
I

Anticipatory Models of Load Balancing in Cloud
Computing

A Thesis Submitted for the Degree of

Doctor of Philosophy

By

Shahrzad Aslanzadeh

University of Technology Sydney

New South Wales, Australia

II

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree except as fully acknowledged

within the text.

I also certify that the thesis has been written by me. Any help that I have received in my

research work and the preparation of the thesis itself has been acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

Signature of Student: Shahrzad Aslanzadeh

Date: 04/14/2016

III

Acknowledgment

I would like to express my sincere gratitude to my supervisor Dr. Zenon Chaczko for

his support, continuous guidance, meticulous suggestions and his inexhaustible

patience especially during preparation of this dissertation. At many stages in the course

of this research, I benefited from his advice, particularly so when exploring new ideas.

Also I would like to thank Dr. Christopher Chiu, who as a good friend was always

willing to help and give his best suggestions. Many thanks to Christopher Mcdermid for

helping me through my case study design.

I will be thankful to my close friends for their friendly support and caring.

I express my personal love and appreciation to my mum, dad and my sister for constant

motivation and support.

Finally, I would like to thank my husband Alireza, who was always there cheering me

up and stood by me through the good times and the bad.

IV

Abstract

Cloud Computing is a recent arrival to the world of IT infrastructure. The concept

allows companies to maximise utilisation of their potentials and consequently boost

their performance. One of the main benefits of Cloud Computing is the significant

increase in efficiency of executing business plans. Additionally, Cloud Computing

provides large-scale applications with powerful computing power across global

locations. Yet Cloud users are able to share their data easily by using replication

methodologies.

Cloud Computing structure has been developed based on a multi-tenancy concept.

Therefore, availability and efficiency of the resources are important factors in the

Cloud architecture. However, as the numbers of users are increasing rapidly, the load

will have a significant impact on performance and operation of the Cloud systems.

Accordingly, optimised load balancing algorithms that can manage the Cloud load in a

time- and cost-efficient manner are required.

Much research in recent years has been dedicated to optimising load balancing in Cloud

Computing. This optimisation is demonstrated through a balanced network of

interacting resources. The goal of this network is to minimise the wait time and

maximise utilisation of the throughput.

This thesis provides a set of solutions which mitigate the problem of load balancing in

the Cloud. The dissertation investigates a novel class of heuristic scheduling algorithms

that improves load balancing in workflow scheduling applications.

Furthermore, it proposes a new anticipatory replication methodology with the objective

of improving data availability to enhance the load balancing between the Cloud sites.

In summary, this research innovation implicates the design of optimised load balancing

algorithms that consider the magnitude and direction of the load in workflow

applications. Furthermore, by architecting the anticipatory replication algorithm, it

minimises the numbers of the replicas and enhances the effective network usage in

Cloud-based systems.

V

Contents

I. Principal Theory and Concepts .. 2

Background .. 3

1.1 Introduction .. 3

1.2 Rational .. 4

1.3 Research Contribution .. 6

1.4 Research Questions .. 6

1.5 Formulation of the Hypothesis ... 8

1.5.1 Approach and Hypothesis Validation .. 9

1.5.1.1 Research Action Study ... 9

1.5.1.2 Experiments .. 9

1.5.2 Expected Outcomes ... 10

1.6 Outline of the Thesis .. 11

1.7 Related Publications ... 17

Literature Review ... 19

2.1 Cloud Computing ... 19

2.1.1 Cloud Characteristics .. 24

2.1.2 Cloud Taxonomy ... 25

2.1.3 Cloud Architecture .. 26

2.1.4 Cloud Stack ... 28

2.1.4.1 Infrastructure as a Service (IaaS) ... 28

2.1.4.1.1 Characteristics of IaaS ... 29

2.1.4.2 Platform as a Service (PaaS) .. 29

2.1.4.2.1 Characteristics of PaaS .. 30

2.1.4.3 Software as a Service (SaaS) .. 30

2.1.4.3.1 Characteristics of SaaS .. 30

2.2 Cloud Computing: Challenges and Benefits .. 31

2.3 Load Balancing in Cloud Computing ... 34

2.3.1 Load Balancing: Concept, Definition, Benefits, Challenges ... 34

2.3.2 Load Balancing Measurement Criteria .. 35

VI

2.3.3 Load Balancing Methods... 36

2.4 Focus of This Research .. 38

2.4.1 Load Balancing Algorithms: Independent vs Dependent .. 38

2.4.1.1 Dependent Load Balancing Algorithms ... 39

2.4.1.2 Independent Load Balancing Algorithms ... 45

2.5 The Quest of This Research ... 49

2.5.1 The Anticipatory Approach ... 49

2.5.2 Workflow Scheduling.. 51

2.5.3 Replication Strategy .. 53

2.5.4 Research Issues ... 55

2.5.4.1 Workflow Scheduling... 55

2.5.4.2 Replication Methodology ... 55

2.6 Summary .. 58

Research Methodology ... 59

3.1 Research Design ... 59

3.2 Research Method .. 60

3.2.1 Research Rules .. 62

3.3 Modelling Approaches ... 62

3.3.1 Black-box Modelling Approaches ... 62

3.3.2 White-Box Modelling Approaches ... 63

3.3.3 Gray-Box Modelling Approach ... 63

3.4 Experimental Methodologies Overview ... 65

3.4.1 Anticipatory Approach .. 65

3.4.2 Spring Tensor Model ... 65

3.4.2.1 Mathematical Apparatus ... 66

3.4.3 Anticipatory Replication Methodology ... 69

3.5 Summary of the Chapter .. 70

Research Action Study ... 71

4.1 Introduction .. 71

4.2 Load Balancing .. 72

4.3 Presence .. 75

VII

4.4 Cloud Metrics ... 77

4.5 The Case Study: HDM Load Monitoring ... 79

4.5.1 Load Monitoring Tool .. 81

4.5.2 HDM Load Tolerance .. 83

4.5.2.1 Testing Tool ... 83

4.5.2.2 Page Analyser ... 84

4.5.2.3 Load Test-10 Virtual Users ... 86

4.5.2.3.1 10 Users-Load time vs Clients Active .. 86

4.5.2.3.2 10 Users - Number of the Active Requests vs Clients Active 86

4.5.2.3.3 10 Users - HDM Content Type Distribution ... 87

4.5.2.3.4 10 Users HDM Content Load Distribution ... 87

4.5.2.4 Load Test - 20 Virtual Users .. 88

4.5.2.4.1 20 Users-Load Time Vs Clients Active .. 88

4.5.2.4.2 20 Users- Number of the Active Requests Vs Clients Active 88

4.5.2.4.3 20 Users - HDM Content Type Distribution ... 89

4.5.2.4.4 20 Users HDM Content Load Distribution ... 89

4.5.2.5 Load Test - 50 Virtual Users .. 90

4.5.2.5.1 50 Users-Load Time Vs Clients Active ... 90

4.5.2.5.2 50 Users -Number of the Active Requests vs Clients Active 90

4.5.2.5.3 50 Users- HDM Content Type Distribution .. 91

4.5.2.5.4 50 Users HDM Content Load Distribution .. 91

4.5.2.6 Load Test - 100 Virtual Users .. 92

4.5.2.6.1 100 Users-Load Time Vs Clients Active ... 92

4.5.2.6.2 100 Users- Number of the Active Requests Vs Clients Active 92

4.5.2.6.3 100 Users - HDM Content Type Distribution ... 93

4.5.2.6.4 100 Users HDM Content Load Distribution ... 93

4.5.2.7 Results Analysis ... 94

4.5.2.7.1 Average Load Time Results .. 94

4.5.2.7.2 HDM Content Type Distribution Results .. 94

4.5.2.7.3 HDM Content Load Distribution Results .. 96

4.6 Overall Analysis and Proposed Solution .. 97

4.7 Conclusion .. 98

II. Contribution to Research .. 99

VIII

STEM-PSO Based Task Scheduling Algorithm .. 100

5.1 Introduction .. 101

5.2 Load Balancing Problem Formulation ... 102

5.3 STEM-PSO Scheduling Algorithm .. 104

5.3.1 Particle Swarm Optimisation... 104

5.3.2 STEM Algorithm ... 105

5.3.3 The Fundamentals of STEM-PSO ... 111

5.4 Experiment Results .. 112

5.4.1 Total Execution Time .. 113

5.4.2 CPU Load and CPU Time ... 114

5.4.3 Memory Rate ... 115

5.4.3.1 Workflow Soft Error Rates ... 116

5.5.4 Comparison of STEM-PSO Results .. 117

5.5.5 Experiment Analysis ... 118

5.5 Conclusion .. 119

Load balancing & Data Replication Strategy ... 120

6.1 Introduction .. 120

6.2 Problem formulation .. 122

6.3 Proposed Methods .. 123

6.3.1 SDDRC Architecture Design .. 123

6.3.2 SDDRC Algorithm .. 125

6.4 Results and Analysis .. 131

6.4.1 Mean Job Execution Time ... 133

6.4.2 Effective Network Usage .. 134

6.4.3 Total Number of the Replicas ... 135

6.4.3.1 Applying Soft Error Rates on Memory .. 136

6.4.4. Analysis of SDDRC Results... 137

6.4.5 Experiment Analysis ... 138

6.5 Conclusion .. 139

Conclusion .. 140

7.1 Review .. 140

IX

7.2 Thesis contribution ... 141

7.2.1 Discussion ... 141

7.2.2 Limitations .. 143

7.3 Future work .. 144

7.4 Final Remarks .. 146

III. Bibliography and publications .. 147

Bibliography ... 148

Appendix .. 175

9.1 Experiment Specifications .. 175

9.1.1 HDM System ... 175

9.1.1.1 Development specifications ... 176

9.1.2 STEM-PSO Implementation Details ... 179

9.1.3 Cloudsim Specification Details ... 183

9.1.3.1 Adding a new file in Tier structure... 188

X

List of Figures

Figure 1.1- Thesis outline ... 14
Figure 2.1-Litriture review high-level mind map ... 20
Figure 2.2- IT evolution (KPMG 2011) ... 21
Figure 2.3- Comparing Cloud Computing, Cluster Computing and Grid Computing (Modified
from Google trend) ... 22
Figure 2.4 -Cloud taxonomy .. 26
Figure 2.5 -Reference model of Cloud architecture, adopted from, (Buya et al. 2008) 27
Figure 2.6- Cloud stack categorisation, adopted from (Barkat et al. 2014) 28
Figure 2.7 -Load balancing categories ... 36
Figure 3.1 - Cloudsim architecture (Adopted from Calheiros 2011) ... 61
Figure 3.2 - Thesis modelling approaches (Adopted from DTU compute website) 64
Figure 3.3- Elastic sub-network model .. 67
Figure 4.1-Server availability model (Chaczko et al. 2014) ... 73
Figure 4.2- Hybrid load balancing model (Chaczko et al. 2014) ... 74
Figure 4.3- HDM System ... 79
Figure 4.4- Conceptual Architecture, Data CentricModel (Chaczko et al. 2011) 80
Figure 4.5- High-level HDM database design .. 81
Figure 4.6- HDM load balancing model (Chaczko et al. 2011) ... 82
Figure 4.7- System health monitoring UI ... 83
Figure 4.8- Load time vs clients active - 10 virtual users ... 86
Figure 4.9- Requests per second vs clients active – 10 virtual users .. 86
Figure 4.10- HDM content type distribution - 10 virtual users .. 87
Figure 4.11-HDM content load distribution - 10 virtual users ... 87
Figure 4.12- Load time vs clients active - 20 virtual users ... 88
Figure 4.13- Requests per second vs clients active – 20 virtual users .. 88
Figure 4.14- HDM content type distribution - 20 virtual users .. 89
Figure 4.15- HDM content load distribution -20 virtual users ... 89
Figure 4.16- Load time vs clients active - 50 virtual users ... 90
Figure 4.17- Requests per second vs clients active – 50 virtual users .. 90
Figure 4.18-HDM content type distribution - 50 virtual users ... 91
Figure 4.19- HDM content load distribution -50 virtual users ... 91
Figure 4.20-Load time vs clients active - 100 virtual users .. 92
Figure 4.21- Requests per second vs clients active – 100 virtual users 92
Figure 4.22- HDM content type distribution - 100 virtual users .. 93
Figure 4.23 - HDM content load distribution - 100 virtual users ... 93
Figure 5.1- Example of workflow modelling ... 103
Figure 5.2- STEM workflow parameters (Bond, angle, dihedral, non-local interaction) 107
Figure 5.3- Sample tasks allocations on (PC1-PC4) .. 112
Figure 5.4- Comparison of total execution time between STEM-PSO and HEFT 113
Figure 5.5- Comparison of total CPU Time between STeM-PSO and HEFT 114
Figure 5.6-Comparison of total Memory utilisation rate between STEM-PSO and HEFT 115
Figure 6.1– High level SDDRC system architecture.. 124

XI

Figure 6.2- GRMS high-level architecture ... 125
Figure 6.3- GRMS Tier insertion ... 126
Figure 6.4-Creating the VM data inputs in Cloudsim .. 132
Figure 6.5 -Initiaing the VM creating at runtime ... 132
Figure 6.6- Mean job execution time ... 133
Figure 6.7- Effective network usage .. 134
Figure 6.8 -Total number of replications .. 135
Figure 9.1-HDM system high-level design .. 175
Figure 9.2- STEM-PSO high-level logical design ... 179
Figure 9.3-Pegasus workflow data generator ... 180
Figure 9.4- STEM-PSO front end .. 180
Figure 9.5- Hessian Evaluation Rate .. 181
Figure 9.6- PSO algorithm input -front end ... 181
Figure 9.7- STEM-PSO main class code .. 182
Figure 9.8- Cloudsim high-level design ... 183
Figure 9.9- Cloudsim class architectures ... 185
Figure 9.10-Cloudsim submission time frontend ... 187
Figure 9.11- Inserting a node in Tier structure ... 188
Figure 9.12- Updating the pointer place in Tier structure .. 189

XII

List of Tables

Table 1.1- Thesis part I and part II structure .. 12
Table 2.1- Benefits of the Cloud Computing ... 32
Table 2.2 -Challenges in the Cloud Computing ... 33
Table 2.3- Summary of the reviewed dependent scheduling algorithms 44
Table 2.4- Summary of the reviewed independent algorithm .. 48
Table 2.5- Summary of the reviewed workflow scheduling algorithms 56
Table 2.6- Summary of the reviewed replications methodologies ... 57
Table 4.1- VM properties ... 85
Table 4.2- Summary of No. of clients vs average load time... 94
Table 4.3-HDM content type distribution results – 10, 20,50, 100 virtual users 95
Table 4.4-HDM average content type load time distribution results 10,20,50,100 virtual users96
Table 4.5- Average user load time vs average html load time ... 97
Table 5.1- Interpretation of bond, angle, dihedral and non-local connections between tasks on
workflow model (Aslanzadeh & Chaczko 2015). ... 108
Table 5.2 -CPU load utilisation rate using STeM-PSO .. 114
Table 5.3-Analysing the impact of soft error rates on Memory rate .. 116
Table 5.4- Total workflow execution time applications using STEM-PSO and HEFT 117
Table 5.5- CPU utilisation rate of workflow applications using STEM-PSO and HEFT 117
Table 5.6- Memory utilisation rate of workflow applications using STEM-PSO and HEFT .. 117
Table 6.1 -Analysing the impact of soft error rates on Memory rate 136
Table 6.2 - Mean job execution time using SDDRC (in milliseconds) 137
Table 6.3 - Effective network usage using SDDRC (in percentage) .. 137
Table 6.4 - Total number of replication using SDDRC .. 137

XIII

Glossary

AMAZON EC2 Amazon Elastic Cloud Computing

ANM Anisotropic Network Model

DAG Directed Acyclic Graph

DPSO Discrete Version Of PSO

ENM Elastic Network Models

FCFS First Come First Served

FMOC Finite Multi-Order Context

GA Genetic Algorithm

GBEST Global Best Position

GNM Gaussian Network Model

GRMS Global Replica Management System

HDM Hospital Data Management

HEFT Heterogeneous Earliest Finish Time

HTML Hyper Text Mark-up Language

I/O Input/Output

IAAS Infrastructure As A Service

ICT Information & Communication Technology

IOT Internet Of Things

IT Information Technology

LFU Least Frequently Used

LRU Least Recently Used

MAKESPAN Total Length Of Schedule

MBIT/S Megabit Per Second

NIST National Institute Of Standards And Technology

NP PROBLEM Non-Deterministic Polynomial Time

PAAS Platform As A Service

PBEST Best Local Position

PSO Particle Swarm Optimisation

QOS Quality Of Service

RC Relative Cost

XIV

SAAS Software As A Service

SDDRC
Smart Dynamic Data Replication In Cloud

Computing

SHEFT Scalable Heterogeneous Earliest Finish Time

SLA Service Level Agreement

STEM Generalised Spring Tensor Model

STEM-PSO
Generalised Spring Tensor Model- Particle

Swarm Optimisation

URL Uniform Resource Locator

VM Virtual Machine

XML Extensible Mark-up Language

XMPP Extensible Messaging And Presence Protocol

2 | P a g e

I. Principal Theory and Concepts

3 | P a g e

Chapter 1

Background
“Everything is going to be connected to Cloud and data. All of this will be mediated by

software”- Satya Nadella-1967

Chapter 1 illustrates the high-level overview of the thesis framework. It explains the

concepts and rationale of the dissertation followed by research contributions and

research questions. The chapter also formulates the hypothesis of the experimental

work. Finally, it concludes by providing an outline overview of the existing chapters.

1.1 Introduction
Over the past decade, industries and academia have increased their expectations for

more robust computing techniques. In the field of IT, improvements in the Internet and

also developments in economical IT infrastructure have been the main key in reshaping

the users’ requirements (Metcalfe 2000). Thus, creating more-powerful computational

models has become a necessity. Cloud Computing is an example of newly created

structures for improving Internet services such as hosting and delivering (Zhang, Cheng

& Boutaba 2010).

Cloud Computing is generally based on virtualisation techniques with the capability of

providing automated services (Ramezani et al. 2013). These include resource

management and load balancing, which are developed and/or executed according to the

user’s requirements, regardless of location and time zone (Grant et al. 2013).

Cloud Computing can address the business infrastructure requirements, such as

scalability and elasticity, when future changes occur (Armbrust et al. 2009). Cloud

4 | P a g e

Computing provides a valuable tool for businesses, as with its use, organisations do not

need to be concerned about wasting their resources by under- or over-estimating the

future needs. In other words, the required resources can be allocated or released as

future demand unfolds. Businesses can reduce the costs associated with their

infrastructure by employing the pay-as-you-go model, which is utilised for charging the

Cloud users (Gupta et al. 2013),(Rimal et al. 2009) ,(Yike, Ghanem & Rui 2012).

In recent years, the number of Cloud users has risen sharply and as such, technical

aspects of Cloud Computing have received increased attention. Cloud load measuring

methods are the primary examples of such technical issues, which pose new challenges

for Cloud service providers (Rahman et al. 2014).

In order to overcome some of the difficulties associated with load analysis, researchers

and development agencies have proposed a variety of techniques, algorithms, and

architectures (Wang et al. 2013). Each Cloud-based system, however, includes a

complex architecture and requires customised specifications. This fact, in turn, creates

complications in developing a standard design for load balancing management.

Therefore, load balancing optimisation approaches play a crucial role in the world of

Cloud infrastructures. Such load balancing techniques would be capable of distributing

the load evenly among all available resources (Sahu et al. 2013).

1.2 Rational
Business enterprises and academia have proposed various load balancing algorithms as

evidence in the scientific literature. Such computational solutions are valuable tools in

dealing with load management (Ardanga et al. 2011). However, they do not address

how application structures and associated interrelationship can be modelled when

dealing with the behaviour of the load balancing design.

In recent years, many research studies have been focused on the load balancing

algorithms in Cloud Computing. Prime examples include static scheduling, dynamic

and hybrid algorithms (Ghutke & Shrawankar 2014).

5 | P a g e

There have been, however, few studies on load balancing algorithms that focus on their

dependent patterns, only. The reason behind the lack of studies in this area could be

associated with complex nature of the workflow architecture; as well as, their relatively

unpredictable behaviour when it comes to the resource management (Barrett, Howley

& Duggan 2011).

Workflow scheduling is a valuable tool for applications used in e-business and e-

science (Yilin et al. 2012). Processing of data in such applications requires a complex

procedure, thus emphasising the importance of workflow scheduling algorithms.

Cloud Computing platforms can facilitate utilisation of e-science and e-business

applications. Considering the data intensive nature of these applications, such as

weather forecasting and online booking, complex data processing is required.

Additionally, to improve reliability and performance of the e-science applications and

in line with the Cloud system architecture designs, Li & Mascagni (2013) underlined

development of an effective workflow scheduling algorithm.

Considering workflow applications, completion of one task is required for execution of

interconnected tasks and subsequently for the execution of interconnected jobs (Singh

& Singh 2013). Therefore, developing smart algorithms which are capable of

recognising the behaviour of the interconnected tasks and jobs is vital. Such smart

computational models can then address the system constraints and user requirements,

enabling better performance (Chun-Chen et al. 2008).

Many recent research studies have been focused on load balancing techniques and their

application to Cloud Computing. One of these techniques is optimising data retrieval,

which has a major impact on load balancing (Shaw et al. 2014). The data replication

technique, however, as an important data retrieval method, has not been studied deeply

in the field of Cloud Computing. Complexity in embedding replication methodology in

Cloud-based systems may be the reason for the lack of attention to this subject

(Anikode & Bin 2011). Such a lack of attention emphasises the need for developing a

smart dynamic replication approach, capable of optimising load balancing through

replication.

6 | P a g e

This research sheds light on workflow scheduling and the data replication mechanisms

in Cloud Computing.

1.3 Research Contribution
The value of this research should be perceived as:

Architecting a robust load balancing algorithm with anticipatory behaviour

which is platform independent and is designed for Cloud Computing

infrastructure.

Investigating the research action studies that focus on load balancing in Cloud

Computing.

Understanding the behaviour of the data intensive applications by analysing and

modelling the inter-connectivity of their tasks.

Identifying the impact of anticipatory replication on load balancing by analysing

the replication strategies in Cloud-based systems.

1.4 Research Questions
The overall aim of this research is to evaluate the following concepts:

Apply the magnitude and direction of the load between interconnected tasks for

optimising the load balancing behaviour in Cloud Computing.

Pre-replicate the files with high access probability in local servers before

provisioning requests have been submitted.

Identifying the loads’ fluctuations will lead to forecasting the future load behaviour

between interconnected tasks. Moreover, analysing load variations will be useful in

terms of identifying the anomalies and threats in workflow applications that could lead

to effective decision making.

To satisfy the workflow load balancing behaviour, a heuristic workflow scheduling

algorithm will be investigated to identify the load fluctuations among Cloud networks.

7 | P a g e

A review of the literature, documented in chapter 2 of this thesis, illustrates the

heuristic computational models that have been proposed to improve the load balancing

approaches in Cloud Computing by analysing the static and dynamic movement of the

tasks (Madivi & Kamath 2014). Yet a shortage remains of effective tools to capture the

load fluctuations of the workflow tasks that can project the interactions and

dependencies between interconnected tasks.

Anticipatory replication will optimise the load balancing by pre-replicating the files

that have high access probability in the future. The pre-replication will be useful in

terms of minimising the total job execution time and effective network usage rate. In

this method, the anticipatory function of the replication method can provide the analytical

base for load balancing optimisation.

Specific research questions addressed in this investigation are:

1. Given the importance of the scientific applications, what makes the Cloud

system adaptive to dynamic conditions related to workflow scheduling?

2. Given the importance of data retrieval, how does the anticipatory data

replication model impact load balancing in Cloud Computing?

3. Given the need for workflow scheduling and data replication, how can these

methods impact the anticipatory behaviour of the Cloud-based systems?

4. Given that some of the important load balancing algorithms have been derived

from mathematics, are limitations from theory consistent with simulation

results?

The expected benefits of this research are credited on the fact that the behaviour of the

workflow load balancing approaches can be regulated based on the interactions

between tasks and jobs within their local neighbourhood and non-neighbourhood

situations. Moreover, it is anticipated that the proposed anticipatory replication design

will make a contribution to situate the research theme in the design of an effective load

8 | P a g e

balancing algorithm. The results provide more enhanced resource usage and data

processing technologies suitable for computing complex applications.

1.5 Formulation of the Hypothesis

Hypothesis: How can a heuristic anticipatory approach combined with data

replication strategies improve the load balancing in Cloud to ensure its

availability?

According to the hypothesis, two main essential points will be considered in details

within this doctoral dissertation:

1. Heuristic methodology:

The solution to the load balancing issue within workflow scheduling can be

found in biological systems coordinating the dependencies of the interconnected

tasks. By applying the meta-heuristic methods, it is possible to calculate the

magnitude and direction of the load between interconnected tasks and integrate

that in load balancing optimisation methodology.

To achieve a global perspective of load balancing in Cloud-based systems, the

anticipatory behaviour of interconnected tasks will be investigated. The matter

shall be examined as a gray-box model to determine the impact of the load

changes throughout the workflow application network.

2. Replication strategy:

The aim of this approach is to anticipate replicating the high probable files that

may be accessed later. The provisioning of the pre-replications provides end-

users with a minimum access time that ultimately minimises the total task

execution time.

In the same fashion, for effective network usage, the anticipatory-replication

strategy will minimise the number of the replicated files, and as a result the

number of files to be transferred to the targeted servers will be reduced. The

anticipatory behaviour of pre-replication techniques is achievable through gray-

9 | P a g e

box modelling by applying the mathematical threshold embedded within the

replication design.

1.5.1 Approach and Hypothesis Validation

1.5.1.1 Research Action Study
The action study investigates the performance of the hospital data management (HDM)

Cloud-based system by identifying the existing load balancing challenges within its

framework.

Online load balancing tools have been incorporated to assess the current HDM load

balancing functionality. The results then have been used for development of novel load

monitoring services.

The developed tool reflects the results of applying load balancing techniques using

presence protocols to indicate the health status of the systems’ elements in terms of

load changes.

1.5.1.2 Experiments
The aim of the experimental work is to design and implement a series of practical

solutions to find an optimised load balancing method suitable for Cloud-based systems.

We have emulated the Cloud system with a Cloud simulation tool and Java

programming which is built upon the heuristic and replication functions, necessary to

implement the experiments.

As the heuristic functions are executed, the real-time load optimisation is pictured in a

real simulation environment.

The designed work is suitable for predictive analytics. Users are able to adjust the

parameters based on the experimental environment. The front-end shows how the

results may be affected by occurring changes in heuristic parameters. The experimental

outcome validates the anticipatory behaviour of the system, which measures the impact

of changes on magnitude and direction of the load.

10 | P a g e

Applying the mathematical apparatus of the replication strategy, the load balancer will

anticipate the files that will be needed by users in future. The outcome of the

experiment will validate the anticipatory behaviour of the system by pre-replicating the

data with high access probability.

In summary, to find the answers for designated research questions, experiments are

completed through gray-box design to present the optimised solution for load balancing

in Cloud Computing. The details of the algorithms applied in the experiments are

depicted in the research methodology chapter.

1.5.2 Expected Outcomes
The results confirm that the heuristic approaches in both experiments represent an

improved method of load balancing in Cloud-based systems. In particular,

encapsulating the heuristic designs in a workflow scheduling model in Cloud

Computing provides an optimised load balancing method that results in minimised

makespan along with optimised memory and CPU rates. Additionally, the heuristic

anticipatory-replication methodology completes the submitted jobs with minimum

completion time while it minimises the replication numbers and improves the effective

network usage.

In summary, the expected outcomes validate the anticipatory function embedded in

both methodologies. The results anticipate the load fluctuations in workflow structures

and forecast the potential high accessible files needed for replications.

11 | P a g e

1.6 Outline of the Thesis
As table 1.1 on page 12 shows, the thesis is divided into two main parts;

Inaugurate the aims and goals, and formulate the hypothesis.

This section is subdivided into three chapters and explains the related theory of the load

balancing concept in Cloud-based systems. The discussion of load balancing problems

with the proposed heuristic and mathematical approaches for addressing the Cloud load

issues are examined in this section.

Regulating the strategies and techniques to validate the hypothesis.

The second part covers four chapters and focuses on the research contribution which

includes methodologies that explain the experimental process needed to validate the

thesis aims and a research action study.

The final discussion and future work of the thesis are explained in the last chapter along

with bibliography and appendices.

12 | P a g e

Table 1.1- Thesis part I and part II structure

Structure of part 1: principal Theory and concepts

 Introduction Literature review Methodology

Ch
ap

te
r 1

Ch
ap

te
r 2

Ch
ap

te
r 3

Introduce the
thesis topic and
research focus
of the PhD
dissertation

Start

End

Illustrate the load
balancing paradigms
in Cloud computing

Determine the Focus
of the research using
replication and
workflow scheduling
modelling

Determine the
proper research
design and modelling

Elaborate the
algorithms applied
in thesis

13 | P a g e

Structure of part II: Contribution to Research

 Analysis Action study Specification Experiment
Ch

ap
te

r 4

Ch
ap

te
r 5

Ch
ap

te
r 6

Analysis of
load balancing
tactics in
Cloud
computing

Start

End

Refinement of
experimental
platform,
obtaining data
set patterns
from HDM
Cloud platform

Experimental
model 1:

STEM-PSO-
Analysis on
optimising the
load balancing
in Cloud
computing

Visualization
of load
balancing
issues
through
HDM case
study

Experimental
model 2:

Pre-
replication-
Analysis on
optimising the
load balancing
in Cloud
computing

14 | P a g e

c

Figure 1.1- Thesis outline

Figure 1.1 presents the outline of the thesis. The details of this outline are illustrated
below:

Part I: Principal Theory & Concept

Chapter 1: Introduction

Pages: 3-18
Chapter 1 aims to discuss the research topic along with the research theme. The chapter

explains the research questions and analyses the hypothesis. Moreover, it elaborates on

the expected outcome which reflects the thesis aim to answer the research questions

and validate the hypothesis.

Chapter 2: Literature Review

Pages: 19-58

The literature review provides a comprehensive review of load balancing concepts. It

discusses the issues in Cloud computing along with describing the needs for designing

15 | P a g e

an optimised load balancing system that is practically important for IOT system designs

and strategies.

Chapter 3: Research Methodology

Pages: 59-70

Chapter 3 depicts the details of the methodologies and approaches needed to implement

the observations of the experimental work. The mathematical apparatus of the heuristic

approach along with the replication strategy have been examined in this chapter.

Part II: Contribution to Research

Chapter 4: Research Action Studies

Pages: 71-99

Based on the literature review, explained in chapter 2, the research action study

establishes the strategies and technologies that could be applied in designing more

optimised load balancing capability in Cloud computing. The context aims to describe

the need for optimising load balancing tactics in Cloud-based systems.

Chapter 5: STEM-PSO Based Task Scheduling Algorithm

Pages: 100-119

Chapter 5 is built upon the heuristic algorithm discussed in chapter 3 of this thesis. It

depicts the gray-box modelling approaches with the application of Hessian matrices in

the Spring Tensor Model. The chapter concludes with analytical results of the

experiment.

Chapter 6: Replication and Load Balancing in Computing

Pages: 120-139

The chapter describes the gray-box modelling of the replication strategy which is

elaborated in chapter 3 of this thesis. The chapter concludes with the experimental

results of applying the anticipatory-replication strategy in Cloud-based systems.

