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Abstract

To do text mining, the first question we must address is how to represent

documents. The way a document is organised reflects certain explicit and

implicit semantic and syntactical coupling relationships which are embedded

in its contents. The effective capturing of such content couplings is thereby

crucial for a genuine understanding of text representations. It has also led

to the recent interest in document similarity analysis, including semantic

relatedness, content coverage, word networking, and term-term couplings.

Document similarity analysis has become increasingly relevant since roughly

80% of big data is unstructured. Accordingly, semantic relatedness has gen-

erated much interest owing to its ability to extract coupling relationships

between terms (words or phrases). Existing work has focused more on ex-

plicit couplings and this is reflected in the models that have been built.

In order to address the research limitations and challenges associated

with document similarity analysis, this thesis proposes a semantic coupling

similarity measure and the hierarchical tree learning model to fully enrich

the semantics within terms and documents, and represent documents based

on the comprehensive couplings of term pairs. In contrast to previous work,

the models proposed can deal with unstructured data and terms that are

coupled for various reasons, thereby addressing natural language ambiguity

problems.

Chapter 3 explores the semantic couplings of pairwise terms by involving

three types of coupling relationships: (1) intra-term pair couplings, reflecting

the explicit relatedness within term pairs that is represented by the relation

xv



ABSTRACT

strength over probabilistic distribution of terms across document collection;

(2) the inter-term pair couplings, capturing the implicit relatedness between

term pairs by considering the relation strength of their interactions with other

term pairs on all possible paths via a graph-based representation of term cou-

plings; and finally, (3) semantic coupling similarity, which effectively combine

the intra- and inter-term couplings. The corresponding term semantic simi-

larity measures are then defined to capture such couplings for the purposes

of analysing term and document similarity. This approach effectively ad-

dresses both synonymy (many words per sense) and polysemy (many senses

per word) in a graphical representation, two areas that have up until now

been overlooked by previous models.

Chapter 4 constructs a hierarchical tree-like structure to extract highly

correlated terms in a layerwise fashion and to prune weak correlations in order

to maintain efficiency. In keeping with the hierarchical tree-like structure, a

hierarchical tree learning method is proposed. The main contributions of our

work lie in three areas: (1) the hierarchical tree-like structure featuring hier-

archical feature extraction and correlation computation procedures whereby

highly correlated terms are merged into sets, and these are associated with

more complete semantic information; (2) each layer is a maximal weighted

spanning tree to prune weak feature correlations; (3) the hierarchical tree-

like structure can be applied to both supervised and unsupervised learning

approaches. In this thesis, the tree is associated with Tree Augmented Naive

Bayes (TAN) as the Hierarchical Tree Augmented Naive Bayes (HTAN).

All of these models can be applied in the text mining tasks, including doc-

ument clustering and text classification. The performance of the semantic

coupling similarity measure is compared with typical document representa-

tion models on various benchmark data sets in terms of document clustering

and classification evaluation metrics. These models provide insightful knowl-

edge to organise and retrieve documents.

xvi



Chapter 1

Introduction

1.1 Background

1.1.1 Non-iidness Learning

Most of the classic theoretical systems and tools in statistics, data mining

and machine learning are built on the fundamental assumption of iidness,

which assumes the independence and identical distribution of underlying ob-

jects, attributes and/or values. This works well in simple applications and

abstract problems with weakened and avoidable relations and heterogene-

ity, and serves as the foundation of classic analytics, mining and learning

theories, algorithms, systems and tools. However, complex behavioral and

social problems often exhibit strong couplings and heterogeneity between val-

ues, attributes and objects (i.e., non-iidness), which cannot be abstracted or

weakened to the extent of satisfying the iidness assumption (Cao 2013).

Coupling refers to any relationship (for instance, co-occurrence, neigh-

borhood, dependency, linkage, correlation, or causality) between two or more

aspects, such as object, object class, object property (variable), process, fact

and state of affairs, or other types of entities or properties (such as learners

and learned results) appearing or produced prior to, during and after a target

process (such as a learning task). In a learning system, couplings may exist

1



CHAPTER 1. INTRODUCTION

within and/or between aspects, such as entity (objects, object class, instance,

or group/community) and its/their properties (variables), context (environ-

ment) and its constraints, interactions (exchange of information, material or

energy) between entities or between the entity and its/their environment,

learning objectives (targets, such as risk level or fraud), the corresponding

learning methods (models, algorithms or systems) and resultant outcomes

(such as patterns or clusters) (Cao 2014).

Such strong couplings and heterogeneity are particularly embodied in

complex behavioural/social systems, for instance, (Wang, Cao, Wang, Li,

Wei & Ou 2011), (Cao, Ou & Yu 2012) and (Yu, Wang, Gao, Cao & Chen

2013) apply non-iidness learning to consider the inter-relations of users that

are influenced by other users in terms of various aspects of social media,

rather than just expanding the traditional iidness-based algorithms.

In classic document analysis, typical algorithms such as the Bag-of-words

model take the term independence assumption and ignore the semantics be-

tween terms. This, in turn, leads to low learning performance. Typical ap-

proaches also expand existing theories and algorithms in a bid to relax this

assumption. Furthermore, they map texts into new feature space in order

to capture more term relation. However, (Cheng, Miao, Wang & Cao 2013)

proposes a new document clustering framework, which analyses semantic

couplings between terms appearing within and between documents. This

caters for both explicit and implicit semantics, incorporating the intra-term

couplings between terms within a document, the inter-term couplings be-

tween terms from different documents, and the aggregative term coupling by

combining intra-term and inter-term couplings.

Non-iidness learning techniques are general and can be widely used and

expanded for analysing complex behavioural and social problems. It is still

quite a new concept in the semantic representation area, and a large amount

of potential research topics are yet to be developed. For example, how do we

capture term pair semantics based on the influence of other ones, how do we

manage natural language ambiguity in the process of non-iidness learning,

2



CHAPTER 1. INTRODUCTION

and how do we consider the text structural information? These constitute

fundamental and traditional research issues in terms of the challenges asso-

ciated with document representation as well.

1.1.2 Representing Semantic

With the rapid development of the World Wide Web, an increasing amount of

data relating to a myriad of different areas has been presented in the forms

of documents on the Internet. However, this makes it difficult to extract

relevant documents from the wealth of textual material in response to user

queries. The problem can be that the information is misinterpreted due to

natural language ambiguities or the information is imprecisely and vaguely

defined by the user. This calls for the development of automatic methods

for searching and organising text documents so that information of interest

can be accessed quickly and the accuracy of matching between queries and

documents can be achieved to a high degree. To conduct information retrieval

tasks, such as document clustering, document classification, and document

filtering, the first step lies in discerning the effectiveness of the approach to

improve the precision of the representation of queries and documents, and

the discriminability of a given document with respect to other documents.

In information retrieval, the content of a document may be represented

as a collection of terms (Strzalkowski 1994). This allows for the design of

a high-quality document which may serve as an efficient model to discover

all components and reassemble them in a new feature space. It also means

that document representation mines the semantic relatedness (similarity or

distance) between terms (words or phrases) and breaks up every document

into terms and their relations. From the traditional keyword-based represen-

tations to the currently wide-developed concept- and topic-based models, it

has long been recognised that measuring the semantics of terms in a more

efficient way is the top priority for researchers who seek to improve models.

Based on coupling learning, the terms, words and phrases in a doc-

ument are organised in terms of certain coupling relationships, from se-

3



CHAPTER 1. INTRODUCTION

mantic, syntactic/linguistic or even subjective perspectives (Gabrilovich &

Markovitch 2007). Coupling refers to any relationships (for instance, co-

occurrence, neighborhood, dependency, linkage, correlation, or causality) be-

tween two or more aspects (Cao 2013). There are intrinsic textual/linguistic

complexity couplings (such as natural language ambiguation) and various

couplings (such as co-occurrence) that drive the semantics between terms

and documents. This makes it very challenging in relation to analysing the

semantics in information retrieval and document analysis, e.g. document

clustering, document classification, document query and document filtering.

Consequently, a query can often hit a large number of documents but few of

them are relevant. This calls for further research on semantic representations

by deeply exploring the couplings within and between terms/documents and

this is particularly important for accurate information queries and document

processing.

The problem of document semantic similarity can be further decom-

posed to explore the coupling relatedness and similarity between the terms

(words or phrases) which forms a document. This helps to build a feature

space that consists of all the necessary terms with their semantics captured

and embedded in a similarity (or distance) learning model. A document

analysis algorithm can then be built to analyse the semantic similarity be-

tween documents by exploring the intrinsic term couplings and similarity

(Cao 2013). For this, it is crucially important to measure intrinsic semantic

relatedness which is fundamental for information retrieval and other related

natural language processing applications, such as text summarisation, tex-

tual entailment, information extraction, etc. Document similarity analysis

has also recently emerged as a promising and important topic particularly

in relation to semantic relatedness (Strube & Ponzetto 2006, Gabrilovich &

Markovitch 2007), content coverage (Holloway, Bozicevic & Börner 2007),

word networking (Budanitsky & Hirst 2006, Agirre, Alfonseca, Hall, Kraval-

ova, Paşca & Soroa 2009), term-term couplings (Cheng et al. 2013), and gen-

eral problems including information retrieval (Billhardt, Borrajo & Maojo
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CHAPTER 1. INTRODUCTION

2002, Hliaoutakis, Varelas, Voutsakis, Petrakis & Milios 2006), ontological

engineering (Hawalah & Fasli 2011, Li, Wang, Zhu, Wang & Wu 2013), and

document clustering/classification (Farahat & Kamel 2011, Kalogeratos &

Likas 2012).

Recent literature on semantic representing measures can be roughly char-

acterised into two categories: corpus-based and lexical resource-based mea-

sures. Concretely, semantics can be estimated using statistical means such as

vector space models which compute the co-occurrence frequency pattern of

terms and textual contexts across a corpus; and probabilities models which

discover the distribution properties of each term over topics and the topic

distribution over each document. Lexical resource-based measures capture

the semantic relatedness between terms or concepts by using ontologies to

define the distance between them, and most of these methods rely on pre-

existing knowledge resources that are represented by a directed or undirected

graph consisting of vertices, for example, semantic networks and taxonomies.

Semantic representing measures have attracted increasingly research inter-

est in information retrieval and other related natural language processing

applications, such as text summarisation, textual entailment, information

extraction, etc.

1.2 Research Issues

Textual information forms probably the major proportion of big online data.

With the rapid development of the Internet and Internet-based business, it is

critical to understand the semantic similarity between terms (queries), text

or documents by directly exploring their coupling relationships (Cao 2013,

Cheng et al. 2013) as well as complex techniques such as natural language

processing. We also need to fix the intrinsic textual/linguistic complexity

(such as natural language ambiguation). This has become a promising and

popular research task in recent years particularly in the areas of information

retrieval (Billhardt et al. 2002, Strzalkowski 1994, Wong, Ziarko & Wong
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CHAPTER 1. INTRODUCTION

1985), ontological engineering (Hawalah & Fasli 2011, Li et al. 2013, Sánchez,

Batet & Isern 2011), and document analysis (Cheng et al. 2013, Kalogeratos

& Likas 2012, Salton, Wong & Yang 1975).

Cao (Cao 2013) presented a high-level picture of the non-iidness (inde-

pendence and identical distribution) learning problem for dealing with strong

couplings and heterogeneity in complex behavioral and social applications,

and this cannot be abstracted or weakened to the extent of satisfying the

iidness assumption. To handle the independency assumption of classic doc-

ument representations, Cheng et al. (Cheng et al. 2013) applied the non-

iidness theory to document analysis by exploring the intrinsic term couplings

and similarity. The problem of term coupled semantic similarity was further

decomposed to explore the explicit and implicit relationships between terms.

The limitations of (Cheng et al. 2013) include: (1) it considers term

coupling by combining intra-term and inter-term couplings as the explicit and

implicit relation of terms respectively, but fails to give a clear distinction of

intra and inter, which, in turn, results in a repeated calculation of the coupled

relation; (2) it is not capable of avoiding synonymy and polysemy problems;

(3) it is time-consuming in terms of calculating pairwise term couplings.

