gives us the following result. 

 @Q

@f

¯̄̄̄
f=f¤

= (I¡A)f¤ +¹(f¤¡y) = 0 (4.20) 
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In defining a decimal parameter ® = 1=(¹+1) 2 (0;1), the optimized ranking 

result f¤ is obtained by solving Equation (4.20). 

 

f¤ = (1¡®)(I¡®A)¡1y

/ (I¡®A)¡1y  (4.21) 

The positive constant 1¡® can be omitted in the above equation as it does not 

affect the ranking order. 

4.4.2  Multigraph Ranking Problem 

We have the same goal for multigraph ranking as for the single graph ranking 

problem: to seek for a good ranking function f : V !R that is smooth and 

simultaneously close to a given query y. The problem can also be formalized to 

minimize a cost function in the form of Equation (4.21). It is clear that the second 

term R̂(f;y) is not changed in the multigraph environment, so we only have to 

elaborate a new smoothness function S(f) for the multigraph ranking problem. 

In a multigraph constructed from several single graphs, the overall relationship of a 

pair of vertices is represented by a set of edges with regarding to different types of 

relations. We still use the notations defined in Section 4.3, which supposes that a 

multigraph G has been constructed for users with Z  single social networks. The 

relationship between two users can be represented by a column vector containing the 

strength of closeness (edge weight) in each single network, as follows. 

 [ui; uj] Ã

0BBB@
w1

ij

w2
ij
...

wZ
ij

1CCCA (4.22) 

Here we use wk
ij 2 [0;1] as a simplified expression of wk([ui; uj]), i.e., the closeness 



4.4  Multigraph Ranking and Recommendations 

108 

of the two users in the k-th graph. Note that wk
ij = 0 means there is no connection 

from ui to uj in the k-th single graph. 

An edge function is defined as a function that can map a directed pair of vertices to a 

real value (Jacob et al., 2011). In a multigraph, a directed pair of vertices can be seen 

to have a virtual edge and the edge function gives an initial estimation for the 

strength of this virtual edge. To utilize both intra-network relations and inter-network 

comparisons, we define a virtual edge function $ : V £ V ! R  for the user 

vertices in a multigraph as follows: 

 $([vi; vj];¢) =
1

2

ZX
k;l

wk
ijw

l
ij¢kl; (4.23) 

where ¢kl is the inter-network diversity of the k-th and the l-th single graphs, 

referring to the definition in Section 4.3.2. Comparing the structural diversity of each 

pair of single graphs, we obtain a Z £ Z diversity matrix ¢ as follows.  

 ¢kl =

(
±(Gk;Gl); k 6= l

1; k = l
 (4.24) 

This setting considers the unique environment for recommender systems, where we 

assume that the relationship of two particular users should be emphasized if they are 

connected by many and diverse types of relations. With Equation (4.23), we define a 

jUj£jUj matrix ¦  with ¦ij = $([vi; vj]) , which can be built based on the 

matrices W1; : : : ;WZ and ¢, as shown below. 

 ¦ =
1

2

ZX
k;l=1

¢klWk ±Wl (4.25) 

Here ± is entry-wise multiplication operator. Further, we can define the virtual 
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out-degree d+(ui) and in-degree d¡(ui) of a user vertex ui as follows. 

 d+(ui) =
X
j 6=i

$([ui; uj]), (4.26) 

 d¡(ui) =
X
j 6=i

$([uj; ui]). (4.27) 

Two diagonal matrices D+  and D¡  are denoted with (D+)ii = d+(ui)  and 

(D¡)ii = d¡(ui) on the diagonals. 

According to the regularization framework, the smoothness of a ranking function 

consists of the edge derivation crossing every pair of users, which we define as 

follows for the virtual edge in a multigraph. 

For an out-linked virtual edge: 

 
@f

@[ui; uj]

¯̄̄̄
ui

=

s
$([ui; uj])

d+(ui)
f(ui)¡

s
$([ui; uj])

d¡(uj)
f(uj) (4.28) 

For an in-linked virtual edge: 

 
@f

@[uj; ui]

¯̄̄̄
ui

=

s
$([uj; ui])

d¡(ui)
f(ui)¡

s
$([uj; ui])

d+(uj)
f(uj) (4.29) 

Clearly, we have @f
@[ui;uj]

¯̄̄̄
uj

=¡ @f
@[ui;uj]

¯̄̄̄
ui

: Next, the local variation at each vertex is 

defined as below. 

 kruifk=

vuut1

2

·X
j 6=i

μ
@f

@[ui; uj]

¯̄̄̄
ui

¶2

+
X
j 6=i

μ
@f

@[uj; ui]

¯̄̄̄
ui

¶2¸
 (4.30) 
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The summation of the local variations at all users reflects the smoothness level of the 

ranking function f . Following the study of Zhou and Schölkopf (2004), the 

smoothness function is given by: 

 S(f) =
1

2

X
u2U

krufk
2. (4.31) 

The above equation can be simplified in the following steps. 

 

S(f)

=
1

2

nX
i=1

kruifk
2

=
1

4

· nX
i=1

nX
j=1

μ
@f

@[ui; uj]

¯̄̄̄
ui

¶2

+
nX

i=1

nX
j=1

μ
@f

@[uj; ui]

¯̄̄̄
ui

¶2¸
=

1

4

· nX
i=1

nX
j=1

μ
@f

@[ui; uj]

¯̄̄̄
ui

¶2

+
nX

j=1

nX
i=1

μ
¡

@f

@[uj; ui]

¯̄̄̄
uj

¶2¸
=

1

2

nX
i=1

nX
j=1

μ
@f

@[ui; uj]

¯̄̄̄
ui

¶2

=
1

2

nX
i=1

nX
j=1

μ
$ij

d+
i

f2
i +

$ij

d¡j
f2

j ¡ 2
$ijfifjq

d+
i d¡j

¶

=
1

2

X
i=1

f2
i +

1

2

X
j=1

f2
j ¡

nX
i=1

nX
j=1

$ijfifjq
d+

i d¡j

= fT f ¡ fTD
¡1=2
+ ¦D

¡1=2
¡ f

= fT (I¡S)f  (4.32) 

In the above calculation, a matrix S is defined as follows. 

 S = D
¡1=2
+ ¦D

¡1=2
¡  (4.33) 

The multigraph ranking problem can thus be formalized to the following 

optimization. 
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 min
f:V!R

Q(f) = fT(I¡S)f +¹(f ¡y)T(f ¡y) (4.34) 

The new cost function has a similar form with the one of single graph ranking, so we 

can obtain the optimized ranking vector fm for multigraph ranking following the 

same calculations of Equation (4.21), as follows. 

 fm = (I¡®S)¡1y (4.35) 

The same, ®2 (0;1) is the model parameter balancing the ranking smoothness and 

the consistency with input query. 

4.4.3  Making Recommendations 

To generate recommendations for a particular (active) user denoted as ua, we hope to 

identify the top-K most closed neighbour users using the proposed multigraph 

ranking model. At beginning, a column vector y 2RjUj is given as the input query 

for multigraph ranking. The edge function defined in Equation (4.23) can be natively 

imported to generate an initial query vector, such as follows. 

 y(ui) =

(
Z2=2 if ui = ua

$([ua; ui]) if ui 6= ua

 (4.36) 

It is easy to find that $·Z2=2 from Equation (4.23). 

With the query vector y, we can find the optimized ranking vector f  by solving 

Equation (4.35). The top-K users who acquires the highest ranking scores are then 

selected as the nearest neighbours for the active user, denoted as Neib(ua). Next, the 

standard CF prediction formula is used to predict the rating of the active user ua to 

an unseen item i (Resnick et al., 1994). 
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 r̂(ua; i) = ¹rua +

P
u2Neib(ua)

f(u)(ru;i ¡ ¹ru)P
u2Neib(ua)

f(u)
 (4.37) 

Ultimately, several (e.g. 5 or 10) of the top unseen items with the highest predicted 

ratings are recommended to the active user ua. 

Now we can summarize the whole process of the proposed recommendation 

approach. At first, we collect various explicit or implicit social relations for users in a 

recommender system and build multiple single social networks. Next, the proposed 

random walk-based social network propagation model is employed to enrich the 

original data of each social network. After the propagation of all social networks, a 

multigraph is constructed to represent the multi-relational environment for users. 

Now given a particular active user as the requester for recommendations, the 

proposed multigraph ranking model is implemented to identify this user’s closed 

neighbour users and the CF-like rating predictions are made for the unseen items. 

Ultimately, the items with highest predictions are selected as a list of 

recommendations to present to the active user. 

4.5  Experiments 

In this section, empirical experiments are conducted with two real-world datasets to 

compare the performance of our approach with several existing social network-based 

recommender systems. 

4.5.1  Experiment Setup 

The two public datasets selected for experiments are from Epinions.com and Last.fm, 

which are the few publicly available datasets that contain both ratings and social 

networks thereby having been widely used for evaluating social network-based 
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recommender systems (Massa and Avesani, 2007; Jamali and Ester, 2009; Yang et 

al., 2012; Bellogín et al., 2013). Epinions.com is a general product review site on 

which customers can rate and review different domains of products including cars, 

books, movies, software, etc. The ratings range from 1 (the worst) to 5 (the best). In 

addition, there is a “web of trust” network recording users’ connections of “who 

trusts whose opinions” as the system enable every user to build a trust list and add 

people who share similar opinions into it. We use this version1 initially crawled by 

Massa and Avesani (2007) for our experiments. The statistical information is 

presented in Table 4-3, which indicates the rating data are very sparse (sparsity 

99.99%). As a result of the high rating sparsity, it has been reported that the pure CF 

approaches suffer from the cold-start problems heavily in this environment (Massa 

and Avesani, 2007), which is actually common in e-Commerce sites such as 

Amazon.com (McAuley and Leskovec, 2013) and Yelp.com (Blomo et al., 2013). 

The need for new information like trust to be incorporated to enhance 

recommendation performance is therefore highlighted.  