16 | P a g e

Chapter 7: Conclusion

Pages: 140-146

The chapter concludes the major findings resulting from the experimental analysis.

Moreover, it depicts the future work that could be performed based on the conducted

research.

Part III: Bibliography and appendices:

Chapter 8: Bibliography

Pages: 148-174

Chapter 8 reports all bibliographies that have been referenced in this research.

Chapter 9: Appendix

Pages: 175-189

Appendix includes the details of the experiments where could not fit within the main

chapters of the dissertation.

17 | P a g e

1.7 Related Publications
Aslanzadeh, S. & Chaczko, Z. 2015, 'Generalized Spring Tensor Model: A New

Improved Load Balancing Method in Cloud Computing', in H. Selvaraj, D. Zydek & G.

Chmaj (eds), Progress in Systems Engineering, vol. 330, Springer International

Publishing, pp. 831-5.

Aslanzadeh, S., Chaczko, Z. & Chiu, C. 2015, 'Cloud Computing—Effect of

Evolutionary Algorithm on Load Balancing', in G. Borowik, Z. Chaczko, W. Jacak &

Computational Intelligence and Efficiency in Engineering Systems, vol.

595, Springer International Publishing, pp. 217-25.

Chaczko, Z., Aslanzadeh, S. & Lulwah, A. 2015, 'Autonomous Model of Software

Architecture for Smart Grids', in H. Selvaraj, D. Zydek & G. Chmaj (eds), Progress in

Systems Engineering, vol. 330, Springer International Publishing, pp. 843-7.

Aslazandeh, S., Chaczko, Z. & Chiu, C. 2014, 'Cloud Computing: The effect of

generalized spring tensor algorithm on load balancing', Computer Aided System

Engineering (APCASE), 2014 Asia-Pacific Conference on, pp. 5-8.

Aslanzadeh, S. & Chaczko, Z. 2013, “Generalized Spring Tensor Algorithms: with

Workflow Scheduling Applications in Cloud Computing”, International Journal of

Computer Applications 84(7):15-17, Published by Foundation of Computer Science,

New York, USA

Chaczko, Z., Resconi, G., Chiu, C. & Aslanzadeh, S. 2012, ‘N-Body Potential

Interaction as a Cost Function in the Elastic Model for SANET Cloud Computing’, Intl

Journal of Electronic And Telecommunication (JET), 2012, Vol.58, No.1, pp. 63-70.

Chaczko, Z., Aslanzadeh, S. & Kuleff, J. 2012, ‘The Artificial Immune System

Approach for Smart Air-Conditioning Control’, Intl Journal of Electronic And

Telecommunication (JET), 2012, Vol.58, No.2, pp. 193-199.

Braun, R., Chaczko, Z., Neilson, M., Nikodem, J. & Aslanzadeh, S. 2012, ‘A Practical

Approach for Redesigning System Engineering Processes’, International Conference on

Information Technology Based Higher Education and Training, ITHET, IEEE,

18 | P a g e

Istanbul, Turkey, 978-1-4673-2334-5/12, pp.1-8.

Chaczko, Z., Chiu, C., Aslanzadeh, S. & Dune,T. 2012, ‘Sensor-Actor Network

Solution for ScalableAd-hoc Sensor Networks’, Intl Journal of Electronic And

Telecommunication (JET), 2012, Vol.58, No.1, pp. 55-62.

Aslanzadeh, S. & Chaczko, Z. 2012, ‘The Impact of Cloud Computing on Businesses’,

14th International Conference On computer aided system Theory, IEEE APCast 2012,

Sydney, Australia, p.67

Chaczko, Z. & Aslanzadeh, S. 2011, ‘Cloud Computing for Business: Enablers and

Inhibitors’, International Conference on Management Science And e-Business

Engineering, ICMSBE, IEEE, Jeju Island, South Korea, pp.684-687.

Chaczko, Z., Mahadevan,V., Aslanzadeh, S. & Mcdermid,C. 2011, ‘Availability and

Load Balancing in Cloud Computing’, International Conference on Computer and

Software Modelling, ICCSM 2011, IEEE, Singapore, pp.134-140.

Chaczko, Z. & Aslanzadeh, S. 2011,‘C2EN: Anisotropic Model of Cloud Computing’,

21st International Conference On System Engineering, IEEE, Las Vegas, NV, USA,

pp.467-473.

Chaczko, Z., Chiu, C., Aslanzadeh, S. & Dune, T. 2011, ‘Software Infrastructure for

Wireless Sensor and Actuator Networks’, 21st International Conference On System

Engineering, IEEE, Las Vegas, NV, USA, pp.474-479.

Chaczko, Z., Aslanzadeh,S. & Klempous, R. 2011, ‘Development of Software with

Cloud Computing in 3TZ Team Environment’, 6th International Conference on

Broadband communication & Biomedical application, IEEE, Melbourne, Australia,

pp.284-289.

19 | P a g e

Chapter 2

Literature Review
“Successful engineering is all about understanding how things break or fail.”- Robert A.

Heinlein-(1907-1988)

The chapter reviews the past works that have been done in the field of load balancing in

Cloud Computing. Figure 2.1 presents the high-level mapping of the literature review’s

contents. The literature review reveals the benefits and challenges of the existing

methods and reflects the possible solutions for applying more optimised load balancing

techniques in Cloud-based systems. As observed in Table 1.1 section 1.6, the chapter

provides the fundamental information needed for elaborating the research methodology

design of the thesis.

2.1 Cloud Computing
It was in 1961 that McCarthy introduced a new timesharing computer technology. As

an expert computer scientist, he was the first one who predicted that time sharing would

lead to a more powerful computing model. He stated that in future computing power

will be consumed as a public utility just like water and electricity (McCarthy 1970). His

idea became popular in that time but gradually faded away in 1990. It was again at the

beginning of 20th century that McCarthy’s idea resurfaced in the new form that is

called Cloud Computing today (Georgi & Dalakov 2015).Since 1970, when

mainframes were introduced to IT industry, computing generations have gone through

dramatic changes (Lamb, J. & Cusato 1994). In early 1980, which is also known as

“recessionary phase” in IT industry, personal computers appeared to increase the

efficiency levels of the businesses and individual users by increasing their profitability

in that period (Lazri et al. 2014). In 1990, client-server architecture offered new

capabilities such as LANs to enhance the users' productivity, using the shared networks

model.

20
 |

 P
a

g
e

Fi
gu

re
 2

.1
- L

ite
ra

tu
re

re
vi

ew
 h

ig
h-

le
ve

l m
in

d
m

ap

21 | P a g e

Later, after the birth of the Internet, as a major innovation in IT industry, Internet Of

Things (IOT) was emerged to connect users with the virtual world (Lai Gong et al.

2011). It was in 1990 that John Romkey invented a toaster that could be turned on and

turned off over the Internet. It was the first device that could work over the Internet.

IOT explains the structure of a virtual network which contains physical objects,

controlled via the Internet. IOT saturated the users' lives by providing them with

powerful devices which could sense, communicate and compute the users' need

accurately and quickly (Guicheng & Bingwu 2010). Connecting a variety of things

together, IOT opens a huge source of information for users and helps them with

enhanced data management.

Further, IOT provides scientists with more powerful computing devices along with

real-time data processing and decision making (Suresh et al. 2014).

Inspiring from IOT model, recently fifth novelty in IT industry, named as Cloud

Computing, created a dramatic IT transformation by offering dynamic resource

provisioning to the users. Armbust (2009) in his paper described that “Cloud

Computing refers to both the applications delivered as services over the Internet and

the hardware and systems software in the datacenters that provide those services.”

Figure 2.2 is referenced by KPMG business department, depicting the IT evolution

from main frames to Cloud Computing (KPMG 2011).

Figure 2.2- IT evolution (KPMG 2011)

22 | P a g e

Structured based on “as-a-service” paradigm, Cloud Computing promises the

flexibility, scalability and cost benefits (Patel 2012).

According to Google trends, shown in Figure 2.3, Cloud Computing is a popular

searching item among users. Results illustrate that since 2008, Cloud Computing

became a favourite topic in comparison with Grid computing and Cluster computing.

Figure 2.3- Comparing Cloud Computing, Cluster Computing and Grid Computing
(Modified from Google trend)

Cloud Computing evolved from generations of grid and middleware computing

Technologies. It refers to clusters of computers with the ability of dynamic

provisioning in geographically distributed networks which is customizable on user’s

requirements (Wilken & Colombo 2012).

Cloud Computing is one of the newly emerged innovations in IT which attracted lots

of companies to replace their legacy infrastructure with newly offered technologies of

Cloud (Masiyev et al. 2012). The word “Cloud Computing” is composed of two

different words. “Cloud” is referring to the mesh of infrastructures, the combination of

software and hardware, which provides services for end users. Efficient use of these

infrastructures is ensured by managing the resources in an effective manner (Junjie,

Renjie & Ke 2011).

23 | P a g e

In spite of the common characteristics, Cloud Computing has more significant

advantages over grid computing. The ability of virtualisation in Cloud Computing can

be considered as a prominence of that over Grid computing (Lee & Bingchiang 2011).

Therefore, according to the virtualisation concept, Cloud Computing is often

understood as the collaboration of scalable and elastic virtualized resources that can be

provisioned dynamically over the Internet (Suciu et al. 2013).

According to Buyya (2009), Cloud Computing can be seen as “utility computing”. He

noted that Cloud Computing can offer a variety of services on infrastructure, platform

and software. It allows users to use its services according to their demands without any

constraints. Additionally, the Cloud technology can bring profits for businesses by

saving more money on their IT infrastructures.

The National Institute of Standards and Technology (NIST) defines Cloud Computing

as pool of shared resources that can be configured, provisioned and released easily with

minimum effort from clients and service providers (Mell & Grance 2011). The above

definition highlights the pay-as-you-go model which has a key role in resource

utilisation. The NIST model describes the main characteristics of the Cloud as follow

(Lee, Halunga & Vulpe 2013):

Availability: Users can assign and release the resources easily without long

delays.

Accessibility: Users can access the Cloud services by using devices such as

laptop, mobile and desktops

Resource sharing: Cloud is a pool of shared resources that is shared among

variety of users

Elasticity: Users can scale up/down their networks based on their requirements.

Pay-As-You-Go: Users are charged according to their resource usage.

24 | P a g e

2.1.1 Cloud Characteristics
In Cloud Computing architecture qualities such as “virtualization”, “availability” and

“scalability” are the main factors that make Cloud Computing distinctive from Cluster

and Grid Computing. The details of these specifications are highlighted below:

Virtualization

Virtualisation is one of the main characteristics of the Cloud Computing which enables

multiple servers to run on a single device. In other words, this specification allows

virtual servers to run on a hardware that brings flexibility and resource utilisation

(Qingling & Varela 2011). Moreover, virtualisation reduces the power consumptions,

as the number of the physical servers will be cut down. Studies show that virtualized

servers consume 90% less energy than normal physical servers (Salapura 2012).

Availability

Availability highlights the smart way of resource provisioning that attracts most of the

businesses to change their legacy infrastructure with Cloud Computing.

Cloud Computing enables the newly built entrepreneurs to grow faster by saving costs

on available IT infrastructures and focusing on their core business elements (Gonzalez

& Helvik 2012). Considering all these benefits, it is almost effortless for organisations

to start their businesses without using the Cloud Computing facilities.

Scalability

Scalability provides the organisations with the required services within the enterprises.

Depending on the workload of the organisations, the resources can be under-

provisioned or over-provisioned (Yoo & Dong 2010). Cloud Computing can control the

resource requirements by scalability specifications which help organisations to save a

huge percentage of their budget on IT infrastructure.

25 | P a g e

2.1.2 Cloud Taxonomy
Armbrust (2009) suggests that Cloud Computing can be categorised based on its

capability and accessibility. Considering the accessibility concept, four types of Cloud

Computing have been offered to Cloud users, Figure 2.4 summarises these categories

(Conres 2014).

Public Cloud: Public Cloud enables end-users to benefit from a variety of

services and resources over the Internet. Most of the services in public Cloud

are free, but in some cases, users may be charged according to the “pay-as-you-

go” model (Wang & Xu 2008).

Employing public Cloud, organisations can adapt to unlimited scalability

opportunity which allows scaling their shared resources according to the

requirements (Xu et al. 2013).

Private Cloud: Private Cloud provides an infrastructure which is solely

designed for specific organisations. In this type of Cloud, all the resources and

services are private for that management system. Accordingly, organisations

may use the dedicated hardware which cannot be shared with other parties

(Hongli et al. 2013).

It has been argued that private Cloud is demolishing the real meaning of the

Cloud Computing as sharing; multi-tenancy and scalability are missing in this

type of Cloud (Prabavathy et al. 2013).

Hybrid Cloud: Hybrid Cloud is described as combination of the infrastructures

that organisations own, along with the opportunity of using the public Cloud

benefits when needed (Breiter & Naik 2013). For example, an organisation can

store its critical and secure data on private Cloud that costs more but, on the

other hand, employs public Cloud to benefit from its free services (Naik et al.

2014).

Community Cloud: Community Cloud infrastructure will be shared among

organisations from the same community where the users are less than the

26 | P a g e

number of the public Cloud end-users but more than the number of the private

Cloud clients (Selimi et al. 2014).

Figure 2.4 -Cloud taxonomy

2.1.3 Cloud Architecture
According to the reference architecture of Cloud Computing, Figure 2.5, Cloud

Computing is composed of 5 main components (Buya et al. 2008), (Bojanova et al.

2011), (Chandrane et al. 2010).

Cloud consumer: are the main stakeholders of the Cloud Computing services

who may be billed according to their resource usage.

Cloud auditor: is mainly focusing on validating the security, privacy and

performance specifications of the Cloud systems.

Cloud provider: makes the services available to consumers. Cloud provider has

the responsibility of managing the technical infrastructure, provisioning the

resources and ensuring the privacy and security of the Cloud.

• Internally hosted by one
organisation

• Shared between multiple
external organisations

• Combination of public and
private Cloud

• Use privatly by one
organisation

• Highly virtualizaed using
firewalls

• Open access for public use
• The storage, memeory and

the other resources could
be acceassble via Internet

Public
Cloud

Private
Cloud

Community
Cloud

Hybrid
Cloud

27 | P a g e

Cloud broker: is the intermediate connection between Cloud consumer and

Cloud providers.

Cloud carrier provides the Cloud consumers with the proper access to Cloud

services using the network and telecommunication facilities.

Figure 2.5 -Reference model of Cloud architecture, adopted from, (Buya et al. 2008)

From the above-mentioned components, it can be seen that Cloud provider component

plays a critical role as it is providing users with management services (Yanmei et al.

2011). Resource provisioning and task scheduling can be managed with Cloud provider

components. In Cloud Computing, a task is defined as a minimum unit that should be

allocated on available resources. A job or meta-task also is referred to the sets of tasks

that could be considered for scheduling purposes (Annette et al. 2013). As it is shown

in Figure 2.5, Cloud provider and Cloud broker are working together to schedule the

tasks on proper resources.

The broker then is responsible for scheduling the jobs on recognised and available

resources. Also broker should always be aware of the status and availability of the

resources. Within the Cloud provider component, there is a segment named as “Cloud

stack” which is described in more details in the next section.

28 | P a g e

2.1.4 Cloud Stack
Cloud Computing is composed of a different range of services, Figure 2.6, that are built
on top of another. These services include:

Software as a Service (SaaS)
Platform as a Service (PaaS)
Infrastructure as a Service (IaaS)

Figure 2.6- Cloud stack categorisation, adopted from (Barkat et al. 2014)

2.1.4.1 Infrastructure as a Service (IaaS)
IaaS provides users with the pool of physical and virtual resources such as servers,

computers, hypervisors and VMwares (Annette et al. 2013). Applying the virtualisation

technique, IaaS offers scalability along with strong computation power and more

storage capacity (Wei-Tek, Xin & Balasooriya 2010).

IaaS offers different resources such as storage, network and operating systems on

demand. This helps clients save their budget on buying the infrastructure that may/may

not be used in future within their networks (Metwally, Jarray & Karmouch 2015).

It should be mentioned that IaaS can be accessed via public or private Cloud. Public

Cloud allows users to assign/ release resources on a self-service manner. However, in

private Cloud only users who access the private network are allowed to use the offered

services (Kozlovszkyet al. 2013). Hybrid IaaS also refers to the combination of the

29 | P a g e

private and public Cloud. Hybrid IaaS, in this case, could be more beneficial as it helps

users to save more by benefiting from public shared resources (Tang & Chen 2014).

2.1.4.1.1 Characteristics of IaaS
NIST highlights the main characteristic of IaaS as follow (Mell & Grance 2011):

Different resources such as network and storage are shared as a service.

With virtualisation techniques, multiple users can use a single physical

hardware.

Resources can scale up/down dynamically.

Applying IaaS will be useful if (Kozlovszky et al. 2013):

Scalability is essential for organisation’s networks.

The organisation is newly built and is growing rapidly, so investing on physical

hardware will be costly.

Companies want to minimise their administrative costs and focus more on their

operating investments.

2.1.4.2 Platform as a Service (PaaS)
PaaS helps users to create their customised software. It is also known as “Cloud ware”

which provides a development platform; assists users to design, develop, implement

and test their services on Cloud. Google App engines and Microsoft Azure are popular

examples of PaaS (Wenboet al. 2012).

In Cloud Computing scheduling decision should be made in shortest time as there are

many competitors competing for the available resources. These services can be easily

provided by PaaS. (Abraham 2000).

30 | P a g e

2.1.4.2.1 Characteristics of PaaS
The main characteristics of the PaaS include (Mell & Grance 2011):

PaaS has multi-tenant architecture. In this way, multiple users can work on the

process of applications development simultaneously.

PaaS offers services such as load balancing, utilised task scheduling and

failover techniques.

PaaS plays a key role in software development phase. It provides developers

with workflow management system which is independent of the applied data

source (Gopularam,Yogeesha & Periasamy 2012).

PaaS is useful for the latest agile software development techniques where

multiple developers wish to work on the same development project with an

automated testing procedure.

2.1.4.3 Software as a Service (SaaS)
SaaS provides users with on-demand services. Usually, it deploys on users browsers

and does not need to be installed and maintained individually (Yang et al. 2010).

The software is automatically updated and can be used by multiple users without

buying an additional license. Salesforce and Google maps are examples of this category

(Hong 2010).

2.1.4.3.1 Characteristics of SaaS
Some of the main characteristics of SaaS can be highlighted as (Gibsonet al. 2012):

Online access to different profitable software.

Using SaaS services, companies do not need to buy different licences for their

users.

SaaS is delivered in a one-to-many manner.

SaaS upgrades software versions and handles the software issues automatically.

31 | P a g e

2.2 Cloud Computing: Challenges and Benefits
Cloud Computing offers plenty of benefits to the users. Infinite availability of the

resources, beneficial payment model, scalability and elasticity specifications of the

Cloud networks motivated businesses to change their legacy system with the novel

Cloud infrastructure (Armburts 2009).

Scalability and elasticity can be highlighted as the main benefits of the Cloud

Computing. Scalability enables users to add or remove resources from their networks at

any time. Conversely, elasticity emphasizes on dynamic resource allocations. In fact,

elasticity explains the definition of the "pay-as-you-go" model which is allocating and

releasing the resources according to the user's requirements (Galante & de Bona 2012).

However; Shameem (2013) argues that, although elasticity introduces many benefits to

the users, effective load management is essential to guarantee the availability of the

resources. Table 2.1 summarises the main benefits of the Cloud Computing:

32 | P a g e

Table 2.1- Benefits of the Cloud Computing

Benefit Opportunity

Scalability Add or remove resources on demands

Elasticity Allocate and release resources upon usage

Mobility Accessing the Cloud network is not dependent on
time and location

Low infrastructure cost Helps small businesses to grow sooner

Latest updates in IT Regular updates of the system, implemented by
Cloud providers

Increased data storage Access to large storage capacity for data storage
and backup plan

Disaster recovery Using the virtual backups; recovery will be 4 times
faster than using another system than Cloud

Availability Rapid deployment of the infrastructure to access the
resources

Billing and payment Users will be charged per services based on their
usage

Besides all the above-described benefits, Cloud Computing should be able to address

the different obstacles to ensure an efficient deployment of an elastic, scalable, secure

and reliable platform (Moreno-Vozmediano, Montero & Llorente 2013). Table 2.2

highlights the main issues in the current Cloud systems:

33 | P a g e

Table 2.2 -Challenges in the Cloud Computing

Challenges Opportunity

Interoperability Lack of standards for service portability between
Cloud providers

Security and Privacy Lack of improved techniques in authorisation and
authentication for accessing the users information

Resiliency The ability of the system to provide users with
standard level of services while experiencing faults
and challenges in the system

Reliability The chance of failure in standard period of time

Energy saving Defining a standard metric for effective power usage
and an efficient standard of infrastructure usage

Resource Monitoring Lack of accurate monitoring mechanism using
sensors to collect the data from CPU load, memory
load and etc.

Load Balancing Lack of standard way of load monitoring and load
management for different Cloud applications

Table 2.2 highlighted load balancing as one of the open challenges in Cloud

Computing.

As Cloud Computing has multi-tenancy structure, availability and efficiency of the

resources should be considered as essential foundations of the Cloud architecture that

can be guaranteed by proper load balancing method (Domanal & Reddy 2014).

Recent studies showed that, optimised Cloud Computing could be seen as an elastic

network of resources that are interacting with each other to minimise the waiting time

and utilise the throughput (Ganget al. 2012). Therefore, load balancing and resource

management can be highlighted as one of main concerns in Cloud Computing as they

are impacting the network performance directly.

Next sections will discuss load balancing issues in Cloud Computing in more details.

34 | P a g e

2.3 Load Balancing in Cloud Computing

2.3.1 Load Balancing: Concept, Definition,
Benefits, Challenges
The previous sections reviewed the main theories of Cloud Computing. Considering the

main challenges, load balancing is highlighted as a major characteristic of Cloud

Computing which is still regarded as an open area for research.

As featured in Cloud taxonomy, load balancing can play an important role in public,

private, and hybrid Cloud. Therefore designing an optimised load balancer either in

infrastructure or platform level can optimise the Cloud performance and provide users

with enhanced quality of service (Maarouf, Marzouk & Haqiq 2014).

Load balancing is one of the main concerns in Cloud Computing that has a major

impact on defining the availability of the resources (Mathur & Nishchal 2010).

"Availability" refers to the ubiquitousness of the network information but was always

the main burden in Cloud-based systems (Gupta et al. 2013).

Load balancing plays a key role in optimising the network performance. By proper load

balancing strategy, tasks could be scheduled evenly among available resources which

could lead to a balanced network (Karim, Chen & Miri 2015). The lack of efficient load

balancing tool can result in experiencing a long access time for users. Today with

emerging the new techniques, the service providers are trying to apply the automated

load balancing algorithms to promote the availability and performance of the Cloud

systems (Randles et al. 2010).

Effective load balancing algorithms include the following elements (Kruber, Hogqvist

& Schutt 2011)

Tasks will be distributed evenly between available resources.

Makespan will be minimised.

Resources will have maximum utilisation.

Resource availability will increase.

Network performance will improve.

35 | P a g e

2.3.2 Load Balancing Measurement Criteria
Davein (2005) suggested that load balancing algorithms should be robust enough so

they can be compatible with variety types of applications (Devine et al. 2005).

To design more efficient load balancing algorithms, the following checklists are

suggested (Chiu, Raghavendra & Ng 1989), (Ming & Zu-Kuan 2010), (Pius & Suresh

2015), (Domanal & Reddy 2014).

Complexity: The algorithm should be smart and simple. Complexity can apply

more overhead on an algorithm. Therefore, more resources should be engaged

while algorithm is being executed.

Scalability: The algorithm should be adaptable to the network expansion and

abridgement.

Fault tolerance: The algorithm should be smart enough to handle the load if any

failure happens during the run time.

Performance and makespan: The load balancing algorithm should optimise the

Cloud performance by minimising the total execution time

36 | P a g e

2.3.3 Load Balancing Methods
In general load balancing algorithms are categorised into two main groups (Figure 2.7)

as follows:

Static load balancing: In a static environment, prior information about node

capacity, processing power, memory and performance is needed.

The statistics requirements cannot be changed at run-time. Although the static

environment is much easier for implementing the load balancing algorithms, it

is not suitable for heterogeneous computation models (Ruixia & Xiongfeng

2010).

A simple example of a static algorithm is Round-Robin algorithm. In this

resource scheduling method, the task that comes first will be served first and

based on the time sharing manner the resource that is least loaded will be

allocated to complete the tasks (Zhenzhong et al. 2013).

Dynamic load balancing: In this environment despite the need for prior, like

static environment, the algorithms operate according to the run-time statistics

(Wenhong et al. 2011). These load balancing algorithms are more flexible to

change and they are highly adaptable to Cloud environments.

Figure 2.7 -Load balancing categories

Load Balancing

Static Load
balancing

Centralizaed
vs Distributed

Preemtive vs
non-

Preemtive

Immidiate
vs Batch

mode

Independednt
vs Workflow

Dynamic
Load

balancing

Centralizaed
vs Distributed

Preemtive
vs non-

Preemtive

Immidiate
vs Batch

mode

Independe
dnt vs

Workflow

37 | P a g e

Each of the static or dynamic algorithms could be divided into 4 different categories:

Centralized vs Distributed: Centralized model is designed in a way that it has a

central controller and can store the information of all the resources in a

centralised way. However; the model is not adaptable in terms of network

scalability (Venkatesan & Solomi 2011).

On the other hand, although distributed load balancer does not have any

centralised controller but it can perform well in a case of scalability and fault

tolerance, so it can support elasticity (Vijindra & Shenai 2012).

preemptive algorithm vs non-preemptive: Preemptive algorithms allow

interruptions during algorithm run time. As an example, depending on the tasks

priorities, the algorithm can stop to change the order of the tasks in its queue

(Shobana, Geetha & Suganthe 2014). On the other hand, no interruptions are

allowed in non-preemptive algorithms until all assigned tasks are scheduled on

the available resources (Shameem& Shaji 2013).

Immediate vs batch mode: In immediate mode, as soon as the tasks are assigned

for scheduling, they will be sent to the queue. In batch mode, tasks should be

grouped based on the criteria then the group of tasks will be sent to the

scheduling queue (Donge-sheng et al. 2004).

Independent vs workflow: In workflow modelling the dependencies between

tasks should be investigated before they could be assigned on available

resources (Luo et al. 2012). DAG graphs and Petri nets are the common

languages that can represent the workflow scheduling algorithms.

Independent modelling, however, will schedule the tasks without considering

their interconnectivity (Zhangjun et al. 2010).

38 | P a g e

2.4 Focus of This Research
As previously described various load balancing techniques in Cloud find lots of

interests among members of the research community.

As the focus of this research is on dynamic and specifically on dependent and

independent load balancing algorithms, the rest of this chapter is examining the various

categories of these computational models. The aim is to explore both benefits and

challenges of the traditional approaches as well as new developments in the field.

2.4.1 Load Balancing Algorithms: Independent
vs Dependent
Independent and dependent scheduling methods are considered as the key approach in

terms of load management. Dependent scheduling, however, is attracting more

attentions (Singh 2013).

Dependent scheduling is suitable for those types of tasks with dependent structured

patterns. In these models, each job is composed of several dependent tasks. Therefore,

execution of one task is dependent on another (Tilak & Patil 2012).

Unlike the independent tasks, failures in dependent-tasks execution affect the

performance of the whole system. Currently, there is a lack of effective algorithm that

deals with load balancing on dependent structured jobs (Zhang & De Sterck 2012).

Therefore, to understand the main gaps, in this research a comprehensive literature

review has been done on more popular dependent and independent load balancing

algorithms.

39 | P a g e

2.4.1.1 Dependent Load Balancing Algorithms

Dependent scheduling algorithms are categorised as NP-hard problems which means

that there is no standard algorithm that can generate an optimal solution for all the

scheduling problems (Greenwood 2001). NP is an acronym for the non-deterministic

polynomial. Chapman (1994) in his paper noted that “NP-complete is a class of

problems that has no known efficient algorithm for finding an optimal solution." In

other words, there is no algorithm that can cover the increased steps of the problem

with the polynomial rate. The NP-hard problem is considered as a subset of NP

problems that cannot be resolved with non-deterministic machines (Bernard & Graham

1989).

Dependent scheduling is referring to mapping and managing the inter-dependent tasks

on available resources. Dependent algorithms are mainly designed to help the Cloud

infrastructure for supporting the large distributed collaborative e-business and e-science

applications (Bala 2011). Comparing with e-Business functions, e-science applications

are more data intensive and need large and complex processing methodologies.

Moreover, they are dynamic and need high-performance infrastructures (Jenn-Wei,

Chien-Hung & Chang 2013). In his work, Liu (2013) categorised the dependent

scheduling algorithms into two groups:

Deterministic

Non-Deterministic

With deterministic algorithms, the dependencies of the tasks can be recognised at the

start time. However, in non-deterministic algorithms, the dependencies between tasks

and I/O data will be perceived at the run time (Amoiralis, Tsili & Kladas 2012).

Additionally, dependent scheduling algorithms can be classified into:

Best-efforts (heuristic) scheduling algorithms.

The quality of service (QOS) constraint scheduling algorithms.

The best effort algorithms are trying to minimise the execution time. But they are not

compatible with pay-as-you-go billing model (Peng & Ravindran 2004).

40 | P a g e

On the other hand, QOS-based algorithms are considered for high quality applications.

In this type, tasks will be grouped according to their quality requirements (Liu 2013).

Buyya et al (2008) also divided the dependent scheduling algorithms into two levels:

Functional and non-functional service level scheduling: Analysing the

submitted tasks, the global broker will verify the functional and non-functional

requirements such as quality, time and cost. The broker will use this information

to offer a suitable service for scheduling the tasks on available resources.

Generally the structure of this method is static, and will be executed upon the

runtime.

Task-level scheduling: This methodology is mainly investigating the precedence

of each task before execution. With this method, optimal scheduling plan will

be selected. Task-level scheduling is static and does not need to be implemented

regularly.

Dependent applications can be scheduled with a variety of heuristics algorithms such as

min-min-, max-min, FCFS. However, they need to accurately manage systems by using

more complex scheduling policies in order to satisfy their QOS requirements (Zuo &

Lin 2010).

Therefore, to highlight the main gaps in dependent scheduling methods, we selected

the following major workflow load balancing algorithms (Table 2.4) and compared

them as follows:

Heterogeneous Earliest Finish Time (HEFT): In this method, tasks will be

ranked based on their execution time. Tasks with lower execution time will gain

the highest priority for resource scheduling (Bala et al. 2011). Although the

resource utilisation is inevitable with this method but the low makespan is a

major challenge within this methodology (Sakellariou & Henan 2004).

41 | P a g e

Scalable Heterogeneous Earliest Finish Time (SHEFT): SHEFT is considered as

an extension to HEFT methodology described above. In this method, the earliest

finish time and start time for each task will be calculated. The task with

minimum execution time will be allocated on the first available resource.

Moreover, each resource should have a finishing time (Chopra & Singh 2013).

The earliest finishing time of the allocated task should be earlier than minimum

finishing time of the available resource. In this case, if any of the resources are

kept idle more than a defined threshold then they can be released based on their

timing history (Cui & Shiyong 2011).