Based on the aforementioned current research limitations, we focus on

the following research issues:

1.2.1 Capturing Coupled Pairwise Term Semantics

We explore the semantics of pairwise terms by involving three types of cou-

pling relationships: (1) the intra-term couplings, reflecting the explicit rela-

tion within term pairs that is represented by the relation strength over prob-

abilistic distribution of terms across document collection; (2) the inter-term

couplings, capturing the implicit relatedness between term pairs by consid-

ering the relation strength of their interactions with other term pairs on all

possible paths via a graph-based representation of term couplings; and (3)

coupled term pair similarity, effectively combining the intra- and inter-term

couplings. The corresponding term semantic similarity measures are then

6



CHAPTER 1. INTRODUCTION

defined to capture the semantics for analysing term and document similarity.

This approach effectively addresses the limitation of semantic coupling

in a graphical representation, which is overlooked by previous models. The

details are as follows:

• The intra-term coupling is calculated from the relation strength of prob-

ability distributions of terms. It especially fixes the lack of relatedness

of term pairs that cross different documents. The inter-term coupling

is introduced to capture the implicit couplings of term pairs, and this

takes full advantage of the interactions with other terms in a document

set.

• Our inter-term coupling method is based on weighted paths with lim-

ited lengths. On one hand, it distinguishes strong link terms from weak

link terms, e.g. the strong link terms which are visited frequently on

all possible paths occupy higher weights. On the other hand, it empha-

sises that less link terms build closer relatedness, and only strong link

terms are reserved in order to improve the efficiency of the calculation.

1.2.2 Measuring High Order Semantics by Hierarchi-

cal Tree Learning

To further explore term correlation and construct a more semantic-associated

document representation model, representing documents as terms and pair-

wise correlations as completely as possible is still not enough to fully capture

the meaning of documents. The reasons lie in (1) the term independence

assumption is not necessarily correct in practice, but if we relax the inde-

pendence assumption or even consider each pairwise term dependence as a

complete graph it may suffer from high computational cost; (2) representing

documents as terms and pairwise correlations still fails to consider the de-

pendence of term pairs, because it is a term-level document representation

with the feature selected individually, and it only considers the meaning of

documents based on the mutual information of each pairwise term share,

7



CHAPTER 1. INTRODUCTION

regardless of the real contents and themes that the documents express. Fur-

thermore, the higher order of semantics are overlooked.

We address the above issues by constructing a hierarchical tree-like struc-

ture to extract highly correlated terms in a layerwise manner and to prune

weak correlations to maintain efficiency. This hierarchical feature extraction

structure guarantees that with higher layers, the features are reflected as term

sets, with more comprehensive semantic information involved. It is thereby

not a simple term-level document representation, but a layer-increased term

set-level document representation, and these contain the correlations and

similarities between terms and term sets which form documents.

The hierarchical tree is able to capture the dependence between terms,

term pairs, or even term sets. The higher the order of the tree, the more se-

mantics it carries. The hierarchical tree is closer to the human understanding

of texts, grouping them into different classes by comprehending the topics

and contents of the texts.

1.2.3 Managing Natural Language Ambiguities

Ambiguity can be referred to as the ability of having more than one meaning

or being understood in more than one way. Natural languages are ambiguous,

so computers are not able to understand language the way that people do.

The ambiguity problems that we are concerned with specifically refer to

lexical semantic ambiguity, the type of lexical ambiguity which occurs when

a single word is associated with multiple senses, or the semantic relation

that holds between two words that can (in a given context) express the same

meaning.

The coupling method is helpful for managing the synonymy and poly-

semy for two reasons: (1) intra- and inter-term couplings are based on term

pair occurrence frequency patterns across the corpus and all possible paths

respectively, accordingly the term-pair occurrence frequency patterns appear

across a document set or all possible paths instead of each single term, and

the semantic meaning for every term pair is richer than individual terms;

8
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(2) coupling similarity is built on term distributions. For terms that are

semantically similar, their distributions are similar, and the coupling simi-

larity is large; for terms that are subject to synonymy and/or polysemy, the

probability values of specific term pairs could be close, but the probability

distributions over all term pairs in document collection or all possible paths

are quite different. Consequently, coupling similarity is surely weaker than

similar term pairs.

It is also reasonable to adapt hierarchical tree learning into word sense

disambiguation. In a tree structure, features are extracted and composed

layer by layer, with the higher level of the tree, the features are represented as

bigger term sets associated with more comprehensive-connected terms based

on their similarities. The term sets contain more integrated and precise

semantic senses compared to single terms, which make it possible to avoid

misunderstanding of the true meaning.

1.3 Research Contributions

• The proposal of an effective term pair similarity to capture the com-

prehensive couplings across documents. The similarity combines the

intra- and inter-term couplings via statistical and topological strate-

gies (Chapter 3);

• Application of the coupled term pair similarity measure to analyse doc-

uments by capturing the semantic related documents. (Chapter 3);

• The proposal of a hierarchical tree learning model to capture high order

semantics (Chapter 4);

• The implementation of a hierarchical tree with TAN as the hierarchical

tree augmented naive Bayes (HTAN) to text classification (Chapter 4);

• Analysis of both synonymy (many words per sense) and polysemy

(many senses per word) (Chapter 3 & 4).

9



CHAPTER 1. INTRODUCTION

1.4 Thesis Structure

The thesis is structured as follows:

Chapter 2 provides a literature review of the definition of the term se-

mantic, and various document representation models are introduced by three

directions based on the different ways to capture the semantics. Furthermore,

applications of document representation modeling in the field of information

retrieval is reviewed.

Chapter 3 presents a term pair semantic coupling similarity (SCS) mea-

sure examined from both statistical and topological perspectives. A graphical

depiction associated with statistical approaches is employed to fully enrich

the semantic relation of every term pair, and this considers not only the oc-

currence frequency pattern of the terms themselves, but also the influence of

link term sets, so that documents are semantically represented in the best

possible way. Additionally, by adapting a path-length based method, we

show that SCS can cater for both synonymy and polysemy, and it consis-

tently outperforms baseline methods on most real data sets. The approach

has been evaluated and compared with related work when applied to docu-

ment clustering.

Chapter 4 proposes a multi-level tree structure to address the problem

in traditional Bayesian classification methods. The hierarchical tree learning

model is (1) constructed as a hierarchical tree-like structure, with hierarchical

feature extraction and correlation procedures to capture implicit semantics;

(2) at the top layer of the hierarchical tree, texts are represented as term sets

which contain highly correlated terms, and the correlation between term sets.

In addition, the tree can be widely adapted for supervised and unsupervised

learning; and (3) the tree is associated with TAN as the Hierarchical Tree

Augmented Naive Bayes (HTAN).

Chapter 5 concludes the thesis and outlines the scope for future work.

Figure 1.1 shows the research profile of this thesis.

10
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Figure 1.1: The profile of work in this thesis
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Chapter 2

Literature Review

The content of a document may be represented as a collection of terms:

words, stems, phrases, or other units derived or inferred from the text of

the document. In order to reduce the complexity of a document and make

it easier to handle, the document should be transformed from the full text

version to a document representation R which describes the contents of the

document, that is to say, for any text items D1 and D2, R(D1) = R(D2) iff

meaning(D1) = meaning(D2). The effectiveness of any such representation

is directly related to the accuracy with which a set of terms represents the

content of a document, as well as how well it discriminates a given document

with respect to other documents.

Building a high-quality document representation model is a challenging

task due to the complexity of natural language. It is expected that the rep-

resentation of documents should reflect the knowledge that is meant to be

conveyed by the documents. From traditional word-based document repre-

sentation, to today’s widely-accepted document semantic representation, a

number of methods have been developed to exploit the semantic similarity

and relatedness between terms for the purposes of enhancing the efficiency

of document representation.

This chapter reviews the related work, taking into account the definition

of semantics, typical semantic representations, including the Bag-of-Words

12
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model, the vector space model families, the topic models, and lexical resource-

based models. The definition of semantics and its associated families are

introduced in Section 1, and then various semantic representation models

are reviewed in Section 2.

2.1 Semantics

In linguistics, semantics is devoted to the study of meaning, inherent at

the levels of words, phrases, sentences, and larger units of discourse (termed

texts, or narratives).

One of the basic studies of semantics concerns the examination of the

representation of semantics, and the study of semantic relatedness between

different linguistic units and compounds: homonymy, synonymy, antonymy,

hypernymy, hyponymy, meronymy, metonymy, holonymy, paronyms.

Semantic relatedness, which is different from semantic similarity or se-

mantic distance, is a more general concept that subsumes many different kind

of specific relations, including meronymy, antonymy, functional association,

and others (Budanitsky & Hirst 2006). Prior work on the semantic relat-

edness of words pursued two main directions, using purely statistical tech-

niques or using repositories of human knowledge (Halawi, Dror, Gabrilovich

& Koren 2012).

Machine learning methods learn word semantic relatedness from text cor-

pora. The semantic analysis of a corpus is the task of using statistical tech-

niques to build structures that approximate concepts from a large set of

documents. It generally does not involve a prior semantic understanding of

the documents. While approaches measuring semantic relatedness based on

lexical resources, regard the resources as networks or graphs, and then apply

various measures of relatedness to the properties of paths in the networks or

graphs.

13
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2.2 Corpus-based Semantic Representation

The lexical semantic system is an important component of human language

and natural language processing. Recent efforts in terms of measuring se-

mantics can be roughly categorised as: corpus-based measures and lexical

resource-based measures.

More specifically, semantic relations estimated by corpus-based statisti-

cal means seek high-dimensional vectors to model term meanings. These

are derived from the co-occurrence of terms in the text corpus. Correspond-

ing approaches such as the vector space models and its extensions compute

the co-occurrence frequency patterns of terms and textual contexts across

a corpus. Probabilistic models discover the distribution properties of each

term over topics and the topic distribution over each document. By contrast,

lexical resource-based approaches model semantic knowledge which relies on

pre-existing knowledge resources, like hand-constructed networks or trees of

interconnected word senses. The networks or trees do not provide a term-pair

similarity metric, but various metrics based on these structures have been

developed for this purpose (Rohde, Gonnerman & Plaut 2004).

A specific review of typical document representation models is provided

below. This is divided into three sections, term-based models, which con-

sist of vector space models; topic-based models, which emphasise probabilis-

tic latent variable models; and topological models, which model semantic

knowledge based on topological similarity on lexical ontology.

2.2.1 Term-based Semantic Representation

Term-based document representation models use term, which is the smallest

unit of a document, as the key feature. On the basis of the development

of term-based representation methods, it is important to develop algorithms

that capture term correlations as completely as possible, and construct the

corresponding document representation models based on terms and their

pairwise correlations. In the following sections, I will chronologically present

14
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several typical term-based approaches that work on mining term correlations.

Bag-of-words Model

Early research on term-based methods usually build on bag-of-words model,

which is a simplified representation used in natural language processing

(NLP) and information retrieval (IR). It is an orderless document repre-

sentation model, which treats all the words in a text (such as a sentence or a

document) as index terms bounded with weights to reflect their importance.

A document is represented as a bag (multiset) of its words, disregarding the

order, structure, meaning, grammar, etc. of the words, only keeps multiplic-

ity of words from the document. The bag-of-words model gains the limitation

of the term independence assumption, ignores the semantics between terms

accordingly, which leads to a great loss of text semantic information. For

example, the two sentences

1. John is eating the apple, standing beside the tree.

2. The apple tree stands beside Johns house.

have the same set of content words (except house), but mean entirely different

things.

On the other hand, the sentences

1. John is an intelligent boy.

2. John is a brilliant lad.

mean almost the same thing.

This is why it causes problems if we do not consider the senses of the

words or their mutual semantic relations.

The bag-of-words model is summarized as:

• Orderless document representation model, keeps frequencies of words

from a dictionary.
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• Treat all the words in a document as index terms.

• Assign a weight to each term based on importance, in simplest case,

weight is the presence or absence of words.

• Disregard order, structure, meaning, grammar, etc. of the words.

• Term occurrence is independent, document relevance is independent,

totally ignore the semantic relation between them.

Vector Space Model

The Vector Space Model (Salton et al. 1975) is one of the most famous

traditional models for representing text document and is regarded as the

basics of various extended models. The basic vector space models are built

on bag-of-words model, documents are represented as vectors, each dimension

corresponds to a separate term with weight. The definition of term depends

on the application. Typically terms are single words, keywords, or longer

phrases. If words are chosen to be the terms, the dimensionality of the

vector is the number of words in the vocabulary (the number of distinct

words occurring in the corpus). The vector space models procedure can be

divided in to three stages.