The other selected dataset is a music sharing dataset2 of Last.fm, published by 

Cantador et al. (2011). There is no explicit rating information in this dataset but the 

“listening count” logs of users are often seen as implicit “ratings” to the music tracks 

(Tan et al., 2011). In addition, an explicit online friendship network of users is 

provided in the dataset. In Last.fm, users are also able to assign free tags to describe 

the music tracks or artists. It has been reported that a tag-derived social network of 

users can be abstracted for recommendations (Zhen et al., 2009; Liang et al., 2010). 

We follow the settings of Zhen et al. (2009) to initialize a co-tagging network of 

users as another social network besides the friendship network. Some statistics of the 

Last.fm dataset is summarized in Table 4-4. This table indicates that the Last.fm 

dataset has much denser rating data, which represents a common scenario of 

information goods. We transform the listening counts to ratings in the following way. 

                                                 
1 http://www.trustlet.org/wiki/Downloaded_Epinions_dataset 
2 http://grouplens.org/datasets/hetrec-2011/ 
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For every user, the top one fifth of the most listened artists are seen to be rated with 5 

stars (most loved), the second fifth are given the rating 4, and so on. Consequently, 

the ratings generated for the Last.fm dataset range from 1 to 5 as well as in the 

Epinions dataset.  

Table 4-3 Statistical information of the Epinions dataset 

 Total per-user Sparsity 

#Users 49290 - - 

#Products 139738 - - 

#Ratings 664824 13.5 99.99% 

#Trust 487181 9.9 99.98% 

Table 4-4 Statistical information of the Last.fm dataset 

 Total Per-user Sparsity 

#Users 2100 - - 

#Artists (items) 18745 - - 

#Listening count (rating) 92834 44.2 99.76% 

#Friendship 25424 12.1 99.42% 

#Tags 186479 88.8 99.53% 

Table 4-5 shows the two types of user relations collected in the Epinions dataset and 

the three types of user relations collected in the Last.fm dataset. 
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Table 4-5 Involved user-user relations in two datasets 

User relations Epinions Last.fm 

Rating Similarity 
p

 
p

 

Social Trust 
p

  

Social Friendship  
p

 

Tagging correlation  
p

 

No. of networks (Z) 2 3 

In the experiment, our proposed multigraph ranking-based recommendation approach 

is named as MGrank for short, and we compare it with the following single or 

hybrid approaches. At first, each original single social network is used to implement 

a user-based CF recommendation approach for testing the recommendation 

performance relying on a single type of information resources. We also implement an 

enriched version of each single social network using the propagation method 

proposed in Section 4.2. Comparing the original and propagated social 

networks-based approaches can evaluate whether the proposed random walk-based 

propagation model is effective for improving the recommendation performance. For 

the two datasets, the following single approaches are implemented and labelled. 

 sCF and sCFPro: the single approaches using the original and propagated 

Cosine similarity networks for collaborative filtering (for both datasets). 

 sTrust and sTrustPro: the single approaches using the original and 

propagated trust network (for the Epinions dataset only). 

 sFriend and sFfriendPro: the single approaches using the original and 

propagated friendship network (for the Last.fm dataset only). 

 sTag and sTagPro: the single approach using the original and propagated 

tag-derived user social network (for the Last.fm dataset only). 

According to our taxonomy for the three fusion strategies reviewed in Section 2.2.2, 

we select a representative hybrid approach from each category as a benchmark to 
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compare with our multigraph-based approach. 

 Post hoc combination approach: The post hoc combination model of 

Shambour et al. (2012) is selected, in which the harmonic mean is used to 

aggregate the prediction result of each single approach. This approach is 

denoted as PostCB for short. 

 Unified model-based approach: The TrustWalker model proposed by 

Jamali and Ester (2009) is selected. Note that the TrustWalker model can 

only incorporate a single social network; the tagging information in the 

Last.fm dataset is not included. The name is further simplified as TrustWK 

for short. 

 Neighbourhood integration-based approach: The union graph referring to 

Definition 4-2 can be seen as a neighbourhood integration model. Here, the 

arithmetic average of different relations is used to set the weighting of the 

union edges. This approach is labelled as Union for short. 

The experiments aim to test the recommendation performance of each approach in 

terms of recommendation success rate and rating prediction accuracy, thus the 

recommendation coverage and RMSE are selected as the two evaluation metrics, 

referring to the definitions in Section 2.4. 

4.5.2  Performance Comparison 

Five-fold validations are conducted on both datasets, i.e., each dataset is split in five 

partitions and at each round one of them is selected as the test set and the rest four 

partitions are used as training set. At first, we collect the the recommendation 

coverage rates of all approaches in Figure 4-4 (Epinions dataset) and Figure 4-5 

(Last.fm dataset). Both figures demonstrate that our approach achieves the highest 

coverage score compared to all approaches. 
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Figure 4-4 Comparison of recommendation coverage (Epinions dataset) 

 
Figure 4-5 Comparison of recommendation coverage (Last.fm dataset) 

Focusing on the comparison of the recommendation coverages of single approaches, 

we can find the significant improvements after the use of social network propagation, 

especially when the original social network is very sparse. This finding indicates the 

success of our proposed random walk-based social network propagation model in 

alleviating the data sparseness problem. In the particularly sparse environment of the 

Epinions dataset, the original single approaches are found suffering from the 

sparseness problem heavily. For example, the sCF completes only 30% of 
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predictions while sTrust performs even worse (10%). After the network propagation, 

the coverage rates of the enhanced single approaches are increased to 55% (sCFPro) 

and 49% (sTrustPro), respectively. Similar improvements are also observed in the 

experiments on the Last.fm dataset though the data are relatively denser, e.g., the 

coverage of sCF is increased from 68% to 76% after propagation. 

Figure 4-4 and Figure 4-5 also shows that the hybrid approaches incorporating more 

than one social network acquire higher coverage rates than single ones. It 

demonstrates that the incorporation of different types of social relations indeed helps 

to alleviate the sparseness problem suffered by the single resource-based approaches. 

In the Epinions dataset, the highest recommendation coverage scores are achieved by 

the MGrank (65%) and Union (64%) approaches, followed by the PostCB (58%). In 

contrast, the TrustWK completes only 37% of predictions in such a sparse 

environment of the Epinions dataset. It is worth mentioning that MGrank, Union and 

PostCB all have social network propagation processes to enrich the original social 

networks (PostCB uses its own trust propagation model), while the model-based 

TrustWK uses the original non-propagated networks directly. As a result, TrustWK 

generally has lower coverage than other three hybrid approaches, but it still 

significantly outperforms single approaches such as sCF and sTrust. In the Last.fm 

dataset with more and denser social networks, all of the four hybrid approaches 

acquire high coverage rates ranging from 76% to 78%, among which the MGrank 

approach still maintains the best performance. 

Like other social network-based recommender systems, our approach aims to mostly 

improve the recommendation coverage without sacrificing the accuracy. Hence it is 

more important to compare the prediction errors of all approaches. The RMSE is 

selected as the evaluation metric and experiments are conducted on different datasets. 

Figure 4-6 and Figure 4-7 present the RMSE results for Epinions dataset and Last.fm 

datasets respectively, along with the different settings of the selected neighbourhood 

size for KNN-based approaches, such as the single network-based approaches, 
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PostCB, Union and MGrank. Note that the TrustWK approach is not a KNN 

approach so its RMSE scores do not vary with K. 

  
Figure 4-6 Comparison of RMSE on the Epinions dataset 

For the Epinions dataset, Figure 4-6 shows that the sCFPro and sTrustPro approaches 

are of even higher error rates than sCF and sTrust which do not apply social network 

propagations. Furthermore, the hybrid approaches Union, PostCB and TrustWK that 

incorporate different input resources are also hard to overcome the single 

resource-based approaches sCF and sTrust in terms of prediction errors. This finding 

agrees with the conclusions of previous studies such as (Massa and Avesani, 2007) 

that the traditional social network-based recommender systems are hard to maintain 

the recommendation accuracy though the recommendation coverage is commonly 

improved as multiple resources are integrated. However, our approach MGrank is 

able to outperform the single approaches sCF and sTrust and achieve the lowest 

errors among all compared models under the most settings of K. Recalling that 

MGrank also performs the highest recommendation coverage, the experiments on 

Epinions dataset demonstrate that the proposed multigraph ranking model is effective 

for improving the recommendation performance in terms of both accuracy and 

success rate in the sparse environments. 

1.06

1.08

1.1

1.12

1.14

1.16

1.18

5 10 20 30 40 50

RM
SE

Top-K

sCF sCFPro
sTrust sTrustPro
Union PostCB
TrustWK MGrank(ours)

Epinions



4.5  Experiments 

120 

   
Figure 4-7 Comparison of RMSE on the Last.fm dataset 

In the Last.fm dataset with relatively richer data, we find the social network 

propagation is effective for single approaches in reducing prediction errors, referring 

to the comparison of sCF and sCFPro in Figure 4-7 for example. In addition, the 

most hybrid approaches carry out better results than the single approaches, which 

indicates that the incorporation of different resources is successful in reduce 

prediction errors. In this dataset, MGrank still achieves significant improvement 

compared to all other approaches. 

It is also noteworthy to analyse the performances of the three selected benchmark 

hybrid approaches that represent different information fusion strategies of 

conventional social network-based recommender systems. The post hoc combination 

approach (PostCB) is found able to increase recommendation coverage but cannot 

guarantee the precision by just simply averaging the outputs of different single 

resource-based approaches. The union graph-based approach (Union) has the similar 

problem of the post hoc combination, in that it is hard to further increase prediction 

accuracy if the original data are too sparse. Both of these two approaches can be 

essentially seen as simple average methods. While the model-based approach 

(TrustWalker) generally outperforms the former two approaches in terms of accuracy 
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but the improvement in recommendation coverage is limited, especially in the sparse 

environments. 

4.5.3  Parameter Adjusting 

In Equation (4.35), a trade-off parameter ® = 1=(1+¹) 2 (0;1) needs to be tuned 

for the proposed multigraph ranking model. We elaborate the variation of RMSE of 

MGrank with increasing values of ® on the both datasets. Figure 4-8 shows a 

gradual decreasing trend of RMSE for the Epinions dataset until it maintains the 

lowest level since ® = 0:99, equally ¹ = 0:01. Referring to the cost function 

Equation (4.34), this result indicates that the structural cost (the first part of the 

equation) should be considered mostly, while the experience cost (the second part) 

should be weighted less. This finding demonstrates that when a recommender system 

has no sufficient input data to generate precise relations between users, the initial 

query vector of the proposed multigraph ranking problem is not accurate enough to 

be a reference for the final ranking result.  