Transaction intensive cost-constrained: Similar to market-oriented workflow

algorithms, upon scheduling the tasks on available resources costing and timing

will be considered in this algorithm. The overall goal in this algorithm is to

minimise the execution time under the considered deadline(Yun et al. 2008).

QoS heuristic workflow scheduling (An optimal workflow based scheduling):

The goal of this algorithm is on CPU utilisation. In this algorithm, each task in a

workflow will be analysed according to their start time, finishing time, favourite

processor and favourite predecessor. Then the workflow will produce sub-tasks

for calculated parameters. Finally, based on the resource monitoring factors,

such as time, cost and reliability, tasks will be mapped on available resources. If

the idle resource is not available, tasks will be compacted (Varalakshmi et al.

2011).

A revised discrete particle swarm optimisation: This algorithm considers the

discrete characteristic of PSO to optimise the makespan while minimising the

associated costs. In this algorithm, each particle will learn their best position

locally and globally. The condition for each movement could be defined with

different QoS elements such as deadline, budget or data transfer rate (Nguyen &

Mengjie 2014). Due to the discrete property of scheduling, each particle will

learn from its previous position which should be the highest value in global

position (gbest). Then all the unmapped tasks will be chosen from other

42 | P a g e

particles and finally the gbest of the particle will be the optimal order for the

task (Zhangjun et al. 2010).

Deadline constrained workflow scheduling in software as a service: This

algorithm mainly is trying to minimise the execution time by meeting the

deadlines based on QoS requirements. In this algorithm, workflow tasks will be

scheduled by following the concept of the partial critical path. The algorithm

will use recursive scheduling, using the path that tasks were previously

scheduled (Abrishami & Naghibzadeh 2012).

Deadline and budget constraint: Most of the scheduling algorithms are trying to

schedule the tasks on budget and time. But it is hard to satisfy these two

requirements together. Therefore, Wang et al (2011) suggested a new method

which is adding a new metric named as relative cost (RC) to the algorithm. In

their method, resources are assumed heterogeneous and will be ordered on their

time-cost. Tasks will be allocated on the first available resource where cost and

time are less or equal to the remaining budget and deadline.

Dynamic critical path: This algorithm will determine the efficient mapping of

the tasks based on the "Dynamic Critical Path" definitions. In this algorithm,

tasks will be prioritised on their estimated completion time. Scalability and fault

tolerance is not considered in this algorithm (Rahman et al. 2007).

A practical swarm optimisation based heuristic for workflow scheduling: In this

heuristic algorithm computation cost and data transmission cost should be

considered. Each task has its own communication cost, which could be

considered as a weight for each task. Using this methodology, the workflow

makespan will be minimised (Pandey et al. 2010).

Genetic Algorithm: GA algorithm is one of the evolutionary algorithms which

is inspired by evolutionary biology. In this algorithm, the solutions are shown

with strings known as a chromosome. Three main operations such as selection,

43 | P a g e

crossover, and mutation will be conducted on each group of chromosomes. This

algorithm is mainly focusing on minimising the makespan and costs (Sawant

2011).

Table 2.3 summarises the details of the above-mentioned algorithms.

44 | P a g e

Table 2.3- Summary of the reviewed dependent scheduling algorithms

Load balancing
algorithm

Static/Dynamic Benefits Challenges

HEFT Static Makespan will be
improved

Scalability and
resource utilisations
are not considered
within this
algorithm.

SHEFT Dynamic Optimise execution
time

Overhead will be
added to pre-
calculating the
start/finish time for
the tasks

Transaction-
intensive cost
constrained

Static Minimise cost
based on considered
time

Only will consider
the in-time task
scheduling
processes

QoS heuristic
workflow
scheduling

Static CPU utilisation is
achieved through
applying different
parameters of QoS

Trustworthiness
and fault tolerance
are not considered
in this algorithm.

A practical
swarm
optimisation-
based heuristic

Dynamic Makespan will be
minimised.

Scalability and fault
tolerance is not
considered.

Deadline
Constrained
workflow
scheduling in
software as a
service

Dynamic Minimise cost
while meeting the
deadlines.
Minimise
makespan.

Complex algorithm.
Computation cost
of the algorithm is
high

Deadline and
budget
constraint:

Static Suitable for large
scale distributed
systems.

Do not consider
communication and
execution cost of
the tasks

Dynamic Critical
Path

Dynamic Tasks will be
prioritised base on
their completion
time

Do not consider
scalability and fault
tolerance

Discrete particle
swarm
optimisation

Dynamic Minimise cost
Better performance
on makespan

Fault tolerance is
not considered in
this algorithm.

Genetic
Algorithm

Minimising the
makespan and costs

Fault tolerance is
not considered

45 | P a g e

2.4.1.2 Independent Load Balancing Algorithms

Below, the main independent load balancing algorithms are defined. Table 2.4 includes

the benefits and challenges of the explored algorithms.

Round robin: This algorithm is considered as a static load balancing algorithm.

Round robin operates based on the time spans assigned to each node. With this

algorithm traffic will be distributed evenly. However, as the algorithm is static,

it cannot manage the network’s load in a real-time manner (Radojevic & Zagar

2011).

Dynamic round robin: This algorithm is an improved model of Round Robin

algorithm. In this model, the tasks execution sequence will be recorded

automatically based on the current status of the network.

The algorithm is creating less overhead than Round-Robin algorithm and it can

improve the response time. However, it has low performance in busy

environments (Batcher & Walker 2008).

Signature patterning: This algorithm works with different time-slots. It captures

signatures from executed tasks and resources to make patterns.

The pattern will show the precise resource status and it has a certain threshold.

If the patterns show that the resource reached its threshold, based on the

captured signatures, the load will be distributed on less overloaded nodes

(Ramaswamy 2009).

Task consolidation algorithm: The algorithm will operate dynamically

according to the heuristic methodologies. Different components will be

considered for the task allocations. Eventually tasks will be assigned on

resources that are most cost effective and more energy efficient.

This algorithm is only suitable for local Clouds and cannot support large scale

networks (Gaikwad-patil 2012).

46 | P a g e

Dynamic replication algorithm: In this method, algorithm will try to replicate

the files on local servers. In this case, when users want to access a file, they

could find it on the local server. Using this method the access time would be

minimised (Gaikwad-patil 2012).

Map Reduce: This algorithm has two main functionalities:

Firstly, all the jobs will be divided (Mapped) into subtasks. Each subtask will

have its own key ID. In next step, all the IDs would be converted to hash keys.

Then, the reduce function will do an operational summary on each sub-groups

with their hash IDs and it will generate a single output (Nurain et al. 2012).

In final stage, a central node is dedicated to compare all the generated single

outputs and assign them on available resources. The only problem with this

algorithm is related to its overhead. As mapping and reduction step can be done

in parallel, nodes might be overloaded (Dongjin & Kwang-Mong 2012).

Ant colony: In this algorithm, ants will move forward to find the first under-

loaded resource. If the ant finds the first under-loaded server, it will move

forward to check the next server status. If the next resource is under- loaded as

well, it will move forward to find the last under-loaded resource. Otherwise, the

ant will move backward from overloaded node to the previously available

resource (Kun et al. 2011).

Index name server: The algorithm will minimise the data replication and data

redundancy. Based on the maximum transition time and bandwidth, the

algorithm will do some calculations to find an optimum server for task

scheduling. In this algorithm, the connection weight between server and nodes

will be calculated to clarify whether the server can handle more nodes or not

(Swarnkar 2013).

Min-Min: In this algorithm, minimum completion time for each task will be

calculated. Then the task with the overall minimum completion time will be

47 | P a g e

selected. The same iteration will happen until all the tasks are allocated on

available resources (Shu-Ching et al. 2010).

Max-Min: In this algorithm, minimum completion time for each task will be

calculated. Then the task with maximum completion time will be assigned to

the first available resource. The iteration will continue until all tasks are

assigned on the available resources (Manish and Cheema 2012).

Artificial bee colony: This algorithm is designed according to the behaviour of

the honey bees.

In this model three main components exist: Employed honey bees, un-employed

honey bees and food sources. Bees will start looking for the food source

randomly and they will record the information related to the location of the

source and its profits. Then they will start gathering honey and returning back to

their hives (He & Jia 2012). At this stage, bees can get back to the same source

to gather the remaining honey or they can remain idle.

In terms of load balancing when requests are submitted to the load balancer, at

first its profit should be analysed. Generally the CPU time and waiting time will

be measured for this matter. This information will be recorded in the database.

Then if beneficial, tasks will be assigned on selected resource (Haozheng et al.

2012).

The discrete version of PSO (DPSO): PSO is a type of evolutionary algorithm

that works base on the velocity and portion of the particles. Each particle has a

local memory that memorises its velocity and position. Additionally the particle

can learn from its adjusted velocity. In this case by each movement based on the

velocity location, limited between (-1, 0, 1), the position of the particle will be

updated. If the v = 1 , particle will learn the new position from its

neighbour, if v = 0, there will be no change in the position and if v = 1,

particle will learn from its past movement (Pandey et al. 2010).

48 | P a g e

Table 2.4- Summary of the reviewed independent algorithm

Load balancing
algorithm

Static/Dynamic Benefits Challenges

Round Robin Static Distribute the
traffic evenly
based on time
slices

Real-time load
cannot be considered
Longer waiting time

Dynamic Round
Robin

Dynamic Minimise the
waiting time
Minimise
response time

The performance of
the algorithm is low

Signature
patterning

Dynamic Resource status
and allocation are
managed precisely

Extra overhead will
be added due to
pattern capturing and
comparison

Task
Consolidation
algorithm

Dynamic Cost effective
Energy efficient

It could be applied on
local Clouds

Replication
algorithm

Dynamic Improve access
time

Does not support pre-
replication and fault
tolerance

Map Reduce Dynamic Suitable for large
distributed
networks

Due to parallel
processing, nodes
can be overloaded

Ant Colony Dynamic It uses meta-
heuristic approach

In-effective resource
utilisation is needed

Index Name
Server

Dynamic Minimise the
waiting time
Improved fault
tolerance plan

Extra overhead will
be added on servers
due to connectivity
calculation

Min-Min Improve
availability

Cannot support fault
tolerance

Max-Min Minimise the
waiting time

Cannot support fault
tolerance

Artificial bee
Colony

Dynamic Suitable for
scalability

System throughput
cannot be fully
optimised

DPSO Improved availability
of the resources
Suitable for elasticity
and scalability
purposes

Fault tolerance can
be supported
Resources cannot be
fully optimised

49 | P a g e

2.5 The Quest of This Research
This section contains reviews of the key concepts of the load balancing in Cloud. As

the main focus of this dissertation is on dependent and independent load balancing

algorithms, to highlight the certain path of this study from reviewed dependent and

independent load balancing techniques, we have selected workflow scheduling and

replication methodology as the main targets of this research.

Considering these two concepts, to be aligned with the hypothesis of this research, the

anticipatory approach will be embedded in these two techniques. Therefore, the next

section describes the anticipatory method followed by revealing the open issues in

workflow scheduling and replication strategies.

2.5.1 The Anticipatory Approach

As indicated in the hypothesis of this research, the aim is to design an optimised load

balancing computational model with the anticipatory behaviour blueprints. The

following sections are describing the anticipatory concept in more details.

Although the words anticipation and predictions are considered to be synonyms, they

have clear distinctive meaning. Prediction is illustrating a specific future event while

anticipation is a future-oriented action which is applying productivity to complete the

essential actions (Pezzulo et al 2008).

According to Rosen (1985) anticipatory system has the predictive functionality which

makes the system aware of the instant changes. Anticipatory systems are cable of

optimising the behaviour of the system with predictive functionality. These systems are

aware of the future changes. Therefore with different variations, they can predict the

behaviour needed to keep the systems performance stable (Kitajima, Goto & Jingde

2008).

Anticipatory behaviour is describing the future states of the systems by considering the

past events. According to Butz (2008) the anticipatory behaviour not only considers

the past predictions but also examines the present and future expectations of the system.

50 | P a g e

Although most of the anticipatory behaviours have same functional structures, they are

different in terms of objectives and purposes.

Anticipation is structured based on predictive functionality. It is essentially important

for cognitive systems as it can analyse the future actions and decisions of the system.

A popular example of an anticipatory system is weather forecasting (Hayashi, Spencer

& Nasuto 2013).

As illustrated above, the anticipatory approach is architected based on predictive

models. The prediction approaches are the most important components of a successful

anticipatory system.

Different sources exist for designing anticipatory model. The main type of this model

which is mainly used in our research is the statistical prediction. This model is

methodized based on statistical analysis. Applying soft computing algorithms such as

neural networks, the model is able to examine the past events to anticipate the future

path (Kadim 2007).

There are two types of anticipations (Miyake, Onishi & Popper 2003):

1. Effect anticipation: In this model which is a goal oriented, there should exist a

goal which can result in action by a controlled anticipation.

2. Trigger anticipation: The model needs essential circumstances to trigger an

anticipation that can result in an action.

In this research both of the anticipatory behaviours have been applied in the

experimental designs.

51 | P a g e

2.5.2 Workflow Scheduling
Workflow management system is one of the main concepts that help researchers

improve their work on large scale applications. In workflow management, task

scheduling and load balancing were always the major concerns.

With emerging the new distributed technologies such as Cloud Computing, there is a

need for a more powerful computational model that can optimise the task scheduling

and load balancing in workflow structured models. Thus, variety of workflow

scheduling algorithms have been designed and implemented. However, still there are

many challenges that remain open in the area of workflow management (Deelman &

Chervenak 2008)

Yu et al (2005) presented a comprehensive workflow management survey which

highlights different approaches for building a workflow management system.

Bahsi et al (2007) presented a conditional workflow management that analyses the

workflow’s structure with "while, if and switch". They were emphasising on the

conditional structure that controls the data flow and resource management in workflow

applications.

Yu et al (2008) proposed heuristic workflow scheduling algorithm with the aim of

optimising the quality of service (QoS) in an intensive workflow application.

The heuristic algorithm that was highlighted in this research could optimise the load

balancing based on the deadlines and budget.

Kwok & Ahmad (1999) also recommended a static workflow scheduling technique for

scheduling the directed acrylic graphs which are functioning based on the message

passing features.

In workflow applications, scheduling could happen either on tasks level or jobs level.

In task level, resources will be allocated based on the dependencies and properties of

each task (Blythe et al. 2005). However, in job level scheduling, the combination of the

different tasks should be allocated on a computing resource. The overall computing

power and usage requirements will help the scheduler to select the available resources.

52 | P a g e

Different research works have been conducted that analyse the performance of the

workflow scheduling on tasks level and jobs level.

Feo et al (1995) have applied greedy randomise adaptive concept which applies

scheduling on task level. The algorithm is functioning based on the min-min heuristic

algorithm and it is aware of any environmental changes. The result of the research

optimised the total workflow execution time.

Extending this work, Braun et al (2001) noticed that during the task transfer, some of

the resources should wait and be in a standby status before they could receive tasks to

start processing. Therefore, they have optimised the min-min algorithm by

recommending a weighted min-min approach that considers the idle status of the

resources. Jobs will be allocated on those resources that have the minimum weights.

The weight is calculated by counting the total idle time and the completion time of the

job (Yihonget et al. 2013). Their results show that the job-level approach has a better

performance compared to task level approach.

Before Cloud Computing, most of the workflow applications were executed on a Grid

and Clusters network. Deelman et al (2003) presented a simulation study which showed

that executing the workflow applications with small data size, the storage cost is much

higher than CPU cost. They have used an astronomy data intensive application which is

called montage. They have concluded that for implementing the data-intensive

applications, Cloud Computing is the best option.

Broberg et al (2009) introduced a new tool called MetaCDN, which uses ‘storage Cloud'

to execute the tasks with low costs and high performance.

Brandic et al (2008) presented a workflow scheduling algorithm which considers the

resource failure during the workflow execution. Their results showed that the failure

and recovery time could increase the performance and reliability of the Cloud based-

systems.

53 | P a g e

2.5.3 Replication Strategy
Varieties of independent methodologies have been proposed by researchers to optimise

the load balancing in Cloud systems. Among these techniques in this research, we are

focusing on dynamic replication method which is considered as one of the efficient

load balancing optimisation methods in Cloud systems.

Replication is one of the initial methods that have been applied in distributed

environments. In Cloud systems, due to the geographic distance of the sites, replication

methods could copy the replicas and distribute them among sites. This procedure

provides users with higher access speed and more balanced and reliable system

(Rajalakshmi et al. 2014).

Tang et al (2005) proposed two replication algorithms, simple bottom up and

aggregated bottom up. In these methods, based on the file’s access popularities, files

are selected from down level to up.

On the other hand, Shorfuzzaman et al (2008) suggested an algorithm that had the same

functionality like the Tang's algorithm, but it had two phases: in first step it aggregated

the files' access histories. In the second step it examined the access history catalogue to

find out the popularity of the files and pre-replicate them from up to bottom layer. The

results of the algorithm minimised the total execution time of the tasks by 10%.

In another paper Sashi & Thanamani (2011) designed an algorithm that balances the load

by minimising the number of the replications. So in this method which is called

“Modified BHR”, based on the access frequency of the files, it tries to pre-replicate the

files in the local region. This method reduced the unnecessary replication by storing the

required replicas on local sites rather than distributing them among existing sites.

Griffioen & Appleton (1995) recommended another replication algorithm which is

functioning based on graph probability. When the first file is accessed the counting

number of that file is increased. After accessing the second file, a connection edge

between first and second file will be created. The result of this pre-replication

methodology optimised the load balancing architecture by increasing the fault tolerance

of the system.

54 | P a g e

In another paper by Kroegar & Darrell (1999), an algorithm called Finite Multi-order

context has been proposed which was an improvement on previously explained

algorithm. FMOC architecture is based on tree structure where each node represents the

files that have been accessed first. The children of those nodes are depicting the files

that have been accessed after their parents. Comparing this method with previous

technique, FMOC divides the access files in different tree structures. Therefore, if there

is no space for adding the file in the tree, the new nodes will be ignored which is the

main issue of this algorithm.

Lamehamedi & Szymanski (2007), proposed a new replication algorithm which

minimises the access rate by optimising the network bandwidth usage. The method

works based on file’s access patterns in terms of timing. Chang (2008) also proposed an

algorithm which is called latest access largest weight. The method applies greater

weight to the latest accessed file. By this technique, those files with greater weight will

be selected first for pre-replications.

Lei et al (2008) recommended a dynamic replication strategy. In their method files are

replicated according to their access numbers, size and the network condition.

In a similar algorithm, Tungnguyen et al (2010) recommended a cost saving algorithm

which pre-replicates the files with less estimated costs.

Ghilavizadeh et al (2013) noted a novel dynamic real-time algorithm that pre-replicates

the files based on the network performance and workload patterns. In this method,

authors are emphasising on the workload types which have a great impact on selecting

the replicas to optimise the load balancing.

Among the proposed replication methods, there were few methods which presented the

pre-replication approach in Cloud Computing.

55 | P a g e

2.5.4 Research Issues

2.5.4.1 Workflow Scheduling
Table 2.5 summarises the highlighted works that have been done for improving the load

balancing in workflow scheduling models. Analysing the pros and cons of the selected

workflow scheduling algorithms, most of the algorithms were focusing on optimising

the performance of the system while completing the workflow execution. However, in

workflow structure applications, interconnected dependencies exist between available

tasks. Therefore, it is essential to consider the load flow fluctuations among the existing

tasks.

With the emergence of the new technology of Cloud Computing, soon most of the data-

intensive and scientific applications will run on Cloud-based systems (Pattanaik, Roy &

Pattnaik 2015). However, due to the high-cost associated with deployment of these

algorithms, a need exists for designing a new algorithm that is aware of the existing

load between dependent tasks. Therefore, in this thesis we are highlighting the

magnitude and direction of the existing load between interconnects tasks to determine

the optimised method of load balancing in workflow applications.

2.5.4.2 Replication Methodology
Evaluating the pros and cons of the mentioned replication techniques, although the

proposed methods have had a great impact on optimising the load balancing in Cloud-

based systems, a more robust replication method is required. The new method will be

capable of predicting the future needs of the users so it can pre-replicate the files before

the requests have been submitted for them. Applying this concept, the response time

would be minimised as the system is more balanced and files could be accessed locally.

Table 2.6 summarises the reviewed replication methodologies and highlights their pros

and cons.

56 | P a g e

Table 2.5- Summary of the reviewed workflow scheduling algorithms

Authors Pros Cons
Bahsi et al
(2007)

Applies conditional
structure that can control the
data flow and resource
management

Complex algorithm structure
More CPU usage

Yu et al
(2008)

Applies budget and deadline
as QOS metrics

More bandwidth consumption

Kwok (1999) Applies message passing
functionality in directed
acrylic graphs

Did not consider the
interrelations of the tasks

Blythe et al
(2005)

Applies message passing in
task level/job level
scheduling

More CPU and memory usage
in job level scheduling

Feo et al 1995 Applies greedy randomize
algorithm
Adaptive to environmental
changes
Minimised total tasks
execution time

High bandwidth usage
Did not consider the tasks
interdependency

Braun et al
2001

Applies weighted min-min
Aware of the resource status

High memory usage for storing
the resource status

Deelman et al
2003

Applies montage structure
workflow to minimise the
storage cost in Cloud
Computing

Montage CPU usage is much
higher than storage cost

Broberg et al
2009

Applies MetaCDN tool for
managing the workflow task
with minimum makespan

The tool is not practical for
high volume data

Brandic et al
2008

Applies resource failure
monitoring
Resulted in high availability
and performance

More bandwidth consumption
Did not consider the tasks
dependencies
Only focuses on resource
failure

57 | P a g e

Table 2.6- Summary of the reviewed replications methodologies

Pros Cons
Tang et al 2005 Applies simple bottom up

and aggregation bottom
up method.
Makespan is minimised

More CPU usage
More bandwidth
consumption

Shorfuzzaman et al
2008

Pre-replicas are chosen
based on access histories
Total execution time is
minimised by 10%

Did not consider the
effective network usage
More bandwidth
consumption

Sashi et al 2011 Minimised the number of
the replicas by pre-locating
them on local servers

More memory usage

Griffioen et al 1995 Applies graph probability
function along with fault
tolerance capability

More numbers of created
replicas
Replicas were chosen only
based on access histories

Kroegar et al 1999 Applies tree structures
where each node represents
the first files that have been
accessed and the children
of that node are depicting
the files that have been
accessed right after their
parents

If there is no space for
adding the file in the tree,
the new nodes will be
ignored which is the main
issue of this algorithm

Lamehamedi et al
2007

Applies different file
access patterns
Minimised access rate
Minimised bandwidth
consumption

More memory usage is
needed for storing the
access patterns

Chang et al (2008) Greater weight is applied to
the latest accessed file
which will be selected as a
target pre-replica

More memory and CPU
usage
Did not consider the
effective network usage

Lei et al (2008) Select those replicas that
have been accessed more
along with minimum file
size and more optimised
network condition

More complex algorithm
More CPU usage

Tungnguyen et al
2010

Pre-replicates the files with
less estimated costs

More bandwidth
consumptions

Ghilavizadeh et al
2013

Select the replicas based on
network performance

More CPU usage

58 | P a g e

2.6 Summary
In this chapter, we reviewed the main concepts of Cloud Computing and the existing

challenges within this newly emerged technology.

Focusing on load balancing concerns, a variety of techniques have been proposed by

researchers to improve the load balancing issues in Cloud-based systems. Among these

methodologies, this research tries to optimise the load balancing issue through

workflow scheduling techniques and replication strategies.

We listed and explained the details of each existing algorithms to highlight the

capabilities and inefficiencies of the proposed works. According to the literature

review, it is clear that most of the proposed workflow scheduling algorithms were

trying to optimise the makespan by only focusing on specific tasks and jobs without

considering their inter-relationships characteristics.

Also, it was observed that replication strategies have been applied in Cloud-based

systems to optimise the response time by only considering the currently submitted

tasks.

As the volume of the data is growing rapidly, in Cloud Computing there is a need to

manage the load more efficiently. Therefore in this chapter we discovered the potential

load balancing methods that could optimise the performance and load balancing of the

Cloud-based systems. The rest of the chapters are trying to apply the findings through

case studies and experiments.

59 | P a g e

Chapter 3

Research Methodology
 “Software is a great combination between artistry and engineering.” Bill Gates-1955-

This chapter details out the research methodology of the current study. It explains the

methodology adopted for this review. The research topic focuses on a range of aspects

within the issues of the load balancing and task scheduling in Cloud Computing. In

order to explore these aspects, the proposed methodology employed heuristic analysis

with mathematical modelling approaches to improve the existing load balancing

challenges in Cloud Computing.

3.1 Research Design
The quantitative approach is known as "true science" and it applies traditional

mathematical and analytical approaches to analyse the results.

In Quantities research approaches, hypothesis will be generated to be proved as a result

of the experiments (Erzberger 2001). Therefore, the approach has been selected as a

research design for this study. Quantitative approach evaluates the existing challenges

based on the available facts and the information gathered from the literature review.

The hypothesis should be provable by mathematical and analytical methods which are

generally shaping the experiments needed during the study. Additionally quantitative

research will construct the study in a manner that allows other users to repeat the

experiments and generate the similar results (Wittenberg, Tashakkori & Teddlie 2000).

Research questions and hypothesis of this study have been explained in chapter 1-

Introduction of this thesis. To validate the hypothesis, two experimental scenarios and

a research action study have been explored.

60 | P a g e

The first experiment applies the tensor mathematical analysis. As a result, STEM-PSO

algorithm has been designed to validate the defined hypothesis. The aim of the

mathematical approach is to apply tensor analysis on workflow scheduling models to

predict the magnitude and direction of the load changes.

The second experiment adopts replication strategy to design a smart anticipatory

replication algorithm that pre-replicates the files for addressing the future needs. The

experiment employs heuristic approaches to optimise the load balancing in Cloud

Computing through replication strategy. The aim of the mathematical application is to

apply pre-replication strategy to anticipate the future needs of the sites .The approach

pre-replictaes the files with high access probability and it minimises the access delays

by reducing the makespan.

3.2 Research Method
The research methodology that has been adopted in this thesis combines the theoretical

concepts with experimental evaluation, resulted from simulations through

programming.

When dealing with scalability and massive size of the real Cloud infrastructures,

simulations can assist in testing the proposed approaches in a smaller scale

environment.

In the first experiment, Java Runtime Environment 8.0 has been selected for

implementing the STEM-PSO design. Java is a useful high-level programming

language which makes simulation much easier by providing the developers with useful

existing classes and libraries.

To implement the proposed replication strategy, Cloudsim has been adopted for this

research. The code has been modified and provisioning policies have been added.

Cloudsim is an open source simulation tool, which initially has been developed by the

University of Melbourne and is useful for implementing the Cloud-based case studies.

61 | P a g e

It consists of various components and graphical designs that makes the Cloud

applications modelling much easier (Belalem, Tayeb & Zaoui 2010), (Chen et al.

2015). Additionally different Cloud enterprises are using Cloudsim to simulate and test

their ideas before implementing them in a large scale Cloud environment.

HP is one these companies that is using Cloudsim for their Cloud research

investigations (Calheiros et al. 2011).

Cloudsim is an extensible toolkit that enables Cloud users to simulate their provisioning

models in a simulated Cloud environment. Figure 3.1 is depicting the high-level

overview of the Cloudsim architecture.

Clousim is composed of three main elements: Data centres, Virtual machines (VMs)

and provisioning policies. By employing the console interface, users can easily modify

or add more provisioning policies. Additionally the tool is compatible with federated

Cloud environment.

Figure 3.1 - Cloudsim architecture (Adopted from Calheiros 2011)

62 | P a g e

3.2.1 Research Rules
As the aim of this research is to optimise the load balancing methods in Cloud-based

systems, a certain research rules have been followed in this thesis which is described

below:

1. Conduct a systematic literature review to study the previously proposed methods.

This step helps to understand the general concept of the load balancing combined

with investigating the existing limitations within other proposed load balancing

approaches in Cloud-based systems.

2. Architect a theoretical model to solve the load balancing issues observed from

step 1. This step highlights the focus of the thesis by formulating the hypothesis

and developing the research questions.

3. Model and validate the theoretical model through programming and analyses the

outcome results. This step designs the experiments needed to validate the

theoretical model followed by implementations procedure. The expected

outcomes could validate the hypothesis.

3.3 Modelling Approaches
For modelling behaviour of the load balancing in Cloud infrastructure, a combination

of white-box and black-box modelling has been selected (Liefsson et al. 2008):

3.3.1 Black-box Modelling Approaches
Black-box modelling approach, mathematically explains the connections between input

data and output data for a specific process. In other words, black-box approach models

the system’s functionality by depicting the relationships between inputs and output

results. Hence, in black-box modelling, there is no need to understand the theoretical

details of the existing system.

63 | P a g e

Researchers applied black-box modelling in their experiments to understand the

systems' behaviour. The only concern about this model is related to black-box

limitation for only using the current information that have been implanted in the

system. Thus, the external objects outside the derived modelling data will not be

considered in black-box modelling approaches.

3.3.2 White-Box Modelling Approaches
White box modelling methods are applied at the very beginning of the system designs.

It considers both the external components and the internal elements that the system

needs to deal with. In fact, white box modelling designs the comprehensive

experimentations by applying the given hypothesis and principals of the existing

system. The only concerns about white-box modelling approach could be explained as

uncertainties and assumptions that are not considered in this phase. This limitation

could have a negative impact on predictability of the model.

3.3.3 Gray-Box Modelling Approach
Combination of the black-box modelling approach and the white-box modelling

approach will result in hybrid gray-box modelling approach that improves the

prediction capability of this model over black-box or white-box modelling. The reason

is that, using the singular model, they only focus internal and/or external factors. Hence

applying the hybrid approach, predictability will be enhanced by considering both

internal and external factors. Kruchten et al (2006) suggested that the combined

approaches will improve the computation path which results in enhancing the data

integration methods for more accurate results.

As discussed above the aim of the gray-box modelling approach is to provide the

precise optimisation model in Cloud Computing for real-time operational process.

Gray-box will create a two-way relationship between white box and black box

modelling approaches. White-box modelling approach will depict the actual knowledge

needed to model the required experiments while black-box modelling applies this

knowledge to design the internal specifications needed to model the internal elements

64 | P a g e

of the actual experiments. Figure 3.2 is depicting the hybrid approach applied to the

context of this thesis

Figure 3.2 - Thesis modelling approaches (Adopted from DTU compute website)

Combination of the black-box and white-box modelling approaches assist in

recognising the resources, tasks scheduling policies and protocols to ensure the

robustness and reliability of the system.

As Leifsson et al. (2008) noted, Gray-box approaches could be divided to two different

methods.

1. Serial gray approach

2. Parallel gray approach

In this research, we have applied serial gray-box approach which is initiating with

black-box approach by modelling and pre-processing the internal elements needed for

designing the system. The data then outputted toward white-box modelling.

Serial gray-box modelling approach is known as general regression model which

applies to the systems that their details are not clear and needs further improvements.

An example of this could be explained as obtaining the task scheduling structures and

highlighting the overall system health status such as bandwidth, memory rate and ….

These elements could be captured with black-box elements and outputted toward white-

box modelling approach to estimate the timespan needed to schedule the tasks. Then

the estimate can be used to monitor the task scheduling and control the resources

needed to optimise the system’s load balancing.