(1) Document Indexing

It is obvious that many of the words in a document do not describe the

content, words like the, is. By using automatic document indexing those non

significant words (function words) are removed from the document vector, so

the document will only be represented by content bearing words (Chowdhury

2010). This indexing can be based on term frequency, where terms that have

both high and low frequency within a document are considered to be function

words. In practice, the use of a stop list which holds common words to remove

high frequency words (stop words), are filtered out after processing of natural

language data (text), which makes the indexing method language dependent.
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In general, 40−50% of the total number of words in a document are removed

with the help of a stop list (Chowdhury 2010).

(2) Term Weighting

There are various weighting schemes to discriminate one document from

the other. The term weighting for vector space models has entirely been

based on single term statistics. A common weighting scheme for terms within

a document is to use the frequency of occurrence, which is called term fre-

quency - inverse document frequency, short for tf-idf. The values of the vector

elements for a document are calculated as a combination of the statistics of

the term frequency (tf ) and the inverse document frequency (idf ). In gen-

eral, tf stands for the number of times a term occurs in document, and idf,

indicates the ability of a term to distinguish a document.

tf-idf is used as a weighting factor to reflect the importance of a term

to a document in a collection or corpus. The term frequency tf(t, d) is the

number of times term t occurs in document d, this is to conduct the statistical

analysis of term co-occurrence patterns by assuming that terms are regarded

relational if they co-occur in the same document, and more frequently they

co-occur, the stronger relations they have, and more semantics they share.

The document frequency df(t) is the number of documents in which t occurs

at least once (Jing, Huang & Shi 2002), and the inverse document frequency

idf can be calculated as

idf(t,D) = log(
|D|
df(t)

) (2.1)

where |D| is the total number of documents. The inverse document frequency,

assume that the importance of a term is proportional with the number of

document the term appears in. idf is low if t occurs in many documents and

will be high if it occurs in few documents.
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Then tf -idf is computed as:

tfidf(t, d,D) = tf(t, d) · idf(t,D) (2.2)

A high weight in tf-idf is reached by a high term frequency in the given

document and a low document frequency of the term in the whole collection

of documents, which proves that using tf -idf weighting scheme to consider

term relation is not only based on the co-occurrence frequency but also takes

the term discriminative ability into account.

Generally, this approach of document mapping can be expressed as a term

sequence defined by weighting scheme,

Φ̃vsm : d→ d
′
= (tfidf1, tfidf2, · · · , tfidfn) (2.3)

However, the tf -idf based methods have two main limitations. One is

that they place undue emphasis on the documents where terms co-occur; the

other is that tf -idf based on one single term may lead to synonymy and

polysemy, since the semantic meaning of a term in different documents can

be various.

(3) Similarity Coefficients

The similarity in vector space model is determined by using associative

coefficients based on the inner product of the document vectors, where word

overlap indicates similarity. The inner product is usually normalized. The

most popular similarity measure is the cosine similarity coefficient.

Cosine similarity is widely used in information retrieval and text mining,

as shown in Figure 2.1, it measures the cosine of the angle between document

vectors, which is regarded as the similarity of two documents in terms of

their subject matter. In information retrieval, vector space models capture

the relevance of documents and queries, by comparing the cosine similarity

of query vector and document vector.
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Figure 2.1: Cosine similarity in vector space model

The cosine similarity of documents di and dj is represented as

cosθ =

∑N
i,j=1 di · dj√∑N

i,j=1 di
2 ·
√∑N

i,j=1 dj
2

(2.4)

where N is the total number of documents. its outcome is neatly bounded in

[0, 1], due to cosine similarity is used in positive space particularly. A larger

value indicates more similar distributions of di and dj, it leads to a stronger

document similarities.

There are also other statistical similarity or distance measures to compare

the similarity of two samples, for example, Jaccard index, Dice coefficient,

Hamming distance and so on so forth.

Generalized Vector Space Model

On the basis of vector space model, a diversity of extended models have

been proposed, like the Generalized Vector Space Model (GVSM) (Wong

et al. 1985).

Vector space models treat the terms as a set of orthogonal vectors, how-

ever, terms are in fact correlated, it is not possible to characterize the vector
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space completely by representing documents as term occurrence frequency

only, without a explicit representation of term vectors that associated with

term correlations.

GVSM is an analysis of the problems that the pairwise orthogonality

assumption of the vector space model creates, it is not necessary in GVSM

to assume that either the document or the term vectors have to be orthogonal.

Specifically, GVSM represents documents in the document similarity space,

assumes that the correlation between a pair of index terms depends on the

number of documents in which this pair of terms appear together, which

means two terms are similar if they frequently co-occur in the same docu-

ment. In GVSM, they consider a new space, where each term vector ~ti was

explicitly defined in a 2n-dimensional cartesian space based on the notion

of Boolean algebra, which is a linear combination 2n minterms. The set of

minterms {m}2n can be represented explicitly as the set of orthonormal basic

vectors,

~m1 = (1, 0, 0, · · · , 0)

~m2 = (0, 1, 0, · · · , 0)

~m3 = (0, 0, 1, · · · , 0)

...

~m2n = (0, 0, 0, · · · , 1)

(2.5)

Then each term ti is defined by a unique disjunctive canonical represen-

tation, which is the sum of minterms,

~ti =
r∑

k=1

~mik (2.6)

To be more realistic, terms are assigned to documents as weights (0 ≤
w ≤ 1) instead of strictly Boolean algebra. In this case, the normalized term

vector ~ti is transformed to

~ti =
1

Ni

r∑
k=1

c(ti)~mik (2.7)
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where

N2
i =

r∑
k=1

c2(ti) (2.8)

and c(ti) denotes the sum of weights.

From now on, term vectors are explicitly defined by Equation 2.7, term

correlations are also explicitly known by computing ~ti · ~tj between any pair

of index terms. The mapping of document vector is defined as

Φ̃vsm : d→ d
′
= Dd (2.9)

where D is the document-term matrix.

Then it uses similarity method (e.g. cosine) to capture the similarity

between document vectors or document and query vectors on new space

dimensions.

However, GVSM keeps the assumption that the term vectors are linearly

independent, which still suffers the lack of relatedness of any pair of terms.

Context Vector Model

Context vector model (CVM) (Billhardt et al. 2002) is also developed to deal

with the restrictive term independence assumption in vector space models.

It incorporates context vectors into the vector space models to measure term

dependencies, which stores terms semantic similarities to the other terms,

and thus obtains semantically richer representations of documents.

To be more specific, CVM represents documents by a set of context vec-

tors, which reflect the correlations or influences between terms, each value in

the context vectors are not only determined by the occurrence frequency of

the corresponding term itself, but also by other terms occurring in the docu-

ment. This is the basic assumption of CVM, that terms are not independent

of each other, they indicates the possibility of existence of concepts in that

document, which correspond to other terms.

The basic algorithm consists three steps:
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1. Build the term/document matrix,



d1 d2 · · · dm

t1 w11 w12 · · · wm1

t2 w12 w22 · · · wm2
...

...
...

. . .
...

tn w1n w2n · · · wmn


m is the number of documents, n is the number of terms, and each

element wij in the matrix indicates the occurrence frequency of term tj

in document di. the document vector ~di = (wi1, wi2, · · · , win)T is used

for calculating document context vectors.

2. Build the term correlation matrix, represent documents as a set of

term context vectors, which are not only determined by the occurrence

frequency, but also the influence of terms in the semantic descriptions

of other terms. The term correlation matrix can be represented by an

n× n matrix T as follows,

T =


c11 c21 · · · cn1

c12 c22 · · · cn2

...
...

. . .
...

c1n c2n · · · cnn


where the ith column represents the term context vector ~ti = (ci1, ci2, · · · , cin)T

for term ti in the n-dimensional term space, each cik represents the in-

fluence of term tk on term ti.

To estimate the elements in matrix T , which is the influence of term tk

on the semantic description of term ti, term co-occurrence frequency is

employed, that is, the frequency with which tk and ti co-occur in the

same textual units across the whole collection.

3. Transform each original document vector into document context vector.
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Once the term correlation matrix T has been generated, the initial

document vector ~di = (wi1, wi2, · · · , win)T is transformed into a context

vector ~d
′
i = (ci1, ci2, · · · , cin)T , where

~d
′
i =

n∑
j=1

wij
~tj
|~tj |

n∑
j=1

wij

(2.10)

~tj is the context vector of term tj and |~tj| is the length of vector ~tj.

Generally, this approach of document mapping can be expressed as

Φ̃cvm : d→ d
′
=

n∑
j=1

wij · ~tj (2.11)

The generated document context vectors ~d
′
i = (ci1, ci2, · · · , cin)T corre-

spond to the centroid of the term context vectors of all terms in the docu-

ment. The value of concept ck in the document context vector for document

i is the average of the influences of term tk on all terms occurring in di. If all

terms are represented only by themselves, the context vectors for terms are

pairwise orthogonal, CVM will behave in the same way as traditional vector

space models.

After indexing process, standard cosine similarity measure also can be

adapted in document similarity measurement or document retrieval. CVM

uses context vector to store the similarities of one term with other terms,

incorporates term dependencies based on vector space models, the document

representation is further semantically enriched, so that the document simi-

larities is based on the semantic-matching.

Global Term Context Vector Model

The CVM method considers that the term context is computed based on term

co-occurrence frequency at the document level, but does not take into account

the sequential nature of text and thus ignores the local distance of terms when
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computing term context. To address this problem, the global term context

vector model (GTCV) (Kalogeratos & Likas 2012) is proposed to utilize

local contextual information, in addition, extends CVM by considering term

context at three level: (1) the local term context vector, (2) the document

term context vector and (3) the global term context vector. The intuition of

GTCV is to capture the local term context from term sequence based on the

location that terms appear around the sequence, and then to build global

term context representation by averaging the local contextual information at

the document and corpus level.

More specifically, local term context vector (ltcv) is a histogram associ-

ated with the occurrence of term dseq(l) at location l in sequence dseq, which is

a modified lowbow(dseq, l) (Lebanon, Mao & Dillon 2007) probability vector

that represents contextual information around location l. Then the document

term context vector (dtcv) is defined as a probability vector that summarizes

the context of a specific term at the document level by averaging the ltcv

histograms corresponding to the occurrences of this term in the document.

The dtcv of term v for document i is computed as

dtcv(dseqi , v) =
1

nov,i

nov,i∑
j=1

ltcv((dseqi , lv,i(j)) (2.12)

where lv,i(j) is an integer value in [1, · · · , Ti] denoting the location of the j-th

occurrence of term v in dseqi , nov,i is the number of times that v appears in

the term sequence dseqi .

Next, the global term context vector (gtcv) represents overall contextual

information for all terms in the corpus of all N term sequence (documents).

gtcv(v) = hgtcv(v)

( N∑
i=1

tfi,vdtcv(dseqi , v)

)
(2.13)

where tfi,v is the term frequency in ith document, the coefficient hgtcv(v)

nomalizes gtcv(v) with respect to the Euclidean norm.

Finally, the semantic matrix Sgtcv is built where each row is the gtcv(v)

vector of the corresponding term v.
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The new document representation using the proposed GTCV approach

is the cosine similarity of the global term context vector gtcv(v) and the

bag-of-words representation d,

Φ̃gtcv : d→ d
′
= Sgtcvd (2.14)

and the product STgtcvSgtcv calculates the pairwise term similarity based on the

distribution of term weights in their respective global term context vectors.

GTCV incorporate context vectors into vector space models to measure

the term dependency. This method is operated in four steps: (i) considers

local contextual information for each term occurrence in the term sequences

of documents based on the bag-of-words; (ii) organises the local context

vectors for the occurrences of terms to define the global context vectors; (iii)

constitutes the semantic matrix by using the global context of all terms;

(iv) uses the semantic matrix to further map the traditional vector space

document representations into a new feature space which is semantically

smoothed and richer. The semantic relation for vocabulary terms can be

achieved from the total contextual information across the whole document

collection.

Coupled Term-Term Relation Model

An interesting effort made by Cheng et al. (Cheng et al. 2013) in coupled

term-term relation model (CRM) is to capture the semantic relation of terms

by considering both intra- and inter-term relations based on Non-iidness

learning (Cao 2013).