For the Last.fm dataset, on the other hand, RMSE reaches the best performance 

(lowest level) at ® = 0:8, followed by a shape increase when ® goes higher, as 

shown in Figure 4-9. The optimization is thus obtained at ¹ = 0:25, which indicates 

the best balance of the cost functions for Last.fm dataset. This finding demonstrates 

that when a recommender system has rich input data to generate precise relations 

between users, the initial query vector is a good reference for the final ranking result 

such that the balancing parameter should not be too high or to low. 

The above discussions give a guideline for choosing an appropriate trade-off 

parameter for different environment. As a result of the high level of data sparsity, 

such as in Epinions, a less accurate query vector y  is initialized so that less 

consideration is given to the experience cost R̂(f;y), equivalently, ® should be 

tuned to high in this circumstance. On the other side, if the data is dense such as in 
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Last.fm, the initial query vector y becomes informative and accurate; the ranking 

result f  is hence required to maintain consistency with y. Therefore, parameter ® 

should be tuned lower if the input data are sufficient. 

 
Figure 4-8 Performance variation with different parameter settings (Epinions dataset) 

 
Figure 4-9 Performance variation with different parameter settings (Last.fm dataset) 
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4.6  Summary 

Collaborative filtering has been successfully employed in recommender systems to 

find potentially preferred items for users. As a result of relying only on rating data, 

however, it suffers from the cold start problem when ratings are too sparse. To 

overcome this drawback, there are increasing social network-based recommender 

systems that import the social connections or correlations between users as an 

alternative or additional resource for recommendations. The study of this chapter 

differs from previous works as it can handle the situation when users are connected 

by multiple social networks simultaneously, which actually becomes more and more 

common nowadays with the development of online social networking techniques. 

This chapter proposes a multigraph model to represent users’ multi-relational social 

networks and develops a hybrid recommendation approach based on multigraph 

ranking. First, a multigraph model is proposed retaining the original structural 

information of users’ multi-relational social networks. An inter-network diversity 

measurement is also proposed for evaluating the structural complementarity of 

different social networks. We then address a multigraph ranking problem in which 

both the intra-network relations and inter-network diversities are considered. Solving 

this problem is able to precisely identify users’ overall closeness for recommendation 

making from the diverse explicit and implicit correlations between them. The 

implementation of the proposed multigraph ranking model is believed to be able to 

enhance recommendation performance in terms of both success rate and accuracy, in 

accordance with the results of a series of comprehensive experiments on two 

real-world datasets of Epinions and Last.fm. 

It is also noteworthy that this chapter proposes a random walk-based social network 

propagation model as an effective data pre-processing step to enrich the original 

sparse social relations. A unique “walk and select” manner is introduced to perform 

random walks on a social network to infer indirect relations of users. This model 

provides a new attempt to solve the social network propagation problem and carries 
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out a clearer result (the propagation formula) compared to other approaches that 

apply depth-first or breadth-first searching to traverse the possible connections 

between each pair of users. Empirical experiments also indicate that the proposed 

propagation model is helpful to enrich network density and increase recommendation 

coverage. 
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CHAPTER 5. A UNIFIED 

RECOMMENDER SYSTEM VIA 

MULTIPARTITE HYPERGRAPH 

RANKING  

5.1  Overview 

Recommendation techniques have been greatly explored in very recent decades and 

vary in the utilized information resources that different ideas have carried out, such 

as ranting-based CF approaches, item content-based approaches and user social 

network-based approaches as mentioned in previous chapters. However, there is still 

a lack of generic and unified recommendation models that can handle all possible 

information entities and their complex relations that may appear in real-world 

recommender systems. Despite item content and user social relations as discussed 

above, there are also extra information entities such as the textual comments and 

third-party environmental context information in recent Web2.0 applications. Thus, 

how to incorporate all these valuable information resources properly is challenging 

us to build a unified recommender system, which is the aim of the study in this 

chapter. In particular, there are some high-order relations among the different parties 
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of information entities, which cannot be well represented by the ordinary pairwise 

relations. For example, the textual reviewing behaviour when a user selects some 

comments (words) to associate an item can be seen as a special connection between 

the three types of entities: a user, an item and some words. Take another instance, if a 

user’s choice of item is influenced by environment context such as time, then the 

user-item preference like “this user likes to listen to classic music in the morning” 

becomes a high-order relationship between three entities huser;context; itemi 

instead of a pairwise relationship huser; itemi as usual. Naturally, these high-order 

relationships between different information entities construct a hypergraph model 

(Zhou et al., 2006) where a hyperedge can connect an arbitrary number of vertices 

rather than only two vertices as in simple graphs. Therefore, the hypergraph model is 

employed in this chapter to handle the various information entities and their complex 

relationships. 

 
 (a) Relation table (b) Hypergraph model (c) Ordinary graph model 

Figure 5-1 Modelling high-order relations using hypergraph vs. ordinary graph 

The advantage of hypergraphs vs. ordinary graphs in dealing with complex 

relationships is illustrated in Figure 5-1 where the subfigure (a) is a collected data 

table showing four high-order relations e1 to e4  among eight entities A to G. 

Figure 5-1 (b) is the corresponding hypergraph model consisting of eight vertices and 

four hyperedges that exactly represents the high-order relations in the data table. In 

contrast, Figure 5-1 (c) presents an ordinary graph model. Clearly, it is hard to 
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restore the original relations in the data table from the ordinary graph, that is, the 

ordinary graph loses the structural information of the high-order relations. For 

instance, the ordinary graph cannot identify that nodes C and D are connected by 

two different relations, e1 and e3. 

Because different types of information entities are considered, this chapter will 

propose a multipartite hypergraph ranking model for recommendations, following 

the similar idea of the bipartite (simple) graph ranking model proposed in Chapter 3. 

The rest is followed by a preliminary introduction of hypergraphs and hypergraph 

ranking problem in Section 5.2. Next, Section 5.3 exploits the possible information 

entities and relations in recommender systems and presents a generic 

User-Item-Attribute-Context data model. With the generic data model, a multipartite 

hypergraph is constructed to handle different information entities and their 

high-order relations. To generate recommendations, Section 5.4 develops a balanced 

hypergraph ranking model which is suitable for the multipartite hypergraphs where 

the hyperedges vary greatly in the number of connected vertices. In Section 5.5, we 

conduct empirical experiments in a real-world dataset with various input resources 

from Yelp.com. Result analyses and conclusions are given at the last section. 

5.2  Hypergraph and Hypergraph Ranking 

This section introduces the basic notations of hypergraphs and conventional 

hypergraph ranking models. 

5.2.1  Notations of Hypergraphs 

An ordinary graph is a representation of a set of vertices where some pairs of vertices 

are connected by (pairwise) edges. While, a hypergraph is a generalization of an 

ordinary graph where edges, called hyperedges, can connect any number of vertices 
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(Zhou et al., 2006). In other words, a hyperedge represents a high-order relation of a 

set of vertices instead of only two vertices. Formally, the definition of a hypergraph 

can be given as follows. 

Definition 5-1 (Hypergraph). A hypergraph is a pair G = (V;Eh)  where 

V = fv1; v2; : : :g is the vertex set representing a finite number of objects, and 

Eh = fe1; e2; : : :g is the hyperedge set representing the high-order relations of the 

objects. Each hyperedge e2Eh is a non-empty subset of V , to which a weighting 

function w : Eh !R+  is assigned indicating the quantitative strength of a 

hyperedge. 

Let h(v; e) = 1 denote that a vertex v is in (connected by) a hyperedge e and 

h(v;e) = 0 otherwise, then an incidence matrix H2RjV j£jEhj can be established 

for a hypergraph as follows. 

 Hij = h(vi; ej) =

(
1; if vi 2 ej

0; otherwise
 (5.1) 

The degree of a vertex v 2 V  is defined as: 

 d(v) =
X
e2Eh

w(e)h(v; e). (5.2) 

In addition, the degree of a hyperedge ±(e) is defined by the number of vertices 

connected by this hyperedge, given by: 

 ±(e) =
X
v2V

h(v; e). (5.3) 

Thus, an ordinary graph can be seen as a special case of hypergraphs where the edge 

degrees always being two. Throughout the rest of the chapter, we define the diagonal 
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matrix forms for w(e), ±(e) and d(v) as W2RjEhj£jEhj, De 2ZjEhj£jEhj and 

Dv 2RjV j£jV j, respectively. 

5.2.2  Hypergraph Ranking 

As mentioned in Section 4.4.1, the ordinary graph ranking problem is considered as 

seeking for a function f : V !R to label each vertex based on the graph and a 

given query vector y = [y1; y2; : : : ; yjV j]T , of which a small number of vertices have 

been initially given the input scores. Similarly, the ranking scores f  for vertices can 

also be seen as a column vector f = [f1; f2; : : : ; fjV j]T . The hypergraph ranking 

problem has the same goal of simple graph ranking to seek the ranking order f  for 

the vertices with an input query vector y. 

As introduced in Chapter 3, the simple graph ranking problem has been studied in 

considerable depth in recent years, and some solutions have been readily adopted. 

For hypergraphs, Zhou et al. (2006) proposes the regularization framework for 

hypergraph clustering and ranking to solve the following cost function: 

 min
f:V!R

Q(f) = fT(I¡A)f + ¹(f ¡y)T(f ¡y), (5.4) 

where ¹ > 0 is the regularization parameter, and matrix A is defined as follows. 

 A = D
¡1

2
v HWD¡1

e HTD
¡1

2
v  (5.5) 

Vanishing the gradient of (5.4) and following the similar calculations of ordinary 

graph ranking as in (4.21), the optimal ranking result f¤ can be obtained as follows. 

 f¤ = (I¡®A)¡1y (5.6) 

The regularized framework of hypergraph ranking has been recently introduced into 
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social music recommender systems, such as in (Tan et al., 2011) and (Theodoridis et 

al., 2013). 

