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Abstract 

The protection and rehabilitation of natural landscapes in order to enhance their role in 

carbon sequestration is currently a hot topic for scientists and policymakers looking for 

solutions to reduce atmospheric CO2 levels. Blue carbon ecosystems (seagrass, 

mangrove, saltmarsh) have recently been found to match or even exceed the capability 

of terrestrial ecosystems to sequester carbon. In seagrass habitats, seagrass carbon alone 

can account for half of the carbon in the top 10 cm of sediment. Litter quality, often 

measured as refractory carbon content, is one of the main factors that can influence the 

sequestration and storage of refractory carbon. Yet to-date, there has been little attempt 

to understand what factors help or hinder refractory carbon preservation in seagrass 

sediments.  

 

The aim of this thesis was to unravel the processes and factors that influence, and even 

optimise, the preservation of refractory carbon in seagrass meadows beginning with the 

refractory carbon content in seagrass tissues, its persistence (or remineralisation) during 

decomposition and finally, its preservation in sediments and the mechanisms that 

provoke further remineralisation after burial. To accomplish these aims, a multi-variable 

approach was taken, which involved assessing the main and interaction effects of 

biological, chemical and environmental/physical variables on refractory carbon 

remineralisation and storage. 

 

The results from this thesis revealed that the processes that affect refractory carbon 

dynamics in seagrass meadows are complex. It was shown that, while inherent 

refractory carbon content in the tissues can promote sequestration, decomposition was a 

strong influence on the persistence of refractory carbon. Anoxic conditions and 

structural complexity of the tissues promoted refractory carbon preservation and were 

dependent on the microbial communities present. Sheath and stem tissues were 

considered to be important carbon contributors due to their high refractory carbon 

content and chance of in situ burial. Temperature and the availability of labile organic 

matter and inorganic nutrients enhanced decay in the short-term under oxic conditions, 

while physical disturbance and habitat loss caused losses of sediment refractory carbon 

over the course of months to years depending on the type of disturbance.  

 



xii 
 

In light of these results, a new conceptual model was developed for seagrass 

decomposition and have highlighted several important avenues of future blue carbon 

research, including the functional roles of microbes (bacteria, fungi and protists) in 

carbon remineralisation via bioinformatics and enzymes kinetics, as well as the 

- , of labile carbon to refractory carbon within microbial 

biomass. 
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