Non-iidness learning deals with strong couplings and heterogeneity in

complex behavioral and social applications, which cannot be abstracted or

weakened to the extent of satisfying the iidness assumption. Most of existing

methods are proposed on the basis of the iidness assumption that objects,

attributes and values are independent and identically distributed. It works

well in simple applications and abstract problems with weakened and avoid-

able relations and heterogeneity (Cao 2013). In text mining, it is applied as
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bag-of-words model which is served as the foundation of classic document

representation learning theories, algorithms and models.

However, complex behavioral and social applications often exhibit strong

coupling relations between attributes, which are beyond the usual depen-

dency relation. Corresponding reflection in document representation models

is that classic bag-of-words model and vector space models ignore the seman-

tic relations between terms or only consider the explicit relations, failing to

capture the complete semantics between terms.

Motivated by this, CRM is proposed to further exploits semantic relation

of terms by considering both intra-relation (explicit) and inter-relation (im-

plicit). Firstly, the intra-relation, also the explicit semantic relation between

terms can be captured by their co-occurrence frequency across all documents,

they adapt the popular co-occurrence measure, the Jaccard distance and tf-idf

weighting scheme to compute the similarity of two terms. The intra-relation

IaR(ti, tj) between term ti and tj is,

IaR(ti, tj) =
CoR(ti, tj)
n∑

i=1,i6=j
CoR(ti, tj)

(2.15)

where

CoR(ti, tj) =
1

|H|
∑
x∈H

wxiwxj
wxi + wxj − wxiwxj

(2.16)

where wxi and wxj represent the tf-idf weights of ti and tj in document dx,

respectively; and |H| denotes the number of elements in H = {x|(wxi 6=
0) ∨ (wxj 6= 0)}.

On the other hand, the inter-relation, known as the implicit relation,

calculates terms relation where a pair of terms appear in document set but

do not co-occur in the same document. Cheng et al. proposed a significant

improvement to computer the inter-relation in terms by integrating the intra-

relation over a pair of terms with a set of link terms that connecting those

two terms. For instance, in Figure 2.2, terms ti and tj are intra-related with
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tk in respective documents dx and dy, then ti and tj are said to be inter-

related by the link term tk, thus, the implicit relation (in a dotted line) is

captured.

Figure 2.2: An example of the inter-relation between terms

Finally, linearly combine the intra-relation and inter-relation together to

achieve a full CRM. The semantic relation matrix Scrm is then constructed

to represent all coupled relations between each pair of terms, each document

vector is transformed into new feature vector

Φ̃crm : d→ d
′
= Scrmd (2.17)

Referring to results of experiments, CRM improves the performance of

document clustering by building an enriched document representation to cap-

ture the complete semantic relation between terms. Especially, take inter-

relation into account, which is overlooked by other measures. However, it

still suffer from some limitations. CRM fails to avoid the negative effects of

polysemy and synonymy of link terms, there are still exist possibilities that

the link term has different meaning in different documents, which is known

as polysemy. Furthermore, only one link term used is not enough to express

the semantic relatedness completely.
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Summary

Summarising the properties of the above-mentioned vector-based document

representations, the traditional bag-of-words model holds the simplistic as-

sumption that term features are considered to be independent of each other,

which is very unrealistic in practice, since there exist semantic relations

among terms which are totally ignored. To address the absence of the seman-

tic relation, various extensions of the vector space model have been proposed

which aim to capture the semantics among terms as completely as possible.

• The vector space model assumes that terms are regarded to be rela-

tional if they co-occur in the same documents and the semantics are

calculated based on the similarity of the co-occurring term features.

• The generalized vector space model represents term vectors explicitly

in a 2n-dimensional vector space based on the notion of Boolean algebra

and the semantic relation is captured by using the term co-occurrence

pattern.

• The context vector model represents each term by introducing a term

context vector that stores its similarities (semantic information) with

the other terms. The similarity between terms is based on a document-

wise term co-occurrence frequency.

• The global term context vector model utilizes local contextual informa-

tion to construct the local term context vector, then summarises the

local term context vectors of a particular term by way of the global

context vector, which constitutes the semantic matrix.

• The coupled term-term relation model captures the semantic relation

between terms, which considers both the co-occurrence patten of terms

(intra-relation) and the dependency of terms via linkages (inter-relation).

The vector space model and its extensions can be regarded as semantic

smoothing approaches (Kalogeratos & Likas 2012) which consider term cor-
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relations by redistributing the term weights of a vector model or mapping

the features onto a new space.

The main differences among various semantic smoothing approaches is

related to the fact that more and more semantics are involved. For more

advanced methods, like CVM, term contextual information is introduced to

store the similarities between terms, GTCV further considers term location

information, and CRM captures the implicit relation between terms via the

interaction with link terms.

In the next section, topic models will be reviewed which propose alterna-

tive ways to capture semantics.

2.2.2 Topic-based Semantic Representation

With the prevalence of statistical inference in recent years, more and more

conventional information retrieval problems try to seek better solutions using

machine learning methods. Topic models have employed machine learning

methods to map documents into new feature space. The size of such docu-

ment vectors is less than the size of vocabulary and these vectors are called

topic vectors.

In topic modeling, documents are mixtures of topics. A topic, in the do-

main of language models, means a probability distribution over a vocabulary

of words. This means, given a list of words, each topic has a specific value

associated with that word. The list of values represents an individual topic

and different topics will have different values associated with each word.

Semantic topics are concisely derived from the co-occurrence of a large

number of terms from documents and are used to transform documents so

that they may be located in low-dimensional topic space. These dimension-

ality reduction techniques improve the performance of document representa-

tion by overcoming the unavoidable negative influences of the bag-of-words

model, such as sparseness, synonyms and polysemy.
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Latent Semantic Analysis

Latent semantic analysis (LSA) (Deerwester, Dumais, Landauer, Furnas &

Harshman 1990) is a popular technique of analysing semantic relation be-

tween terms based on the frequency of term co-occurrence patterns. It cre-

ates vector-based representations of texts which are claimed to capture their

semantic content, which projects the document vectors onto a proper feature

space by using Singular Value Decomposition (SVD) to reconfigure the data

as a set of topics related to the documents and terms.

The cricial step of LSA algorithm is to compute the SVD of the nomalized

co-occurrence matrix. A t × d matrix of terms and documents, X, can be

decomposed into the product of three other matrices,

X(t× d) = U(t× r) · S(r × r) · V T (r × d) (2.18)

where U containing orthonormal columns known as the left singular vectors,

V T containing orthonormal rows known as the right singular vectors, and S

is a diagonal matrix containing the singular values.

An SVD is similar to an eigenvalue decomposition, but can be computed

for rectangular matrices (Rohde et al. 2004). The relation between SVD

and eigen analysis lie in that, U is the matrix of eigenvectors of the square

symmatric matrix XXT , V is the matrix of eigenvectors of XTX, and the

singular values are akin to eigenvalues.

If the singular values in S are ordered by size, the first k largest may be

kept and the remaining small values are set to 0, the terms and documents

are converted into a reduced k-dimensional space.

X̂(t× d) = Û(t× k) · Ŝ(k × k) · V̂ T (k × d) (2.19)

To compare two terms, the dot product between two row vectors X̂ re-

flects the extent to which two terms have a similar pattern of occurrence

across the set of documents. The matrix X̂X̂T is a square symmetric matrix
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containing all term-to-term dot products,

X̂X̂T = Û Ŝ2ÛT (2.20)

To compare two documents is to calculate the dot product of two col-

umn vectors of X̂, the matrix X̂T X̂ contains the document-to-document dot

products,

X̂T X̂ = V̂ Ŝ2V̂ T (2.21)

LSA method uses SVD to decompose the original large term by document

matrix to a linear combination of orthogonal factors, deals remarkably with

the synonymy problem in latent semantic space.

Probabilistic Latent Semantic Analysis

Compare to standard LSA with stems from linear algebra and performs a

SVD of co-occurrence tables, Probabilistic Latent Semantic Analysis (PLSA)

(Hofmann 1999) is a novel statistical technique which is a probabilistic ver-

sion of LSA, based on a mixture decomposition derived from a latent class

model. The PLSA approach models each word in a document as a sample

from a mixture model, where the mixture components are multinomial ran-

dom variables that can be viewed as representations of topics. Thus different

words in a document may be generated from different topics. Each document

is represented as a list of mixing proportions for these mixture components

and thereby reduced to a probability distribution on a fixed set of topics.

This distribution is the reduced description associated with the document

(Blei 2004).

Considering observations of co-occurrences of words and documents, PLSA

models the probability of each co-occurrence as a mixture of conditionally

independent multinomial distributions. Given a collection of text documents

D = {d1, d2, · · · , dM} with terms from a vocabulary W = {w1, w2, · · · , wN},
PLSA introduces the Aspect Model as a latent variable model for co-occurrence
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Figure 2.3: Graphical Representation of PLSA

data which associates an observed class variable c ∈ C = {c1, c2, · · · , cK}
with each observation. A joint probability model over D ×W is defined by

the mixture

P (d, w) =
∑
c∈C

P (c)P (d|c)P (w|c)

= P (d)
∑
c∈C

P (c|d)P (w|c)
(2.22)

Figure 2.3 describes the model using plate notation. The outer box rep-

resents an iteration over every single document. The inner box represents

an iteration over every word for each document. The grey circles represent

the observed variable. The arrows indicate a dependency. Before a word is

drawn from a topic, a new topic must be drawn from a distribution. Each

document has its own unique distribution or mixture of topics. This allows

individual documents to be composed of words drawn from multiple topics,

which makes PLSA a more plausible model of a document’s reality than

mixture of unigram models (assume only one topic per document).

The Aspect Model introduces a conditional independence assumption,

namely that d and w are independent conditioned on the state of the asso-

ciated latent variable. The number of parameters is equal to cd + wc. The

number of parameters grows linearly with the number of documents. Their
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parameters are learned using the EM algorithm.

In statistics, an Expectation Maximization (EM) algorithm is an iterative

method for finding maximum likelihood or maximum a posteriori (MAP) es-

timates of parameters in latent variable models. The EM iteration alternates

between performing two steps:

• An expectation (E) step, which creates a function for the expectation

of the log-likelihood evaluated using the current estimate for the pa-

rameters;

• An maximization (M) step, which computes parameters maximizing

the expected log-likelihood found on the E step. These parameter-

estimates are then used to determine the distribution of the latent

variables in the next E step.

PLSA is an advanced step toward probabilistic modelling of text which

considered more principled than standard LSA, which is an identification of

latent classes using Aspect Model to general co-occurrence data and a power-

ful fitting procedure, Expectation Maximization (EM) algorithm is adapted

to avoid overfitting.

However, PLSA fails to construct probabilistic model at the level of doc-

uments. Specifically, each document in PLSA is represented by words that

from a mixture model, all the mixture components can be regarded as the

representations of topics, there is no probabilistic model for these topics.

This may causes the number of parameters rises linearly with the number

of documents in the training set, may lead to problems with overfitting. In

addition, although PLSA is a generative model of the documents in the col-

lection it is estimated on, it is not a generative model because it is not clear

how to assign probability to a new document outside of the training set.

Latent Dirichlet Allocation

To proceed beyond PLSA, Latent Dirichlet Allocation (LDA) (Blei, Ng &

Jordan 2003) is proposed to capture intra-document statistical structure
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based on mixing distribution. LDA is a generative hierarchical Bayesian

probabilistic model over a corpus. The basic idea is that documents can be

considered as random mixtures of various latent topics, where each topic is

characterized by a distribution over words. This model provides an explicit

representation of a document, where each words generation is attributable

to one of the documents topics.

Given a collection of text documents D = {d1, d2, · · · , dM} with words

d = {w1, w2, · · · , wN}, words are from a vocabulary W = {w1, w2, · · · , wV },
LDA assumes the following generative process for each document d in a

corpus D,

1. Choose N |ξ ∼ Poisson(ξ).

2. Choose proportions θ|α ∼ Dir(α).

3. For each of the N words wn:

• Choose a topic cn|θ ∼ Mult(θ).

• Choose a word wn|{cn, β1:K} ∼ Mult(βcn).