White-Box Black-Box

White-Box+
Black Box

Input ---- Output

 DATA

Deterministic
equation

65 | P a g e

3.4 Experimental Methodologies Overview

3.4.1 Anticipatory Approach
In this research, the experiments are designed based on anticipatory behaviour concept.

The purpose of anticipatory system is to have predictive model which is aware of the

system and the environmental changes. With this awareness, the system can anticipate

the future changes and thus apply proper behaviour to adapt instantly to the coming

changes. The details of the experiments are illustrated in section below.

3.4.2 Spring Tensor Model
Advancement of ICT technology created variety of computational methods that

could be applied in large-scale network systems. Within these novel

computational approaches, coarse-grained methods are playing more critical role

as they can deploy the experiments that can be executed over time scales which

touches far beyond the network simulation capacity boundary (Jihoon et al.

2013).

Recently several coarse-grained approaches have been designed to help

researchers study the complex networks where computer simulations are not

feasible in that field (Wan et al. 2015).

Elastic network models (ENM) are considered as the main models of coarse-

grained approaches. Among available ENM approaches, Normal mode analysis,

Gaussian network model (GNM) and Anisotropic network model (ANM) are

commonly used in different research projects (Cheng et al. 2012),(Vande Sande

& Hameyer 2002).

Basically, GNM was adopted to show the dynamics of the proteins and then later

it was officially applied to amino-acid level. GNM is able to predict the direction

of the dynamics; however it can't recognise the magnitude of the elements

fluctuations (Atoui, Verron & Kobi 2015).

On the other hand, reviewing the ANM capabilities, it is able to predict the

66 | P a g e

magnitude of the dynamics but it’s not accurate enough in analysing the direction

of the motions. Recent studies tried to combine GNM and ANM methods to use

their both advantages (Sinitskiy & Voth 2013). As a result, they come up with a

method called Generalise Spring Tensor model (STEM).

STEM is able to calculate the magnitude and direction of the motions; it is

applied in large complex protein biomolecular structures where internal motions

and relationships between large protein networks could be explored. (Clementi et

al. 2000).

Generally STEM is inspired from GO-Like model, where nodes in a network are

simulating the Ca atoms and they are connected to each other with a spring

where there is only one degree of freedom between two connected nodes

(Kalimeri, Derreumaux, & Sterpone 2015). This fact could be explained as

expansion and compression motion of the spring. By providing the interactions

between two nodes (e.g i and j), STEM algorithm is overcoming the deficiencies

associated with GNM and ANM model (Kimura et al. 2006).

Additionally to the interactions between springs, STEM is able to consider the

torsional interactions and objects bending which explain the magnitude

predictions capability of the algorithm.

Besides all the advantages of the STEM algorithm the main disadvantage is

related to the complexity of this method. As STEM observes the behaviour of the

interconnected nodes in a whole network rather than a single section, more

complexity will be added to the system (Liang & Song, 2010).

3.4.2.1 Mathematical Apparatus
Generalized Spring Tensor model analyses the magnitude and direction of the

load by applying the Force constant Hessian H model. Figure 3.3, is depicting a

simple sub-network where 2 nodes i and j are connected and = (, ,) and

= (, ,) are the positions of these nodes.

67 | P a g e

The distance vector between two nodes of i and j are shown as and

equilibrium position of and node is depicted as and . Moreover,

is showing the equilibrium distance between node i and j and represent

the instantaneous range between i and j. Also and is showing the

instantaneous fluctuation vectors. If we consider as spring constant, then the

harmonic potential between two nodes can be defined as:= () (3.1)

Then by applying the 2nd derivatives of the harmonic potential, is calculated

as: = ()
(3.2)

= ()() (3.3)

The hessian matrix defines the force constant of the system as the second partial

derivative of potential:

= [] (3.4)

The Hessian matrix which has 3N×3N element can be divided to N×N super

elements where each element is 3×3 tensor.

= , ,
, , (3.5)

Figure 3.3- Elastic sub-network model

68 | P a g e

Each element of is a 3×3 matrix that holds the tensor information. The

element is depicting the interaction tensor between i and j.

= [] (3.6)

Generally the off-diagonal super elements are calculated by:

, = ,
(3.7)

Each element of the diagonal super elements can be calculated as:

, = ,, (3.8)

The is considered as spring constant where:

, , (3.9)

To find out the information about the fluctuations, hessian matrix will be

inversed which shows the covariance matrix of the 3N multi-variant Gaussian

distribution.

If define the pseudo inverse of the hessian then the correlation between

different residue can be defined from inverse hessian matrix:

< . > = (, + , + ,) (3.10)

By examining the tensorial model; chapter 5 explores the load balancing scenario

by applying STEM - PSO algorithm on workflow applications.

The quantitative analysis will define the magnitude and fluctuation of the load

between non-neighbouring tasks in workflow applications and provides a global

awareness in terms of task scheduling model (Chaczko et al. 2009).

69 | P a g e

3.4.3 Anticipatory Replication Methodology

In the second experiment of this study replication methodology have been applied to

improve the load balancing in Cloud Computing. The aim is to pre-replicate the files

with high access probability. Therefore whenever there is a need for accessing these

files, they would be accessed locally.

The method is structured based on the following details:

Step 1: Each site has its own replica manager. There is also a central replication

manager which monitors the sites' access and data catalogue. The central replication

manager will store the files name and the numbers of the time that the file has been

accessed.

Step 2: When a site finds that it needs a data file which is not stored locally, it askes the

central replication manger to replicate the file from the available sites. Then the central

replication manager will perform heuristic A* search algorithm in the data catalogue to

find out the site that has the target files. A* is a popular heuristic algorithm, that can

find the shortest path in the tree structure with minimum cost. Then between available

sites the one that has the minimum bandwidth will be selected:

 = (3.11)
Step 3: This phase explains the replacement procedure. After replicating the files, they

should be transferred to the site that was requesting the file. If the site has enough

memory the file can be added easily, otherwise replacement procedure should be

initiated. In replacement phase, Most Recent Used (MRU) technique has been applied

which emphasises on removing the old files from the site.

So if:

(Current time) - (last access time) > threshold old (3.12)

Then the old file will be replaced with a newly created replica. If still there is not

enough space for the newly created replica, this replacement procedure should be

70 | P a g e

repeated until enough space created (Nader-uz-zaman et al, 2014). The details of the

pre-replication methodology can be found in chapter 6 of this thesis.

3.5 Summary of the Chapter
The chapter reviewed the main research methodologies that have been applied for

validating the hypothesis of the thesis.

Quantitative approaches have been selected as the main research design of the

experimental work. Applying the heuristic techniques along with mathematical

apparatus was the main approach of justifying the hypothesis.

STEM-PSO, the first experiment, has been implemented through Java programming by

employing the heuristic libraries embedded in Java Runtime Environment 8.0.

Furthermore, Cloudsim an open source Cloud simulation tool was adopted for the

second experiment and extended to justify the proposed replication strategy

implementation. In this simulation tool, the scheduling policies functions have been re-

coded again to satisfy the anticipatory specifications of the algorithm.

As a modelling approach, gray –box modelling have been chosen which engaged both

white-box and black-box modelling phases. Gray-box modelling is creating two-way

relationships between white box and black box method.

White-box modelling is architecting the actual knowledge to model the external

components of the experiment while black-box modelling uses this knowledge to

model the internal elements of the experimental design.

71 | P a g e

Chapter 4

Research Action Study

“Information theory began as a bridge from mathematics to electrical engineering and from
there to computing.”- James Gleick-1954

Availability plays an important role in Cloud-based systems. In Cloud Computing

analysis of resource availability is typically performed by comparison of information

abundance against resource scaling. In Cloud Computing load, balancing is a method

utilised by various data centres to avoid unavailability of the network. This is achieved

through the reduction in software failures, and decrease in computer hardware usage.

This chapter discusses the impact of load balancing on availability in Cloud

Computing. The chapter depicts a novel load monitoring tool in the context of a case

study named as Hospital Data Management (HDM). Furthermore, the case study reviles

the lack of optimised load balancer algorithm when dealing with a large number of

users accessing the HDM simultaneously.

As Figure 1.1 in chapter 1 (section 1.6) showed, the case study data pattern have been

refined to be used for proposed load balancing optimisation methods in chapter 5 and 6

of this research work.

4.1 Introduction
Availability of Cloud systems is becoming of the main issues and challenges in

systems that heavily rely on software for their operations. Services of Cloud systems

can be interrupted for several reasons. Among these, power outages, energy/resource

conservation and avoiding potential service invasion have a critical role (Hasan et al.

2012). Fundamentally availability determines the time during which the system is

online and performing as required. It defines the timespan between failures and the

time it takes for the system to recover and resume its normal operation following the

occurrence of a failure (Chavan & Kaveri 2015).

72 | P a g e

Evaluation of availability can be performed using parameters such as current

information, prediction of future usage patterns and dynamic resource scaling.

In order to reduce the possibility of outages, that could negatively impact the Cloud

services, load balancing and redundant mirrored databases techniques in clusters,

applied across multiple availability zones to mitigate the issue (Nadeem et al. 2008).

The role of the load balancer is to accommodate transfer to a different available

resource.

There are multiple benefits of applying load balancing techniques in the area of

Cloud Computing. These include the reduction in costs associated with document

management systems and the increase in availability of resources. The latter can

reduce the negative impact on businesses by decreasing the downtime during an

outage (Bonvin, Papaioannou & Aberer 2010).

In this chapter, the importance of load balancing is discussed and it is demonstrated

how it can improve and maintain the availability of the Cloud systems. Further, a

load monitoring tool is introduced as a case study that uses the message-oriented

middleware with application of a web-service oriented model.

4.2 Load Balancing
Typically Cloud vendors chose to implement automatic load balancing mechanisms

into their service delivery system (Jain et al. 2013). This approach allows the

numbers of resources to be adjusted with changing the demand levels. In well

managed Cloud infrastructure, load balancing functions is not an option it’s a must

(Sarmila, Gnanambigai & Dinadayalan 2015).

The goal of the load balancers is two folds: the primary goal is to promote the

availability and service provisioning of the Cloud resources, and the secondary

goal is to improve the performance if needed and depending on the entities needs

(Shahapure & Jayarekha 2014).

73 | P a g e

Over the years, there have been substantial improvements in load balancing

techniques. Load balancers have been developing different priorities in order to

increase the efficiency and performance of the distributed and multithreaded

systems (Soni et al. 2014). Three basic load balancing models are used in most of

the Cloud services: Server Availability model, IP Traffic Management model and

Priority Queue model (Maguluri, Srikant & Lei 2012).

The Server Availability model works based on a mechanism that determines the

first available server that can be utilised. Besides servers, Server Availability

model can be applied to any resources (Vilutis et al. 2012). This is also the case for

the other two models. Figure 4.1 shows the Server Availability model in a

diagrammatic format.

Figure 4.1-Server availability model (Chaczko et al. 2014)

In this model, availability is defined as when the server is not fully utilised and is

ready/able to accept and process additional requests. There are, however, cases

when a server is fully utilised and cannot accept additional requests. In such cases,

the load balancer will search for the next available server (Saravanakumar & Arun

2012).

The second model,IP Address Traffic Management, considers the principal that the

greater the distance (path) to the server, the longer time for the data to travel. This

in turn can create issues with the transmission of the data packets. Therefore, the

model works based on identifying the closest server available to accept the request

74 | P a g e

(JungYul et al. 2010). The model also ensures that the identified server can be

associated with a download website using mirror sites. As a result, users are

provided with a proper service at the nearby server that produces acceptable

performance rather than one in a different region.

The third model, Priority Queues, works by sorting requests into categories. The

categorised requests are then allocated to specific queues and a priority level is

assigned to each queue (Das, Pinotti & Sarkar 1996). Services are provided and

resources are allocated according to the priority of requests; i.e. the higher priority

requests are processed first. The priority of resources is tied to the rank of

utilisation in each network relative to other resources. The rank of utilisation is

determined based on a response time, latency and utilisation of the network

devices (Hoyer et al. 1995).

The load balancing models described above not only can be used individually but

also can be combined to create hybrid models. For example, Figure 4.2 shows a

diagrammatic representation of a hybrid model that combines the priorities and the

IP traffic management features of the last two models (Ozcan & Bora 2011).

Figure 4.2- Hybrid load balancing model (Chaczko et al. 2014)

75 | P a g e

In the hybrid scenario, a request is received by the load balancer. The load balancer

narrows down the server options based on the server address proximity to the

location of the requestor. In this case, server 1, 2 and 3 are the closest. Because

server 2 is fully utilised, the load balancer passes the request to server 1 or 3 which

have not fully utilised their resources.

In this scenario applying the closer IP address management will increase the

availability and performance of the system.

4.3 Presence
The load balancing models described above have been developed for internal networks.

In such networks, the IP address of each server and the required communication

protocols are known. Use of these models in a Cloud Computing environment,

however, raises some concerns. This includes identity and trust. Entities that are active

in a Cloud environment have no means of knowing other entities and how to take

advantage of their services (Wegscheider, Bessle & Gruber 2005). A solution to address

the above issues is the use of presence. Using the presence protocol, Cloud entities can

communicate easily with servers and make them aware of their existence. IETF’s

RFC3920 - Extensible Messaging and Presence Protocol abbreviated as XMPP (IETF

2010) have been implemented to reflect this communication concept (Xingchen et al

2012).

XMPP technology is open and used widely, mainly due to its application in online

instant messaging programs (Grubitzsch & Schuster 2014). It allows for real-time

communication between parties. The key, however, is the use of presence. A general

overview of how XMPP works is presented below.

XMPP clients provide XMPP presence servers with the presence information. XMPP

presence servers store XML streams which contain the details of presence information

of clients. XMPP clients can directly access these XML streams. In other words, they

can receive presence information associated with other specific XMPP clients (Ming-

Ke & Yaw-Chung 2014).

76 | P a g e

Presence information, distributed in XML streams, contains a presence state,

addressing information and protocols to use the advertised service, if applicable.

Addressing information is typically in the form of IP address, port number and domain

name (Sqalli & Sirajuddin 2005). The information related to offered services can be

recorded in more than one entry for multiple services using XML markup. Presence

state information was initially a Boolean on/off status. It has now developed into

multiple statuses showing an entity's ability to accept incoming requests (Saint-Andre

2009). These statuses, in instant messaging, are categorised as online, busy, away, do

not disturb and offline. Cloud entities implementing this protocol can advertise their

services with an additional status indicator or metric. This indicator or metric will allow

other entities to determine if their requests will be fulfilled promptly.

In Cloud Computing, presence information can be used to determine the availability of

the Cloud entities and also for monitoring purposes. XMPP servers store presence

information and process incoming and outgoing requests. Adding a load balancer to an

XMPP server provides the means for prioritising incoming requests and handling them

by a generic service rather than a specific entity (Hornsby & Walsh 2010).

Clustered databases are a clear example that utilise a shared-everything architecture and

provide a copy of the data on each database node. In this case, applications requiring

such services do not benefit from using a specific node, as the information provided is

the same on different nodes (Zhen, Guo & Tracey 2007).

In addition to the previously mentioned functions, XMPP serves the common function

of messaging. Resources advertise through an XMPP host in order to establish

communication with it. Exchanging messages is similar to SMTP; i.e. messages are

sent to the servers that deliver them to the intended recipients or the recipient's server

(Hao, Binxing & Xiaochun 2006).

Messaging in a common format facilitates communication among any resource. It also

establishes as how the corresponding services can be used. There could be cases of

resources on another Cloud network that do not implement XMPP. In such cases,

usually a gateway can be used to translate XMPP to a foreign protocol in order to

77 | P a g e

establish communications. Establishing communication with foreign networks is

referred to as federation. Leveraging XMPP, in this case, will provide efficient resource

monitoring with a more effective metric collection which could result in optimised load

balancing (Huichao & Yongqiang 2012).

Presence information is standard only to some extent. Additional pieces of information,

however, need to be included to cover deeper metrics such as CPU utilisation, memory

utilisation, dynamic scaling, response time and network utilisation. These collected

metrics will result in best quality of service which could also depict the availability

view of the Cloud resource (Pawara et al. 2013).

4.4 Cloud Metrics
One of the main characteristics in Cloud is scalability. Cloud services are able to

dynamically scale based on the real-time requirements. If utilisation is excessive and

beyond certain thresholds, the load balancer will usually have the option of enabling

dynamic scaling for resources (Zheng et al. 2012). Depending on their requirements,

utilisation thresholds can be linked to the previously mentioned metrics as well as many

others. Load balancers can take advantage of the metric indicating the ability to

dynamically scale and continue sending direct requests to these resources (Fiandrino et

al. 2015).

If the Cloud metric indicates that a resource cannot scale, more emphasis will be placed

on the other metrics. The type of the resource is important in determining what metrics

is relevant to study. Observing these metrics can also reveal the costs associated with

fulfilling a request (Hataba et al. 2012).

A traditional approach with regards to load balancing monitoring solutions for the

Cloud has been a generic, high-level kind of approach. This, however, is not an

appropriate way of dealing with such matters (Iskander et al. 2014).

These monitoring solutions lump all transactions together and consider application

performance as a whole. Therefore, other factors such as background tasks that can

78 | P a g e

affect overall performance are ignored. Those with the ability to monitor transactions

would only collect response times.

Transaction level metrics can determine if the load balancing is operating efficiently or

more resources are needed or specific transactions should be isolated (Aceto et al.

2012). Isolating the specific transactions using metrics other than response time, allows

for analysis of the transaction in terms of CPU cycles and memory. These are far better

indicators to decide on load balancing.

Additionally, optimised load balancing can highlight the activity based costing.

Activity based costing is a concept used in accounting. Through this concept,

organisations record the costs associated with the normal business activity cycle.

Subsequently, these costs can be linked to projects and business groups. Activity based

costing, if combined with traced analysis, can be applied on load balancer architecture

in the Cloud. This would allow for a better understanding of the resources utilisation

(Chaczko et al. 2011).

Each Cloud entity could have metrics to be collected for further analysis. Monitoring

the transactions performed by individual and group entities allows better utilisation of

memory and improved CPU usage. It also provides an improved utilisation of the

network interface connecting to the entity. This would increase availability and

utilisation of the resource through the entiresystem (Chaczko & Aslanzadeh 2011).

The concept of trace analysis, described here, provides a complete picture of the overall

design of the possible load balancer and its components. The increased metrics would

be very small in size and required only for intensive transactions (Shuang et al. 2014).

From a cost standpoint, however, all utilised resources should be linked to the

corresponding transaction, i.e. a number of CPU cycles utilised at each point. This is

because the total cost would equal to a significant amount.

Load monitoring is still a very new concept, which needs to be analysed at the

transaction level within all entities. This includes resources and the connections

between the resources.

79 | P a g e

All the Cloud transactions should be monitored by load balancer components. This

would allow for unusual transactions to be identified, analysed and reported (Shao et al.

2015). Consequently, availability can be increased properly where needed and financial

burden associated with scaling can be reduced, thus benefitting the resource owner.

4.5 The Case Study: HDM Load Monitoring
Considering the Cloud metrics and presence protocol described earlier, in this section a

new load monitoring tool is proposed which is auditing the Cloud load in a transaction

level.

The load balancer is embedded in a hospital data management Cloud system.

The case study is divided into two sections. The first part is describing the details of

the novel load balancer embedded in HDM system for load monitoring. The second

section, however, proves that the load balancing applied in HDM system is not

optimised when dealing with large numbers of users accessing HDM simultaneously.

Consequently, the data analysis results have been refined and applied for proposed load

balancing optimisation approaches in chapter 5 and chapter 6.

The Hospital Data Management (HDM) system is trying to optimise the data retrieval

from multiple Clouds federated database. Figure 4.3 shows the HDM system as a

separate entity relative to other databases, either in the same Cloud or different Cloud

systems.

 Figure 4.3- HDM System

80 | P a g e

Figure 4.4- Conceptual architecture, Data CentricModel (Chaczko et al. 2011)

The HDM system will proactively scale database resources to increase availability.

This is achieved by identifying usage patterns from past data.

Every doctors and nurse will have access to the HDM system. The system will be used

for retrieval of patient data including various types of images such as scans, x-rays,

audios and videos. Figure 4.4 shows the data-centric model of the HDM system.

The HDM system will allow users to retrieve their data without considering their

location and time. This requires the system to be able to efficiently access data from

different databases located on different nodes. The details of HDM system is provided

in appendix, chapter 9 of this thesis.

Figure 4.5 is depicting the high-level design of the HDM database. The Resource

manager class is the main component which is monitoring the load of the system. The

core class is the entry class that starts the system and initialises the resource manager

activities.

81 | P a g e

Figure 4.5- High-level HDM database design

4.5.1 Load Monitoring Tool
This section is highlighting a new load monitoring tool embedded in HDM Cloud

system.

In HDM system by applying the presence protocol, the resource management

component, is acting as a load balancer to allocate more resources where high

availability of the resources matter (Figure 4.6).

82 | P a g e

Figure 4.6- HDM load balancing model (Chaczko et al. 2011)

Resource manager updates the status of all the resources. Figure 4.7 shows the snapshot

of a resource manager while monitoring the vital status of all the resources. The load-

balancing package selects the highest resource according to the resource priority.

Resources are continuously monitored for availability and performance. Based on these

two factors, the resource table is updated. This is achieved by calculating the new

priorities with significant changes in their availability and performance. High

performing resources are favoured and moved to a higher priority. Meantime, a priority

of l00 is assigned to unavailable resources, which means they will never be utilised.

In this resource monitoring component, the incorporated IP address traffic management

model will observe the closest IP address to the server requestor. IP address,

availability and performance metrics could each be given a weighted importance to

calculate the resources that should be allocated to the requestor.

83 | P a g e

Figure 4.7- System health monitoring UI

Moreover, the resource management component can visualise the health status of all

the monitored resources. Health is determined by considering response time, utilisation

and data rate. A health colour is displayed according to traffic light indicators. Green

health means a highly available resource while red health means low availability. If the

status of the resource is coloured with white (not shown in this figure) it means that the

resource is not available.

Utilising the load balancer functionality, allows the most available resources to be

accessible by users and as a result data access time will be decreased dramatically.

4.5.2 HDM Load Tolerance
To test the load balancing function of the HDM system, we have applied load testing

tools to generate virtual traffics on HDM system.

4.5.2.1 Testing Tool
Load tolerance testing process consists of two main components, load testing tool and

page analyser that are described below:

Load testing tools are designed to simulate online traffic generated by users. The tool

creates virtual users who are trying to access the HDM system simultaneously. Also,

the tool can capture the speed of the page in terms of loading time from the server. This

84 | P a g e

feature allows the infrastructure team to understand how fast the HDM can response to

users’ requests. (Kamra et al. 2012).

3 main types of load tests can be conducted on HDM systems which are described as

follow:

Fixed – in this test the load remain static throughout the test.

Ramp-up – in this test, load starts from a low level and will increase gradually

till it reaches it’s maximum capacity.

Timeout – In this test, the load will start with high level till server goes too

slow.

4.5.2.2 Page Analyser
The aim of the page analyser is to replicate a scenario where a user is trying to open a

HDM page in a browser. It will then order all the web objects by their loading time. It

provides all these information in a statistics format.

Page analyser is using colour coding to represent the following components:

Timespan for the first byte (green)

Timespan for waiting tasks in queue (gray)

Timespan for downloading the objects (blue)

Timespan for connection time (yellow)

DNS lookup time (orange)

This section illustrates all the load balancing tests that were conducted on the HDM

Cloud based system. It tests the capability of the installed server for 4 different sets of

users with a common scenario where:

All virtual users are trying to access the website in 10 minutes.

All users have access to the same content on the website.

The tests have been conducted 10 times to ensure the reliability of the results for

creating a valuable benchmark.

5 VMs with the same properties have been used in all the test scenarios. (Table

4.1)

85 | P a g e

For testing scenarios 10, 20, 50 and 100 virtual users are generated to create traffic on

HDM servers. Each user tries to access medical contents which include: image.gif,

application.Java script, image.vnd, text.htmal, text.css.

The next section depicts the results of the experiment followed by the tabulated

analysis of the results.

Table 4.1- VM properties

VM ID VM

Name

VM

IMAGE

SIZE

VM

MEMORY

MIP CPU

NUMBER

Bandwidth

1 XEN 1,000 256 250 2 1,000

2 XEN 1,000 512 250 2 1,000

3 XEN 1,000 256 300 2 1,000

4 XEN 1,000 512 250 2 1,000

5 XEN 1,000 512 250 2 1,000

86 | P a g e

4.5.2.3 Load Test-10 Virtual Users

4.5.2.3.1 10 Users-Load time vs Clients Active

Figure 4.8- Load time vs clients active - 10 virtual users

4.5.2.3.2 10 Users - Number of the Active
Requests vs Clients Active

Figure 4.9- Requests per second vs clients active – 10 virtual users

87 | P a g e

4.5.2.3.3 10 Users - HDM Content Type Distribution

Figure 4.10- HDM content type distribution - 10 virtual users

4.5.2.3.4 10 Users HDM Content Load Distribution

Figure 4.11-HDM content load distribution - 10 virtual users

88 | P a g e

4.5.2.4 Load Test - 20 Virtual Users

4.5.2.4.1 20 Users-Load Time Vs Clients Active

Figure 4.12- Load time vs clients active - 20 virtual users

4.5.2.4.2 20 Users- Number of the Active Requests Vs
Clients Active

Figure 4.13- Requests per second vs clients active – 20 virtual users

89 | P a g e

4.5.2.4.3 20 Users - HDM Content Type Distribution

Figure 4.14- HDM content type distribution - 20 virtual users

4.5.2.4.4 20 Users HDM Content Load Distribution

Figure 4.15- HDM content load distribution -20 virtual users

90 | P a g e

4.5.2.5 Load Test - 50 Virtual Users

4.5.2.5.1 50 Users-Load Time Vs Clients Active

Figure 4.16- Load time vs clients active - 50 virtual users

4.5.2.5.2 50 Users -Number of the Active Requests vs
Clients Active

Figure 4.17- Requests per second vs clients active – 50 virtual users

91 | P a g e

4.5.2.5.3 50 Users- HDM Content Type Distribution

Figure 4.18-HDM content type distribution - 50 virtual users

4.5.2.5.4 50 Users HDM Content Load Distribution

Figure 4.19- HDM content load distribution -50 virtual users

92 | P a g e

4.5.2.6 Load Test - 100 Virtual Users

4.5.2.6.1 100 Users-Load Time Vs Clients Active

Figure 4.20-Load time vs clients active - 100 virtual users

4.5.2.6.2 100 Users- Number of the Active Requests
Vs Clients Active

Figure 4.21- Requests per second vs clients active – 100 virtual users

93 | P a g e

4.5.2.6.3 100 Users - HDM Content Type
Distribution

Figure 4.22- HDM content type distribution - 100 virtual users

4.5.2.6.4 100 Users HDM Content Load
Distribution

Figure 4.23 - HDM content load distribution - 100 virtual users

94 | P a g e

4.5.2.7 Results Analysis

4.5.2.7.1 Average Load Time Results
Tabulated representation of the average results for the load times is as follow.

Table 4.2- Summary of No. of clients vs average load time

No. of clients Average Load Time for 10 tests
(seconds)

10 0.315

20 4

50 44

100 109

As table 4.2 shows, it is clear that for 50 and 100 users who were trying to access the

HDM simultaneously the recorded time is 44 seconds and 109 seconds respectively

which is highly unappropriated for HDM performance.

Furthermore, while 20 users were trying to access HDM simultaneously, the average

load time was recorded as 4 seconds which is barely acceptable.

These results may indicate that HDM did not have any efficient load balancer to

distribute the load evenly.

4.5.2.7.2 HDM Content Type Distribution
Results

The results for the HDM content type distribution (shown in table 4.3) for the load

tests were observed to retain the same content type distribution percentages for the

10 tests conducted for each of the 10, 20 and 50 virtual users accessing the HDM

system simultaneously:

95 | P a g e

Table 4.3-HDM content type distribution results – 10, 20, 50, 100 virtual users

Content Type Average
content type
distribution
results (%)
with 10 users

Average
content type
distribution
results (%)
with 20 users

Average
content type
distribution
results (%)
with 50 users

Average
content type
distribution
results (%)
with 100 users

Image/gif 14.29 14.29 14.29 12.50

Text/css 28.57 28.57 28.57 25.00

Text/html 14.29 14.29 14.29 12.50

Image/vnd.microsoft.icon 14.29 14.29 14.29 12.50

Application/JavaScript 28.57 28.57 28.57 25.00

Image/gif 14.29 14.29 14.29 12.50

Image/gif: 14.29%

Text/html: 14.29%

Text/css: 28.57%

Image/vnd.microsoft.icon: 14.29%

Application/ JavaScript: 28.57%

These results are in fact expected to be constant as all the scenarios are to access

the same system which would indicate that the same data contents should be

loaded for all the tests. However, for the load test that had 100 users connected

showed a discrepancy when compared to the other three tests, where an Unknown

segment was indicated by the load test tool.

A possible cause for this issue could be highlighted by the server timeout event

which resulted in termination of the requests and left the process incomplete.

Another possibility could be related to the lack of efficient load balancer which

caused the server to get overloaded and could not retrieve the data that users

requested.

96 | P a g e

4.5.2.7.3 HDM Content Load Distribution
Results

Table 4.4-HDM average content type load time distribution results – 10, 20, 50, 100 virtual
users

Content Type Average
content type
distribution
results (%)
with 10 users

Average
content type
distribution
results (%)
with 20 users

Average
content type
distribution
results (%)
with 50 users

Average
content type
distribution
results (%)
with 100
users

Image/gif 4.80 0.11 0.02 0

Text/css 13.76 0.49 0.06 0.02

Text/html 62.04 98.88 99.88 99.96

Image/vnd.microsoft.icon 1.98 0.07 0.01 0

Application/ JavaScript 17.42 0.45 0.04 0

As the results show (table 4.4), the average content type distribution for all the users

are different from each other. Among the results, the test with 10 users was

inacceptable but the load time was tolerable based on the available content.

However, for the subsequent content, it is clear that the distribution was only

dependent on Text/html processing where it didn’t allow other contents to get

loaded.

As the numbers of the users grow, the processing time for Text/html loading also

increases. This is a clear proof that there is a lack of efficient load balancer that can

distribute the load evenly. Also, table 4.8 indicates that the average user load times

conducted in the tests were directly affected by the html load time. Thus, if this html

load time issue is solved, it is expected that the average user load time also

decreases.

97 | P a g e

Table 4.5- Average user load time vs average html load time

No. of clients Average load time for

text/html

10 0.08

20 3

50 42

100 108

500 380

4.6 Overall Analysis and Proposed Solution

The results and analysis presented in the previous section depicts the need for

optimising the load balancer functionality in HDM Cloud system.

Adding more virtual users to the system the result of the average load time was linear.

Therefore, if more users were added on the system, the average wait time would

increase forcefully.

To address this need, two algorithms have been proposed in chapter 5 and chapter 6

which can optimise the load balancing issues.

The following concepts have been verified in experimental chapters. The captured

results prove a dramatic improvement in load balancing behaviour:

Applying STEM-PSO algorithm for workflow scheduling in Cloud Computing,

chapter 5.

Applying anticipatory replication algorithm, for pre-replicating the files with

high access probability, chapter 6.

The research action study provides the experimental section with refined data set

patterns that include the image.gif, image.vnd, text.html and text.css.

In chapter 5, as workflow data set was needed, the HDM data set pattern was refined

and used as the data input for Pegasus software to generate the workflow model with

size of 64 kb to 1024 kb.