5.2.3  Hypergraph Random Walks 

The random walk theory has also been employed to rank hypergraph data. Given a 

hypergraph and a starting point the runner randomly moves to a neighbour of it and 

again moves to a neighbour’s neighbour, etc. Finally, the stationary visiting 

probability distribution of vertices is treated as their ranking scores. In a hypergraph, 

the transition probability of moving from the current vertex u to another vertex v 

is conventionally defined as follows: 

 p(vju) =
X

e:u;v2e

w(e)

d(u)±(e)
. (5.7) 

Thus a transition matrix TjV j£jV j with Tij = p(vjjvi) can be obtained to update the 

probability distribution of vertices. The matrix T is calculated in the following 

equation: 

 T = D¡1
v HWD¡1

e HT . (5.8) 

Let p(t) be a column vector where p(t)
i  denotes the probability of that vi is being 

visited at a certain time t, and we assume multiple random walkers are started from 

a given (small) query vertex set Vq ½ V . Correspondingly, a column vector q  is 

constructed where qi is the probability of the i-th vertex vi being selected as a 

starting point. 

According to the random walk with restarts theory (Tong et al., 2006; Konstas et al., 

2009), the walking process is considered to have a probability of 1¡® to restart 

from the initial query set at every step. The updating formula of p(t) is then obtained 
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as follows: 

 p(t+1) =®Tp(t) +(1¡®)q. (5.9) 

The stationary probabilities when the above equation reaches convergence represent 

the long term visiting rates of vertices, which can be seen as the vertex ranking 

scores. Let p(1) = p(t) = p(t+1) and we obtain: 

 p(1) = (1¡®)(I¡®T)¡1q: (5.10) 

As 1¡®2 (0;1) does not change the ranking order, we let the optimized ranking 

vector f¤ be the following form: 

 f¤ = (I¡®T)¡1q. (5.11) 

The above formula has a similar expression of (5.6). It is also easy to see that A is 

essentially a normalized version of T . Thus, the regularization framework of 

hypergraph ranking can be explained using the hypergraph random walks with 

restarting theory. 

5.3  The Data Model and Multipartite Hypergraph 

In this section, we consider the application of a Restaurant Recommender System 

(RRS) that assists customers to find appropriate restaurants. In this scenario, there 

exist various objects and relations that are valuable for profiling customer preference, 

such as customer visiting history, restaurant attributes and contextual information. To 

include all possible information entities and relations, we propose a generic 

User-Item-Attribute-Context data model as illustrated in Figure 5-2. The entities and 

relations are then elaborated in the following. 
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Figure 5-2 The proposed User-Item-Attribute-Context data model 

5.3.1  Information Entities 

We consider the following four types of information entities (objects) in RRS: Users, 

Restaurant, restaurant Attribute and Context information, as detailed in the follows. 

User (U) Users are the registered customers and requesters in RRS. Users are also 

encouraged to make ratings or comments to the restaurants they have visited, as a 

one facet of resources for preference profiling. 

Item (I ) Restaurants are the recommended objects, which are commonly called as 

“items” in recommender systems. The ultimate goal of RSS is to recommend a list of 

restaurants as the alternative options for particular request user. 

Attribute (A) The attributes represent the descriptions of items such as restaurant 

conditions, food cuisines, etc. As mentioned in Chapter 3, the taxonomy attributes of 

items may contain tree-structured features from different aspects. In this chapter, to 

import attributes as special vertices to construct a hypergraph model, we only 

consider then end-level attributes from different aspects as a special type of 
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information objects, denoted as A= fa1; a2; : : :g. Figure 5-3 shows an example of 

the set of attributes in terms of five aspects of restaurants, where there are initially 

five aspects of attributes denoted as A1 to A5, and the whole attribute set is set to 

be A=A1 [A2 [ : : :[A5. 

A1 Type A2 Ambience A3 Alcohol A4 Noise A5 Price range

Restaurant

-breakfast
-lunch
-dinner
-dessert
-latenight

-romantic
-intimate
-touristy
-hipster
-divey
-classy
-trendy
-upscale
-casual

-none
-beer & wine
-full bar

-quiet
-average
-loud
-very loud

-cheap
-average
-high
-very high

 
Figure 5-3 An example of restaurant attributes in terms of five aspects 

Context ( C ) This information indicates the environmental situation including 

temporal context (e.g. the season), spacial context (e.g. the location of both users and 

restaurant), or any context that may affect a user’s choice for items (Dey et al., 2001). 

Despite the environmental context, we also include the textual comments as 

additional context entities. Thus, we extend the “context” objects to all third-party 

resources beyond users and items that may affect or reflect users’ preferences. The 

whole context set is denoted as C in our model. 

In summary, we can possibly collect four groups of objects, i.e., users, items, 

attributes and context, in a recommender system; thereby we call our data model as 

the U-I-A-C data model. In the following, we elaborate six types of possible pairwise 

or high-order relations between the same or different groups of objects. 
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5.3.2  Possible Relations between Different Objects 

According to the connected objects, the complex relations between the mentioned 

four types of information entities can be classified into six categories, as detailed in 

the following. 

UU: User-User relations. As mentioned, various kinds of social relations or implicit 

correlations between users have attracted increasingly attentions in recommender 

systems to alleviate the sparseness problem of rating data (Jamali and Ester, 2009; 

Massa and Avesani, 2007; Yang et al., 2012). In the day of Web.2.0, the complex 

relations between users lie in the following two aspects. First, the same two users 

may be connected by different types of relations which have been modelled as 

multigraph models in the last chapter. Second, there are also many high-order 

relations that connected more than two users, which have to be modelled by 

hypergraphs. It is clear that a hypergraph can be seen as also a generalization of 

multigraph models, in which multiple relations are allowed for a same group of 

vertices. An example of such high-order relations is the interest groups in some 

recommender systems (Rae et al., 2010), which are more appropriately considered as 

multiple-to-multiple relations among the whole group users rather than 

single-to-single relations between every two of them. 

II: Item-Item relations. There are also various kinds of relations between items. In 

our case, restaurants may be connected as they are owned by same catering groups or 

they are located in near places, etc. Some of these relations are naturally not pairwise 

relations. Figure 5-4 shows an example of the inclusion relations of KFC and 

MacDonald restaurant groups. Furthermore, Figure 5-5 indicates the restaurant 

neighbourhoods in Sydney city. 



CHAPTER 5  A Unified Recommender System via Multipartite Hypergraph Ranking 

135 

@Haymarket
@Broadway
@George ST @Chinatown

@Broadway
@George ST

... ...

Group 1 Group 2  
Figure 5-4 An example of catering group inclusion relations of restaurants 

 
Figure 5-5 An example of neighbourhood relations of restaurants 

IA: Item-Attribute relations. Traditionally, the item-attribute association relations are 

modelled as pairwise relations between items and each associated attributes. In our 

study, however, all associated attributes of a particular item and this item itself are 

seen as connected by a single high-order relation. 

UA: User-Attribute relations. Users may have particular preference for item 

attributes, such as movie genres. Similar to the item-attribute association, we assign 
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each user a high-order relation connecting this particular user and the attributes 

preferred by this user.  

UI: User-Item relations. This type of relations contains binary or scaled preferences 

of users to items. Binary preference includes whether a user like/accept/visit an item, 

etc. Scaled preferences refer to numerical ratings such as 1 (the worst) to 5 (the best) 

in most recommender systems. 

UCI: User-Context-Item relations. If a users’ preference to items is also impact by 

third-party context information, the 2-dimension preference relation, can be 

represented as  user£ item!utility , is then extended to a 3-dimension 

preference relation user£context£ item!utility (Adomavicius and Tuzhilin, 

2011). Thus, a high-order relation huser;context; itemi is raised among the three 

parties of objects. As we also include the textual comments as extended context 

entities, a user’s comments issued to an item can be handled as a complex relation 

that connects the user, the item and a number of words. Here, we treat a comment as 

“a bag of words” as in many textual mining studies (Blei et al., 2003) and the 

applications in recommender systems (McAuley and Leskovec, 2013). The 

user-comment-item relation is then represented as a high-order relation between a set 

of objects, such as huser;word a;word b; : : : ; itemi . Figure 5-6 shows our 

presentation the user-comment- restaurant high-order relations. 
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Figure 5-6 The user-comment-restaurant high-order relations 

In the above, we exploit six types of relations between the four parties of objects that 

may appear in a restaurant recommender system. Because some high-order relations 

are included, which cannot be handled by ordinary graph models, we propose a 

multipartite hypergraph model to represent this data model. 

5.3.3  Multipartite Hypergraph Construction 

To handle different information entities and relations, we construct a multipartite 

hypergraph G = fV;Ehg with a unified vertex set V  and a hyperedge set Eh, 

associated with a weighting function w : Eh !R+. The unified vertex set is the 

union of the four parties of objects, i.e., V = U [I [A[C. The unified hyperedge 

set contains all possible relations, i.e., Eh = UU[ II[ IA[UA[UI[UCI. 

As an example, the weights of hyperedges are initialized as follows. (Note that this 

setting is only for the scenario of a restaurant recommender system using a dataset of 

Yelp.com, referring to Section 5.5.1.) 

– E(1)
h ÃUU: Initially, the online friendship in the dataset is imported as a 

pairwise relation. We build a hyperedge hu1; u2i 2E(1)
h  for a pair of user 
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vertices if they are friends, and set the weight to be 1. 

– E(2)
h Ã II: We build a hyperedge hi1; i2; i3; : : :i 2E(2)

h  to connect those 

restaurant vertices in a same neighbourhood. The weight of each hyperedge is 

set to be 1. 

– E(3)
h Ã IA: A hyperedge hi; a1; a2; : : :i 2E(3)

h  is built for each restaurant 

vertex, which contains the restaurant itself and all associated attribute vertices. 

The weight of each of this type hyperedge is initialized to be 1. 

– E(4)
h ÃUA: Similarly, we build a hyperedge including a user vertex and 

his/her preferred attributes, i.e., hu;a1; a2; : : :i 2E(4)
h , of which the weight is 

set to be 1. 