Given the parameters α and β1:K , where K is the dimensionality of the

topic variable c, the joint distribution of topic proportions θ, a set of N topics

c, and a set of N words w is given by,

P (θ, c, w|α, β1:K) = P (θ|α)
N∏
n=1

P (cn|θ)P (wn|cn, β1:K) (2.23)

where P (cn|θ) is simply θi for the unique i such that cin = 1. Integrating over

θ and summing over latent topics, we obtain the marginal distribution of a

document,

P (d|α, β1:K) =

∫
P (θ|α)

(
N∏
n=1

∑
cn

P (cn|θ)P (wn|cn, β1:K)

)
dθ (2.24)
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Figure 2.4: Graphical Representation of LDA

Finally, we obtain the probability of a corpus by taking the product of the

marginal probabilities of single documents,

P (D|α, β1:K) =
M∏
m=1

∫
P (θm|α)

(
Nm∏
n=1

∑
cmn

P (cmn|θm)P (wmn|cmn, β1:K)

)
dθm

(2.25)

LDA is represented as a probabilistic graphical model in Figure 2.4. As

the figure makes clear, LDA is a hierarchical model with three levels repre-

sented by three colors: (1) corpus-level parameters (red) α and β are assumed

to be sampled once in the process of generating a corpus; (2) document-level

parameter (orange) θ is sampled once per document, finally (3) the word-

level variables (green) include word variables wmn and topic variables cmn

are sampled once for each word in each document. The generative process

can be described as follows:

• For each topic, sample a distribution over words from a Dirichlet prior.

• For each document, sample a distribution over topics from a Dirichlet

prior.

• For each word in the document,
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– Sample a topic from the document’s topic distribution.

– Sample a word from the topic’s word distribution.

– Observe the word.

The parameters can be estimated using two frequently used approaches,

Gibbs sampling or variational inference.

LDA fix the problems in PLSA by treating the topic mixture weights as

a K-parameter hidden random variable. Then, K + KV parameters in a

K-topic LDA model do not grow with the size of the training corpus.

Further Research in Topic Modeling

The simple LDA model provides a powerful tool for discovering and exploiting

the hidden thematic structure in texts. It has been widely used as a module in

more complicated models for more complicated goals (Blei 2012). Following

is a brief introduction of recent literature based on LDA extension.

1. Relaxing the Assumptions of LDA

One active area of topic modeling research is to relax and extend LDA

statistical assumptions to uncover more sophisticated structure and more

realistic problems in the texts.

One assumption that LDA makes is the words in the document are or-

derless. This is akin to the standard Bag-of-Words model assumption, and

makes the individual words exchangeable. In reality, people will choose to

use certain words on the basis of the words used before, it is apparently not

realistic and reasonable to ignore the order of words in natural language,

and may loss linguistic structure information. There have been a number of

extensions to model the words nonexchangeable based on LDA. For exam-

ple, Wallach (Wallach 2006) explores a hierarchical generative probabilistic

model that incorporates both n-gram statistics and latent topic variables to

relax this assumption. Word wt is generated not only on the condition of the

topic, but also defined by the previous word wt−1. Typically this is done by
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computing estimators of both the marginal probability of word wt, the con-

ditional probability of word wt following word wt−1, and the word probability

conditioned on the topic.

The syntactic topic model (STM) (Boyd-Graber & Blei 2009) also caters

this assumption. It is a nonparametric Bayesian topic model that can infer

both syntactically and thematically coherent topics. Rather than treating

words as the exchangeable unit within a document, the words of the sentences

must conform to the structure of a parse tree. In the generative process, the

words arise from a distribution that has both a document-specific thematic

component and a parse-tree-specific syntactic component.

LDA also assumes that the documents are unordered. This assumption

may be unrealistic when analyzing long-running collections that span years

or centuries (Blei 2012). To address this problem, a family of probabilistic

time series models is developed to analyze the time evolution of topics in large

document collections (Blei & Lafferty 2006). The themes in a document col-

lection evolve over time, and it is of interest to explicitly model the dynamics

of the underlying topics. In a dynamic topic model, the data is divided by

time slice, for example by year. Documents of each slice are modelled with

a K-component topic model, where the topics associated with slice t evolve

from the topics associated with slice t− 1. Rather than a single distribution

over words, a topic is now a sequence of distributions over words. We can

find an underlying theme of the collection and track how it has changed over

time.

A third assumption of LDA is that the number of topics is assumed known

and fixed. The Bayesian nonparametric topic model (Teh, Jordan, Beal &

Blei 2006) provides an elegant solution: the number of topics is determined

by the collection during posterior inference, and furthermore, new documents

can exhibit previously unseen topics. Bayesian nonparametric topic models

have been extended to hierarchies of topics, which find a tree of topics, mov-

ing from more general to more concrete, whose particular structure is inferred

from the data (Blei, Griffiths & Jordan 2010).
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There are still other extensions of LDA that relax various assumptions

made by the model. Following are some models build on LDA to solve specific

goals.

2. Focusing on Specific Tasks

Topic modeling is an emerging field in machine learning, and there are

many exciting new directions for research. Recently, most work of topic

modeling focused on specific tasks, such as to consider the influences of con-

text (Chen, Zhou & Carin 2012), and apply topic modeling into sentiment

analysis (Mei, Ling, Wondra, Su & Zhai 2007) (Lin & He 2009).

With the popularization of Web applications and other digital media, it

raises wide interest in analyzing a large corpus, and it is desirable to place the

analysis of such data within the context of other readily available associated

information. As the inference of topics associated with any single document

is influenced by other documents produced by the same author or published

at the same or similar venues, the networks of author and venue information

carry significant information. cFTM (Chen et al. 2012) is proposed to utilize

the interrelationships between author names and publication venues, to allow

an appropriate sharing of information from multiple documents. It automat-

ically infers the number of topics, the number of author and venue clusters,

and the probabilistic importance of the author and venue information on

word assignment in a document dependent manner.

There are also great bulk of work has been focused on the problem of sen-

timent analysis at various levels combing topic models. Sentiment analysis or

opinion mining aims to use automated tools to detect subjective information

such as opinions, attitudes, and feelings expressed in text. Topic/feature

detection and sentiment classification are often performed in a two-stage

pipeline process, by first detecting a topic/feature and later assigning a sen-

timent label to that particular topic, which give us the intuition that senti-

ment polarities are dependent on topics. A Topic Sentiment Mixture (TSM)

(Mei et al. 2007) is proposed to model and extract the multiple subtopics
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and sentiments in a collection of blog articles. Specifically, a blog article is

assumed to be generated by sampling words from a mixture model involv-

ing a background language model, a set of topic language models, and two

(positive and negative) sentiment language models. With this model, the

topic/subtopics can be extracted from blog articles, reveal the correlation of

these topics and different sentiments, and further model the dynamics of each

topic and its associated sentiments. The unsupervised joint sentiment/topic

model (JST) (Lin & He 2009) is proposed beyond TSM, which detects sen-

timent and topic simultaneously from text by adding a sentiment layer, the

word from the distribution over words is defined not only by the topic, but

also the sentiment label.

Summary

In the domain of language models, a topic is a probability distribution over

the terms in a vocabulary. A topic modeling tool looks through a corpus for

these clusters of words and groups them together by a process of similarity.

The following points provide a brief overview of topic modeling:

• The unigram model uses a single topic in the entire corpus. Each

document in the corpora is composed of words selected from a single

topic distribution for the entire corpus.

• The mixture of unigrams model introduces the possibility of multiple

topics and a distribution of topics from which we draw a new distribu-

tion of words for each document.

• PLSA allows individual documents to be composed of multiple topics.

• In LDA, each document is represented as a mixture of latent topics,

and each topic is represented as a mixture of words. These mixture

distributions are assumed to be Dirichlet-distributed random variables

which must be inferred from the data.
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Topic modeling proposes alternative ways to define the semantic ma-

trix though feature mapping. Starting with the simple unigram model, to

the mixture of unigrams, to probabilistic latent semantic analysis, to la-

tent dirichlet allocation, researchers have developed more and more advanced

topic models to discover and exploit the hidden thematic structure of texts,

and these have been broadly extended and adapted to cover more sophisti-

cated structure and specific tasks.

2.2.3 Discussion and Conclusion

The above-mentioned corpus-based representations offer two different ways

to capture the semantics of terms.

Term-based document representations consider term semantic relations

by extracting the contexts of terms from large corpora and then redistribut-

ing the terms into new feature space. Vector space models and extensions

involve more and more interactions between terms to enrich their correla-

tions. From the earliest only term frequency considered, researchers are

now concerned with the terms co-occurrence frequency, contextual informa-

tion, location information and even more implicit interactions between terms.

However, term-based models split texts into the smallest units and then try

to connect them by various information they share which reveals little in

terms of document statistical structure. In addition, this may cause com-

plexity problems because of the high-dimensional vectors, and also cannot

avoid ambiguity problems because more recapitulative information is over-

looked.

Intuitively, an article is easier to understand if it is represented by main

topics. To address the shortcomings in term-based models, a large amount

of literature has been proposed to develop a generative probabilistic model

of text corpora. Topic modeling is a form of text mining, a way of identifying

patterns in a corpus. You take your corpus and run it through a tool which

groups words across the corpus into topics. Miriam Posner has described

topic modeling as a method for finding and tracing clusters of words (called
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topics in shorthand) in large bodies of texts.

A basic difference between the topic modeling methods and semantic

smoothing methods is related to the dimension of the new feature space. In

topic models, each document in a given corpus is represented by a histogram

containing the occurrence of words. The histogram is modeled by a distri-

bution over a certain number of topics, each of which is a distribution over

words in the vocabulary. By learning the distributions, a corresponding low-

rank representation of the high-dimensional histogram can be obtained for

each document (Hofmann 2001). As their feature dimension is less than the

size of the vocabulary, such vectors are called topic vectors (Kalogeratos &

Likas 2012) which have a distribution of weights associated with the original

terms that define their contribution to the corresponding topic. In addition,

topic models help handle the polysemy and synonymy that lie in Bag-of-

Words models, since the count for a topic in a document can be much more

informative than the count of individual words belonging to that topic.

In the next section, lexical resource-based approaches will be reviewed

which capture semantics which rely on pre-existing knowledge resources.

2.3 Lexical Resource-based Semantic Repre-

sentation

All of the above models compare terms as Bag-of-words in the vector space

of the corpus. However, terms are different from other features in statis-

tical learning, because the sequence of terms is not arbitrary. Indeed, it

must follows a certain grammar structure from the natural language per-

spective. Moreover, terms often represent some concepts which can always

be organised by the relation of the hyponym or hypernym. For many large-

scale data mining tasks, including classifying and clustering documents, it

is sufficient to use a simple representation that loses all information about

structure. Lexical resource-based approaches are raised for the purpose of

integrating heterogeneous databases, and relevant tools refer to establishing
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relations among ontological resources as well as assessing the similarities and

semantics.

Considering the contents of an information item and its intended meaning,

semantic conflicts are mainly caused by confounding, homonyms and syn-

onyms. The use of ontology for the explication of implicit and hidden knowl-

edge is a possible approach to overcome these problems. Initially, ontology is

defined as an explicit specification of a conceptualisation (Gruber 1993) and

the common components of ontology include individuals, classes, attributes,

relations, rules, etc., which can be used to identify and associate semantically

corresponding information concepts.

2.3.1 Edge-based Semantic Representation

Previous semantic measures based on lexical ontologies use a taxonomy

(tree), which is a hierarchical network representation consists of concepts

and relations between these concepts, to compute the semantic similarity

between two concept nodes by the path length between the concepts.

In early research the main assumption that capture the similarity between

two concepts is to find the shortest-path linking the two concept nodes in a

taxonomy graph (Rada, Mili, Bicknell & Blettner 1989). This approach is

taken on MeSH (Medical Subject Headings)1, a semantic hierarchy of terms

used for indexing articles in the bibliographic retrieval system Medline. The

network has 15000 terms form a nine-level hierarchy based on the broader-

than relationship, which can be as formal as a set of meronymic and hy-

per/hyponymic relationships. The principal assumption of (Rada et al. 1989)

is that the number of edges between terms in the MeSH hierarchy is a mea-

sure of conceptual distance between terms. The shorter the distance, the

more similar the concepts are semantically. Despite the simplicity of this

distance function, the authors were able to obtain surprisingly good results

in their information retrieval task (Budanitsky & Hirst 2006).

1https://www.nlm.nih.gov/mesh/
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However, solely counting links between nodes is not sufficient. The exam-

ple given in (Richardson, Smeaton & Murphy 1994) illustrates this problem.