98 | P a g e

In the second experiment, chapter 6, for replication purposes the same pattern of the

HDM set have been applied. A job in replication scenario contains images and texts

which were replicated in 100 copies and size were refined according to the scenarios.

Details of the experiment have been illustrated in chapter 5 and chapter 6 of this thesis.

4.7 Conclusion
This chapter discussed applying load balancing techniques to improve resource

utilisation and availability in Cloud Computing environment.

There are different scheduling models and policies that can be embedded into load

balancers infrastructure. These, however, should be according to the scenario that the

load balancer will be used for.

Designing an optimised load balancer, the network structure or topology should be

taken into consideration which could result in a different range of prices. Use of

message oriented architecture as a middleware model was shown to improve the load

balancing in distributed networks. Utilisation of messaging techniques, XMPP, allowed

resources to be monitored efficiently. It also enhanced the availability of the Cloud

resources.

In this chapter as a case study, HDM system was investigated. In the first part, a novel

load monitoring tool was depicted. Applying the presence protocol, the load balancer is

capable of capturing the health status of the resources. Therefore, it could optimise the

load balancing by distributing the load evenly between available resources. As a result,

minimum access time could be achieved.

In the second part, load tolerance of the system was tested through simulation. 10, 20,

50, and 100 virtual users were created to use the HDM system simultaneously.

Analysing the load, the access time for these users were increased dramatically which

made the resources unstable. Therefore as a solution, two load balancing optimisation

methods have been proposed in chapter 5 and 6. The case study provided the required

data patterns to be applied in experimental sections of this dissertation.

99 | P a g e

II. Contribution to Research

100 | P a g e

Chapter 5

STEM-PSO Based Task Scheduling
Algorithm

“The engineering is secondary to the vision.”- Cynthia Ozick-1928

In this chapter, a new load balancing algorithm is introduced that applies “Generalized

Spring Tensor” (STEM) model and Particle Swarm Optimisation (PSO) to optimise the

total execution time of tasks in the workflow applications.

The key objective of applying the PSO method is to minimise the total tasks execution

time by verifying the load fluctuations of the interconnected tasks. The variance of the

algorithm considers factors such as load variations (fluctuations) and optimisation of

the data retrieval time.

The proposed model is validated by applying five workflow structures with different

data block sizes. The results are compared with HEFT (Heterogeneous Earliest Finish

Time) algorithm that is described in chapter 2, section 2.4.1.2.

The outcome of the experiment confirms the suitability of the optimisation method:

1. Makespan can be 2 times efficient compared to “HEFT”.

2. Better CPU and Memory usage can be achieved than “HEFT”.

101 | P a g e

5.1 Introduction
This chapter describes the design of the heuristic algorithm that uses PSO and STEM

(described in chapter 3, section 3.4.2). The model optimises the load balancing method

by minimising the total execution time.

In the Cloud architecture, in order to manage the allocated tasks, there is an application

scheduler designed to balance the workload between available resources. By analysing

the memory usage, processing duration and data access time, application schedulers

maximise the resource utilisation.

As discussed in previous chapters, various algorithms have been designed for optimal

load distribution between available resources. Particle Swarm Optimisation (PSO) is

one of the load balancing algorithms that was introduced by (Kennedy & Eberhart

1995).The algorithm is focusing on the social behaviour of the particles in one

population. Each particle obtains the best local position and the best global position in

the entire population.

In the proposed method, each task considers as a single particle in a larger population.

Chosen particles are controlled by their velocity, direction and magnitude. The novelty

of the proposed model can be highlighted by projecting the load fluctuations between

the parent tasks and the child tasks in a workflow application. This load aims to project

the optimal mapping of the tasks on available resources.

The experiment presented in this chapter combines PSO model and STEM algorithm to

project the global perception of the workflow application load. The analysis aims to

distinguish the fluctuation of the load between dependent tasks in a workflow

application. The results of the experiment confirm the applicability of the STEM-PSO

model in Cloud Computing domain.

102 | P a g e

5.2 Load Balancing Problem Formulation
In Cloud Computing, load balancing is one of the major challenges that play an

important role in defining the performance of the Cloud system. Without having an

effective load balancer, some resources will be under-utilised and some of them will be

over-utilised. Hence, to design a competent balanced system, main elements such as

load estimation, load comparison and interaction between tasks and resources should be

considered.

As mentioned earlier, the main objective of our experiment is to minimise the total

workflow execution time which includes minimising the makespan element by

considering the load fluctuations between dependent tasks.

Workflow applications enable users to perform their multi-step processing task.

Workflow patterns have been applied in different scientific fields that mainly help users

to retrieve and analyse workflow data in the shortest time.

Workflow model captures the hierarchical order of the tasks’ execution. In order to

formulate our optimised load balancing model, workflow application is examined as a

Directed Acyclic Graph as shown in Figure 5.1 on page 103.

In the presented graph, the nodes define the tasks and the edges denote the

dependencies between tasks and their neighbours. is a root task. It generates input

data for , the child task.

In this experiment, for creating workflow data inputs we have used open source

software called Pegasus. Pegasus is adapted to generate workflow schemas. The

schemes have been used for testing the algorithm. Depending on the environment such

as desktop, grid or Cloud, Pegasus creates different workflow applications that can be

easily executed. Pegasus automatically provides the data required for tasks executions

(Lee et al. 2008).

103 | P a g e

Figure 5.1- Example of workflow modelling

The model of the algorithm is formulated using the following parameters:

The graph is presented as = (,).= {1,2, … } shows the set of tasks where is the number of tasks.= denotes the load weight and the information exchange between task

and . presents the load weight between task and .

We consider , = {1,2,3, … } as the bandwidth value between two nodes,

where is explaining the number of nodes.= {1,2, … , } represents k computing resources. indicates the amount of data that the task assigning to processor .

 and are the processors memory and CPU capacity.

Based on the introduced value in above section we calculate:

 () = (5.1)

denotes the task execution time where is 1 if task is assigned to processor

otherwise 0

The total task transferring time can be presented as equation (5.2) where is

1 if task is assigned to processor k (1) and task is assigned to processor for scheduling otherwise 0.() = (5.2)

104 | P a g e

To validate the performance, in our proposed method, by calculating the load

fluctuation as (described in details in next section) we aim to minimise the total

execution time (equation 5.3): () = () + () + () (5.3)

Subject to = 1, = 1, …
= 1, , = 1,2, . . , ,

, {0,1}, , , ,
As explained above equation (5.1) and (5.2) are representing the total task execution

time and total task transforming time. Considering these two factors, equation (5.3) is

trying to minimize the total task execution and transformation time by considering the

fluctuation of the load calculated through STEM algorithm.

5.3 STEM-PSO Scheduling Algorithm
In this section, the proposed STEM-PSO is described in details. The algorithm aims to

minimise the total execution time by optimising the particle swarm technique using

generalized spring tensor model.

5.3.1 Particle Swarm Optimisation
Particle Swarm Optimisation (PSO) is a heuristic algorithm proposed by Kennedy &

Eberhart (1995). PSO was imitated by the social behaviour of birds and it was initially

applied for balancing the weights in the neural network, but soon it was recognized as a

great optimiser.

In a PSO scenario, different populations exist. Each population consists of diverse

particles or individuals with magnitude and direction. Particles also have a fitness value

that will be evaluated and optimised in each generation. The performance of the

particles could be easily measured by their fitness value (Elshamy 2012).

105 | P a g e

The particles know their best local position () and the best position among the

entire population (). Considering the particle’s and , in each

movement, the particles will adjust their own current position and velocity .

It should be mentioned that particles’ positions and velocity are initiated randomly.

Applying equation (5.4) and (5.5) the position and velocity of the particles will be

updated respectively (Clerc 2006).

= + + () (5.4)= + (5.5) depicts the velocity of the particle i in iteration k while explains the velocity

of particle i at iteration k+1. Position of the particle at iteration k and k+1 are shown as , .

1, 2 are cognitive learning factor and indicates the inertia weight while and are random numbers between 0 and 1.

In our case, we explain the particles as the individual tasks that should be scheduled on

available resources and the dimension of the particles are representing the number of

the total tasks in a workflow.

According to the number of iterations, particles will move with the light of

and . When the iteration stops, and fitness value are depicting the optimal

scheduling strategy.

5.3.2 STEM Algorithm
In this work, PSO algorithm was extended, by applying Generalized Spring Tensor

(STEM) model to minimise workflows' total execution time. STEM was originally

proposed to project the fluctuation of the load between proteins in the human body

(Chaczko et al. 2009). This algorithm has Coarse-grained mathematical structure which

is composed of two main sub-models:

106 | P a g e

Gaussian Network Model (GNM)

Anisotropic Network Model (Uchechukwu, Li & Shen)

GNM is designed to predict the magnitude of the load and ANM mainly calculates the

direction of the load.

GNM will be effective if there exists a certain dependency between tasks. This

dependency can be explained by Kirchhoff Matrix (Lanoe, Le Maguer & Ney 2009)

illustrated in equation (5.6) where r presents the cut-off distance.

= 1 ,0 , >
, = (5.6)

ANM, on the other hand, is applying Hookian method to simplify the measurement of

the load direction. To evaluate the interactions between two nodes, ANM applies a

matrix with N × N super element, where each element is a 3 × 3 tensor and H is the

interaction tensor between i and j.
H = H , H ,H , H , (5.7)

ANM and GNM as two main Coarse-grained algorithms have their own advantages and

disadvantages. Although they don’t need energy minimization, ANM only considers

the direction of the load and GNM calculates the magnitude of the fluctuation.

Thus to overcome the limitation of ANM and GNM, STEM was proposed to address

the direction and magnitude of the fluctuations (Song 2012).

Workflow applications consist of collections of tasks with a variety of associated

threads, commands and functionalities. Each of these tasks starts and finishes by a

certain time.

107 | P a g e

The STEM algorithm recognises the workflow tasks as individual nodes; connected to

their neighbours with a single spring.

Tasks in a workflow model have three main characteristics:

Tasks levels, start-time and finish-time are the main specifications of the tasks that

have been applied into STEM mathematical model. Algorithm 5.1 is describing the

STEM process in more details.

Figure 5.2- STEM workflow parameters (bond, angle, dihedral, non-local interaction)

The magnitude and direction of the workflow load are evaluated in first stage of the

STEM algorithm. For this purpose, the following parameters are needed. As Figure 5.2

shows, the first derivative values for the below items are measured. Table 5.1 is

illustrating the elements in more details.

Chain connectivity (r), is the radial length between neighbouring nodes. In

workflow model, it refers to the difference between finishing time and starting

time of a task.

Angle (,), is the bonding angle between neighbouring nodes. In workflow

application it is refereeing to the difference between tasks levels.

Bond dihedral (), is the dihedral angle between neighbouring nodes. In

workflow application, it is highlighting the difference between execution

lengths of the connected tasks.

Non-local interaction (), is following the radius of the non-neighbouring

nodes. In workflow application, it is defining the difference between tasks

levels.

108 | P a g e

By considering the above description, the first order derivative values for bond, angle,

dihedral and non-local interactions between nodes can be calculated using equation

(5.8).

V(X, X) = Bond V (r, r) + Angles V (,) + Dihedral V (,)+ Non Local V r , r , . (5.8)

Table 5.1- Interpretation of bond, angle, dihedral and non-local connections between
tasks on workflow model (Aslanzadeh & Chaczko 2015).

Model Description

Bond: This parameter is defining the chain

connectivity between tasks in a workflow model. It

mainly highlights the potential connections between

a task and its neighbours.

Angle: This parameter defines the angles between

tasks in workflow model. The angle can be

interpreted as the interval between finishing time of

one task comparing with starting time of the

neighbouring task.

Dihedral: The parameter describes the location of

the tasks after they forced by external load. Torsion

can disconnect the current connections between two

nodes and it can substitute that with a new relation

between non-neighbouring nodes.

109 | P a g e

Non-local interaction: The parameter is defining the

task’s connectivity with other tasks through non-

local interactions. With this model it is implied that,

the force of changes between non-neighbouring tasks

can be calculated.

The final step involves calculations of Hessian matrixes values. In order to calculate,

the second derivative, the summation of the second derivatives of “bond, angle,

dihedral and non-local interaction” between tasks should be considered using equation

5.9, described in Algorithm 5.1.

Algorithm 5.1 - STEM algorithm details

Step 1: Capture the level, start-time and finish-time of each task in a workflow

application

Step2: Determine the Go-Like potential by calculating the first-order derivative of the

chain connectivity, Angle, Bond dihedral and non-local interaction values (5.8)

The force parameters are applied to the following term:(,) = (r-) + () + { [1 (
)]+ [1-cos 3 ()]}+ [5(,)-

6 (,)] where = 0.36, =100 , = 20 , = , = 0.5 (Clementi,

Nymeyer & Onuchic 2000)

Step3- Obtain the Hessian Matrix values: the second order derivatives of the chain

connectivity, bond bending, dihedral and non-local interactions

=
(,) (,) (,)
(,) (,) (,)
(,) (,) (,)

+
(,) (,) (,)
(,) (,) (,)
(,) (,) (,)

+

110 | P a g e

(,) (,) (,)
(,) (,) (,)
(,) (,) (,)

+
, , , , , ,
, , , , , ,
, , , , , ,

(5.9)

Step 4: the derived value determines the magnitude and direction of the load in a

workflow application.

111 | P a g e

5.3.3 The Fundamentals of STEM-PSO
In our scheduling model, we have n dependent tasks that should be assigned on m

processor, the position of the each task, = , , … , are determined by equation

(5.4) and (5.5). The result of these functions should be converted to discrete values

rather than continues values to determine the PCs needed to execute the task. To satisfy

this goal small position values (SPV) function has been applied to convert the position

values to discrete vectors () = (, , … ,).

In this model, there are n dimensions to assign n tasks on m processor with a main

fitness value to minimise the total task execution time. () = () + () + () (5.10)

The STEM-PSO algorithm is summarised as follow:

Algorithm 5.2– STEM-PSO algorithm details

1. Initialise the population: define the random location and velocity of tasks in the

population.

2. Convert continues position values to discrete vector using SPV method.

Continues position vector of = [, , , … ,] should be converted to

dispersed vector of = [, , , … ,].In last step each vector of should

be mapped into vector = , , … , using = + 1
3. For each particle calculate the (5.1) , (5.2), (Algorithm 5.1)

4. For each particle calculate the fitness value (5.3)

5. If the new fitness value is better than current, update the value.

6. Select the best particle as

7. For all particles update the velocity and position using equation = + + () = +
8. If maximum iteration is not satisfied then

8.1 Go to step3

Else
8.2 End

112 | P a g e

5.4 Experiment Results
We have implemented our proposed scheduling algorithm by simulating a Cloud

network domain through developing an application using Java programming and

Jswarm package.

In this application, “Broker” is the main class which is using “bindTasksToPC” method

to allocate the tasks on available resources. Jswarm, also, helps in optimising the tasks

arrangement through PSO algorithm. In our proposed algorithm “bindTaskToPC”

assigns tasks on resources based on Jswarm optimisation functions. A detailed

description of the implementation is noted in the appendix, section 9.1.2.

The simulation environment that conducted the experiments has i5 processor, 4GB

RAM and 500 HDD. We configured 4 PCs (PC1-PC4) as the main resources for task

allocations. Figure 5.3 is depicting sample tasks that could be allocated on these

resources. We modelled the PSO algorithm with 25 particles and 30 iterations.

Moreover, Pegasus workflow management has been used to generate the input data.

The size of the workflow varies in the range of 64-1024 MB.

The main evaluation component for this experiment is the total tasks execution time. To

compare the performance of our proposed algorithm CPU utility and memory usage

rate were also considered for analysis.

Figure 5.3- Sample tasks allocations on (PC1-PC4)

PC1 PC2 PC3 PC4

T1 T3 T2 T4

113 | P a g e

The result of the STeM-PSO optimisation algorithm is compared with Heterogeneous

Earliest Finish Time (HEFT).

HEFT is a heuristic scheduling algorithm that can be applied for scheduling a set of

dependent tasks on available resources. To complete the scheduling of a workflow

application, HEFT considers both execution time and communication time between

each connected tasks. Generally HEFT algorithm gives priority to all the workflow

tasks based on their finishing time. When all the tasks are prioritised, the task with the

highest priority will be scheduled on the first available resource.

5.4.1 Total Execution Time
Figure 5.4 presents the total time execution of the workflow. Increasing the workflow

size, it appears that STEM-PSO is performing better than HEFT algorithm. The results

show that the makespan calculated by STEM-PSO increases much slower than HEFT.

STEM-PSO achieves at least “2 times” lower makespan for 1024 (MB) workflow size.

The fact describes clearly that STEP-PSO algorithm is more efficient in terms of

completing the workflow tasks (Sizes between 64 to 1024 MB) in minimum time.

The STEM-PSO calculates the tasks’ execution time by considering their dependencies

and load fluctuations. In workflow applications, each task can have load magnitude and

direction that may vary during the execution. However, HEFT only considers the tasks’

dependencies. In HEFT algorithm, mappings of the tasks on available resources only

have been calculated through local values without considering the load variations.

Figure 5.4- Comparison of total execution time between STEM-PSO and HEFT

0

50

100

150

200

250

64 128 256 512 1024

To
ta

l
Ex

ec
ut

io
n

tim
e

(S
ec

on
ds

)

Workflow size (MB)

STEM-PSO

HEFT

114 | P a g e

5.4.2 CPU Load and CPU Time
We calculated the distribution of the workflow tasks onto 4 available resources (PC1-

PC4) for 5 various data size (64-1024 MB). Table 5.2 is showing the details of the CPU

utilisation of the workflow tasks applying the STEM-PSO algorithm.

Table 5.2 -CPU load utilisation rate using STEM-PSO

CPU utilisation

Workflow Data

Size(MB)

PC1 PC2 PC3 PC4

64 33.23% 24.00% 25.61% 17.16%

128 50.87% 20% 16% 13.13%

256 30.76% 15% 40% 14.24%

512 36.25% 19.21% 27.67% 16.87%

1024 20% 37% 15.5% 27.5%

According to the above table, we compared the average CPU utilisation of STEM-PSO

and HEFT algorithm, Figure 5.5.

Analysing the results it is clear that using STEM-PSO, CPU is more utilised than using

HEFT algorithm.

Figure 5.5- Comparison of total CPU time between STEM-PSO and HEFT

0

10

20

30

40

50

60

64 128 256 512 1024

CP
U

 T
im

e
(S

ec
on

ds
)

Workflow size (MB)

STEM/PSO

HEFT

115 | P a g e

5.4.3 Memory Rate
In this experiment, the maximum memory rate with different values has been set to

evaluate the performance of our proposed scheduling model. In this experiment

different categories of memories have been considered:

1. Cache memory: This memory is functioning at the speed of CPU

2. Physical memory: This memory is operating slower than CPU

3. Virtual memory: This memory is the one that we need to check it’s rates which

is running on the virtual machine and it is much slower than CPU.

According to memory rate ranges from 50 to 100 (Seconds), the analysis determines

that STEM-PSO algorithm perfumes more efficiently under different load levels.

Considering graph 5.6, the analysis shows that the proposed method utilises the

memory rate more efficiently than HEFT under load balancing condition.

Figure 5.6-Comparison of total memory utilisation rate between STEM-PSO and HEFT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

64 128 256 512 1024

M
em

or
y

Ra
te

 (S
ec

on
ds

)

Workflow size (MB)

Memory Rate/STEM-PSO

Memory Rate/HEFT

116 | P a g e

5.4.3.1 Workflow Soft Error Rates
To analyse the fault tolerance of the proposed algorithm we have applied soft errors on

system’s memory to evaluate the output results of the STEM-PSO experiment.

Soft errors usually refer to the events that could change the instructions of the program

or the data value. In other words, soft errors will have an impact on data only and they

won’t corrupt the system’s hardware. Some of the soft errors could mitigate by a cold

reboot of the system. In our experiment, we have applied system-level soft error to test

its effect on output results. These errors usually refer to an event when noises applied

on a data bus and corrupt the data that is under process. In fact, the computer read the

noise as data bits which can create errors in computing the data inputs. Therefore to

apply the soft errors on memory rate we have a tool introduced by H.Belhaddad (2006)

and K.Tanaka (2009) to generate soft error rates for selections of the memory blocks.

5% and 10% error rate have been applied for this scenario. 5% error, replicates the 5

events memory failure for 100-megabyte memory and 10% error interprets the 10

events memory failure for 100-megabyte memory. The results of this analysis have

been depicted in table 5.3.

As the results indicate there is a dramatic difference while noise have been applied on

memory blocks, therefore as future work of this research, to mitigate these soft errors,

new error controllers will be applied to STEM-PSO software.

Table 5.3-Analysing the impact of soft error rates on Memory rate

Workflow size(MB) 5% Soft error,
Memory Rate/STEM-
PSO

10% Soft error, Memory
Rate/ STEM-PSO

64 0.51 0.48
128 0.39 0.36
256 0.49 0.45
512 0.40 0.37
1024 0.63 0.58

117 | P a g e

5.5.4 Comparison of STEM-PSO Results
Table 5.4- Total workflow execution time applications using STEM-PSO and HEFT

Table 5.5- CPU utilisation rate of workflow applications using STEM-PSO and HEFT

Workflow size(MB) CPU Time – STEM/PSO CPU Time /HEFT

64 5.23 8.62
128 7.14 9.17
256 11.08 20.28
512 17.34 26.78
1024 24.69 51.94

Table 5.6- Memory utilisation rate of workflow applications using STEM-PSO and HEFT

Workflow size(MB) Total execution Time

STEM-PSO (Second)

Total execution Time

HEFT/Second

64 32.6 65.7

128 43.7 89.4

256 58.4 117.3

512 73.9 152.9

1024 97.5 195.7

Workflow size(MB) Memory Rate/STEM-
PSO

Memory Rate/HEFT

64 0.56 0.54
128 0.42 0.63
256 0.52 0.55
512 0.44 0.61
1024 0.68 0.73

118 | P a g e

5.5.5 Experiment Analysis
Evaluating the results the following points are determined:

Impact of STEM-PSO on total workflow execution time

STEM-PSO estimates the total execution time of the workflow by a mean of

52.15 across 64-1024 (MB) workflow applications with a 22.85 standard

deviation shown in Figure 5.4. It can be observed that the total execution time

has been improved by the average of 49% comparing with HEFT data. This

highlights the significance of STEM-PSO in optimising the performance of the

load balancing in Cloud systems.

Impact of STEM-PSO on CPU usage

STEM-PSO depicts CPU usage of the STeM-PSO by a mean of 13.09 across

64-1024 (MB) data with a 7.96 standard deviation shown in Figure 5.5. The

results show that STEM-PSO algorithm improves the CPU-usage by 43%

compared to HEFT algorithm.

Impact of STEM-PSO on memory rate

STEM-PSO optimised the memory rate by a mean of 0.52 across 64-1024 (MB)

with a 0.10 standard deviation shown in Figure 5.6. The results show that the

STEM-PSO algorithm improves the memory rate by 14% compared to HEFT

algorithm.

In summation, the combination of PSO algorithm with STEM optimised the

total execution time, CPU usage and memory rate of the workflow applications.

The reason for these improvements can be highlighted as the capability of the

STEM-PSO algorithm to calculate the fluctuation and magnitude of the load

between interrelated nodes.

Applying the heuristic methodologies, STEM-PSO could enhance the load

balancing by improving the resource utilisation. As a result, availability of the

system could be increased greatly.

119 | P a g e

5.5 Conclusion
Load balancing is one of the key factors in increasing the performance of the Cloud

Computing. As Cloud resources are distributed widely, it is necessary to have an

optimised scheduling algorithm to distribute the load evenly between available

resources and prevents the resources to be overloaded or under loaded.

Different load-balancing algorithms have been proposed for scheduling the workflow

applications in Cloud Computing. Although the approaches tried to optimise the

scheduling process, magnitude and direction of the load between dependent tasks were

not considered. This issue can make the result less accurate.

To address this shortcoming, a heuristic scheduling algorithm has been presented in this

chapter which is designed based on “general spring tensor model” and “particle swarm

optimisation”.

The objective of the proposed model is to minimise the total execution time by

considering the magnitude and direction of the load changes in workflow application.

In fact, the algorithm is an optimisation model which minimises the task execution time

and improves the resources utilisations.

To implement the proposed model, a Java based application has been developed.

Comparing the results with HEFT algorithm, the analysis shows that STEM-PSO

significantly reduces the executing time of the workflow tasks. Furthermore, the

proposed method optimises the CPU and memory usage in compare with HEFT

algorithm.

As a future work, it is possible to improve our proposed load balancing method to not

only optimise the task scheduling, but also improve the energy consumption and

service level agreement. Moreover, the experiments need to use a wide range of data set

inputs for data analysis. The workflow applications in real Cloud network are larger

than what is used in our experiment. Therefore, as a future works the experiment needs

to consider the impact of the larger workflow applications with more complex data

structure.

120 | P a g e

Chapter 6

Load balancing & Data Replication
Strategy

“Engineering is achieving function while avoiding failure”- Henry Petroski-1966

This chapter focuses on optimising the Cloud load balancing through replication

strategy. The thesis introduces a novel dynamic data replication method that is

functioning based on anticipations to create the pre-replicas for future needs of the

sites. The method optimises load balancing by increasing the data availability among

the existing sites.

6.1 Introduction
Cloud Computing can process intensive applications (scientific functions) across

heterogeneous environments. However, computing scientific applications need the huge

amount of data which could pose more loads on the network (Chiba et al. 2010).

Although different resources could be dedicated to complete the tasks, there should be a

load balancing mechanism which can distribute the load proportionally between the

available nodes.

Proper load balancing techniques can minimise the access latency while increasing the

availability. Through load balancing, nodes will be controlled and prevented from

overloading and as a result system throughput will be enhanced (Sreenivas, Pratha &

Kemal 2014).

121 | P a g e

To solve the load balancing issue, replication approach is suggested as one of the load

utilisation methods that can minimise the data access time (Dobber et al. 2009).

Replication creates several data copies among the existing sites which dramatically

impact the load balancing performance. Distributing different replicas among available

sites, replication can effectively enhance data availability, system reliability and fault

tolerance.

Replication is controlling the bottleneck in query processing. When a site is accessing a

file remotely for several times, it would be more beneficial and more cost saving to

replicate that file for site’s local access (Vu, Lupu & Ooi 2010). Additionally

replication can minimise the access time. As the files would be accessed locally,

communication cost would be reduced. Therefore integrating load balancing and

replication together could be the essential factors of any Cloud systems architecture

(Yamamoto, Maruta & Oie 2005).

Considering replication techniques, it is important to recognise which files should be

replicated, when replication should be created and where replicas should be stored (Ben

Charrada, Ounelli & Chettaoui 2010). Generally replication could be categorised into

two groups of static and dynamics:

Dealing with static replication, the replica locations are pre-defined and are

unchangeable. Also, the created replicas can't be deleted unless the user deletes them

manually (Loukopoulos & Ahmad 2000). The static data replication methodologies are

not adaptable to any real time changes; therefore they are not suitable for processing the

data-intensive applications.

On the other hand, dynamic data replications are more flexible to real-time changes and

replica statuses are monitored automatically.

Furthermore, dynamic data replications are more beneficial in terms of data access cost.

By dynamically replicating the required files across the data centres, data access cost is

minimised while data availability is revamped (Nader-uz-zaman et al. 2014).

122 | P a g e

This chapter is proposing a new replication algorithm, called Smart Dynamic Data

Replication (SDDRC). The algorithm monitors the access history catalogue to manage

the existing replicas and anticipate the needs for creating pre-replicas for future needs.

Analysing the algorithm’s performance the response time, access latency and number

of replicas were dramatically decreased.

6.2 Problem formulation
Replication techniques have a dramatic impact on the performance of the systems.

However, it could be costly if proper replication methodology is not selected.

Therefore it is challenging to understand when replication is necessary, which files

should be selected for replication, where the replicas should be stored and how the

replicas should be synched with the original files (Weixiong et al. 2013).

LRU (Least Recently Used) and LFU(Least Frequently used) are popular heuristic

examples of data replication methods that have been applied in different Cloud

systems. Although the LRU and LFU can reduce the data access time but these

replication methods are not aware of the users’ future needs (Zhan-sheng et al. 2008).

In order to address the LRU and LFU limitations, there is a need for designing a smart

algorithm that can anticipate the future needs of the sites and pre-replicate the data.

Pre-replicating the required data, the algorithm should effectively minimise the job

execution time and enhance the effective network usage so as a result load balancing

would be improved.

Given the circumstances, in this research a novel algorithm has been designed that can

predict the future needs of the existing sites. Based on data access catalogue, the

algorithm is able to anticipate the data with high access probability that could be

needed in future.

123 | P a g e

6.3 Proposed Methods
Pre-replication can increase the data availability and robustness of the Cloud systems

and hence requested jobs can be completed with minimum execution time and high

network usage output.

6.3.1 SDDRC Architecture Design
Figure 6.1 illustrates the high-level architecture of the proposed replication system. In

this architecture, according to the optimal network transmission rate, job broker will

allocate the requested jobs on the first available site.

Each site consists of data computing /storage node which is responsible for performing

the job and storing all the required data. Also within each site, there is a replication

manager component that is managing the files’ access histories and it defines whether

the requested tasks can be completed locally or remotely.

Additionally all sites are connected to the Global Replica Management System

(GRMS). GRMS is creating the replicas if beneficial. GRMS consists of two main

components: global data catalogue that stores the global access patterns and the pre-

replication engine that anticipate the replication needs of the sites. If sites don't have the

required files to complete the task, they sent the signal to GRMS to provide them with

the required replicas. Then in next step, if beneficial, GRMS will send the replicas

along with their adjacent files for future access of the site.

124 | P a g e

Figure 6.1– High level SDDRC system architecture

The main novelty of the proposed algorithm could be highlighted by GRMS

component. As described above, GRMS is responsible for creating and replacing the

replicas and pre-replicas. Figure 6.2 explains the internal architecture of GRMS. The

main elements of GRMS are described below.

Computing/Storage node: computing element is responsible for running the

submitted task which stored in the queue.

When sites request a file that is not stored locally, a copy of a requested file will

be stored in the storage area.

Pre-replica creation engine: this component is responsible for managing and

creating the pre-replication data that may be requested by sites in future. In this

block, prediction engine would access the data catalogue to find out the data

access patterns. It would then anticipate the data with high access probability. If

pre-replication is beneficial, adjacent files of the requested data also will be pre-

replicated.

Replica catalogue: when replica engine found the data that should be pre-

replicated, it stores the name and physical location of that replica in the

replication catalogue.

125 | P a g e

Replica updating component: It is responsible for creating the actual replicas.

By accessing the replica catalogue, this component will select the best replica

with minimum communication cost.

Figure 6.2- GRMS high-level architecture

6.3.2 SDDRC Algorithm
The previous section depicted the high-level architecture of the system. In this section,

the details of the proposed algorithm will be explained. SDDRC algorithm is

constructed on the basis of the following assumptions:

For predicting the future replication needs, past sequence of access patterns

should be available in the data catalogue.

The threshold for is 40.

The threshold for the maximum number of accessing the file is 10.

The detail of the algorithm is provided below:

When jobs are submitted to the system, the job broker will allocate them on available

sites.

Each site consists of a computing storage manager which is responsible for analysing

the required files for completing the jobs. If the computing storage manager finds that,

the site has the required files then the job will be complete locally within the site.