– E(5)
h ÃUI: We build a pairwise edge hu; ii 2E(5)

h  for a particular user and 

an item if this user has rated the item, and the normalized rating value is set to 

be the hyperedge weight. 

– E(6)
h ÃUCI: The high-order relation between a user vertex u 2U , a 

restaurant vertex i 2I  and a number of context vertex c1; c2; : : : 2 C is 

handled as a hyperedge hu; c1; c2; : : : ; ii 2E(6)
h . The weight of this type edge 

is initialized to be 1. 

Consequently, we obtain the structure of the constructed multipartite hypergraph in 

terms of the incidence matrix H, as shown in Table 5-1. We also define the 

following matrices: vertex degree matrix Dv with size jV j £ jV j, edge degree 

matrix De  and weighting matrix W  with size jEhj £ jEhj, as introduced in 

Section 5.2. 
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Table 5-1 The incidence matrix H and its sub-matrices 

 E(1) E(2) E(3) E(4) E(5) E(6) 

U  UE(1)   UE(4) UE(5) UE(6) 

I   IE(2) IE(3)  IE(5) IE(6) 

A   AE(3) AE(4)   

C      CE(6) 

relations UU II IA UA UI UCI 

5.4  Balanced Hypergraph Ranking and 
Recommendations 

In this section, we point out the bias of traditional hypergraph ranking methods for 

the multipartite hypergraphs where different types of hyperedges usually vary greatly 

with each other in the number of contained vertices. Thus we proposed a balanced 

hypergraph ranking model to replace the traditional methods. We would like to 

present our ranking model at first, and then indicate the drawbacks of traditional 

models by comparing them using a simple example. 

5.4.1  Balanced Hypergraph Ranking Model 

For a multipartite hypergraph where the hyperedges vary greatly in the number of 

connected vertices, we propose an enhanced vertex degree metric as follows. 

 d+(v) =
X
e2Eh

h(v; e)w(e)
p

±(e)  (5.12) 

Differing from the traditional vertex degree as in Equation (5.2), the enhanced vertex 

degree metric also considers the degree information of related hyperedges. Similarity, 

Edges 
Vertices 
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we define a new vertex degree matrix DjV j£jV j
+  with D+(ii) = d+(vi) on the 

diagonal. 

The cost function of Equation (5.4) is then modified in the following form with the 

enhanced vertex degree metric. 

 

Q(f) =
1

2

jV jX
i;j=1

X
e2E

w(e)h(vi; e)h(vj; e)p
±(e)

μ
fip

d+(vi)
¡

fjp
d+(vj)

¶2

+¹

jV jX
i=1

(fi ¡ yi)
2

 (5.13) 

In the above equation, the first part of the right side denotes the smoothness function

S(f). We define a new matrix A+ as: 

 A+ = D¡1=2
+ HWD¡1=2

e HTD¡1=2
+ . (5.14) 

Then, the smoothness function can be simplified in the following steps: 

 

S(f) =
1

2

jV jX
i;j=1

X
e2Eh

w(e)h(vi; e)h(vj; e)p
±(e)

μ
fip

d+(vi)
¡

fjp
d+(vj)

¶2

=

jV jX
i;j=1

X
e2Eh

w(e)h(vi; e)h(vj; e)p
±(e)

μ
f2

i

d+(vi)
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Performing the similar calculation of Equation (5.6), the optimized balanced ranking 

order is obtained as: 

 f¤ =

μ
I¡®A+

¶¡1

y, (5.16) 

where y represents the ranking scores of a small part of vertices as the input query 

vector. 

5.4.2  Comparison with Traditional Models 

We point out that the traditional hypergraph ranking model mentioned in Section 5.2 

will produce a bias if the degrees of hyperedges vary greatly, which can be explained 

using random walks. A first example is given in Figure 5-7 (a), where we assume the 

runner is currently at the vertex A and will move to one of the other three nodes B, 

C and D via two hyperedges e1 and e2. Notice that e1 is a 3-degree hyperedge 

and e2 is a 2-degree (pairwise) hyperedge. The weightings of the both edges are 

supposed to be 1. With Equation (5.7) and assuming the runner will not stay at node 

A, the runner will have 1=2 probability to select hyperedge e2 and move to node B. 

The runner also has 1=2 probability to select edge e1 and then has 1=4 to move to 

node C or D, as e1 connects C and D simultaneously. Thus, the probability of 

moving to each node is obtained as p(B) = 1=2 and p(C) = p(D) = 1=4. We can 

find that the probability of moving to node B is twice as the probability of moving 

to node C. However, the hyperedge e1 and hyperedge e2 have the same strength 

initially, such that, B and C or D should be of equivalent strength of relations as 

for the node A. In other words, this setting biases to select node B, which is 

connected with a lower-degree hyperedge.  

A more significant but common example is given in Figure 5-7 (b), where the 

degrees of e1  and e2  are 21 and 2, respectively. We assume w(e1) = 1 and 
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w(e2) = 0:5, saying that the nodes in hyperedge e1 have stronger connections than 

the nodes in e2, i.e., nodes A and B. Using the traditional ranking model, the 

probability of moving to a single node in hyperedge e1 is 1=30, which becomes 

much lower than the probability of moving to node B with p(B) = 1=3, though the 

fact is that e1 has a higher (double) strength than e2. This finding indicates that, for 

the hypergraphs with different hyperedges such as the multipartite hypergraphs in 

our study, the truly strong hyperedges may be discarded only because they connected 

a large number of vertices.  

 
Figure 5-7 The bias of traditional hypergraph ranking model 

To alleviate this bias, we can modify the transition equation (5.7) as follows. 

 

p(vju) =
X

e:u;v2e

w(e)
p

±(e)P
e:v2e w(e)

p
±(e)

1

±(e)

=
X

e:u;v2e

w(e)p
±(e)d+(v)

 (5.17) 

This setting improves the probability of moving to the nodes in higher-degree 

hyperedges. For example, the balanced result of the example in Figure 5-7 (b) will be 

obtained as follows. 
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With the modified transition equation, the probability of selecting lower-degree 

hyperedges is reduced. A new transition matrix T0
+ is hence given as follows, which 

can be seen as the random walk version of the matrix A+ in Equation (5.14) of our 

proposed balanced hypergraph ranking model. Actually, A+ can be seen as just a 

normalized version of T+, just like that, in traditional models, the matrix (5.5) is a 

normalized version of the matrix (5.8). 

 T+ = D¡1
+ HWD¡1=2

e HT  (5.18) 

5.4.3  Query Vector and Recommendation 

Assuming the current request user u  is the i -th vertex vi 2 V  in the unified 

hypergraph, the i-th row of the matrix A+ (or T0
+ for the random walk-based 

version) can be thought of an initial evaluation of the closeness of this vertex to other 

vertices and selected as the input query vector of the proposed balanced hypergraph 

ranking model. Therefore, we initialize a column vector yu 2RjV j as the input 

query vector as follows. 

 yu
j = (A+)ij (5.19) 

For the particular requester u, Equation (5.16) can be solved with query vector yu 

as input and we obtain a ranking vector f¤ of all vertices. Particularly, the ranking 

scores of all item vertices (restaurants in our example) are extracted and the 

top-ranked items are selected as the recommendation list for the request user u. So 

far, the personal recommendation for the requester is completed. 
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5.5  Experiments 

Empirical experiments are conducted on a dataset of Yelp.com1, which is a local 

business review site whereby users can give numerical ratings and also textual 

comments to the merchants they have known or visited in the past. There are also 

various information entities and complex relations available in this dataset and this 

dataset can be seen as a representative case of real-world e-Commerce recommender 

systems. 

5.5.1  Data Sampling 

The following four parties of information entities are collected as the unified vertices 

to build a multipartite hypergraph model. 

 Restaurants: The dataset contains 4119 restaurants in total, for the scenario 

of restaurant recommendations. 

 Users: There are 1911 users who have given more than 20 ratings or 

comments to the selected restaurants. These users are chosen as the user 

vertices in our hypergraph model. 

 Attributes: We extract 24 restaurant attributes from five perspectives as the 

attribute set, referring to Figure 5-3. 

 Context entities: In the dataset, there are in total 28282 short comments 

(called as “tips” in Yelp.com) issued by the users to visited restaurants. We 

split these comments into single words. The most common words2 and 

meaningless symbols are pruned. As a result, there are totally 7205 single 

words extracted as context entities. Thus, a comment record can be thought of 

                                                 
1 http://www.yelp.com.au/dataset_challenge 
2 Based on the “Long Stopword List” downloaded from http://www.ranks.nl/stopwords 
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a high-order relation between the user, the item and some single words, i.e., 

the special context entities. 

Table 5-2 Statistical information of the constructed hypergraph from Yelp dataset 

vertex/hyperedge objects/relations Sample size* Avg. Degree** 

U  users 1911 79.9 

I  restaurants 4119 17.7 

A attributes 24 851.6 

C context 7205 19.2 

E(1) UU: friendship 43760 2 

E(2) II: neighbourhood 16 226.7 

E(3) IA: category 4032 6.1 

E(4) UA: preference 1899 3.4 

E(5) UI: rating 60688 2 

E(6) UCI: comments 24541 7.6 

* the total number of this type vertices or hyperedges; 

** the average degree of this type vertices or hyperedges. 

The ratings in the dataset range from 1 star (the worst) to 5 stars (the best). It is 

known that the purpose of a recommender system is to guess the truly preferred 

items for the active user. In the dataset, the items acquiring high ratings (i.e., 4 or 5 

stars) are thought of being preferred by a particular user. So we extract a half of the 

high rated items of each user to build a test set as the hidden knowledge, and let the 

compared recommendation approaches to guess the preferred items in the test set. In 

particular, to ensure there are sufficient data for both training and testing, only the 

users who have more than 10 “highly rated” items are selected as the tested user. 

Finally, 1827 out of 1911 users and their 26632 preferred items (could be duplicated) 

are successfully constructed as the test set, in which per tested user has 14.6 

preferred items in average. 
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Removing the test data, we collect various types of relations from the dataset and 

construct a multipartite hypergraph, as shown in Table 5-2. 