The distance between ”plant” and ”animal” is 2 in WordNet2 since their com-

mon parent, is ”living thing”. The distance between ”zebra” and ”horse” is

also 2 since their common parent is equine. Intuitively, one would judge

”zebra” and ”horse” more closely related than ”plant” and ”animal”.

To overcome the limitation of simple edge counting, many other ap-

proaches suggest considering more characteristics when calculating the weight

between two concepts. The edges are then weighted to reflect the difference

in edge distances by using different information about the edge in determin-

ing its weight: including the concept depth, the density of edges at that

depth, the type and the strength of the relation that connect two concepts

(Cross 2004).

2.3.2 Information-theoretic Semantic Representation

More advanced methods consider the semantic similarity of concepts based

on the information content (IC) they share on taxonomy or more sophis-

ticated structure. Information content is an important dimension of word

knowledge when assessing the similarity of two terms or word senses (Seco,

Veale & Hayes 2004). The information-theoretic models of semantic similar-

ity add to the information already present in the network by using a qualita-

tively different, knowledge source. The groundwork for much of this research

is founded on the insight that conceptual similarity between two concepts

may be judged by the degree to which they share information (Cross 2004).

The more information they share then the more similar they are. Different

methods have been used to approximate that information content.

2https://wordnet.princeton.edu/
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Corpora-based IC Models

The conventional way of measuring the IC of word senses is to combine

knowledge of their hierarchical structure from an ontology like WordNet with

statistics on their actual usage in text as derived from a large corpus. The

probability of each concept in the taxonomy is based on term occurrences

frequency in a given corpus.

Resnik (Resnik et al. 1999) proposes a way to edge counting methods

based on the information-theoretic hypothesis, which is regarded as the foun-

dation of IC learning. Based on standard information theory, the IC of a

concept c is obtained by computing the inverse of its appearance probability

in a corpus,

IC(c) = − logP (c) (2.26)

where P (c) is probability of encountering an instance of c in a specific corpus.

P (c) =

∑
w∈W (c)

count(w)

N
(2.27)

where W (c) is the set of terms in the corpus whose senses are subsumed

by c, and N is the total number of corpus terms that are contained in the

taxonomy.

The information shared by two concepts c1 and c2 is approximated by

the information content of the lowest super-concept c3 that subsumes them

in the hierarchy. The similarity between c1 and c2 is given as

sim(c1, c2) = max
c∈S(c1,c2)

(
− logP (c)

)
, (2.28)

This quantitative characterization of information provides a new way to

measure semantic similarity. The information shared by two concepts is

indicated by the information content of the concepts that subsume them in

the taxonomy. The higher position of the super-concept, the more abstract

thay are, and therefore, the lower semantic similarity between c1 and c2.

A step forward, the semantic similarity between two concepts proposed in

(Lin 1998) takes both commonality and difference into account. It is argued
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that the similarity between two concepts is not about the concepts but about

the instances of the concepts. For example, when we say ”horse and zebra

are similar”, we are not comparing the set of horse with the set of zebra.

Instead, we are comparing a generic horse and a generic zebra. Then the

amount of information contained in x1 ∈ c1 and x2 ∈ c2 is

− logP (c1)− logP (c2) (2.29)

where P (c1) is the probability that a randomly selected object x1 would

belong to c1. If concept c3 is the most specific concept that subsumes both

c1 and c2, then

Sim(c1, c2) =
2 logP (c3)

logP (c1) + logP (c2)
(2.30)

Lin’s measure of similarity between two concepts in a taxonomy is a

corollary of similarity theorem, which defines that the similarity between A

and B is measured by the ratio between the amount of information needed to

state their commonality and the information needed to fully describe what

they are (Budanitsky & Hirst 2006).

A combined model (Jiang & Conrath 1997) is proposed that derived from

the edge-based notion by adding the information content as a decision factor.

The distance of the edge connecting a child-concept c to its parent-concept

par(c) is formatted as

dist
(
c, par(c)

)
= logP

(
c|par(c)

)
(2.31)

where

P
(
c|par(c)

)
=
P
(
c ∩ par(c)

)
P
(
par(c)

) =
P (c)

P
(
par(c)

) (2.32)

Following the standard argument of information theory,

dist
(
c, par(c)

)
= IC(c)− IC

(
par(c)

)
(2.33)

The overall distance between two nodes would thus be the summation of
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edge weights along the shortest path linking two nodes.

dist(c1, c2) = IC(c1) + IC(c2)− 2× IC(c3)

= 2(c3)−
(
(c1) + (c2)

) (2.34)

where c3 denotes the lowest super-ordinate of c1 and c2. The final similarity

is calculated as the deference between the total sum and the information

content of the most specific common super-concept.

Previous information-theoretic approaches obtain the needed IC values

by statistically analyzing corpora, word senses should be identified in the

corpus in order to accurately compute concept appearance probabilities. It

causes some problems: (1) it takes time to analyze text, and resulting proba-

bilities will depend on the size and nature of input corpora; (2) there are high

and strict request of the corpus, contents of the corpus should be adequate

with respect to the ontology scope and big enough to avoid data sparseness;

moreover, (3)the background taxonomy should be complete enough to in-

clude most of the specializations of each concept covered in the corpus, in

order to provide reliable results at a conceptual level (Sánchez et al. 2011).

Ontology-based IC Approaches

Based the limitations of corpus-based IC computation models, a number of

literature is produced on the basis of the assumption that previously estab-

lished ontologies can also be used as a statistical resource and produce the IC

values needed for semantic similarity calculations with no need for external

ones.

Seco et al. (Seco et al. 2004) were the first to base information content

calculations on the number of concept hyponyms. They assumed that the

taxonomic structure like WordNet is organized in a meaningful and struc-

tured way, where concepts with many hyponyms (i.e., specialisations) con-

tain less information than concepts that are leaves, and concepts that are

leaf nodes are the most specified in the taxonomy so the information they

express is maximal, as they are not further differentiated.
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Being hypo(c) the number of hyponyms in the taxonomical tree below the

concept c and max nodes the maximum number of concepts in the taxonomy,

they compute information content of a concept in the following way:

IC(c) =
log
(
hypo(c)+1
max nodes

)
log
(

1
max nodes

) = 1−
log
(
hypo(c) + 1

)
log(max nodes)

(2.35)

Obviously, this metric only take into account of the hyponyms of a given

concept, but assigns the same score to all leaf nodes in the taxonomy regard-

less of their overall depth. Concepts that have equal number of hyponyms

but different degrees of generality will be given the equal similarity. To

address this limitation, Zhou et al. (Zhou, Wang & Gu 2008) proposed a

hyponym-depth-combined IC computation model,

IC(c) = k

(
1−

log
(
hypo(c) + 1

)
log(max nodes)

)
+ (1− k)

(
log
(
depth(c)

)
log(max depth)

)
(2.36)

where depth(c) returns the depth of concept c in the taxonomy andmax depth

is the max depth of the taxonomy. k is a tuning factor so as to control the

weight of the two items of equation. Based on this model, the concepts with

same hyponyms and different depth can be discriminated.

In WordNet, around 21% of the total amount of concepts correspond to

inner taxonomical nodes (Devitt & Vogel 2004). For different ontology, the

level of inner taxonomical detail may vary. This influences the coherency of

intrinsic IC computations relying on the total size of the hyponym tree. To

avoid depending on the inner-detail of the hierarchy, Sanchez et al. (Sánchez

et al. 2011) proposed a improved IC-based model to better capture the se-

mantic similarity in an ontology for the particular concept, they computes

the information content of one term by considering both

1. the number of its descendants (i.e., leaves) in a taxonomy, as leaves

present maximum IC as they are completely differentiated (i.e., not

further specialized) from any other concept in the taxonomy;

2. the depth of a concept in a taxonomy, i.e., its number of taxonomical

subsumers.
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The IC of a concept is defined as

IC(c) = − log

( |leaves(c)|
|subsumers(c)| + 1

max leaves+ 1

)
(2.37)

where leaves(c) and subsumers(c) define the set of leaves and subsumers

of a concept c, respectively. max leaves represents the number of leaves

corresponding to the root node of the hierarchy.

It has been proved that Equation 2.37 monotonically increase as one

moves down in the taxonomy, which is according to the basic assumption

that concept specializations gain more information in the taxonomy. The

method performs to better capture the generality/concreteness of a concept,

in addition, it avoids problem in Equation 2.36 depending on tuning param-

eters.

Since taxonomy (tree) -based semantic similarity measures has been well-

studied from either edge-based or information-theoretic perspective, the de-

sign of similarity measures for objects stored in the nodes of arbitrary graphs

is an open problem.

Graph-based Measures

In contrast to previous works that focus on one relation (is-a) or other taxo-

nomic relations, a number of semantic measures have been proposed to cap-

ture different type of semantic relations considering both hierarchical (is-a

links) and non-hierarchical (cross links) concepts in an ontology (graph).

Maguitman et al. (Maguitman, Menczer, Roinestad & Vespignani 2005)

defined a graph-based semantic similarity measure that generalized from the

information-theoretic tree-based similarity on the Open Directory Project

(ODP)3. The ODP ontology is more complex than a simple tree. Categories

can be classified by multiple criteria, a node may have multiple parent nodes,

graph edges can have diverse types (e.g., is-a, symbolic, related). Maguitman

et al. uses MaxProduct fuzzy composition to define fuzzy membership value

3http://www.dmoz.org
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for each concept, then the semantic similarity of two concepts sim(c1, c2) can

be calculated from the fuzzy membership matrix W .

sim(c1, c2) = max
k

2 min(Wk1,Wk2) · Pr(ck)

log
(

Pr(c1|ck) cot Pr(ck)
)

+ log
(

Pr(c2|ck) cot Pr(ck)
)

(2.38)

where the probability Pr(ck) represents the prior probability that any docu-

ment is classified under topic ck and is calculated as

Pr(ck) =

∑
cj∈V

(Wkj · |cj|)

|N |
(2.39)

N is the total number of documents in the ontology.

It is the first information-theoretic measure of similarity that is applicable

to objects stored in the nodes of arbitrary graphs, in particular conceptual on-

tologies and Web directories that combine hierarchical and non-hierarchical

components. However, this measure doesn’t consider some important prop-

erties like the depth of the ontology and the dense of concepts.

Song et al. (Song, Ma, Liu, Lian & Zhang 2007) proposed a fuzzy se-

mantic similarity measure based on information theory that exploits both

the hierarchical and non-hierarchical structure in ontology. This method

also utilize ontology graphs as adjacency matrices, but caters some limita-

tions in Maguitman’s work, concerning the depth, the density and various

relation types in the Open Knowledge Base Connectivity (OKBC)4. The

semantic similarity between two concepts is determined by computing two

semantic extended fuzzy sets, which includes all ancestral concepts in hierar-

chical structure and all concepts that have a layer non-hierarchical semantic

relation with these ancestral concepts, formatted by

c+ =

{
1

c
,
sim(c, cp)

cp
, · · · , sim(c, root)

root

}
(2.40)

where cp denotes the parents concepts of c and the parents of these parents,

sim(c, cp) reflects the similarity degree of c and cp, it can be used directly

from the semantic relation matrix W .
4http://www.ai.sri.com/ okbc/
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Then the fuzzy similarity measure is computed based on shared informa-

tion content, which measures the degree of similarity proportional that the

pairwise concepts share. Based on (Song et al. 2007), it could reflect latent

semantic relation of concepts better than ever.

Another graph-based approach (Hawalah & Fasli 2011) use arbitrary on-

tology GBSRO to propose a six-stage strategy to deal with different type

of semantic relatedness between both hierarchical and non-hierarchical con-

cepts, where each stage deals with a particular aspect of relatedness, and

each kind of relatedness is presented by an adjacency matrix, then all matri-

ces are integrated into one to represent the final semantic relatedness across

all concepts.

This approach measures four different type of semantic relation: directed-

related, transitive-related, sibling-related, parent-related concepts, four ad-

jacency matrices are aggregated using a composition function ⊗ as follows

M = Mdr ⊗Mtr ⊗Msr ⊗Mpr

= max
(
Mdr,Mtr,Msr,Mpr

) (2.41)

where M is the aggregated adjacency matrices that represents the different

type of semantic relatedness of pairwise concepts, Mdr, Mtr, Msr and Mpr rep-

resents directed-related, transitive-related, sibling-related and parent-related

matrix, respectively.