126 | P a g e

Figure 6.3- GRMS tier insertion

Otherwise, computing storage manager will send a request to GRMS and ask for the

required replica.

When GRMS receives the replication request, it will start looking into the stored

catalogue to check the sites access patterns.

To store this access pattern, we have applied the same tier architecture proposed in

(Foster et al. 2001). Figure 6.3 is depicting the way that the tier structure stores the

access pattern.

GRMS as a root of the tier will monitor the number of the sites and will store their

names. This is noted as layer 2 of the tier. Layer 3 then, stores the existing files located

in each site.

"File name, the latest time that the file has been requested and a number of times that

the file has been accessed will be stored in each leaf of the tier. Additionally, each site

has a pointer that indicates to the last file that has been accessed in the site.

When sites accessing their replica, GRMS calculate the last time that the file has been

requested. If > threshold, it means that a new sequence line

should be added under the site's name.

127 | P a g e

Otherwise if < threshold, it would be considered as a

successive file and the child will be added to the end of the last sequence. The details

of the file insertion procedure into tier structure has been explained in Appendix,

section 9.1.3.1.

When computing storage component of the site notifies GRMS to find a replica, GRMS

will start looking at the access catalogue to find a required file. GRMS should search in

the catalogue to find the required file. Also it should consider the communication cost

between the site that has the file and the site that needs the file.

Therefore to find out which site has the file, “A*” search algorithm have been applied

to find the shortest path with minimum communication cost. A* is a popular searching

algorithm for finding the best-first shortest path which satisfies evaluation function. A*

search algorithm will use heuristic approaches to avoid the path that has more

expensive costs.

In A* the evaluation function will be :

() = () + () (6.1)

() explains the cost for finding the file. () describes the heuristically estimated

cost from the source to the destination. Hence, A* algorithm will find the target file by

considering the transfer cost of the required file shown in equation 6.2:

 = (6.2)

A* algorithm will retrieve the file with minimum communication cost. If A* couldn’t

find any files that satisfy the condition it will return 0. Then GRMS will notify the site

that the replication is not beneficial and job completion should be done remotely with

the site that has the file.

128 | P a g e

To satisfy the anticipatory behaviour of the algorithm, GRMS will store the replica

name and will look for the children of the file.

If () > threshold then it will add the child for pre-

replication. Depending on the location of the replica and based on the business rule that

is designed for this algorithm, GRMS will search 3 tiers after the replicas location and

will select the file with the highest access pattern for pre-replication. If the required

replica doesn’t have any child it will retrieve 0 and will exit the algorithm.

Then in the last step of the algorithm, GRMS will start transmitting the replicas and its

adjacent to the site that requested the files. Then replacement procedure will start.

For this replacement procedure, “Most Recently Used” algorithm (MRU) has been

applied. The computing storage of the file will check if it has enough capacity for

storing the received files. Otherwise, it will check the first stored replicas.

If (current time) - (last access time) > threshold then it will remove the old

replica and insert the new replica received from GRMS. If still there wasn’t enough

space for storing the new replica the computing storage will continue removing the old

replicas until there are enough spaces for the new replicas. The detail of the algorithm

is shown in algorithm 6.1 and algorithm 6.2

129 | P a g e

1. {GRMS Store the access patterns as follow: “requested file name, requested time,

and number of accessing file” }

2. { Site request a file

3. Search the history catalogue

If the requested file exist in local server

{then

retrieve the file and exit algorithm

 else

4. A request will be sent to GRMS.

5. A* search will be initiated in catalogue history to find the physical location of the

file

5.1 Between all the available files, calculate the communication cost and

 select the file with minimum value

 communication cost =
5.2 For the selected replica

5.2.1 check if it is beneficial to pre-replicate its adjacent files

 {

 check if the file has hierarchy

 {then

 If there exist only one child

 { Then

 replicate and exist

 else

 {

For 3 tiers after the replica

select the child with

maximum access number

}

 5.3 retrieve selected replica & its adjacent}

 exit

Algorithm 6.1- SDDRC Algorithm

130 | P a g e

MRU process:

{

1. For each new received replica

2. {

3. If the new received replicated file.size < available storage in target server

4. Insert the first replica

5. Else {

5.1 calculate the difference between current time and last time

that file has been accessed

5.2 Select the file with minimum access number

5.3 Delete the file

5.4 go to step 3 }

}

Algorithm 6.2- Most Recently Used Replacement Algorithm

131 | P a g e

6.4 Results and Analysis
To evaluate the performance of our proposed algorithm Java programming has been

used to extend the Cloudsim simulation tool. A detailed description of the Cloudsim

tool is illustrated in the appendix, section 9.1.3

Cloudsim is an open source simulation package developed in Java language by the

University of Melbourne. It is mainly developed to study the effectiveness of different

optimisation algorithm in Cloud Computing.

In Cloudsim, we have several sites containing several virtual machines and storage

elements. The broker is responsible for scheduling the requests on available resources.

Each site has a replica manager that handles the automatic replica creation and deletion.

Different jobs could be submitted to the broker to be assigned on available resources.

The order in which the tasks should be assigned on available resources is determined by

the following four main access patterns:

Sequential: in this access pattern the files are considered as successive request

and will be assigned in order.

Random: files are accessed randomly.

Unitary random walk: by random direction, the files are selected in a way that

the successive files are exactly one element away from the previous file.

Gaussian random walk: similar to unitary random walk with a difference that

the files are selected in a Gaussian distribution.

In order to evaluate the results, SDDRC has been compared with LRU and LFU

replication algorithms. These algorithms are replicating the files based on deleting the

least recently used or least frequently used files.

The algorithms have been tested in four patterns: sequential, random walk, random

access, random Gaussian access.

The experiment has been simulated by deploying 3 data centres, with five sites. Each

site contains five VMs with 100 jobs (The same VM properties as shown in Table 4.1,

132 | P a g e

section 4.5.2.2). The minimum bandwidths between VMs are 45 Mbit/s and maximum

bandwidths between sites are 10000 Mbit/s with total 10 rounds of experiments. These

inputs have been hard coded in Cloudsim and will be created in runtime, Figure 6.4 and

Figure 6.5.

The performance evaluation metric that have been applied in the simulations results

are:

Mean Job execution time, effective network usage and the total number of replications

that are described in details in next section.

Figure 6.4-Creating the VM data inputs in Cloudsim

Figure 6.5 -Initiaing the VM creating at runtime

133 | P a g e

6.4.1 Mean Job Execution Time
Mean job execution time is one of the important evaluation factors. Total execution of

all jobs in milliseconds divided by a number of the jobs would highlight the mean job

execution. To compare the performance of our algorithm, the mean job has been

compared with the existing LRU and LFU algorithm. The comparison result is shown

in Figure 6.6.

The simulation results show that our proposed algorithm has the lowest value in

minimum job completion. As the algorithm has the functionality to anticipate the

replicas, most of the files can get accessed locally. Ultimately the access time and

completion time would be minimised.

Figure 6.6- Mean job execution time

0
200
400
600
800

1000
1200
1400
1600
1800

Sequential
Access

Random
Access

Random Walk
Unitary access

Random walk
Guassian

access

M
ea

n
tim

e
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

Access patterns

LRU

LFU

SDDRC

134 | P a g e

6.4.2 Effective Network Usage
The metric indicates the ratio of the files that were transferred to the requested site. So

the low value indicates that our optimisation strategy is functioning well in our

proposed algorithm. The ENU is formaulate in equation 6.3:

ENU = (N file remote access + N file replication) / (N remote file access + N

local file access) (6.3)

The ENU of our algorithm has been compared with 3 algorithms in 4 patterns. Figure

6.7 shows that the proposed SDDRC algorithm has the lowest value in most cases

which is a good indicator of the algorithm efficiency. And that’s because by pre-

replicating the high probable files; most of the files would be accessible locally and are

available at the time of need.

In fact the higher availability of data will decrease the data replication. Therefore, as

replication will not happen again, effective network usage will be decreased which has

a great impact on load balancing. It should be mentioned that wrong prediction and

wrong pre-replicating the files will increase the ENU and consequently it will not have

any benefits for the target site rather than consuming more bandwidth.

Figure 6.7- Effective network usage

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

Sequential
Access

Random
Access

Random Walk
Unitary access

Random walk
Guassian

access

Ef
fe

ct
iv

e
N

et
w

or
k

U
sa

ge

LRU

LFU

SDDRC

135 | P a g e

6.4.3 Total Number of the Replicas
Greater values of the replication numbers indicate that the files were not stored locally

and replication procedures were needed to make the files available.

As it is obvious in Figure 6.8 our proposed algorithm provides the lowest number of the

replications comparing with LRU and LFU. It predicts the future needs of the network

and estimates the files that needed to be locally accessible.

Therefore, as the files are pre-replicated before they have been actually requested, at

the time of the request files would be locally accessible and no replication is needed. As

a result, total replication number of the files would be decreased.

Figure 6.8 -Total number of replications

0

100

200

300

400

500

600

700

Sequential
Access

Random
Access

Random Walk
Unitary access

Random walk
Guassian

access

To
ta

l N
um

be
r o

f R
ep

lic
at

io
n

LRU

LFU

SDDRC

136 | P a g e

6.4.3.1 Applying Soft Error Rates on Memory
To consider the fault tolerance of the algorithm, as described in chapter 5 section

5.4.3.1, system-level soft error rates have been applied on input data set to analyse its

impact on replication numbers. With this procedure, the memory will store the noise as

the data bit that corrupts the data input. Therefore, 5% and 10% error rate are

considered for analysing this scenario. Using 5% error, 5 events memory failure for

100-megabyte memory has been created and 10% error interprets the 10 events

memory failure for 100-megabyte memory. The results of this analysis have been

depicted in table 6.1.

As the results show, applying the noise on memory, the numbers of the replications

have been increased dramatically. Therefore as future work of this research, to mitigate

these soft errors, new error controllers will be coded on each site and GRMS.

Table 6.1 -Analysing the impact of soft error rates on memory rate

Workflow size 5% Soft error,
Memory Rate/STEM-
PSO

10% Soft error, Memory
Rate/ STEM-PSO

Sequential 310 325
Random 298 312
Unitary random walk 205 215
Gaussian random walk 270 283

137 | P a g e

6.4.4. Analysis of SDDRC Results
Table 6.2 - Mean job execution time using SDDRC (seconds)

Table 6.3 - Effective network usage using SDDRC (throughput in percentage)

Table 6.4 - Total number of replication using SDDRC

Access patterns LRU LFU SDDRC

Sequential access 1500 1600
1200

Random Access 1200 1100 900
Random walk unitary

access 700 600 500
Random walk Gaussian

access 1300 1200 800

Access patterns LRU LFU SDDRC

Sequential access 45% 41% 33%

Random Access 30% 25% 20%
Random walk unitary

access 20% 14% 10%
Random walk

Gaussian access 40% 35% 28%

Access patterns LRU LFU SDDRC

Sequential access 580 600 270

Random Access 410 380 220
Random walk unitary

access 160 170 140
Random walk Gaussian

access 390 400 200

138 | P a g e

6.4.5 Experiment Analysis
Evaluating the results the following points are determined:

Impact of SDDRC on mean job execution time

SDDRC estimates the total execution time of the jobs by a mean of

850(seconds) across four different available patterns (Sequential access, random

access, random walk unitary access, random walk Gaussian access) table 6.2.

Comparing with LRU and LFU, it can be observed that the total execution time

has been improved greatly by the average of 24% and 27% (in seconds)

respectively which is significant improvement.

Impact of SDDRC on effective network usage

SDDRC improved the network usage by mean of 13.09% across four different

patterns table 6.3.

Comparing with LRU and LFU it can be observed that the total execution time

has been improved incredibly by average of 32% and 20% (in milliseconds)

respectively.

Impact of SDDRC on total number of the replications

SDDRC optimised the total numbers of the replication by a mean of 207.5

across four different available patterns (Sequential access, random access,

random walk unitary access, random walk Gaussian access) table 6.4.

Comparing with LRU and LFU, it can be observed that the total execution time

has been improved notably by the average of 46% and 47% (in milliseconds)

respectively.

In summation the SDDRC algorithm optimised the total execution time,

effective network usage and a number of the replications used for this

experiment.

The reason for these improvements can be highlighted as the capability of the

SDDRC algorithm to anticipate the replicas with high access probability for

future needs of the sites.

139 | P a g e

6.5 Conclusion
In this chapter, a new dynamic replication algorithm has been proposed that applies the

anticipatory replication technique.

The algorithm uses the pre-replicating technique for replicating the adjacent files of the

requested jobs from different sites. The algorithm consists of three main phases which

anticipate the future needs of the sites and pre-replicates the files that no requests have

been submitted for them yet.

By pre-replication, sites will have files locally stored, so at the time of need, sites can

access the files locally with minimum response time. And as a result, access latency

will be decreased and system performance will considerably improve.

To test the performance of the algorithm, the results have been compared with two

main replication algorithms: LFU and LRU. Also, three major metrics have been

selected as the main evaluation criteria: mean job execution time of all the jobs , the

network usage and the total replication numbers.

The algorithms were compared against these metrics in 4 different access patterns;

sequential access, random access, random walk unitary access and random walk

Gaussian access. We simulated our algorithm using Cloudsim tool. The experimental

results show that our proposed algorithm improves the mean job, effective network

usage and numbers of the replication needed under the defined access patterns. Having

said that the proposed algorithm is using more memory than and it is more complex the

existing methods which could be highlighted as disadvantages of this algorithm.

As a future work, it is possible to improve our proposed replication method by not only

considering the access patterns catalogue but also by engaging other data mining

factors for defining the pre-replication needs. Moreover, the experiments need to use

the wide range of data set inputs for analysis.

The replication in real Cloud system are larger than what is used for our experiment,

therefore as a future work, the experiment needs to consider the impact of the larger

replication procedure when the data structures are more complex . Also, more factors

such as fault tolerance and scalability would be considered for replication optimisation.

140 | P a g e

Chapter 7

Conclusion

“Architecture begins where engineering ends.”- Walter Gropius (1883-1969)

This chapter highlights the main points of the thesis. It summarises the key concepts of

the chapters and elaborates on the contributions, limitations, and future works of the

dissertation.

7.1 Review
In this thesis, the problems of the load balancing in Cloud Computing have been

discussed.

Part one of the thesis presents the research goals. The concept of load balancing in

Cloud-based systems is the primary research theme.

In order to establish this theme, in part two of the thesis two load balancing algorithms

have been depicted. Minimising the total tasks' execution time is the main objective of

these algorithms.

The scheduling algorithms are architected on the mathematical apparatus of the

heuristic STEM algorithm and pre-replication strategies. These algorithms could be

considered as the novel ways of load balancing in Cloud-based systems.

Applying the STEM algorithm, the key outcomes of the experiment determine the

impact of the magnitude and direction of the load on timespan and performance of the

system. Moreover, the pre-replication analysis and results explain the importance of the

anticipatory behaviour of the system in terms of pre-replicating the high access

probable files that can be requested in future by users.

In summary, the conclusion reflects on the accomplishments of the initial aims and the

targets explained in chapter 1, along with a comprehensive review on existing load

141 | P a g e

balancing approaches and mathematical perceptions, respectively, in chapter 2 and

chapter 3.

Chapter 4 critiques the importance of the load balancing concept through implementing

a research study on HDM Cloud-based systems. The outcomes of the experimental

approaches, which have been demonstrated in chapter 5 and chapter 6, determine the

effectiveness of the proposed algorithms. Finally, the future work of the thesis has been

discussed in this chapter.

7.2 Thesis contribution
Presented survey of load balancing issues in Cloud Computing.

Explored and addressed the importance of load balancing concepts in Cloud-based

systems through designing and implementing a case study.

Proposed heuristic algorithm for monitoring the load balancing on workflow

applications in Cloud Computing.

Proposed a novel dynamic pre-replication method which minimises the total execution

time and improves the effective network usage.

7.2.1 Discussion
The work presented in this thesis made a significant contribution to the load balancing

field by proposing two novel scheduling algorithms.

The thesis first explained the rationale of having a smart load balancing algorithm

embedded in the Cloud's architecture. As the numbers of Cloud users are growing

rapidly, a balanced Cloud system that ensures high data availability and performance is

required. Understanding the requirements of having the balanced system; research

questions and the hypothesis of the research were formulated (see chapter 1).

Based on the defined research scope, research papers concerning load balancing were

selected and reviewed. The review highlighted the different static and dynamic load

balancing algorithms along with common techniques that have been proposed by other

researchers across the Cloud platforms.

142 | P a g e

Focusing on dynamic load balancing algorithms and considering the research questions

of the thesis, the review was narrowed down on two popular load balancing

approaches; workflow scheduling and replication strategy. Comparing and analysing

these two methods, the literature review listed the existing load balancing challenges

such as performance and total task execution time issues that needed to be addressed

and resolved.

The comprehensive summary of past works identified the load balancing shortcomings

and established a clear road map for improving the considered load balancing

algorithms (see chapter 2).

Having studied the existing load balancing objectives in the literature review, the thesis

proposed two novel methodologies which addressed the load balancing optimisation

challenges.

STEM-PSO, the first proposed algorithm, considered the magnitude and direction of

the load, while SDDRC applied the pre-replication methodology to optimise the load

balancing performance. The thesis analysed the mathematical apparatus of the

algorithms with combination of white-box and black-box modelling approaches. The

research methodology established a fundamental base for designing and implementing

the algorithms through programming and simulations (see chapter 3).

Following the literature review, the thesis tried to apply the reviewed load balancing

techniques as a case study, to project the load balancing issues on a real-world Cloud

system. HDM, the Cloud-based hospital data management system, was designed and

implemented to depict the existing challenges in a Cloud system with the vast numbers

of users' requests. Varying test scenarios for the different numbers of the users have

been implemented to project the load distribution on HDM. The outcome of the case

study clearly identified the path of the thesis (see chapter 4).

Following the research methodology approach, as the first proposed algorithm, the

thesis presented a heuristic methodology known as the STEM-PSO algorithm, which

incorporates the particle swarm optimisation along with the STEM heuristic scheduling

algorithm.

143 | P a g e

The algorithm employed heuristic techniques to project the magnitude and direction of

the existing load between interconnected tasks. The outcomes of the experiment have

been compared with the HEFT algorithm. The analysis proved that the proposed load

balancing algorithm enhances the availability of the system by minimising the total

execution time of the application (see chapter 5).

Taking further enhancement in timespan, the thesis proposed another approach for

optimising the load balancing issues through replication strategies. According to the

past access catalogue, the proposed method pre-replicates the files with the highest

access probability. The outcomes of the experiments have been compared with LRU

and LFU replication algorithms. The analysis illustrated that the proposed pre-

replication methodology significantly enhanced the total execution time of the

applications (see chapter 6).

7.2.2 Limitations
The main limitations of this thesis are listed below:

STEM-PSO experimental simulation needs to consider the large-scale workflow

data models.

The experiment was conducted using workflow applications with the maximum

size of 1024. Considering the complexity of the real-world scientific

applications such as earthquake monitoring, large-scale data models with more

complex structures in terms of connectivity should be considered.

STEM-PSO should apply other projection models.
The current experiment considers STEM as the projection operator. Future

work, should examine other projection methods such as Lagrangians, which can

estimate the magnitude and direction of the load change more accurately in

workflow applications.

STEM-PSO should consider other optimisation models than PSO

144 | P a g e

The current experiment only considers PSO as an optimisation method. In

future work, the experiment may apply the Voronoi partitioning method, which

tries to separate the whole workflow application to different sub-workflows.

The sub-partitioning could have a major impact on the anticipatory behaviour of

the STEM algorithm.

SDDR, the pre-replication technique, should consider other metrics than past

access patterns.

The current experiment only considers the files’ past access history to

accomplish the pre-replication. As a future work, the experiment could consider

more factors such as data mining techniques, which would be a good solution in

terms of enhancing the predictability behaviour of the algorithm.

7.3 Future work
The future approaches in enhancing the load balancing challenges have been examined
below:

1. SLA and load balancing:

The service level agreement identifies the services offered to the customers. If

the service provider could not provide the service that was promised, a violation

will occur.

For example, if the SLA stated that the service provider will guarantee the

minimum response time for VMs and that did not happen, it could be

considered as a violation, which may lead to major penalties for the provider.

As the numbers of Cloud users are increasing dramatically, SLA violations are

likely to happen due to the load fluctuations and lack of load balancing

monitoring.

Therefore, future work on the STEM-PSO load balancing algorithm could

include further development to address the following research question:

“How can the load balancing architecture be enhanced so that Cloud service

providers can guarantee their promised SLA and QOS?”

145 | P a g e

2. Load balancing based on energy efficiency:

Data centres are expensive to use. They consume carbon footprints which can

have a negative impact on the environment. As the numbers of users are

increasing, more demand would accrue for building the data centres. In this

thesis, we have presented a pre-replication strategy which had a major impact

on effective network percentage. Therefore, as a future work from this thesis,

the SDDRC could be enhanced to address the following research question:

“How should the pre-replication strategy be implemented to minimise the

energy consumption while balancing the requested tasks in Cloud-based

systems?”

3. Self-awareness behaviour in the workflow scheduling algorithm:

Load balancing optimisation is categorised as NP-hard problems. It plays an

important role in enhancing the Cloud utilisation.

Different methods have been proposed to achieve system load balancing in the

Cloud environment. VM migration is one of these techniques, which is

proposed to improve the functionality of the VMs. Despite the advantages of

VM migration, some drawbacks remain, which encourage researchers to

improve VM migration methods. Future work is recommended to design an

optimised load balancing algorithm that would answer the following research

question:

“How can the self-awareness behaviour between overloaded VMs in Cloud-

based systems be best established?”

The proposed algorithm achieves the system load balancing by applying self-

organizing methods between overloaded VMs. This technique is structured

based on communications between VMs. It helps the overloaded VMs to

transfer their extra tasks to other under-loaded VMs by applying the enhanced

feedbacking approach using endocrine methodology.

146 | P a g e

7.4 Final Remarks
The presented load balancing approaches discussed in this thesis showed that the

optimised load balancing methods are not limited only to resource allocations and

release. As the dissertation validated, analysing the magnitude and direction of the load

and anticipating the pre-replicas needed for the Cloud users could have a major impact

on enhancing the system’s load balancing as well.

Principally, the results in the research action study helped to plan and model the load

balancing characteristics of the STEM-PSO and SDDR experiments. Much of this work

is already published in the well-cited journals and conference papers. These algorithms

are coded through Java programming and I would authorise the other researchers to

repeat this code in their research works for further analysis and improvements.

As a final remark, thesis highlights the following outcomes to validate the illustrated

research questions:

As a novel solution, STEM-PSO load balancing approach proves that by considering

the load fluctuations in workflow applications, the total execution time of the workflow

application, memory rate and the CPU usage can be improved.

Moreover, SDDR strategy confirms that the mean job execution time, total numbers of

the replicated files and the effective network usage can be revamped greatly by pre-

replicating the files with highest access probability.

147 | P a g e

III. Bibliography and publications

148 | P a g e

Chapter 8

Bibliography

Abraham, R. Buyya and B. Nath, Nature's Heuristics for Scheduling Jobs on

Computational Grids, in Proc.

Abrishami, S. & Naghibzadeh, M. 2012. Deadline-constrained workflow scheduling in

software as a service Cloud. Scientia Iranica, 19, 680-689.

Aceto, G., Botta, A., de Donato, W. & Pescape, A. 2012, 'Cloud monitoring:

Definitions, issues and future directions', Cloud Networking (CLOUDNET), 2012

IEEE 1st International Conference on, pp. 63-7.

Amazon EC2 peicing, viewd on 25 July 2014, available at ,

www.aws.amazon.com/ec2/pricing. Amazon web services LLC

Amoiralis, E.I., Tsili, M.A. & Kladas, A.G. 2012, 'Global transformer design

optimisation using deterministic and non-deterministic algorithms', Electrical Machines

(ICEM), 2012 XXth International Conference on, pp. 2323-31.

Anikode, L.R. & Bin, T. 2011, 'Integrating Scheduling and Replication in Data Grids

with Performance Guarantee', Global Telecommunications Conference (GLOBECOM

2011), 2011 IEEE, pp. 1-6.

Annette. R, Banu,A. W and Shriram. Article: A Taxonomy and Survey of Scheduling

Algorithms in Cloud: Based on task dependency. International Journal of Computer

Applications 82(15):20-26, November 2013. Published by Foundation of Computer

Science, New York, USA.

Ardagna, D., Casolari, S. & Panicucci, B. 2011, 'Flexible Distributed Capacity

Allocation and Load Redirect Algorithms for Cloud Systems', Cloud Computing

(CLOUD), 2011 IEEE International Conference on, pp. 163-70.

149 | P a g e

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., Zaharia,

M., (2009), Above the Clouds: A Berkeley View of Cloud Computing , Retrieved from

University of California at Berkeley viewd 3

Feb2012http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf.

Aslanzadeh, S & Chaczko, Z 2015, 'Generalized Spring Tensor Model: A New

Improved Load Balancing Method in Cloud Computing', in H. Selvaraj, D. Zydek & G.

Chmaj (eds), Progress in Systems Engineering, vol. 330, Springer International

Publishing, pp. 831-5.

Atoui, M.A., Verron, S. & Kobi, A. 2015, 'Fault detection with Conditional Gaussian

Network', Engineering Applications of Artificial Intelligence, vol. 45, pp. 473-81.

Bala,A., & Chana,I. Article: A Survey of Various Workflow Scheduling Algorithms in

Cloud Environment. IJCA Proceedings on 2nd National Conference on Information and

Communication Technology NCICT(4):26-30, November 2011. Published by

Foundation of Computer Science, New York, USA.

Barkat, A., dos Santos, A.D. & Thi Thao Nguyen, H. 2014, 'Open Stack and Cloud

Stack: Open Source Solutions for Building Public and Private Clouds', Symbolic and

Numeric Algorithms for Scientific Computing (SYNASC), 2014 16th International

Symposium on, pp. 429-36.

Barrett, E., Howley, E. & Duggan, J. 2011, 'A Learning Architecture for Scheduling

Workflow Applications in the Cloud', Web Services (ECOWS), 2011 Ninth IEEE

European Conference on, pp. 83-90.

Batcher, K. W. & Walker, R. A. 2008. Dynamic round-robin task scheduling to reduce

cache misses for embedded systems. Proceedings of the conference on Design,

automation and test in Europe - DATE '08, 260-260.

Belalem, G., Tayeb, F. & Zaoui, W. 2010, 'Approaches to Improve the Resources

Management in the Simulator CloudSim', in R. Zhu, Y. Zhang, B. Liu & C. Liu (eds),

Information Computing and Applications, vol. 6377, Springer Berlin Heidelberg, pp.

189-96.

150 | P a g e

Bell, W. H., Cameron, D. G., Capozza, L., Millar, A. P., Stockinger, K., and Zini, F.

(2002). Simulation of dynamic grid replication strategies in optorsim. In Journal of

High Performance Computing Applications, pages 46–57. Springer-Verlag.

Ben Charrada, F., Ounelli, H. & Chettaoui, H. 2010, 'Dynamic Period vs Static Period

in Data Grid Replication', P2P, Parallel, Grid, Cloud and Internet Computing

(3PGCIC), 2010 International Conference on, pp. 565-8.

Bernand. M. W. and Graham R. L. (1989), "The Shortest Network Problem," Scient@

American, Jan~ary 1989, pp. 84-89.

Bonvin, N., Papaioannou, T.G. & Aberer, K. 2010, 'Cost-efficient and differentiated

data availability guarantees in data Clouds', Data Engineering (ICDE), 2010 IEEE 26th

International Conference on, pp. 980-3.

Bojanova, I. & Samba, A. 2011, 'Analysis of Cloud Computing Delivery Architecture

Models', Advanced Information Networking and Applications (WAINA), 2011 IEEE

Workshops of International Conference on, pp. 453-8.

Breiter, G. & Naik, V.K. 2013, 'A Framework for Controlling and Managing Hybrid

Cloud Service Integration', Cloud Engineering (IC2E), 2013 IEEE International

Conference on, pp. 217-24.

Butz, M., Herbort, O. & Pezzulo, G. 2008, 'Anticipatory, Goal-Directed Behavior', in

G. Pezzulo, M. Butz, C. Castelfranchi & R. Falcone (eds), The Challenge of

Anticipation, vol. 5225, Springer Berlin Heidelberg, pp. 85-113.

Buyya, R., Chee Shin, Y. & Venugopal, S. Market-Oriented Cloud Computing: Vision,

Hype, and Reality for Delivering IT Services as Computing Utilities. High Performance

Computing and Communications, 2008. HPCC '08. 10th IEEE International

Conference on, 25-27 Sept. 2008 2008. 5-13.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J. & Brandic, I. 2009b. Cloud

Computing and emerging IT platforms: Vision, hype, and reality for delivering

computing as the 5th utility. Future Generation Computer Systems, 25, 599-616.

151 | P a g e

Calheiros, R.N., Ranjan, R., Beloglazov, A., Rose, S.A.F.D. & Buyya, R. 2011,

'CloudSim: a toolkit for modeling and simulation of Cloud Computing environments

and evaluation of resource provisioning algorithms', Softw. Pract. Exper., vol. 41, no. 1,

pp. 23-50.

Cecelia Clementi, Hugh Nymeyer, and Jose N. Onuchic. Topological and energetic

factors: Whatdetermines the structural details of the transition state ensemble and en-

route intermediates for protein folding? an investigation for small globular proteins.

Journal of Molecular Biology, 298: 937_953, 2000.

Chaczko, Z. & Aslanzadeh, S. 2011, 'C2EN: Anisotropic Model of Cloud Computing',

Systems Engineering (ICSEng), 2011 21st International Conference on, pp. 467-73.

Chaczko, Z, Mahadevan, V, Aslanzadeh, S, Mcdermid, C, “Availability and load

balancing in Cloud Computing”, 2011 International conference in computer and

software modelling, IACSITPress, Singapore

Chandran, D. & Kempegowda, S. 2010, 'Hybrid E-learning platform based on Cloud

architecture model: A proposal', Signal and Image Processing (ICSIP), 2010

International Conference on, pp. 534-7.

Chapman, W.L., Rozenblit, J. & Bahill, A.T. 1994, 'The system design problem is NP-

complete', Systems, Man, and Cybernetics, 1994. Humans, Information and

Technology., 1994 IEEE International Conference on, vol. 2, pp. 1880-4 vol.2.

Chavan, V. & Kaveri, P.R. 2015, 'Shared resource clustering for load balancing and

availability in Cloud', Computing for Sustainable Global Development (INDIACom),

2015 2nd International Conference on, pp. 1004-7.

R.S.Chang, H.P.Chang, “A Dynamic Data Replication Strategy Using Access-

Weights in Data Grids” Supercomputing, Vol 45xz

Chen, C., Liu, J., Wen, Y. & Chen, J. 2015, 'Research on Workflow Scheduling

Algorithms in the Cloud', in J. Cao, L. Wen & X. Liu (eds), Process-Aware Systems,

vol. 495, Springer Berlin Heidelberg, pp. 35-48.

152 | P a g e

Cheng, W., Xiang-Yang, L., Shaojie, T. & Changjun, J. 2012, 'Capacity and delay

tradeoffs in mobile networks under Gaussian channel model', Mobile Adhoc and

Sensor Systems (MASS), 2012 IEEE 9th International Conference on, pp. 272-80.