It can be found that the different types of hyperedges of the constructed multipartite 

hypergraph indeed vary greatly in the edge degree (the number of connected 

vertices); as a result, the bias problem presented in 5.4.2 may be significant in this 

environment. The modified balanced ranking model is thereby expected to alleviate 

this problem in some degrees.  

5.5.2  Compared Approaches 

In our experiments, each compared recommendation approach is required to predict a 

short list (top-N) of items for each tested user to guess his/her potentially preferred 

items in the test data. We compare our model with other five baseline 

recommendation approaches. The first one is the standard user-based CF approach 

(Resnick et al., 1994) that resorts on only rating data. CF predicts the possible rating 

of a user to each unknown item (restaurant in our case) and then ranks these items 

according to the predicted scores. We test a second baseline method that makes 

non-personalized recommendations, using the restaurant reputations in terms of their 

average ratings as the ranking scores. We call this method as AVG for short. In 

particular, the contextual graph model proposed by Bogers (2010) can be seen as a 

represented framework handling various information entities and relations using 

simple graph random walks. We call this approach as the Simple graph Random 

Walk (SGRW). The fourth approach is the general hypergraph random walk model 

(marked as HGRW). The recommendation (ranking) equation of this model is 

Equation (5.11). Notice that for a tested user vi, the input query vector y is set to be 

the i-th row of the transition matrix T in Equation (5.8) . We also compare our 

model with the latest Music Recommendation via Hypergraph (MRH) model of (Tan 

et al., 2011) . MRH introduces the regularization framework of hypergraph ranking 

(Zhou et al., 2006) for music recommendations. The ranking equation of MRH is 
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Equation (5.6). We name our proposed Balanced Hypergraph Ranking algorithm as 

BHR, and denote the random walk version using Equation (5.18) as BHR(RW). 

5.5.3  Evaluation Metrics 

In our experiments, each compared model is required to recommend N restaurants to 

guess hidden elements in the test set. We use Precision, Recall, F1 and Mean 

Average Precision (MAP) as the evaluation metrics to compare the performance of 

different approaches. Precision is defined as the number of correctly recommended 

restaurants divided by the number of totally recommended items, i.e., N. Recall is 

defined as the number of correctly recommended restaurants divided by the number 

of actually preferred restaurants, i.e., the preferred restaurants appeared in the test 

data. The definition of F1 and MAP have been introduced in Section 2.4.3. 

Here we also propose another metric to evaluate the satisfaction of users. We assume 

that a tested user will satisfy the recommendations if there is at least one restaurant 

preferred by this user, i.e., found in the test set. The overall satisfaction degree of a 

recommender system is then defined by the percentage of satisfied users taking 

account of all tested user. Thus a new evaluation metric User Satisfaction (SA) is 

defined as follows. 

 SA =
Number of satis¯ed users

Number of tested users
£ 100% (5.20) 

In the experiments, every model ranks the candidate items and recommends top-N of 

them for a particular tested user and we adjust the level of N to make clearer 

comparisons. Intuitively, the selection of N is expected to be small (i.e., 

recommending five or ten items) for users’ ease to browse and select the options. 
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5.5.4  Performance Comparison 

All mentioned evaluation metrics are computed for every compared recommendation 

approach. Figure 5-8 firstly shows the Precision-Recall curves of compared 

approaches. Figure 5-9 presents the values of MAP under different setting of N. It is 

evident that our proposed BHR approach outperforms all others in most cases, 

especially at lower ranks. Particularly, the superiority of BHR compared to MRH 

indicates the success of the proposed balanced hypergraph ranking model, which is 

suitable for multipartite hypergraphs and improve recommendation accuracy. 

Besides, the improvement of the random walk-based version BHR(RW) compared to 

the traditional hypergraph random walk model HGRW is more significant, which 

indicates the success of our replacement of Equation (5.14) to Equation (5.5). 

Figure 5-10 presents the MAP measurements of for the graph or hypergraph-based 

approaches with different settings of the parameter ®, which demonstrates that the 

best performance is archived by BHR at ® = 0:95. It is also worth to notice that the 

MAP scores of both BHR and MRH drop dramatically when ® > 0:95 and become 

the lowest levels than other models. 

For a recommender system, it is important to be able to successfully discover the 

right items when recommending only a few items. Thus, we also test the 

performance of each compared approach when N is set to be 5, i.e., each approach 

recommends five items for a particular user. The result is presented in Table 5-3, 

which shows that our approach BHR acquires the best performance in terms of all 

evaluation metrics. In particular, 57.25% of users will “satisfy” the recommendations 

of BHR, meaning they can find at least one potentially interested restaurant from the 

five ones recommended by BHR. 
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Figure 5-8 Recall-Precision curves for all compared approaches 

 
Figure 5-9 The performance in terms of MAP under different levels of top-N 
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Figure 5-10 The performance in terms of MAP under different level of ® 

Table 5-3 Performance comparison with N=5 

Approaches Recall Precision Satisfaction F1 MAP 

AVG 0.01% 0.03% 0.16% 0.0001 0.0008 

CF 0.55% 1.56% 7.28% 0.0077 0.0358 

HGRW 5.55% 11.29% 36.23% 0.069 0.2413 

SGRW 7.90% 16.88% 46.31% 0.0994 0.3347 

BHR(RW) 8.02% 16.56% 46.14% 0.1001 0.3365 

MRH 9.69% 18.88% 56.43% 0.1191 0.3781 

BHR(our) 10.01% 20.05%* 57.25%* 0.124 0.3933* 

Bold typeface indicates the best performance. 

* indicates statistical significance at p<0.01 compared to the second best 
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5.6  Summary 

In this chapter, we have proposed a generic recommendation approach to handle 

different information entities and relations that may appear in recommender systems. 

We have exploited four parties of information entities and six types of pairwise or 

high-order relations that may contribute to recommendation making and propose a 

general User-Item-Attribute-Context data model, which can naturally construct a 

multipartite hypergraph model. As a result, the recommendation problem is 

transferred to the proposed multipartite hypergraph ranking problem and we solve it 

using a balanced hypergraph ranking algorithm. Overall, the proposed multipartite 

hypergraph ranking-based recommendation approach provides a guideline for 

full-information based recommendations and it is easy to apply in different scenarios. 

Restaurant recommendation is used as the example scenario in this chapter and the 

real-world dataset of Yelp.com is abstracted for empirical evaluations. We have 

conducted a set of comprehensive experiments on this dataset, which demonstrate 

that our approach can improve recommendation performance significantly, especially 

in the case of recommending a small number of items. It can be concluded that the 

proposed multipartite hypergraph-based recommendation approach is able to handle 

complex input information to produce precise suggestions for users. More 

importantly, with the generic data model, the proposed approach is easy to apply for 

different recommendation scenarios.
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CHAPTER 6. A MULTI-OBJECTIVE 

RECOMMENDER SYSTEM VIA 

HYPERGRAPH RANKING 

6.1  Overview 

In the last chapter, we propose a hypergraph ranking model BHR to help to discover 

potential items from various kinds of information entities and relationships for a 

particular user. Like traditional recommender systems, BHR assumes a single user 

will not change his/her demand, meaning that the user always has a simple request of 

finding the best matched items at every time. In practice, however, users may have 

special requirements at different times, which could be related to multiple objectives. 

Still taking the restaurant recommendation as an example, a user may have different 

requirements about restaurant flavours or conditions each time such that it is not 

appropriate to always suggest same restaurants for this user by only considering 

his/her past preferences. We consider the changing and flexible demand of users at 

every time as a multi-objective recommendation request, and we say the traditional 

unchanged user demands are single-objective requests. Clearly, existing 

recommender systems are only able to respond to single-objective requests but 

cannot handle well the mentioned multi-objective requests. Some examples of 
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single-objective and multi-objective recommendation requests are illustrated in 

Figure 6-1, which indicates that the traditional single-objective recommendation 

request is changeless for a particular user representing the user’s overall preference 

to all items, while the multi-objective recommendation requests contains different 

aspects of requirements on item conditions every time. 

(a) the unchanged single-objective request (b) three multi-objective requests at 
different time

Recommend 
restaurants for 

me!

Fast-food for 
my colleagues’ 

quick lunch

Economic 
buffet for my 
80's friends

Family's 
weekend 

fine dinner

 

Figure 6-1 Examples of single and multi-objective recommendation requests 

To handle the changing and flexible multi-objective recommendation requests, this 

chapter aims to model the complex user requests to computable inputs and proposes 

a multi-objective recommendation framework. In the rest of this chapter, Section 6.2 

indicates that the multi-objective recommendation requests can be decomposed to a 

set of queried information entities corresponding to the proposed U-I-A-C data 

model in Chapter 5, which can be further represented by an input “query vector”. 

The multipartite hypergraph ranking model of the previous chapter is employed and 

Section 6.3 proposes a multi-objective recommendation framework including four 

major steps of multi-objective requests collection, hypergraph construction, 

hypergraph ranking, and recommendation generating. In section 6.4, a demonstration 

restaurant recommender system named FoodGo is developed, which indicates how 

the multi-objective recommendation framework is implemented and displayed in real 
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applications. We also conduct empirical experiments to evaluate the performance of 

our recommender system in Section 6.5. The results demonstrate that our approach is 

able to precisely respond to users’ multi-objective requests. 

6.2  Multi-objective Request Analysis 

As illustrated in Figure 6-1, recommender systems users may have changing 

demands on the participants, item conditions and environments, which are called by 

us the multi-objective recommendation requests. This complex request of 

recommendations differs from the single-objective requests as in traditional 

recommender systems. In brief, single-objective recommendations only provide a 

general option of items for an individual user, while multi-objective 

recommendations suggest a list of items with respect to the particular situation or 

requirements each time such as the specific participant users, item attributes and/or 

environmental information. In combination with the U-I-A-C and hypergraph data 

model proposed in the last chapter, we can decompose the multi-objective requests as 

in Figure 6-1 to some constraints in different types of information entities, i.e., a set 

of query vertices in the hypergraph model, as illustrated in Figure 6-2. 