The graph-based measures focus on ontologies with more complex struc-

ture as well as various relation types including both hierarchical and non-

hierarchical ones. Compared to taxonomic tree-based methods, graph-based

methods are more general to measure the relation between concepts in arbi-

trary ontologies.

2.3.3 Wikipedia-based Semantic Representation

It has been recognized that hand-crafted lexical databases like WordNet

or Roget’s Thesaurus5 provide limited knowledge of the language lexicon,

5http://www.thesaurus.com/
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from both scope and scalability perspectives. With the rapid development

of World Wide Web, much larger ontologies which constantly evolving huge

amount of text are required to capture the semantics of terms. Approaches

based on the largest encyclopedia in existence, the Wikipedia6 have been

widely developed for this purpose. With its extensive network of cross-

references, portals and categories it also contains a wealth of explicitly defined

semantics (Witten & Milne 2008).

Wikirelate

Strube and Ponzetto (Strube & Ponzetto 2006) are the first to compute se-

mantic relation using Wikipedia. They propose the Wikirelate which take the

familiar path-length techniques that has been previously applied in Word-

Net. Given a term pair, Wikirelate searches out the corresponding articles

that contain each term, and adapt various distance measures in Wikipedia

hierarchy to compute the semantic relation.

Explicit Semantic Analysis

Gabrilovich and Markovitch (Gabrilovich & Markovitch 2007) propose Ex-

plicit Semantic Analysis (ESA) to explicitly represent any unrestricted nat-

ural language texts in terms of Wikipedia-based concepts. ESA is somewhat

reminiscent of vector space model, Wikipedia concepts are all turned into

“bags of words”, i.e., inverted index that store the term frequency. The out-

put of the inverted index for a text fragment is a list of indexed documents

(Wikipedia concepts), each given a score depending on how often the text

occurred in them (weighted by the total number of words in the document).

Concretely, given a text fragment, we first represent it as a vector using

tf-idf scheme. The semantic interpreter iterates over the text words, re-

trieves corresponding entries from the inverted index, and merges them into

a weighted vector of concepts that represents the given text. Let T = {wi}
be input text, and let 〈vi〉 be its tf-idf vector, where vi is the weight of

6https://www.wikipedia.org/
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word wi. Let 〈kj〉 be an inverted index entry for word wi, where kj quan-

tifies the strength of association of word wi with Wikipedia concept cj,

{cj ∈ c1, · · · , cN}, where N is the total number of Wikipedia concepts. Then,

the semantic interpretation vector V for text T is a vector of length N , in

which the weight of each concept cj is defined as∑
wi∈T

vi · kj

Mathematically, it is an N -dimensional vector of word-document scores,

entries of this vector reflect the relevance of the corresponding concepts to

text T . To compute semantic relatedness of a pair of text fragments we

compare their vectors by computing the cosine similarity.

Compared to Wikirelate that only compute the semantic relation of single

words occurring in Wikipedia titles, ESA is free to compare texts of any

length that appear within the texts of Wikipedia articles. In addition, ESA is

explicit in the sense that the concepts are manipulated manifestly in human

cognition, rather than latent concepts used by Latent Semantic Analysis

(LSA).

Wikipedia Link-based Measure

Rather than measures based on Wikipedia category hierarchy or textual con-

tent, Milne and Witten (Witten & Milne 2008) propose a hyperlink-based

measure which calculates semantics between terms using the links found

within their corresponding Wikipedia articles.

At first they use an anchor-based approach to identify the Wikipedia

articles that discuss the term pair, as well as avoid word ambiguity. Then

they offer two different ways, tf-idf inspired approach and Google distance

inspired approach to measure similarity between articles. In specific, the first

measure is almost identical to tf-idf weighting scheme, the weight of a link is

the inverse probability of any link being made to the target,

w(s→ t) = log

(
|W |
|T |

)
(2.42)
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where T is the set of all articles that link to t, s ∈ T ,and W is the set of

all articles in Wikipedia. The other measure is based on Wikipedia’s links

inspiring by Google distance approach,

sr(a, b) =
log
(

max(|A|, |B|)
)
− log

(
|A
⋂
B|
)

log
(
|W |

)
− log

(
min(|A|, |B|)

) (2.43)

where sr(a, b) is the semantic relation of two articles a and b, A and B are

the sets of all articles that link to a and b respectively. They also compare

five options on measuring relatedness between terms.

Temporal Semantic Analysis

Later, Temporal Semantic Analysis (TSA) (Radinsky, Agichtein, Gabrilovich

& Markovitch 2011) was proposed to further improved the performance of

ESA by extending it with a temporal dimension. This way, the computation

of semantics was augmented with patterns of word occurrence over time (e.g.,

in an archive of a 100 years worth of New York Times articles).

In TSA, hypothesis is that concepts that behave similarly over time, are

semantically related. Each concept is no longer scalar, but is instead rep-

resented as time series (i.e., dynamics) over a corpus of temporally-ordered

documents. Let t1, · · · , tn be a sequence of consecutive discrete time points

(e.g., days), H = D1, · · · , Dn be a history represented by a set of document

collections, where Di is a collection of documents associated with time ti.

Let c be a concept represented by a sequence of words wc1, · · · , wck, d is a

document, the dynamics of a concept c is the time series of its frequency of

appearance in H,

Dynamics(c) =

{
|{d ∈ D1|appears(c, d)}|

|D1|
, · · · , |{d ∈ Dn|appears(c, d)}|

|Dn|

}
(2.44)

To compute semantic relatedness of a pair of words is to compare their

vectors using measurements of weighted distance between multiple time se-

ries, combined with the static semantic similarity measure of the concepts.

The similarity between individual time series is based on Dynamic Time
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Warping (DTW) algorithm, in addition, consider the recent concepts have

stronger correlation than past concepts, the DTW is combined with a tem-

poral weighting function as

‖ts1(i)− ts2(j)‖ · f(i, j)

where ‖ts1(i) − ts2(j)‖ is the DTW metric between two time series ts1 and

ts2, f(i, j) is such a temporal weighting function that supports various linear

or non-linear functions.

TSA is the first approach to compute semantic relatedness with the aid

of a large scale temporal corpus, and yields statistically significant improve-

ments in correlation of computed relatedness scores.

These topological models study on the semantic relation among objects

in the process of mapping the physical world into the cyber world, and the

various practical applications make it efficient for users to define semantic

relation based on the representation built by these models.

2.3.4 Discussion and Conclusion

Ontologies provide a highly expressive ground for describing keywords or con-

cepts and a rich variety of interrelations among them (Hawalah & Fasli 2011).

Unlike simple methods of representing information such as weighted keywords

and semantic networks, an ontology provides a more powerful, deeper and

broader concept hierarchy representation. Some of the most important ad-

vantages of developing and using ontologies are summarised below: (Hawalah

& Fasli 2011):

1. sharing of common understanding of the information;

2. the ability to reuse a domain ontology;

3. support for context reasoning;

4. powerful information and context management and inference mecha-

nisms;
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5. reduction of ambiguity and solving the inconsistency of the information.

Traditional lexical resource-based semantic measurements compute the

relatedness of concepts by counting the shortest path length. Furthermore,

new trend considers the information content which is shared between two

concepts. This takes into account not only taxonomic relations, but also

different types of relations including hierarchical and non-hierarchical con-

cepts. Additionally, larger and more comprehensive knowledge repositories

are broadly adapted rather than relying on curated lexical databases which

provide a limited language lexicon.

2.4 Summary

Quantifying the semantic relatedness of terms or texts underlies many funda-

mental tasks in natural language processing, including information retrieval,

word sense disambiguation, and document clustering (Radinsky et al. 2011).

To compute semantic relatedness, we must consult external sources of knowl-

edge. Existing methods employ various linguistic resources, such as large-

scale text corpora or hand-crafted lexical structures.

In Chapter 2, a number of existing semantic measurements are reviewed

and evaluated from corpus-based and lexical resource-based categories, which

offer two different ways to capture the semantic similarity and relation be-

tween terms. For corpus-based models, researchers try to model lexical

semantic information in high-dimensional vectors, by considering term oc-

currence patterns, contexts, locations, etc. While lexical resource-based ap-

proaches estimate semantics by defining a topological similarity and by using

lexical ontologies to measure the distance between terms or concepts. These

approaches rely on hand-crafted resources such as thesauri, taxonomies, se-

mantic networks or encyclopedias, as the context for comparison (Li et al.

2013). The databases do not provide a term-similarity metric but various

metrics based on its structure have nonetheless been developed.
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The table 2.1 below summarises and evaluates all of the methods men-

tioned in Chapter 2, and compares with my proposed approaches in terms of

the various semantic representation merits.

Table 2.1: The Summary of Semantic Representations

Semantic Representation Type A B C D E

Vector Space Models
√

Topic Models
√ √ √

Edge-based Models
√

Information-therotic Models
√ √

Wikipedia-based Models
√ √

Term Pair Semantic Coupling Model
√ √ √ √

Hierarchical Tree Learning Model
√ √ √ √

where A,B,C,D and E denote five different merits, respectively, A is Ambi-

guity, B is Implicit Relation, C is High accuracy, D is Semantic Couplings,

and E is High-order Semantics.

In summary, different efforts have been made to address semantic relat-

edness issues. Due to the intrinsic complexities of natural language, there is

more work to do on deeply exploring term semantic relationships and rep-

resenting semantic similarity. In Chapter 3, SCS is built to solve natural

language ambiguity, and non-iidness theory (Cao 2013) is adapted to handle

unstructured textual data and the complex relationship of concepts. SCS

attempts to capture the semantic relatedness in a coupled thought, by com-

bining the graph-based method and statistical-based method. This helps to

mine in detail the explicit and implicit relatedness of terms pairs. In Chap-

ter 4, a hierarchical tree is constructed to simultaneously handle high order

semantics and address the time-consuming nature of SCS by proposing a

hierarchical feature extraction algorithm to map the document into a much

smaller feature space.
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Chapter 3

Semantic Representation:

Capturing Explicit and Implicit

Content Couplings

3.1 Introduction

Document similarity analysis is increasingly critical since roughly 80% of big

data is unstructured. The way that terms, words and phrases in a document

are organized reflects certain explicit and implicit coupling relationships em-

bedded in its contents, syntactic/linguistic or even subjective perspectives

(Gabrilovich & Markovitch 2007). It is challenging to extract the complete

latent relation over terms (words or phrases) according to the difficulty of

exploiting the explicit and implicit relation between terms.

Coupling refers to any relationships (for instance, co-occurrence, neigh-

borhood, dependency, linkage, correlation, or causality) between two or more

aspects (Cao 2013). Accordingly, the effective capturing of such content cou-

plings is thus crucial for a genuine understanding of document similarity,

which has emerged as a promising and important topic recently, such as

in semantic relatedness (Strube & Ponzetto 2006, Gabrilovich & Markovitch

2007), content coverage (Holloway et al. 2007), word networking (Budanitsky
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& Hirst 2006, Agirre et al. 2009), term-term couplings (Cheng et al. 2013), as

well as general problems including information retrieval (Billhardt et al. 2002,

Hliaoutakis et al. 2006), ontological engineering (Hawalah & Fasli 2011, Li

et al. 2013), and document clustering and classification (Farahat & Kamel

2011, Kalogeratos & Likas 2012).

The problem of document similarity can be further decomposed to explore

the coupling relationships and similarity between terms (words or phrases)

which forms a document. This is to build a feature space that consists of all

necessary terms with their couplings captured and embedded in a similarity

(or distance) learning model. Accordingly, a document analysis algorithm

can then be built to analyze the semantic similarity between documents via

exploring the intrinsic term couplings and similarity (Cao 2013).

In documents, content couplings may be caused by various reasons and

in different forms, term couplings could be very complicated. Challenges

are hidden in the couplings between terms and documents, for instance,

meronymy, antonymy, functional association, and others (Budanitsky & Hirst

2006). Existing methods focus on occurrence patterns (Bullinaria & Levy

2007), word networking (Castillo 2011, Wang, Yu, Li, Zhai & Han 2013),

topic distribution (Blei et al. 2003, Teh et al. 2006), ontological distribu-

tion (Sánchez et al. 2011), latent semantic analysis (Arora & Ravindran

2008, Miao, Guan, Moser, Yan, Tao, Anerousis & Sun 2012), or on a natural

language processing perspective (Jackson & Moulinier 2007) (which is a very

different topic).