Chiba, T., den Burger, M., Kielmann, T. & Matsuoka, S. 2010, 'Dynamic Load-

Balanced Multicast for Data-Intensive Applications on Clouds', Cluster, Cloud and

Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on, pp.5-

14.

Chiu, G.M., Raghavendra, C.S. & Ng, S.M. 1989, 'Resource allocation with load

balancing consideration in distributed computing systems', INFOCOM '89. Proceedings

of the Eighth Annual Joint Conference of the IEEE Computer and Communications

Societies. Technology: Emerging or Converging, IEEE, pp. 758-65 vol.2.

Chopra, N. & Singh, S. 2013, 'HEFT based workflow scheduling algorithm for cost

optimisation within deadline in hybrid Clouds', Computing, Communications and

Networking Technologies (ICCCNT),2013 Fourth International Conference on, pp. 1-6.

Chun-Chen, H., Chien-Min, W. & Pangfeng, L. 2008, 'Optimal replication transition

strategy in distributed hierarchical systems', Parallel and Distributed Processing, 2008.

IPDPS 2008. IEEE International Symposium on, pp. 1-10.

Conres, IT solutions, 2014, Cloud Deployment models, viewed on 10 Feb 2014,

http://www.conres.com/Cloud-computing-deployment-models.

Cui, L. & Shiyong, L. Scheduling Scientific Workflows Elastically for Cloud

Computing. Cloud Computing (CLOUD), 2011 IEEE International Conference on, 4-9

July 2011 2011. 746-747.

Daniel M. Dubois. Introduction to computing anticipatory systems. International

Journal of ComputingAnticipatory Systems, 2:3_14, 1998.

Das, S.K., Pinotti, M.C. & Sarkar, F. 1996, 'Optimal and load balanced mapping of

parallel priority queues in hypercubes', Parallel and Distributed Systems, IEEE

Transactions on, vol. 7, no. 6, pp. 555-64.

153 | P a g e

Devine, K. D., Boman, E. G., Heaphy, R. T., Hendrickson, B. A., Teresco, J. D., Faik,

J., Flaherty, J. E. & Gervasio, L. G. 2005. New challenges in dynamic load balancing.

Applied Numerical Mathematics, 52, 133-152.

Dobber, M., van der Mei, R. & Koole, G. 2009, 'Dynamic Load Balancing and Job

Replication in a Global-Scale Grid Environment: A Comparison', Parallel and

Distributed Systems, IEEE Transactions on, vol. 20, no. 2, pp. 207-18.

Domanal, S.G. & Reddy, G.R.M. 2014, 'Optimal load balancing in Cloud Computing

by efficient utilisation of virtual machines', Communication Systems and Networks

(COMSNETS), 2014 Sixth International Conference on, pp. 1-4.

Dongjin, Y. & Kwang-Mong, S. A scheduling mechanism for multiple MapReduce

jobs in a workflow application (position paper). Computing, Communications and

Applications Conference (ComComAp), 2012, 11-13 Jan. 2012 2012. 405-410.

Dong-Sheng, Y., Yin-Long, L., Zhong, L. & Wei-Ming, Z. 2004, 'Research on

algorithms of task scheduling', Machine Learning and Cybernetics, 2004. Proceedings

of 2004 International Conference on, vol. 1, pp. 42-7 vol.1.

DTU, Department of Applied mathematics and computer science, ‘Gray Box’, Viewd

on 20 September 2015, http://energy.imm.dtu.dk/models/gray-box.html

E. Deelman and A. Chervenak, “Data Management Challenges of Data-Intensive

Scientific Workflows,” in CCGRID ’08: Proceedings of the Eighth IEEE International

Symposium on Cluster Computing and the Grid (CCGRID). Washington, DC,

USA:IEEE, 2008, pp. 687–692.

E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G.Mehta, K. Vahi, K. Blackburn, A.

Lazzarini,A. Arbree, R. Cavanaugh, and S. Koranda, “Mapping Abstract Complex

Workflows onto Grid Environments,” Journal of Grid Computing, vol. V1, no. 1, pp.

25–39, March 2003.

E. M. Bahsi, E. Ceyhan, and T. Kosar, “Conditional workflow management: A survey

and analysis,” Scientific Programming, vol. 15, no. 4, pp. 283–297, 2007.

154 | P a g e

Erzberger, C. 2001, 'Bernard, H. Russell: Social research methods. Qualitative and

quantitative approaches', KZfSS Kölner Zeitschrift für Soziologie und

Sozialpsychologie, vol. 53, no. 4, pp. 804-6.

Fiandrino, C., Kliazovich, D., Bouvry, P. & Zomaya, A.Y. 2015, 'Performance and

Energy Efficiency Metrics for Communication Systems of Cloud Computing Data

Centers', Cloud Computing, IEEE Transactions on, vol. PP, no. 99, pp. 1-.

Gaikwad-Patil, T. 2012. Load Balancing The Essential Factor In Cloud Computing. 1,

1-5.

Galante, G. and L. C. E. de Bona (2012). A Survey on Cloud Computing Elasticity.

Utility and Cloud Computing (UCC), 2012 IEEE Fifth International Conference on.

Gang, S., Anand, V., Hong-Fang, Y., Dan, L. & Lemin, L. 2012, 'Optimal provisioning

for elastic service oriented virtual network request in Cloud Computing', Global

Communications Conference (GLOBECOM), 2012 IEEE, pp. 2517-22.

Georgi Dalakov, History of computer, software, hardware, Internet, California, viewed

12 September 2015,< http://history-computer.com/>

Ghilavizadeh Zeinab, seyed javad mirabedini, Ali Harounabadi , ‘A new Fuzzy optimal

data Replication for data Grid’, Management science,pp.927-936, 2013.

Ghutke, B. & Shrawankar, U. 2014, 'Pros and cons of load balancing algorithms for

Cloud Computing', Information Systems and Computer Networks (ISCON), 2014

International Conference on, pp. 123-7.

Gibson, J., Rondeau, R., Eveleigh, D. & Qing, T. 2012, 'Benefits and challenges of

three Cloud Computing service models', Computational Aspects of Social Networks

(CASoN), 2012 Fourth International Conference on, pp. 198-205.

Gopularam, B.P., Yogeesha, C.B. & Periasamy, P. 2012, 'Highly scalable model for

tests execution in Cloud environments', Advanced Computing and Communications

(ADCOM), 2012 18th Annual International Conference on, pp. 54-8.

155 | P a g e

Gonzalez, A.J. & Helvik, B.E. 2012, 'System management to comply with SLA

availability guarantees in Cloud Computing', Cloud Computing Technology and

Science (CloudCom), 2012 IEEE 4th International Conference on, pp. 325-32.

Grant, A.B. & Eluwole, O.T. 2013, 'Cloud resource management — Virtual

machines competing for limited resources', ELMAR, 2013 55th International

Symposium, pp. 269-74.

Greenwood, G.W. 2001, 'Finding solutions to NP problems: philosophical differences

between quantum and evolutionary search algorithms', Evolutionary Computation,

2001. Proceedings of the 2001 Congress on, vol. 2, pp. 815-22 vol. 2.

Grubitzsch, P. & Schuster, D. 2014, 'Hosting and Discovery of Distributed Mobile

Services in an XMPP Cloud', Mobile Services (MS), 2014 IEEE International

Conference on, pp. 47-54.

Guang Song. Spring tensor model source code, 2012. URL

http://www.cs.iastate.edu/~gsong/CSB/.

Guicheng, S. & Bingwu, L. 2010, 'Research on Application of Internet of Things in

Electronic Commerce', Electronic Commerce and Security (ISECS), 2010 Third

International Symposium on, pp. 13-6.

Gupta, A., et al. (2013). Improving HPC Application Performance in Cloud through

Dynamic Load Balancing. Cluster, Cloud and Grid Computing (CCGrid), 2013 13th

IEEE/ACM International Symposium on.

Gupta, A., Sarood, O., Kale, L.V. & Milojicic, D. 2013, 'Improving HPC Application

Performance in Cloud through Dynamic Load Balancing', Cluster, Cloud and Grid

Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on, pp. 402-9.

Hao, L., Binxing, F. & Xiaochun, Y. 2006, 'Anomaly Detection in SMTP Traffic',

Information Technology: New Generations, 2006. ITNG 2006. Third International

Conference on, pp. 408-13.

156 | P a g e

Haozheng, R., Yihua, L. & Chao, Y. 2012, 'The load balancing algorithm in Cloud

Computing environment', Computer Science and Network Technology (ICCSNT), 2012

2nd International Conference on, pp. 925-8.

Haozheng, R., Yihua, L. & Chao, Y. The load balancing algorithm in Cloud Computing

environment. Computer Science and Network Technology (ICCSNT), 2012 2nd

International Conference on, 29-31 Dec. 2012 2012. 925-928.

Hasan, M.Z., Magana, E., Clemm, A., Tucker, L. & Gudreddi, S.L.D. 2012, 'Integrated

and autonomic Cloud resource scaling', Network Operations and Management

Symposium (NOMS), 2012 IEEE, pp. 1327-34.

Hataba, M. & El-Mahdy, A. 2012, 'Cloud Protection by Obfuscation: Techniques and

Metrics', P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2012 Seventh

International Conference on, pp. 369-72.

He, D.-X. & Jia, R.-m. 2012, 'Cloud model-based Artificial Bee Colony Algorithm's

application in the logistics location problem', Information Management, Innovation

Management and Industrial Engineering (ICIII), 2012 International Conference on, vol.

1, pp. 256-9.

H. Belhaddad, R. Perez, M. Nicolaidis, R. Gaillard, M. Derbey, F. Benistant, "Circuit

Simulations of SEU and SET Disruptions by Means of an Empirical Model Built

Thanks to a Set of 3D MixedMode Device Simulation Responses", Proceedings of

RADECS, 2006

Hayashi, Y., Spencer, M.C. & Nasuto, S.J. 2013, 'A study of anticipatory non-

autonomous systems', Awareness Science and Technology and Ubi-Media Computing

(iCAST-UMEDIA), 2013 International Joint Conference on, pp. 316-8.

Hong, H. 2010, 'Applications deployment on the SaaS platform', Pervasive Computing

and Applications (ICPCA), 2010 5th International Conference on, pp. 232-7.

Hongli, Z., Lin, Y., Xiaojiang, D. & Guizani, M. 2013, 'Protecting private Cloud

located within public Cloud', Global Communications Conference (GLOBECOM),

2013 IEEE, pp. 677-81.

157 | P a g e

Hornsby, A. & Walsh, R. 2010, 'From instant messaging to Cloud Computing, an

XMPP review', Consumer Electronics (ISCE), 2010 IEEE 14th International

Symposium on, pp. 1-6.

Hoyer, P. 1995, 'A general technique for implementation of efficient priority queues',

Theory of Computing and Systems, 1995. Proceedings., Third Israel Symposium on

the, pp. 57-66.

Huichao, M. & Yongqiang, Y. 2012, 'An Effective Clustering-Based Prefetching

Scheme for Spatial Databases System', Internet Computing for Science and

Engineering (ICICSE), 2012 Sixth International Conference on, pp. 35-41.

Kitajima, N., Goto, Y. & Jingde, C. 2008, 'Fast Qualitative Reasoning about Actions

for Computing Anticipatory Systems', Availability, Reliability and Security, 2008.

ARES 08. Third International Conference on, pp. 171-8.

I. Brandic, S. Pllana, and S. Benkner, “Specification, planning, and execution ofQoS-

aware Grid workflows within the Amadeus environment,” Concurrency and

Computation: Practice & Experience, vol. 20, pp. 331–345, March 2008.

I.Foster, K. Ranganathan, design and evaluation of dynamic replication strategies a

high performance data grid, in :proceedings of international conference on computing

in High energy and nuclear physics, china, September 2001.

Iskander, M.K., Trainor, T., Wilkinson, D.W., Lee, A.J. & Chrysanthis, P.K. 2014,

'Balancing Performance, Accuracy, and Precision for Secure Cloud Transactions',

Parallel and Distributed Systems, IEEE Transactions on, vol. 25, no. 2, pp. 417-26.

Jae Yoo, L. & Soo Dong, K. 2010, 'Software Approaches to Assuring High Scalability

in Cloud Computing', e-Business Engineering (ICEBE), 2010 IEEE 7th International

Conference on, pp. 300-6.

Jain, A., Yadav, A., Namboodiri, L. & Abraham, J. 2013, 'A Threshold Band Based

Model for Automatic Load Balancing in Cloud Environment', Cloud Computing in

Emerging Markets (CCEM), 2013 IEEE International Conference on, pp. 1-7.

158 | P a g e

Jihoon, K., Yohan, K., Jongwon, L., Yongjoo, K., Hwisoo, S., Kyoungwoo, L. &

Yunheung, P. 2013, 'Selective validations for efficient protections on Coarse-Grained

Reconfigurable Architectures', Application-Specific Systems, Architectures and

Processors (ASAP), 2013 IEEE 24th International Conference on, pp. 95-8.

Jenn-Wei, L., Chien-Hung, C. & Chang, J.M. 2013, 'QoS-Aware Data Replication for

Data-Intensive Applications in Cloud Computing Systems', Cloud Computing, IEEE

Transactions on, vol. 1, no. 1, pp. 101-15.

J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy, “Task

scheduling strategies for workflow-based applications in grids,” in CCGRID

’05:Proceedings of the Fifth IEEE International Symposium on Cluster Computing and

theGrid (CCGrid’05) - Volume 2. Washington, DC, USA: IEEE, 2005, pp. 759–767.

J. Broberg, R. Buyya, and Z. Tari, “MetaCDN: Harnessing ‘storage Clouds’ for high

performance content delivery,” Journal of Network and Computer Applications, vol.

32,no. 5, pp. 1012–1022, 2009.

J. Griffioen, R. Appleton, Performance measurements of automatic prefetching, Parallel

and Distributed Computing Systems (1995) 165–170.

J. Yu and R. Buyya, “A Taxonomy of Workflow Management Systems for

GridComputing,” Journal of Grid Computing, vol. 3, no. 3, pp. 171–200, September

2005.

J. Yu, R. Buyya, and K. Ramamohanarao, “Workflow Scheduling Algorithms forGrid

Computing,” in Metaheuristics for Scheduling in Distributed Computing

Environments,ser. Studies in Computational Intelligence. Springer Berlin /

Heidelberg,2008, vol. 146, pp. 173–214.

Jianzong, W., Rui, H., Yifeng, Z., Jiguang, W., Changsheng, X. & Yanjun, C. 2012,

'RO-BURST: A Robust Virtualisation Cost Model for Workload Consolidation over

Clouds', Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM

International Symposium on, pp. 490-7.

159 | P a g e

JungYul, C., Seung-Hoon, K., Mi-Jeong, L., Taeil, C., Byoung-Kwon, S. & Jae-

Hyoung, Y. 2010, 'Service traffic management system for multiservice IP networks:

lessons learned and applications', Communications Magazine, IEEE, vol. 48, no. 4, pp.

58-65.

Junjie, T., Renjie, P. & Ke, X. 2011, 'Cloud Computing infrastructure based on named

content', Pervasive Computing and Applications (ICPCA), 2011 6th International

Conference on, pp. 429-34.

K. Sashi, A.S. Thanamani, Dynamic replication in a data grid using a modified BHR

region based algorithm, Future Generation Computer Systems 27 (2011),202–210.

Kadim, H.J. 2007, 'Modelling of Anticipatory Behaviour for Self-Control and

Adaptability with Applications to Autonomous Systems', Bio-inspired, Learning, and

Intelligent Systems for Security, 2007. BLISS 2007. ECSIS Symposium on, pp. 91-6.

Kalimeri, M., Derreumaux, P. & Sterpone, F. 2015, 'Are coarse-grained models apt to

detect protein thermal stability? The case of OPEP force field', Journal of Non-

Crystalline Solids, vol. 407, pp. 494-501.

Karim, R., Chen, D. & Miri, A. 2015, 'End-to-End Performance Prediction for

Selecting Cloud Services Solutions', Service-Oriented System Engineering (SOSE),

2015 IEEE Symposium on, pp. 69-77.

Kamra, M. & Manna, R. 2012, 'Performance of Cloud-Based Scalability and Load with

an Automation Testing Tool in Virtual World', Services (SERVICES), 2012 IEEE

Eighth World Congress on, pp. 57-64.

Kennedy, J.Eberhart, R: Particle swarm optimisation In: IEEE International Conference

on Neutral Network, PP.1942-1948 (1995)

Kimura, S., Sonoda, K., Yamane, S., Matsumura, K. & Hatakeyama, M. 2006,

'Function Approximation Approach to the Inference of Normalized Gaussian Network

Models of Genetic Networks', Neural Networks, 2006. IJCNN '06. International Joint

Conference on, pp. 2218-25.

160 | P a g e

Kozlovszky, M., Trocsik, M., Schubert, T. & Poserne, V. 2013, 'IaaS type Cloud

infrastructure assessment and monitoring', Information & Communication Technology

Electronics & Microelectronics (MIPRO), 2013 36th International Convention on, pp.

249-52.

Kpmg Cutting through complexity 2011, The Cloud: Changing the Business

Ecosystem,KPMG,India,viewed2Feb2014<http://www.kpmg.com/IN/en/IssuesAndInsi

ghts/ThoughtLeadership/The_Cloud_Changing_the_Business_Ecosystem.pdf.

Kruber, N., Ho, x, gqvist, M. & Schutt, T. 2011, 'The Benefits of Estimated Global

Information in DHT Load Balancing', Cluster, Cloud and Grid Computing (CCGrid),

2011 11th IEEE/ACM International Symposium on, pp. 382-91.

K. Tanaka, H. Nakamura, T. Uemura, K. Takeuchi, T. Fukuda, S. Kumashiro, "Study

on Influence of Device Structure Dimensions and Profiles on Charge Collection

Current Causing SET Pulse Leading to Soft Errors in Logic Circuits", SISPAD 2009

Kun, L., Gaochao, X., Guangyu, Z., Yushuang, D. & Wang, D. Cloud Task Scheduling

Based on Load Balancing Ant Colony Optimisation. Chinagrid Conference

(ChinaGrid), 2011 Sixth Annual, 22-23 Aug. 2011 2011. 3-9.

Lai Gong, G., You Rui, H., Jun, C. & Li Guo, Q. 2011, 'Investigation of architecture,

key technology and application strategy for the Internet of things', Cross Strait Quad-

Regional Radio Science and Wireless Technology Conference (CSQRWC), 2011, vol.

2, pp. 1196-9.

Lamb, J. & Cusato, T. 1994, 'LAN-based office for the enterprise, a case study', Local

Computer Networks, 1994. Proceedings., 19th Conference on, pp. 440-7.

Lamehamedi.H and Szymanski.B,‘Decentralized data management framework for data

grids’ Future Generation computer system, pp.109-115, 2007.

Lazri, K., Laniepce, S., Zheng, H. & Ben-Othman, J. 2014, 'AMAD: Resource

Consumption Profile-Aware Attack Detection in IaaS Cloud', Utility and Cloud

Computing (UCC), 2014 IEEE/ACM 7th International Conference on, pp. 379-86.

161 | P a g e

Lee, B., Grance, T., Patt-Corner, R. & Voas, J 2012, Cloud Computing Synopsis and

Recommendations,viewd on 15 September 2014,

http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf

Lee, K., Paton, N.W., Sakellariou, R., Deelman, E., Fernandes, A.A.A. & Mehta, G.

2008, 'Adaptive Workflow Processing and Execution in Pegasus', Grid and Pervasive

Computing Workshops, 2008. GPC Workshops '08. The 3rd International Conference

on, pp. 99-106.

Lee, R. and J. Bingchiang (2011). Load-Balancing Tactics in Cloud. Cyber-Enabled

Distributed computing and Knowledge Discovery (CyberC), 2011 International

Conference on.

Lei M, Vrbsky S V, Hong X, ‘An on-line replication strategy to increase availability in

data grids’. Future Generation Com-puter Systems, 24(2) .pp 85-98, 2008.

Leifur Leifsson, Hildur Saevarsdottir, Sven Sigurosson, and Ari Vesteinsson. Gray-box

modelling of an ocean vessel for operational optimisation. Simulation Modelling

Practice and Theory, 16:923932, 2008. doi: 10.1016/j.simpat.2008.03.006.

Li, Y, & Mascagni, M 2012, '', North Carolina, viewed on Feb 6th 2013,

http://www.cs.odu.edu/~yaohang/publications/IADIS_Li.pdf.

Liu, X., Yuan, D., Zhang, G., Li, W., Cao, D., He, Q., Chen, J. & Yang, Y. 2012. Case

Study: SwinDeW-C Cloud Workflow System. The Design of Cloud Workflow

Systems. Springer New York.

Loukopoulos, T. & Ahmad, I. 2000, 'Static and adaptive data replication algorithms for

fast information access in large distributed systems', Distributed Computing Systems,

2000. Proceedings. 20th International Conference on, pp. 385-92.

Luo, H.-m., Yan, C.-k. & Luo, J.-w. 2012, 'Dynamic Programming Based Grid

Workflow Scheduling Algorithm', in Y. Wu (ed.), Software Engineering and

Knowledge Engineering: Theory and Practice, vol. 114, Springer Berlin Heidelberg,

pp. 993-1000.

162 | P a g e

M. Shorfuzzaman, P. Graham, R. Eskicioglu, Popularity-driven dynamicreplica

placement in hierarchical data grids, in: Proceedings of Ninth International Conference

on Parallel and Distributed Computing, Applications and Technologies, 2008, pp. 524–

531.

M. Tang, B.S. Lee, C.K. Yao, X.Y Tang, Dynamic replication algorithm for the multi-

tier data grid, Future Generation Computer Systems 21 (5) (2005).775–790.

Madivi, R. & Kamath, S.S. 2014, 'An hybrid bio-inspired task scheduling algorithm in

Cloud environment', Computing, Communication and Networking Technologies

(ICCCNT), 2014 International Conference on, pp. 1-7.

Maguluri, S.T., Srikant, R. & Lei, Y. 2012, 'Stochastic models of load balancing and

scheduling in Cloud Computing clusters', INFOCOM, 2012 Proceedings IEEE, pp.

702-10.

Manish, M. & Cheema, R. K. A Min-Max Approach to Perform Load Balancing in

Distributed Network. Advanced Computing & Communication Technologies (ACCT),

2012 Second International Conference on, 7-8 Jan. 2012 2012. 200-203.

Maarouf, A., Marzouk, A. & Haqiq, A. 2014, 'Automatic control of the quality of

service contract by a third party in the Cloud Computing', Complex Systems (WCCS),

2014 Second World Conference on, pp. 599-603.

Masiyev, K.H., Qasymov, I., Bakhishova, V. & Bahri, M. 2012, 'Cloud Computing for

business', Application of Information and Communication Technologies (AICT), 2012

6th International Conference on, pp. 1-4.

Mansouri, N., Dastghaibyfard, G.H. & Mansouri, E. 2013, 'Combination of data

replication and scheduling algorithm for improving data availability in Data Grids',

Journal of Network and Computer Applications, vol. 36, no. 2, pp. 711-22.

Mathur,P and Nishchal,N “Cloud Computing: New challenge to the entirecomputer

industry,” in Parallel Distributed and Grid Computing (PDGC), 2010 1st International

Conference on, 2010, pp. 223–228.

163 | P a g e

Maurice Clerc. Particle Swarm Optimisation - L'Optimisation par Essaims

Particulaires. Wiley ISTE,London, England, 2006.

Metcalfe, B. 2000, 'The next-generation Internet', Internet Computing, IEEE, vol. 4, no.

1, pp. 58-9.

McCarthy, John. “The Home Information Terminal.” Man and Computer, Proc. Int.

Conf., Bordeaux 1970, pp. 48-57. Basel: Karger, 1972. Anticipated the usefulness of

computer access from the home, much of which would not be realized until the

appearance of networked personal computers in the early 1980s.

Mell,P & Grance,T .2011, The NIST Definition of Cloud Computing, viewd 19

September 2014, http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Metwally, K.M., Jarray, A. & Karmouch, A. 2015, 'Two-phase ontology-based

resource allocation approach for IaaS Cloud service', Consumer Communications and

Networking Conference (CCNC), 2015 12th Annual IEEE, pp. 790-5.

Miyake, Y., Onishi, Y. & Popper, E. 2003, 'Two types of anticipation in sensory-motor

coupling', SICE 2003 Annual Conference, vol. 1, pp. 551-6 Vol.1.

Ming-Ke, L. & Yaw-Chung, C. 2014, 'An XMPP-Based XML Representation

Middleware to Build Universal Service-Oriented Gateway in M2M Environment',

Internet of Things (iThings), 2014 IEEE International Conference on, and Green

Computing and Communications (GreenCom), IEEE and Cyber, Physical and Social

Computing(CPSCom), IEEE, pp. 193-200.

Ming, Z. & Zu-Kuan, W. 2010, 'Load-balancing strategies in distributed workflow

management system', Communication Systems, Networks and Applications (ICCSNA),

2010 Second International Conference on, vol. 1, pp. 235-8.

Moreno-Vozmediano, R., et al. (2013). "Key Challenges in Cloud Computing:

Enabling the Future Internet of Services." Internet Computing, IEEE17(4): 18-25.

Nadeem, F., Prodan, R. & Fahringer, T. 2008, 'Characterizing, Modelling and

Predicting Dynamic Resource Availability in a Large Scale Multi-purpose Grid',

164 | P a g e

Cluster Computing and the Grid, 2008. CCGRID '08. 8th IEEE International

Symposium on, pp. 348-57.

Nader-uz-zaman, M., Kashem, M.A., Ahmad, R.B. & Rahman, M. 2014, 'An adaptive

replication model for heterogeneous systems', Electronic Design (ICED), 2014 2nd

International Conference on, pp. 58-63.

Naik, V.K., Beaty, K. & Kundu, A. 2014, 'Service Usage Metering in Hybrid Cloud
Environments', Cloud Engineering (IC2E), 2014 IEEE International Conference on, pp.
253-60.

Nguyen, S.B.S. & Mengjie, Z. 2014, 'A hybrid discrete particle swarm optimisation
method for grid computation scheduling', Evolutionary Computation (CEC), 2014
IEEE Congress on, pp. 483-90.

Nurain, N., Sarwar, H., Sajjad, M.P. & Mostakim, M. 2012, 'An In-depth Study of Map

Reduce in Cloud Environment', Advanced Computer Science Applications and

Technologies (ACSAT), 2012 International Conference on, pp. 263-8.

Ozcan, I. & Bora, S. 2011, 'A hybrid load balancing model for multi-agent systems',

Innovations in Intelligent Systems and Applications (INISTA), 2011 International

Symposium on, pp. 182-7.

P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger, “Workflow Management in

Condor,” in Workflows for e-Science, I. J. Taylor, E. Deelman, D. B. Gannon, and M.

Shields, Eds. Springer London, 2007, pp. 357–375.

Pandey, S., Linlin, W., Guru, S. M. & Buyya, R. A Particle Swarm Optimisation-Based

Heuristic for Scheduling Workflow Applications in Cloud Computing Environments.

Advanced Information Networking and Applications (AINA), 2010 24th IEEE

International Conference on, 20-23 April 2010 2010. 400-407.

Patel, G. 2012, 'DICOM Medical Image Management the challenges and solutions:

Cloud as a Service (CaaS)', Computing Communication & Networking Technologies

(ICCCNT), 2012 Third International Conference on, pp. 1-5.

165 | P a g e

Pattanaik, P.A., Roy, S. & Pattnaik, P.K. 2015, 'Performance study of some dynamic

load balancing algorithms in Cloud Computing environment', Signal Processing and

Integrated Networks (SPIN), 2015 2nd International Conference on, pp. 619-24.

Pawara, S.R. & Hiray, S.R. 2013, 'Instant Notification System in Heterogeneous Sensor

Network with Deployment of XMPP Protocol', Cloud & Ubiquitous Computing &

Emerging Technologies (CUBE), 2013 International Conference on, pp. 87-92.

Peng, L. & Ravindran, B. 2004, 'Fast, best-effort real-time scheduling algorithms',

Computers, IEEE Transactions on, vol. 53, no. 9, pp. 1159-75.

Pezzulo, G., Butz, M. & Castelfranchi, C. 2008, 'The Anticipatory Approach:

Definitions and Taxonomies', in G. Pezzulo, M. Butz, C. Castelfranchi & R. Falcone

(eds), The Challenge of Anticipation, vol. 5225, Springer Berlin Heidelberg, pp. 23-43.

Philippe Kruchten, Henk Obbink, and Judith Sta_ord. The past, present and future of

software architecture. IEEE Software, 23:22_30, 2006.

Pius, S.V. & Suresh, S. 2015, 'A novel algorithm of load balancing in distributed file

system for Cloud', Innovations in Information, Embedded and Communication Systems

(ICIIECS), 2015 International Conference on, pp. 1-4.

Prabavathy, B., Priya, K. & Babu, C. 2013, 'A load balancing algorithm for private
Cloud storage', Computing, Communications and Networking Technologies
(ICCCNT),2013 Fourth International Conference on, pp. 1-6.

Qingling, W. & Varela, C.A. 2011, 'Impact of Cloud Computing Virtualisation

Strategies on Workloads' Performance', Utility and Cloud Computing (UCC), 2011

Fourth IEEE International Conference on, pp. 130-7.

Radojevic, B. & Zagar, M. Analysis of issues with load balancing algorithms in hosted

(Cloud) environments. MIPRO, 2011 Proceedings of the 34th International Convention,

23-27 May 2011 2011. 416-420.

Rahman, M., Venugopal, S. & Buyya, R. A Dynamic Critical Path Algorithm for

Scheduling Scientific Workflow Applications on Global Grids. e-Science and Grid

Computing, IEEE International Conference on, 10-13 Dec. 2007 2007. 35-42.

166 | P a g e

Rahman, M., Iqbal, S. & Gao, J. 2014, 'Load Balancer as a Service in Cloud

Computing', Service Oriented System Engineering (SOSE), 2014 IEEE 8th

International Symposium on, pp. 204-11.

Rajalakshmi, A., Vijayakumar, D. & Srinivasagan, K.G. 2014, 'An improved dynamic

data replica selection and placement in Cloud', Recent Trends in Information

Technology (ICRTIT), 2014 International Conference on, pp. 1-6.

Ramaswamy, P. 2009 : Signature-driven load management for Cloud Computing

infrastructures. 2009 17th International Workshop on Quality of Service, 1-9.

Ramezani, F., Lu, J. & Hussain, F. 2013, "A Fuzzy Predictable Load Balancing

Approach in Cloud Computing", The Steering Committee of The World Congress in

Computer Science, Computer Engineering and Applied Computing (WorldComp),

Athens, pp. 108.

Randles, M., Lamb, D. & Taleb-Bendiab, A. A Comparative Study into Distributed

Load Balancing Algorithms for Cloud Computing. Advanced Information Networking

and Applications Workshops (WAINA), 2010 IEEE 24th International Conference on,

20-23 April 2010 2010. 551-556.

Rimal, B.P., Eunmi, C. & Lumb, I. 2009, 'A Taxonomy and Survey of Cloud

Computing Systems', INC, IMS and IDC, 2009. NCM '09. Fifth International Joint

Conference on, pp. 44-51.

Robert Rosen. Dynamical Systems Theory in Biology. Wiley Interscience, New York,

1970.