 
Figure 6-2 Decomposing multi-objective requests to query vertices 

In these examples, the request RQ1 “to suggest fast-food near me” actually involves 

three unique requirements related to three objects/entities. First, it requires the 
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candidate restaurants can provide fast-food, which is related to the attribute entities 

in our U-I-A-C model referring to Figure 5-3. The second, it requires the candidate 

restaurants are in short distance, which is related to the context objects in the 

U-I-A-C model. The third, it requires the restaurant flavour fits the participant’s 

preference, related to the user objects. Therefore, RQ1 can be decomposed to some 

constraints on a set of related objects, which is called the query set for our 

multi-objective recommender system. 

Similarly, the requests RQ2 and RQ3 can be decomposed as follows. 

 RQ2: “economic (lower price level is better) buffet (restaurant type) for 

young (semantic topic) friends (specific user group)”. 

 RQ3: “weekend (context or topic) quiet (low noise level) dinner (restaurant 

type) for family (multiple users)”. 

In summary, a multi-objective request can be decomposed to a query set containing a 

number of objects, i.e., a set of vertices of a multipartite hypergraph constructed by 

the U-I-A-C data model. Correspondingly, we define a (column) query vector 

q = fq1; q2; : : : ; qjV jgT  to represent the query set as follows. 

 qi =

(
1; if the i-th object vi is quered

0; if the i-th object vi is not quered
 (6.1) 

Accordingly, three query vectors q1  to q3  are generated from the three 

multi-objective requests RQ1 to RQ3, respectively, as indicated in Figure 6-2. 

It is also noticeable that our setting till works for traditional single-objective 

recommendation requests which are related to only one object, i.e., the request user 

itself and the query vector q  will have only one non-zero element corresponding to 

the request user. 
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6.3  Multi-objective Recommendation 
Framework 

Although multi-objective recommendations have extra constraints of user requests 

than traditional single-objective recommendations, they have the same goal which 

can be thought of seeking for an optimal ranking order of items and selecting the best 

ones as the output result. Thus, we can still apply the proposed BHR 

recommendation approach in last chapter by replacing a input query vector to be 

suitable for users’ multi-objective requests. 

Concretely, each multi-objective request will be transferred to a query vector 

q2RjV j  where the non-zero elements indicate the user request has special 

requirements on the correlated vertices in the multipartite hypergraph. To enrich the 

input information, we use y = AT
+q instead of q  as the input of our BHR model. 

Consequently, the optimization ranking result is rewritten as follows, referring to the 

solution of Equation (5.16). 

 f¤ = (I¡®A+)¡1AT
+q (6.2) 

The multi-objective recommendations can then be generated by solving (6.2). 

Particularly, if the query vector q  has only one non-zero element corresponding to 

the request user itself, AT
+q becomes exactly the same of Equation (5.19), i.e., the 

original input query vector of BHR. Accordingly, the multi-objective 

recommendation framework can be seen as a generalization of the single-objective 

recommendation approach proposed in the last chapter. In addition, replacing matrix 

A+ with A+ will return the result of random walk-based version of the proposed 

BHR algorithm. 
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Figure 6-3 Multi-objective recommendation framework 

The whole multi-objective recommendation framework of a restaurant recommender 

system as an example is illustrated in Figure 6-3. To handle multi-objective 

recommendations, there are four main steps in the framework as detailed as follows. 

Step 1.  Query Generation. This step collects a multi-objective recommendation 

request and decomposes it to a set of related objects and generates a 

query vector q , referring to Section 6.2. 

Step 2.  Hypergraph Construction. In this step, a multipartite hypergraph is 

constructed from various ordinary or high-order relations of users, 

restaurants, attributes and context information, referring to Section 5.3. 
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Step 3.  Balanced Hypergraph Ranking. In this step, the obtained query vector 

and the multipartite hypergraph are as input to the BHR algorithm. Some 

important matrices such as W, D+, and A+ are trained in advance. A 

ranking vector f  will be generated as the output which ranks all 

hypergraph vertices based on their closeness to the whole query objects. 

Step 4.  Recommendation Generation. This step extracts the ranking order of 

only restaurants and the top-N ranked ones will be selected as the 

ultimate recommendations to users responding to their multi-objective 

recommendation request. So far, a multi-objective recommendation is 

completed and it is flexible if users to change and resend their requests. 

6.4  FoodGo: A Multi-objective Restaurant 
Recommender System 

We develop a protocol of a restaurant recommender system named FoodGo to 

illustrate how multi-objective recommendations are collected and implemented in 

real-life e-Commerce environment. 

6.4.1  Multi-objective Request Collection 

FoodGo is a multi-objective recommender system in food industry, to help single or 

group users discovering potential restaurants in different criteria. Figure 6-4 shows 

the start-up page where users can tick their special requirements in the following four 

aspects. 

 Participants. Users can invite others as the participants for an activity, thus 

the recommendations will be generated with regarding to the preferences of 

all participants rather than an individual user. This is similar to the group 

recommendations in previous studies (Gorla et al., 2013). 
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 Activities. Users can declare the types of activities, such as dinner, buffet, 

fast-food, etc. Note that multiple alternative activities are allowed. 

 Restaurant Conditions. Special requirements of restaurant conditions can be 

selected by users in terms of the food cuisine, ambience, alcohol, noise level 

and price level. 

 Topics. Users can declare extra demands by searching the existed topics 

abstracted from textual tags or comments. 

Note that the users can skip this step as a result the sing-objective recommendations 

will be generated to match the personalization of only the active user. 

 
Figure 6-4 A screenshot of the multi-objective requesting page of FoodGo 
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6.4.2  Background Model Training 

The U-I-A-C data model and constructed multipartite hypergraph are trained and 

stored in database. In the background, several matrices such as H, W, D+ and 

De are ready for the BHR algorithm. Also, the model parameter ® is initialized by 

domain experts or administrators or tuned by off-line experiments. With all trained 

matrices and parameters, and the collected query vector transferred from users’ 

multi-objective requests, the system will generate a ranking list of all candidate 

restaurants as the output by solving the BHR algorithm. 

 
Figure 6-5 Recommendation page of FoodGo 

6.4.3  Recommendation Display 

By solving Equation (6.2) with the offline trained matrices and online obtained query 

vector, a ranking order is generated for the alternative restaurants. Consequently, the 

foreground page will display several (top-N, e.g., 5 or 10) top-ranked restaurants as 

suggestions. Figure 6-5 is a screenshot of a recommendation result. So far, a list of 
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restaurants is recommended as the response to the multi-objective request. Users can 

go back to the previous page and re-define their requirements, and then the 

recommendations shall be refreshed correspondingly. This indicates our system is 

flexible for dynamic requests of users. 

6.5  Empirical Evaluation  

We use the same dataset sampled in the last chapter to conduct empirical 

experiments, as described in Section 5.5.1. Based on the dataset, we compare the 

ability of each recommendation approach mentioned in Section 5.5.2 in response to 

multi-objective recommendations. 

6.5.1  Generating Multi-objective Requests for Testing 

Because no multi-objective requests are explicitly available in the dataset, we 

randomly select three participants, three restaurant attributes and three topics from 

the user vertices (U), attribute vertices (A) and context vertices (C), respectively. 

Notice that the “topics” are selected only from the 200 mostly appeared words in the 

comments of users. We repeat this selection 1000 times as the tested multi-objective 

recommendation requests. One of the generated multi-objective requests is shown in 

the following table as an example. 

Table 6-1 A random multi-objective recommendation request and query set 

Participant user ID Restaurant condition Activity type hypergraph vertices 8><>:
U21

U640

U660

 

8><>:
Alcohol: none

Noise: quiet

Prise: average

 

8><>:
\lunch"

\pizza"

\drinks"

 
{V421, V640, V660, 

V66045, V6048, V6053, 

V9435, V10345, V12003} 

For each testing multi-objective recommendation request, a query vector q  can be 
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generated as the input for the compared graph/hypergraph ranking-based approaches 

BHR, BHR(RW), MRH, HGRW and SGRW. For the non-graph-based approaches 

CF and AVG, we use an “aggregating and filtering” manner to handle 

multi-objective recommendations. First, a restaurant ranking list is obtained for each 

single tested user using CF or AVG approach. For a testing multi-objective request 

correlated to multiple participants, the obtained restaurant ranking scores by the first 

step of all participants are averaged to output an aggregated result. Next, the 

restaurants which do not have any relations with the required restaurant attributes 

and topics in the multi-objective requester are removed from the ranking list and the 

top-N ones from the rest restaurants are returned as the final recommendations. 

6.5.2  Evaluation Method 

It is hard to directly evaluate a multi-objective recommendation result because the 

original data set only records the preferred items of each single user. However, we 

can generate a ranking order of restaurants only from the test data for a particular 

multi-objective request and evaluate whether a recommendation approach can carry 

out correct ranking order of the selected restaurants. Because each testing 

multi-objective request corresponds to three users as in our experiments, the union 

set of the preferred items of these users (in the test set) are collected as the candidate 

items. Denoting the query set corresponding to the current multi-objective request 

that contains different objects as Vq, then we can estimate the relevance degree of 

each candidate item to the query set Vq as the basis for ranking. Namely, the 

relevance of an item i in the candidate set to the query set Vq is defined as follows. 

 rel(i) =

P
v2Vq

max
e2Eh:i;v2e

w(e)

jVqj
 (6.3) 

The above metric can be seen as the ideal/test ranking score for a candidate item. 

Given the ranking result of a compared recommendation approach, the NDCG can be 
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measured to evaluate if this approach is able to rank the candidate items correctly. 

Table 6-2 NDCG comparison for multi-objective recommendations 

Approaches NDCG@5 NDCG@10 NDCG@30 NDCG@50 NDCG@100 

AVG 0.1980 0.2652 0.4826 0.5521 0.5789 

CF 0.2392 0.2996 0.5019 0.5719 0.5997 

HGRW 0.1336 0.1884 0.4087 0.4982 0.5373 

SGRW 0.1348 0.1921 0.4317 0.5121 0.5453 

BHR(RW) 0.1392 0.1961 0.4142 0.5021 0.5403 

MRH 0.4132 0.5048 0.6560 0.6907 0.7030 

BHR(our) 0.4916* 0.5688* 0.6963* 0.7274* 0.7396* 

Bold typeface indicates the best performance. 

* indicates statistical significance at p<0.001 compared to the second best 

6.5.3  Performance Comparison 

Table 6-2 collects the NDCG measurement of each compared approach, which 

indicates that our approach BHR significantly outperforms other in all cases. This 

superiority indicates the ranking result of BHR is more consistent with the 

ideal/actual ranking order in test data, that is, BHR is more effective to identify the 

potentially interested restaurants with respect to multi-objective recommendation 

requests. 

6.6  Summary 

In this chapter, we point out and resolve a novel multi-objective recommendation 

problem. A multi-objective recommendation framework is proposed using the 

User-Item-Attribute-Context data model and the multipartite hypergraph ranking 

model as in Chapter 5. Differing from the traditional single-objective 
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recommendation request, a multi-objective request can be decomposed to a set of 

additional constraints on multiple information entities such as group users, item 

conditions and environmental information, which can be modelled as a set of query 

vertices/objects as the input of multipartite hypergraph ranking. The multi-objective 

recommendation is hence seen as a generalization of the hypergraph ranking model 

in Chapter 5 with “advanced” input query vectors. The theoretical framework of the 

multi-objective recommendations is proposed and the practical application is 

illustrated by a demonstration recommender system named FoodGo in the scenario 

of restaurant recommendations. Empirical experiments are also conducted on a 

real-world dataset of Yelp.com with randomly generated testing multi-objective 

requests.  The result demonstrates that our approach is able to rank the test items 

precisely, especial when the recommendation size is small.  
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CHAPTER 7. CONCLUSIONS AND 

FUTURE STUDY 

This chapter concludes the whole thesis and its contributions to the field of 

recommender systems. It also provides some further research directions of related 

topics. 

7.1  Conclusions 

This thesis is motivated by an awareness of practical issues in recommender systems. 

The rapid growth of both technologies and user volumes of large-scale Web 

applications has offered both opportunities and challenges to facilitate and improve 

recommender systems. This research focuses on the following four new trends of 

recommender systems arising in four aspects: (1) the diverse and complex content 

information of items, (2) the diverse and complex relations of users, (3) the diverse 

and complex new information entities and relations, and (4) the flexible and 

multi-objective user requests. All these trends will provide new advanced features of 

modern recommender systems but there exists inadequate studies in related topics in 

the literature. Hence, this research has conducted comprehensive analysis of each of 

the mentioned challenges and developed a set of novel recommendation techniques 

or frameworks, and correspondingly, has solved different graph ranking problems 
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abstracted from the recommendation questions.  

There are four main contributions of this study, as detailed as follows. 

 It proposes a novel taxonomy-folksonomy integrated content comparison 

mechanism for items (to achieve the research objective 1) and a hybrid 

recommendation model based on random walking on user-item relational 

networks (to achieve the research objective 2). 

Folksonomy tags can be seen as the user’s judgments or supplementary for the 

standard, official, taxonomy attributes. The folksonomy information is utilized in this 

research for item content analysis in two ways. First, identifying the correlations 

between attributes and tags enable us to compare the semantic similarity of two 

attributes, even though these attributes look “unrelated” from the taxonomy tree. In 

previous studies, the semantic similarity of attributes, which plays an essential role 

for the comparison of item similarity, is established by the taxonomy distances 

(Shambour and Lu, 2011) or manual set up (Wu et al., 2014b). However, the 

distance-based method is not able to discover the potential correlations between 

attributes in different aspects such as a director and a movie genre, while the manual 

set up needs extra domain experts. Thus, the tags can be seen as the natural 

judgements of users, who are actually more “professional” than the domain experts 

as they have really experienced the items. The second use of folksonomy information 

is to identify the most discussed/hot topic of a particular item, e.g., one movie, or a 

specific domain of items, e.g., the movies. The hot tags tell us the main 

characteristics of single or a domain of items, which provides a new clue to find 

similar items. The two usages of tags are well integrated in an overall content 

similarity induction algorithm which applies a top-down subtree matching manner 

for the comparison of taxonomy trees. Finally, the overall content similarity 

correlations of items are imported in a user-item hybrid network and a random walk 

model is proposed for the bipartite graph. The user-item bipartite graph random walk 

model is essentially an effective hybrid recommendation model where both CF and 



CHAPTER 7  Conclusions And Future Study 

169 

CB ideas are combined. More importantly, the model is convenient to adjust the 

weights of the two ideas to adapt to different sparsity levels of data. As a guideline 

from empirical experiments, the CB idea should be highlighted when rating data are 

sparse, and vice versa.  

 It proposes a novel social network propagation model (to achieve the research 

objective 3) and a multi-relational social network-based recommender system 

based on multigraph ranking (to achieve the research objective 4). 

Social network propagation, based on indirect trust inference as in literature, is one 

of the key issue in many social network-based recommender systems (Golbeck, 2005; 

Massa and Avesani, 2009; Shambour and Lu, 2012). Existing approaches usually 

focus on the perspective of an individual user and to search other indirect users using 

tree/graph searching techniques such as BFS (breadth-first search) or DFS 

(depth-first search). There are two flaws for these techniques: firstly, many 

parameters need to be manually set up such as search depth and width and 

attenuation; secondly, the explanation from the perspective of the whole network is 

lacking. The proposed random walk-based social network propagation model is 

effective in overcoming the two flaws. More importantly, the propagation model is 

applicable for different user-to-user networks with directed or undirected, scaled or 

binary explicit or implicit relations of users. The propagation model is used in our 

research as a pre-processing step to enrich the original social data, after which, there 

may exist multiple social networks available as the input data of the proposed 

multigraph ranking-based recommendation model. Compared to other models, our 

model considers both intra-network relations and inter-network diversities to 

investigate users’ overall closeness in a complex multi-relational environment. In 

particular, the network-to-network comparison prevents the repeat use of the same 

resource-derived different social networks. Overall, this study provides a guideline of 

how to incorporate different social networks to facilitate and improve 

recommendations. Some key issues of single social network generation and 
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propagation, network-to-network comparison and identification are also 

comprehensively analysed.  

 It proposes a multipartite hypergraph model (to achieve the research objective 5) 

and a full-information based recommender system using balanced hypergraph 

ranking algorithm (to achieve the research objective 6). 

The real situation of a practical recommender system may be more complex than a 

single resource-based recommendation model. There are increasing various types of 

information entities and their relations that may appear in a recommender system and 

impact user adoption of items. This study presented the User-Item-Attribute-Context 

data model as a guideline to identify any possible information resources and model 

them as computable input data. Correspondingly, the multipartite hypergraph model 

is constructed to retain the original structure information of high-order relations such 

as the impact of environment context for user adoption of items, and the textual 

reviews of users to visited items. The hypergraph ranking problem is not new but the 

traditional model does not perform well for multipartite hypergraphs, especially 

when the degrees of hyperedges vary greatly. The proposed balanced hypergraph 

ranking (BHR) algorithm is suitable for this circumstance and has produced excellent 

results in empirical experiments. The data model and multipartite hypergraph ranking 

model provide a generic framework to develop a full-information based 

recommender system to incorporate all valuable information resources in practice. 

 It points out the multi-objective recommendation demands of users and proposes 

a multi-objective recommender system (to achieve the research objective 7). 

The multi-objective recommender system aims to advance the functionalities of 

existing recommender systems to respond to not only single-objective demands of 

individual users but also the changing multi-objective demands of both single and 

group users. In practice, users may have extra requirements of item conditions or 

context every time they use a recommender system. Users are also accompanied with 
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different people and the requesters are actually a group of users rather than a single 

user. The proposed analysis is effective in decomposing such multi-objective 

requests to a set of queried information entities corresponding to the multipartite 

hypergraph vertices based on the U-I-A-C data model. The set of queried entities is 

further handled as a calculable input query vector, which is just an advanced version 

of the BHR algorithm, thus the multipartite hypergraph-based recommender system 

is also applicable for multi-objective recommendations. The FoodGo system gives an 

example of how the multi-objective recommendations are queried, solved and 

returned to users in real applications. Both the data model and recommendation 

model are easy to apply for different domains. 

7.2  Future Studies 

This research still holds some limitations and can be further advanced in the 

following aspects. 

For the incorporation of both taxonomy and folksonomy for item content analysis, 

we have not considered the uncertainty of the item-attribute association, which has 

gained the attention of many researches (Lu et al., 2013; Wu et al., 2014b). We 

expect to propose an advanced model to integrate fuzzy taxonomy attributes and 

folksonomy. 

For the unique random walk model on a user-item bipartite graph, we currently only 

focus on the user-item rating relations and the item-item content similarity relations. 

In the future, we expect to import user-to-user social relations into the bipartite graph 

and perform new random walks. Thus, we will combine the item content study in 

Chapter 3 and the user social network analysis in Chapter 4 to develop a more 

advanced hybrid recommendation model. 

For the multi-relational social network-based recommender system, we have 
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emphasized that different user-user relations or correlations need to be constrained 

for items in a same domain. Taking the Last.fm dataset as an example, all the 

information we utilized is in-system information, meaning that the friendship, 

preference similarity and co-tagging networks of users are all related to the topic of 

music. In the future, we want to build a more general multigraph model that 

incorporates broader user-user relationships even in different domains. Trust 

relations on the theme of movies, for example, can then be imported into music 

recommender systems to further enrich the input data. We expect to address this 

cross-domain transfer learning problem in a future study. 

As mentioned, the multipartite hypergraph model in Chapter 5 currently is not able to 

handle the tree-structured taxonomy attributes as indicated in Chapter 3 as this goes 

beyond of the scope of Chapter 5. However, we leave this as a further research topic 

on hierarchical graph ranking problem, which will also be an interesting topic in both 

areas of recommender systems and graph ranking. 

As one of the advantages, the multi-objective recommender system is able to make 

recommendations for a group of users, which is closely related to the recent 

emerging research topic of group recommender systems. In future studies, we expect 

to import and improve more group negotiation and group decision techniques of 

existing group recommender systems into our model.
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