Rosen, R. 1991, 'Anticipatory Systems in Retrospect and Prospect', Facets of Systems

Science, vol. 7, Springer US, pp. 537-57.

Ruay-shiung chang.Hui-Ping Chang ,’A dynamic data replicationstrategy using access

weights in data grids,springer Science+Business media,pp.278-294, 2008.

Ruixia, T. & Xiongfeng, Z. 2010, 'A Load Balancing Strategy Based on the

Combination of Static and Dynamic', Database Technology and Applications (DBTA),

2010 2nd International Workshop on, pp. 1-4.

167 | P a g e

Sahu, Y., Pateriya, R.K. & Gupta, R.K. 2013, 'Cloud Server Optimisation with Load

Balancing and Green Computing Techniques Using Dynamic Compare and Balance

Algorithm', Computational Intelligence and Communication Networks (CICN), 2013

5th International Conference on, pp. 527-31.

Saint-Andre, P. 2009, 'XMPP: lessons learned from ten years of XML messaging',

Communications Magazine, IEEE, vol. 47, no. 4, pp. 92-6.

Sakellariou, R. & Henan, Z. A Hybrid heuristic for DAG scheduling on heterogeneous

systems. Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th

International, 26-30 April 2004 2004. 111.

Salapura, V. 2012, 'Cloud Computing: Virtualisation and resiliency for data center

computing', Computer Design (ICCD), 2012 IEEE 30th International Conference on,

pp. 1-2.

Saravanakumar, C. & Arun, C. 2012, 'Instance management for software application of

the Cloud over common deployment model', Emerging Trends in Science, Engineering

and Technology (INCOSET), 2012 International Conference on, pp. 63-7.

Sarmila, G.P., Gnanambigai, N. & Dinadayalan, P. 2015, 'Survey on fault tolerant

— Load balancing algorithmsin Cloud Computing', Electronics and

Communication Systems (ICECS), 2015 2nd International Conference on, pp. 1715-20.

Sawant, S. 2011. A Genetic Algorithm Scheduling Approach for Virtual Machine

Resources in a Cloud Computing Environment.

Selimi, M., Freitag, F., Pueyo Centelles, R. & Moll, A. 2014, 'Distributed Storage and
Service Discovery for Heterogeneous Community Network Clouds', Utility and Cloud
Computing (UCC), 2014 IEEE/ACM 7th International Conference on, pp. 204-12.

Shahapure, N.H. & Jayarekha, P. 2014, 'Load Balancing with Optimal Cost Scheduling
Algorithm', Computation of Power, Energy, Information and Communication
(ICCPEIC), 2014 International Conference on, pp. 24-31.

Shameem, P. M. & Shaji, R. S. 2013. A Methodological Survey on Load Balancing

Techniques in Cloud Computing. 5, 3801-3812.

168 | P a g e

Shanjiang, T., Bu-Sung, L. & Bingsheng, H. 2014, 'Towards Economic Fairness for

Big Data Processing in Pay-as-You-Go Cloud Computing', Cloud Computing

Technology and Science (CloudCom), 2014 IEEE 6th International Conference on, pp.

638-43.

Shao, X., Jibiki, M., Teranishi, Y. & Nishinaga, N. 2015, 'Fast and Cost-Effective Load

Balancing Method for Range Queriable Cloud Storage', Computer Software and

Applications Conference (COMPSAC), 2015 IEEE 39th Annual, vol. 3, pp. 638-9.

Shaw, S.B. & Singh, A.K. 2014, 'A survey on scheduling and load balancing

techniques in Cloud Computing environment', Computer and Communication

Technology (ICCCT), 2014 International Conference on, pp. 87-95.

Shicong, M. & Ling, L. 2013, 'Enhanced Monitoring-as-a-Service for Effective Cloud

Management', Computers, IEEE Transactions on, vol. 62, no. 9, pp. 1705-20.

Shobana, G., Geetha, M. & Suganthe, R.C. 2014, 'Nature inspired preemptive task

scheduling for load balancing in Cloud datacenter', Information Communication and

Embedded Systems (ICICES), 2014 International Conference on, pp. 1-6.

Shu-Ching, W., Kuo-Qin, Y., Wen-Pin, L. & Shun-Sheng, W. Towards a Load

Balancing in a three-level Cloud Computing network. 2010. 108-113.

Shuang, C., Ghorbani, M., Yanzhi, W., Bogdan, P. & Pedram, M. 2014, 'Trace-Based

Analysis and Prediction of Cloud Computing User Behavior Using the Fractal

Modeling Technique', Big Data (BigData Congress), 2014 IEEE International Congress

on, pp. 733-9.

Singh, L & Singh, S. Article: A Survey of Workflow Scheduling Algorithms and

Research Issues. International Journal of Computer Applications 74(15):21-28, July

2013. Published by Foundation of Computer Science, New York, USA.

Sinitskiy, A.V. & Voth, G.A. 2013, 'Coarse-graining of proteins based on elastic

network models', Chemical Physics, vol. 422, pp. 165-74.

Soni, G. & Kalra, M. 2014, 'A novel approach for load balancing in Cloud data center',

Advance Computing Conference (IACC), 2014 IEEE International, pp. 807-12.

169 | P a g e

Sreenivas, V., Prathap, M. & Kemal, M. 2014, 'Load balancing techniques: Major

challenge in Cloud Computing - a systematic review', Electronics and Communication

Systems (ICECS), 2014 International Conference on, pp. 1-6.

Sqalli, M.H. & Sirajuddin, S. 2005, 'An adaptive load-balancing approach to XML-

based network management using JPVM', Networks, 2005. Jointly held with the 2005

IEEE 7th Malaysia International Conference on Communication., 2005 13th IEEE

International Conference on, vol. 1, p. 6 pp.

Suciu, G., Halunga, S., Vulpe, A. & Suciu, V. 2013, 'Generic platform for IoT and

Cloud Computing interoperability study', Signals, Circuits and Systems (ISSCS), 2013

International Symposium on, pp. 1-4.

Suresh, P., Daniel, J.V., Parthasarathy, V. & Aswathy, R.H. 2014, 'A state of the art

review on the Internet of Things (IoT) history, technology and fields of deployment',

Science Engineering and Management Research (ICSEMR), 2014 International

Conference on, pp. 1-8.

Swarnkar, N. 2013. A Survey of Load Balancing Techniques in Cloud Computing. 2,

800-804.

Tang, L. & Chen, H. 2014, 'Joint Pricing and Capacity Planning in the IaaS Cloud

Market', Cloud Computing, IEEE Transactions on, vol. PP, no. 99, pp. 1-.

T. A. Feo and M. G. Resende, “Greedy Randomized Adaptive Search

Procedures,”Journal of Global Optimisation, vol. 6, no. 2, pp. 109–133, March 1995.

T. D. Braun, H. J. Siegel, N. Beck, L. L. B¨ ol¨oni, M. Maheswaran, A. I. Reuther, J. P.

Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund, “A comparison of

eleven static heuristics formapping a class of independent tasks onto heterogeneous

distributed computing systems,” Journal of Parallel Distributed Computing, vol. 61,

no. 6, pp. 810–837, 2001.

T.M. Kroegar, D.E. Long Darrell, The case for efficient file access pattern modelling,

in: Proceedings of the 7th Workshop on Hot Topics in Operating Systems, Rio Risco,

USA, March 1999, pp. 14–19.

170 | P a g e

Tilak.D and Patil.P, “A Survey of Various Scheduling Algorithms in Cloud

Environment,” vol. 1, no. 2, pp. 36–39, 2012.

Tu-Liang Lin and Guang Song. Generalized spring tensor models for protein _uctuation

dynamics and conformation changes. BMC Structural Biology, 10:12, 2010. doi:

10.1186/1472-6807-10-S1-S3.

Tungnguyen,AnthonyCutway,andWeisongShi,”Differentiated Replication strategy in

data centers, IFIP international federation of information processing , pp.276-287,

2010.

Undheim, A., Chilwan, A. & Heegaard, P. 2011, 'Differentiated Availability in Cloud

Computing SLAs', Grid Computing (GRID), 2011 12th IEEE/ACM International

Conference on, pp. 129-36.

Vande Sande, H. & Hameyer, K. 2002, 'Comparison of neural network and polynomial

models for the approximation of nonlinear and anisotropic ferromagnetic materials',

Science, Measurement and Technology, IEE Proceedings -, vol. 149, no. 5, pp. 214-7.

Varalakshmi, P., Ramaswamy, A., Balasubramanian, A. & Vijaykumar, P. 2011. An

Optimal Workflow Based Scheduling and Resource Allocation in Cloud.

Venkatesan, R. & Solomi, M.B. 2011, 'Analysis of Load Balancing Techniques in

Grid', in V. Das & N. Thankachan (eds), Computational Intelligence and Information

Technology, vol. 250, Springer Berlin Heidelberg, pp. 147-51.

Vijindra & Shenai, S. 2012. Survey on Scheduling Issues in Cloud Computing.

Procedia Engineering, 38, 2881-2888.

Vilutis, G., Daugirdas, L., Kavaliunas, R., Sutiene, K. & Vaidelys, M. 2012, 'Model of

load balancing and scheduling in Cloud Computing', Information Technology

Interfaces (ITI), Proceedings of the ITI 2012 34th International Conference on, pp. 117-

22.

Vu, Q., Lupu, M. & Ooi, B. 2010, 'Load Balancing and Replication', Peer-to-Peer

Computing, Springer Berlin Heidelberg, pp. 127-56.

171 | P a g e

Wan, G., Dai, X., Yin, Q., Shi, X. & Qiao, Y. 2015, 'Interaction of menthol with

mixed-lipid bilayer of stratum corneum: A coarse-grained simulation study', Journal of

Molecular Graphics and Modelling, vol. 60, pp. 98-107.

Wang, N., Yang, Y., Meng, K., Chen, Y. & Ding, H. 2013, 'A task scheduling

algorithm based on qos and complexity-aware optimisation in Cloud Computing',

Information and Communications Technology 2013, National Doctoral Academic

Forum on, pp. 1-8.

Wang, N. & Xu, D. 2008, 'Resource summary for pay-as-you-go dataspace systems',

Signal Processing, 2008. ICSP 2008. 9th International Conference on, pp. 2842-5.

Wang, Y., Bahati, R. M. & Bauer, M. A. 2011. A novel deadline and budget

constrained scheduling heuristics for computational grids. Journal of Central South

University of Technology, 18, 465-472.

Wegscheider, F., Bessler, S. & Gruber, G. 2005, 'Interworking of presence protocols

and service interfaces', Wireless And Mobile Computing, Networking And

Communications, 2005. (WiMob'2005), IEEE International Conference on, vol. 4, pp.

45-52 Vol. 4.

Wei-Tek, T., Xin, S. & Balasooriya, J. 2010, 'Service-Oriented Cloud Computing

Architecture', Information Technology: New Generations (ITNG), 2010 Seventh

International Conference on, pp. 684-9.

Weixiong, R., Chao, C., Pan, H. & Tarkoma, S. 2013, 'Replication-Based Load

Balancing in Distributed Content-Based Publish/Subscribe', Parallel & Distributed

Processing (IPDPS), 2013 IEEE 27th International Symposium on, pp. 765-74.

Wenbo, Z., Xiang, H., Ningjiang, C., Wei, W. & Hua, Z. 2012, 'PaaS-Oriented

Performance Modeling for Cloud Computing', Computer Software and Applications

Conference (COMPSAC), 2012 IEEE 36th Annual, pp. 395-404.

Wenhong, T., Yong, Z., Yuanliang, Z., Minxian, X. & Chen, J. 2011, 'A dynamic and

integrated load-balancing scheduling algorithm for Cloud datacenters', Cloud

172 | P a g e

Computing and Intelligence Systems (CCIS), 2011 IEEE International Conference on,

pp. 311-5.

Wesam Elshamy. Particle swarm optimisation source code, 2012. URL

http://www.mathworks.com/matlabcentral/fileexchange/authors/24384/.

Wilken, M. & Colombo, A.W. 2012, 'Benchmarking Cluster- and Cloud-Computing

deciding to outsource or not data processing in industrial applications', Industrial

Electronics (ISIE), 2012 IEEE International Symposium on, pp. 1184-90.

Wittenberg, R. 2000, 'Abbas Tashakkori und Charles Teddlie: Mixed methodology.

Combining qualitative and quantitative approaches. Applied social research method

series, volume 46', KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie,

vol. 52, no. 1, pp. 180-3.

Xingchen, L., Weimin, L. & Wei, Z. 2012, 'The Design and Implementation of XMPP-

Based SMS Gateway', Computational Intelligence, Communication Systems and

Networks (CICSyN), 2012 Fourth International Conference on, pp. 145-8.

Xu, G., Pang, J. & Fu, X. 2013, 'A load balancing model based on Cloud partitioning

for the public Cloud', Tsinghua Science and Technology, vol. 18, no. 1, pp. 34-9.

Yamamoto, H., Maruta, D. & Oie, Y. 2005, 'Replication methods for load balancing on

distributed storages in P2P networks', Applications and the Internet, 2005. Proceedings.

The 2005 Symposium on, pp. 264-71.

Yanmei, H., Hongyuan, W., Liang, H. & Yang, H. 2011, 'A Cloud Storage Architecture

Model for Data-Intensive Applications', Computer and Management (CAMAN), 2011

International Conference on, pp. 1-4.

Yang, W., Bin, Z., Ying, L. & Deshuai, W. 2010, 'The modeling tool of SaaS software',

Advanced Computer Control (ICACC), 2010 2nd International Conference on, vol. 2,

pp. 298-302.

Y.-K.Kwok and I.Ahmad, “Static scheduling algorithms for allocating directed

taskgraphs to multiprocessors,” ACM Computing Surveys, vol. 31, no. 4, pp. 406–

471,1999.

173 | P a g e

Yihong, G., Huadong, M., Haitao, Z., Xiangqi, K. & Wangyang, W. 2013,

'Concurrency Optimise d Task Scheduling for Workflows in Cloud', Cloud Computing

(CLOUD), 2013 IEEE Sixth International Conference on, pp. 709-16.

Yike, G., et al. (2012). Does the Cloud need new algorithms? An introduction to elastic

algorithms. Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th

International Conference on.

Yilin, L., Jian, Z., Shaochun, W. & Shujuan, Z. 2012, 'A Hybrid Dynamic Load

Balancing Approach for Cloud Storage', Industrial Control and Electronics

Engineering (ICICEE), 2012 International Conference on, pp. 1332-5.

Yun, Y., Ke, L., Jinjun, C., Xiao, L., Dong, Y. & Hai, J. An Algorithm in SwinDeW-C

for Scheduling Transaction-Intensive Cost-Constrained Cloud Workflows. eScience,

2008. eScience '08. IEEE Fourth International Conference on, 7-12 Dec. 2008 2008.

37-375.

Zenon Chaczko and Germano Resconi. Morphotronic system applications. In Roberto

Moreno-Diaz,Franz Pichler, and Alexis Quesada-Arencibia, editors, Eurocast 2009

12th International Conference on Computer Aided Systems Theory, pages 905_912.

Springer-Verlag, 2009.

Zhang, Q., Cheng, L. & Boutaba, R. 2010, 'Cloud Computing: state-of-the-art and

research challenges', Journal of Internet Services and Applications, vol. 1, no. 1, pp. 7-

18.

Zhangjun, W., Zhiwei, N., Lichuan, G. & Xiao, L. A Revised Discrete Particle Swarm

Optimisation for Cloud Workflow Scheduling. Computational Intelligence and Security

(CIS), 2010 International Conference on, 11-14 Dec. 2010 2010. 184-188.

Zhan-sheng, L., Da-wei, L. & Hui-juan, B. 2008, 'CRFP: A Novel Adaptive

Replacement Policy Combined the LRU and LFU Policies', Computer and Information

Technology Workshops, 2008. CIT Workshops 2008. IEEE 8th International

Conference on, pp. 72-9.

174 | P a g e

Zhen, X., Guo, L. & Tracey, J. 2007, 'Understanding Instant Messaging Traffic

Characteristics', Distributed Computing Systems, 2007. ICDCS '07. 27th International

Conference on, pp. 51-.

Zheng, L., O'Brien, L., He, Z. & Cai, R. 2012, 'On a Catalogue of Metrics for

Evaluating Commercial Cloud Services', Grid Computing (GRID), 2012 ACM/IEEE

13th International Conference on, pp. 164-73.

Zhenzhong, Z., Limin, X., Yuan, T., Ji, T., Shouxin, W. & Hua, L. 2013, 'A Model

Based Load-Balancing Method in IaaS Cloud', Parallel Processing (ICPP), 2013 42nd

International Conference on, pp. 808-16.

Zuo, B. & Lin, S. 2010, 'Multiple QoS-based Best Efficiency Workflow Scheduling',

Computer Application and System Modeling (ICCASM), 2010 International

Conference on, vol. 15, pp. V15-455-V15-9.

175 | P a g e

Chapter 9

Appendix

9.1 Experiment Specifications

9.1.1 HDM System

HDM objective is to optimise the data retrieval from different database in Cloud

environments. Based on the users' access permissions, every doctors and nurse can

retrieve patients' data including x-ray scans, audios and videos recording quicker and

with less waiting time.

Figure 9.1 depicts the overall view of the HDM system that defines the HDM as a

separate entity connected to the same or other different Cloud systems. The user

interface will connect the users through this complex.

Cloud
HDM System

Data

Data External Cloud 1

Data

Data

External Cloud 2

Data

Data

Figure 9.1-HDM system high-level design

176 | P a g e

The HDM system can scale the resources whenever required by evaluating the usage

patterns identified from the past data usage.

The following items are considered in HDM scope:

Analyse the usage patterns such as CPU usage for forecasting the future needs.

Anticipate the scalability feature whenever there is a need for that.

Compress and un-compress data for minimising the costs.

As the HDM Cloud-based system is functioning globally, it will retrieve patients data

from all over the world from different sites located on other Clouds. Therefore,

proactive scaling and comparison are the main important features of the HDM system.

Proactive scaling provides users with faster data access by forecasting the resources

needed based on users’ past data access. Compression on the other hands, speed up the

transfer rate by encrypting the data. However, it needs more memory for comparison

purposes before data transfer could happen.

9.1.1.1 Development specifications
Java programming language has been applied for coding HDM system. The

infrastructure of the system is built on open source Cloud environments where two

virtual machines are selected to represent the Cloud nodes.

Each virtual machine can be in the high usage or low usage. The database also includes

some random files such as images, audios and videos. LZMA algorithm has been

coded to replicate the compression functionality needed in this system.

Below describes the requirements gathered for programming the HDM applications:

177 | P a g e

General Requirements

SRS-GR01 HDM will be hosted on Cloud infrastructure.

SRS-GR02 HDM will simulate data usage for Hospital applications.

SRS-GR03 Nurse and doctors are able to retrieve patients’ data such as x-ray,

recorded audios and videos.

Usage Patterns

SRS-UP01 HDM is able to analyse the past users’ usage patterns and predict

the future needs.

SRS-UP02 HDM system should consider the future patients appointments for

database record.

Compression

SRS-CO01 HDM will compress the required data before transfer could happen.

SRS-CO02 HDM is able to un-compress the data upon receiving patients' files.

Databases

SRS-DB01 The HDM databases is able to store different data formats such as

documents, images, audio and videos.

SRS-DB02 The HDM should store the users’ usage patterns.

SRS-DB03 The HDM database should be able to connect to different Cloud-

based systems.

Proactive Scaling

SRS-PS01 The HDM system shall forecast the future scaling needs.

Reporting

SRS-RP01 HDM system should have the reporting functionality for depicting

the current and future usage patterns.

178 | P a g e

Configuration

SRS-CF03 HDM system will define the period for refreshing the usage

forecast.

SRS-CF06 HDM configuration should have functionality to allow switching

back to proactive scaling.

179 | P a g e

9.1.2 STEM-PSO Implementation Details

Figure 9.2- STEM-PSO high-level logical design

Figure.9.2 provides the high-level logical concept of STEM-PSO experiment. The first

layer depicts the Cloud environment setup while the second layer points to the spring

tensor projection functionalities. The last layer performs the calculation and evaluations

analysis.

The experiment has been implemented using Java programming language. Moreover,

the Pegasus software has been used to generate the data inputs for the experiment.

Pegasus is a UNIX platform which can generate excel and XML files. Figure.9.3 is

showing a sample code for generating the workflow data input by using Pegasus

software.

The STEM-PSO heuristic screenshots are shown in Figure.9.4, Figure 9.5 and Figure

9.6.

Figure 9.7 also, depicts the STEM main class code.

180 | P a g e

Figure 9.3-Pegasus workflow data generator

Figure 9.4- STEM-PSO front end

181 | P a g e

Figure 9.5- Hessian evaluation rate

Figure 9.6- PSO algorithm input -front end

182 | P a g e

Figure 9.7- STEM-PSO main class code

183 | P a g e

9.1.3 Cloudsim Specification Details
Figure 9.8 depicts the Cloudsim high-level architecture overview that has been used in

the second experiment of this thesis.

Figure 9.8- Cloudsim high-level design

Cloudsim simulator is developed based on Grid simulation tools. In Grid toolkits, there

is no opportunity for on-demand virtualisation for resource management; therefore it

cannot run on Cloud infrastructures.

Cloudsim instead can be considered as an upgraded version of Grid simulation tool

with virtualisation functionality so it can be implemented on Cloud-base systems.

184 | P a g e

As it is shown in figure.9.9 Cloudsim is composed of the following main classes:

Data-centre: is providing the required infrastructures needed in the Cloud platform.

Broker: is acting as the interface between user’s requirements and Cloud services.

Cloudlets: are representing the tasks submitted as user’s requirements.

VM provisioned: This is an abstract class which represents the provisioning policies

for allocating the relevant VMs on Hosts.

Cloudsim is developed using Java language that enables high-level programming

services such as queuing and processing the events, creating different components such

as hosts, data centres, brokers and virtual machines.

The core component of the simulator architecture is called “Cloudsim” which has all

the core functionalities similar to Gridsim libraries.

In this layer, Clouds is managing the VMs, memories and storage needed for Cloud

simulation. The top layer of the simulation helps users to setup the configuration and

related functionalities such as managing the hosts, managing VMs and updating the

scheduling policies. Also, this layer helps developers to conduct a robust test on their

customised configuration platform to ensure the efficiency of their task scheduling

behaviour.

Next section illustrates the Cloudsim database components, shown in Figure 9.9

185 | P a g e

Figure 9.9- Cloudsim class architectures

Bwprovisioner: This class is mainly responsible for allocating the bandwidth to VMs.

Based on application requirements; this class allows developers to set different

scheduling policies and QoS.

Cloud coordinator: The class is responsible for monitoring the data centre resources.

Update Data centre method() is responsible for implementing the Cloud-based services.

Cloudlet: This class defines the services that could be implemented in the Cloud

environment. The class is responsible for monitoring the performance and applications

metrics such as structured applications transactions.

Cloudlet scheduler: This class is responsible for implementing the VMs provisioning

policies such as space shared and timeshare.

Datacenter: This class provides the infrastructure such as memory, storage and capacity

for allocating the required bandwidth to hosts and VMs.

Datacenter Broker: This class act as a broker. It assigns the suitable services for

allocating the resources that could meet the QoS requirements. The class also defines

the configuration settings needed for the data centre resources.

186 | P a g e

Host: The class explains the allocation policies for allocating the core processing power

on VMs. It provides the provisioning policy for assigning the memory and bandwidth

to VMs. Also, the class contains the detailed information for the available memory and

storage.

Network Topology: The network topology contains the information regarding the

network behaviour.

Ram Provisioner: The class allocates the required memory on VMs.

VM: This class is also known as Cloudlet scheduler. The class contains information

about accessible memory, processor, and storage size.

VM allocation policy: The class is responsible for allocating the VMs on hosts. It is

responsible for analysing the status of the hosts from memory and storage capacity for

VM allocation.

VM-scheduler: In this class, core processor will be allocated on VMs. The allocation

should happen based on the specific allocation policies.

Considering the architecture of the classes in Cloudsim tool, in our experiment we have

applied the replication methodology to optimise the load balancing by minimising the

finishing time. Figure 9.10 is depicting the Clouds submission time simulation front-

end.

187 | P a g e

Figure 9.10-Cloudsim submission time frontend

188 | P a g e

9.1.3.1 Adding a new file in Tier structure

Example: adding file (C, b, 100)

The request has been submitted by site C to add file “b” with the access time of 100.

Figure 9.11 is depicting the first structure of the tier.

To start, the last pointer of site C will be retrieved. Then the difference between the last

time the pointer is pointing to and the time that the new file is accessed will be

calculated. If > threshold then it means that the file should be

added as a new sequence otherwise, the new file is considered as a successive file and it

will be added as a child where pointer was pointing to.

So in this example pointer is pointing to (z,4, 4). As 100-4 > threshold (threshold is this

algorithm is 40), the new branch would be added to the site.

In this step, the third tier will be searched to find the site that has file “b”. If the file

wasn’t in this tier the search will continue through next tier. As the figure shows file b

is located on tier 3, so the access time will be updated to 100 and the number of access

will be incremented. Pointer in site C now will point to this node, Figure 9.12.

Figure 9.11- Inserting a node in tier structure

189 | P a g e

Figure 9.12- Updating the pointer place in tier structure

	Title Page
	Certificate of Original Authorship
	Acknowledgment
	Abstract
	Contents
	List of Figures
	List of Tables
	Glossary
	I. Principal Theory and Concepts
	1. Background
	1.1 Introduction
	1.2 Rational
	1.3 Research Contribution
	1.4 Research Questions
	1.5 Formulation of the Hypothesis
	1.5.1 Approach and Hypothesis Validation
	1.5.1.1 Research Action Study
	1.5.1.2 Experiments

	1.5.2 Expected Outcomes

	1.6 Outline of the Thesis
	1.7 Related Publications

	2. Literature Review
	2.1 Cloud Computing
	2.1.1 Cloud Characteristics
	2.1.2 Cloud Taxonomy
	2.1.3 Cloud Architecture
	2.1.4 Cloud Stack
	2.1.4.1 Infrastructure as a Service (IaaS)
	2.1.4.1.1 Characteristics of IaaS

	2.1.4.2 Platform as a Service (PaaS)
	2.1.4.2.1 Characteristics of PaaS

	2.1.4.3 Software as a Service (SaaS)
	2.1.4.3.1 Characteristics of SaaS

	2.2 Cloud Computing: Challenges and Benefits
	2.3 Load Balancing in Cloud Computing
	2.3.1 Load Balancing: Concept, Definition, Benefits, Challenges
	2.3.2 Load Balancing Measurement Criteria
	2.3.3 Load Balancing Methods

	2.4 Focus of This Research
	2.4.1 Load Balancing Algorithms: Independent vs Dependent
	2.4.1.1 Dependent Load Balancing Algorithms
	2.4.1.2 Independent Load Balancing Algorithms

	2.5 The Quest of This Research
	2.5.1 The Anticipatory Approach
	2.5.2 Workflow Scheduling
	2.5.3 Replication Strategy
	2.5.4 Research Issues
	2.5.4.1 Workflow Scheduling
	2.5.4.2 Replication Methodology

	2.6 Summary

	3. Research Methodology
	3.1 Research Design
	3.2 Research Method
	3.2.1 Research Rules

	3.3 Modelling Approaches
	3.3.1 Black-box Modelling Approaches
	3.3.2 White-Box Modelling Approaches
	3.3.3 Gray-Box Modelling Approach

	3.4 Experimental Methodologies Overview
	3.4.1 Anticipatory Approach
	3.4.2 Spring Tensor Model
	3.4.2.1 Mathematical Apparatus

	3.4.3 Anticipatory Replication Methodology

	3.5 Summary of the Chapter

	4. Research Action Study
	4.1 Introduction
	4.2 Load Balancing
	4.3 Presence
	4.4 Cloud Metrics
	4.5 The Case Study: HDM Load Monitoring
	4.5.1 Load Monitoring Tool
	4.5.2 HDM Load Tolerance
	4.5.2.1 Testing Tool
	4.5.2.2 Page Analyser
	4.5.2.3 Load Test-10 Virtual Users
	4.5.2.3.1 10 Users-Load time vs Clients Active
	4.5.2.3.2 10 Users - Number of the Active Requests vs Clients Active
	4.5.2.3.3 10 Users - HDM Content Type Distribution
	4.5.2.3.4 10 Users HDM Content Load Distribution

	4.5.2.4 Load Test - 20 Virtual Users
	4.5.2.4.1 20 Users-Load Time Vs Clients Active
	4.5.2.4.2 20 Users- Number of the Active Requests Vs Clients Active
	4.5.2.4.3 20 Users - HDM Content Type Distribution
	4.5.2.4.4 20 Users HDM Content Load Distribution

	4.5.2.5 Load Test - 50 Virtual Users
	4.5.2.5.1 50 Users-Load Time Vs Clients Active
	4.5.2.5.2 50 Users -Number of the Active Requests vs Clients Active
	4.5.2.5.3 50 Users- HDM Content Type Distribution
	4.5.2.5.4 50 Users HDM Content Load Distribution

	4.5.2.6 Load Test - 100 Virtual Users
	4.5.2.6.1 100 Users-Load Time Vs Clients Active
	4.5.2.6.2 100 Users- Number of the Active Requests Vs Clients Active
	4.5.2.6.3 100 Users - HDM Content Type Distribution
	4.5.2.6.4 100 Users HDM Content Load Distribution

	4.5.2.7 Results Analysis
	4.5.2.7.1 Average Load Time Results
	4.5.2.7.2 HDM Content Type Distribution Results
	4.5.2.7.3 HDM Content Load Distribution Results

	4.6 Overall Analysis and Proposed Solution
	4.7 Conclusion

	II. Contribution to Research
	5. STEM-PSO Based Task Scheduling Algorithm
	5.1 Introduction
	5.2 Load Balancing Problem Formulation
	5.3 STEM-PSO Scheduling Algorithm
	5.3.1 Particle Swarm Optimisation
	5.3.2 STEM Algorithm
	5.3.3 The Fundamentals of STEM-PSO

	5.4 Experiment Results
	5.4.1 Total Execution Time
	5.4.2 CPU Load and CPU Time
	5.4.3 Memory Rate
	5.4.3.1 Workflow Soft Error Rates

	5.4.4 Comparison of STEM-PSO Results
	5.4.5 Experiment Analysis

	5.5 Conclusion

	6. Load balancing & Data Replication Strategy
	6.1 Introduction
	6.2 Problem formulation
	6.3 Proposed Methods
	6.3.1 SDDRC Architecture Design
	6.3.2 SDDRC Algorithm

	6.4 Results and Analysis
	6.4.1 Mean Job Execution Time
	6.4.2 Effective Network Usage
	6.4.3 Total Number of the Replicas
	6.4.3.1 Applying Soft Error Rates on Memory

	6.4.4. Analysis of SDDRC Results
	6.4.5 Experiment Analysis

	6.5 Conclusion

	7. Conclusion
	7.1 Review
	7.2 Thesis contribution
	7.2.1 Discussion
	7.2.2 Limitations

	7.3 Future work
	7.4 Final Remarks

	III. Bibliography and publications
	8. Bibliography
	9. Appendix
	9.1 Experiment Specifications
	9.1.1 HDM System
	9.1.1.1 Development specifications

	9.1.2 STEM-PSO Implementation Details
	9.1.3 Cloudsim Specification Details
	9.1.3.1 Adding a new file in Tier structure