Those recent efforts can be roughly characterized into two categories:

corpus-based statistical and topological measures. More specifically, term

relation estimated by corpus-based statistical means such as vector space

models and its extensions, compute the co-occurrence frequency patterns of

terms and textual contexts across corpus; probabilistic models are developed

to discover the distribution properties of each term over topics and the topic

distribution over each document. Instead, topological approaches capture the

relation between terms or concepts by using ontologies to define the distance
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between them; most of such methods rely on pre-existing knowledge resources

that are represented by a directed or undirected graph consisting of vertices,

for example, semantic networks and taxonomies.

Significant gaps remain in the literature that are to effectively capture

the sophisticated couplings not only between explicitly linked terms but also

implicitly related terms for various reasons and in different forms, including

topological and statistical aspects. These involve significant challenges hid-

den in the couplings between terms and documents, for instance, meronymy,

antonymy, functional association, and others.

Our method addresses the above issues from topological and statistical

perspectives, by proposing a graphical representation of both explicit and im-

plicit content (term) couplings, addressing synonymy (many words per sense)

and polysemy (many senses per word), which are overlooked by previous

models. We propose the semantic coupling similarity (SCS) measure,

consisting of

• the intra-term pair couplings, reflecting the explicit couplings within

term pairs that is represented by the relation strength over probabilistic

distribution of terms across document collection;

• the inter-term pair couplings, capturing the implicit couplings between

term pairs by considering the relation strength of their interactions with

other term pairs on all possible paths via a graph-based representation

of term couplings;

• coupled semantic couplings, effectively combining the intra- and inter-

couplings. The corresponding term semantic similarity measures are

then defined to capture such relation for analyzing term and thus doc-

ument similarity.

Specifically, the main contributions in our work lie in three factors:

• (i) A statistical measure to capture the intra-term couplings within

term pairs by adapting a relation strength function to calculate the
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similarity between a pair of terms as per their probabilistic distribu-

tions. The measure counts the term pair occurrence frequency - inverse

document frequency (tpf-idf) across the document set.

• (ii) A graph-based measure to capture the inter-term couplings be-

tween term pairs by measuring the relation strength of every term pair

distribution. Inter-coupling is measured by the term pair occurrence

frequency - inverse path frequency (tpf-ipf) weighting scheme on all pos-

sibly indirectly connected paths when term couplings are presented by

a graph.

• (iii) An effective semantic couplings representation captures the com-

prehensive semantic relatedness across documents, via a semantic

coupling similarity (SCS) measure that combines the intra- and

inter-term pair couplings. SCS is then incorporated into hierarchical

clustering to cluster documents, showing impressive performance com-

pared to the typical algorithms on multiple real textual data sets.

The proposed measures are compared with typical document representa-

tion models on various benchmark data sets in terms of document clustering

performance. Our model produces outcomes that are statistically significant

and exceed the performance of benchmark methods consistently on all data

sets.

In summary, different efforts have been made to address semantic simi-

larity issues from various aspects. Due to the intrinsic complexities of nat-

ural language, there is more work to do on deeply exploring term semantic

relationships and representing semantic similarity. SCS is built to solve nat-

ural language ambiguity, and non-iidness theory (Cao 2013) is adapted here

to handle unstructured textual data and complex relationships of concepts.

In the next section, the proposed research methodology is discussed, which

attempts to capture the semantic relatedness in a coupled thought, by com-

bining the graph-based method and the statistical-based method together,

to deeply mine the explicit and implicit relatedness of terms pairs.
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Figure 3.1: An overview of term pair semantic coupling analysis

The remainder of this chapter is organized as follows: Section 2 reviews

and evaluates the related work of document similarity representations from

topological and statistical measures. Section 3 proposes the coupled term pair

similarity and its application in document analysis. Section 4 demonstrates

the experimental results of clustering analysis on real document sets, and

the comparison with prevalent existing approaches. Finally, conclusion and

future work are described in Section 5.

3.2 Term Pair Semantic Coupling Analysis

In this section, a semantic coupling similarity (SCS) measure is proposed to

comprehensively capture the couplings within and between term pairs from

two aspects: the semantic intra-term coupling, capturing the similarity of
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probabilistic distribution of every term pair based on its occurrence frequency

pattern across the data set; and the semantic inter-term coupling, considering

the underlying semantic relatedness by capturing the similarities of term pair

distributions on indirectly connected paths. Figure 3.1 illustrates the pro-

cess: (a) SCS calculates the intra-couplings within term pairs by considering

their co-occurrence frequency across a document set; (b) it further constructs

bridges formed by linked term pairs to compute the inter-coupling between

term pairs; and (c) it integrates the intra- and inter-couplings to obtain the

complete semantic similarity.

3.2.1 Semantic Intra-couplings within Term Pairs

The intra-couplings of term pairs explore the explicit relatedness between

terms. This is to conduct the statistical analysis of term co-occurrence pat-

terns by assuming that terms are regarded coupled if they co-occur in the

same document. The more frequently they co-occur, the stronger couplings

they have. Accordingly, the intra-couplings between terms are estimated

based on the term co-occurrence frequency across all documents.

To this end, the weighting scheme term frequency - inverse document fre-

quency, short for tf -idf , tf -idf is used as a weighting factor to reflect the

importance of a term to a document in a collection or corpus. The term

frequency tf(t, d) is the number of times term t occurs in document d, the

document frequency df(t) is the number of documents in which t occurs at

least once (Jing et al. 2002), and the inverse document frequency idf can be

calculated as idf(t,D) = log( |D|
df(t)

), where |D| is the total number of docu-

ments. idf is low if t occurs in many documents and will be high if it occurs

in few documents. Then tf -idf is computed as:

tfidf(t, d,D) = tf(t, d) · idf(t,D) (3.1)

A high weight in tf -idf is reached by a high term frequency in the given

document and a low document frequency of the term in the whole collection

of documents, which proves that using tf -idf weighting scheme to consider
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term relation is not only based on the co-occurrence frequency but also takes

the term discriminative ability into account.

However, the tf -idf based methods have two main limitations. One is

that they place undue emphasis on the documents where terms co-occur; the

other is that tf -idf based on one single term may lead to synonymy and

polysemy, since the semantic meaning of a term in different documents can

be various. To solve these problems, we propose the term pair occurrence

frequency - inverse document frequency (tpf -idf) for term pairs, defined as

follows:

Definition 3.1 tpf-idf reflects the importance of a term pair to a document

in a corpus. tpf counts the number of times a term pair occurs in a document.

The tpfidf is formatted as:

tpfidf((ti, tj), d,D) = tpf((ti, tj), d)× idf((ti, tj), D) (3.2)

where (ti, tj) stands for a term pair, d is a single document in a document

collection D, tpf((ti, tj), d) means the frequency of term pair ti and tj in d,

and idf((ti, tj), D) indicates the inverse document frequency that contains

the term pair ti and tj.

The term pair occurrence frequency matrix Mtpf represents the occur-

rence frequency of every term pair in D, which is represented as:

Mtpf =



t1 t2 · · · tK

t1 0 tpf12 · · · tpf1K

t2 tpf21 0 · · · tpf2K
...

...
...

. . .
...

tK tpfK1 tpfK2 · · · 0


which represents the occurrence frequency of every term pair in the document

set. K is the total number of terms in the document collection.

By using tpf -idf scheme, terms appear as pairs, the meaning of a single

term is more semantically complete compared with tf -idf . It is used to depict
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the real explicit relatedness of term pairs by adapting statistical distance

measures for a solid statistical significance.

Accordingly, the probability of the term pair (tk, ti) in document set D,

i.e. P Ia(tk|ti), and the probability over all term pairs, P Ia(ti), for a given ti,

are defined as follows:

Firstly, for ∀(tk, ti) ∈ D (k, i ∈ [1, K], k 6= i), we represent:

P Ia(tk|ti) =
tpfidf(tk,ti)∑K
k=1 tpfidf(tk,ti)

(3.3)

as the probability of the term pair (tk, ti) in document set D, tpfidf(tk,ti) is

tpf -idf of the term pair (tk, ti).

Then the probabilities over all term pairs given ti are defined as:

P Ia(ti) =
{
P Ia(t1|ti), P Ia(t2|ti), · · · , P Ia(tk|ti)

}
=
{
P Ia(tk|ti)

}K
k=1

(3.4)

Then, we adapt Relation Strength Function (RS) (Chen, Gou, Zhang &

Giles 2011) to represent the Intra-coupling similarity within term pairs. RS

defines how close two adjacent vertexes are. It supports various similarity

and distance measures, their conversions are used to determine the relative

closeness of term pairs that being considered.

Definition 3.2 Given a document set D, a term pair (ti, tj) in D, the intra-

term pair couplings (IaR) of (ti, tj) is represented on a relation strength

function (RS) as follows:

IaR(ti, tj) = RS(P Ia(ti), P
Ia(tj)) (3.5)

In this paper, RS(P Ia(ti), P
Ia(tj)) is instantiated to cosine similarity to

quantify the similarity between P Ia(ti) and P Ia(tj), the probability over all

term pairs given ti and tj respectively. Cosine similarity is widely used in

information retrieval and text mining, measuring the cosine of the angle be-

tween document vectors, which is regarded as the similarity of two documents
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in terms of their subject matter. The intra-coupling of term pair (ti, tj) is

represented as:

RS(P Ia(ti), P
Ia(tj)) =

∑K
i,j=1 P

Ia(ti)P
Ia(tj)√∑K

i,j=1 P
Ia(ti)

2 ·
√∑K

i,j=1 P
Ia(tj)

2
(3.6)

where its outcome is neatly bounded in [0, 1], due to cosine similarity is used

in positive space particularly.

The value of IaR(ti, tj) falls into [0, 1], IaR(ti, tj) = 1 when ti = tj. This

measure is symmetric, generally IaR(ti, tj) = IaR(tj, ti). A larger value

indicates more similar distributions of ti and tj, it leads to a stronger explicit

Intra-couplings.

Thus, the procedure of computing intra-term coupling of term pair (ti, tj)

is summarized in Algorithm 1.

Algorithm 1: Intra-coupling Similarity

Input: Document-Term matrix D

Output: IaR(ti, tj)

1 Construct Mtpf (Equation 3.2);

2 for term ti in Mtpf do

3 for Term tj (tj 6= ti) in Mtpf do

4 Calculate P Ia(tj|ti) (Equation 3.3);

5 end

6 Calculate P Ia(ti) (Equation 3.4);

7 end

8 for Term pair (ti, tj) (ti 6= tj) do

9 Calculate IaR(ti, tj) (Equation 3.5);

10 end

The intra-term coupling captures the explicit relation of term pairs by

considering their occurrence frequency patterns and probability distributions

across the document set; especially it considers the relation of terms that ap-

pear individually in different documents. However, this method still lacks of
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the exploration of underlying relation of term pairs, which results in incom-

plete semantics.

The implicit relation of term pairs is addressed in the following subsec-

tion by taking the similarity of their interactions with other term pairs into

account.

3.2.2 Inter-couplings between Term Pairs

This section further measures the implicit inter-couplings between term pairs

based on the graph theory. A document set is represented as a graph with

nodes and edges to reflect the terms and their couplings respectively. The

intra-couplings between terms introduced above only captures the explicit

couplings of two adjacent nodes in the graph, but fails to consider the cou-

plings of term pairs in a global view, for the reason that it does not take

the indirect (implicit) interactions with other terms in the document set into

consideration. In this section, we propose an approach to capture this kind

of implicit couplings based on graph theory.

Term Pair Frequency Graph

Figure 3.2: The Term Pair Frequency Graph

For example, to cluster or classify a sport article and a document talking

about human healthy, we can draw a graph of each document based on their
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term frequency, then combine the two graphs, there are always some terms

used both in the two articles, such as some words of human body function.

As shown in Figure 3.2, the term pair frequency graph Gtpf is an ordered

pair:

Gtpf = (T,Etpf )

compriseing a set T of terms as vertexes, T = {tk|k ∈ [1, K]}; together with

a set Etpf as edges to reflect the tpf of every term pair, which are 2-element

subsets of T . Gtpf is not a complete graph, some term pairs are unconnected

by an edge, for example, ti and tj, meaning that ti and tj do not co-occur

in the same document, i.e. tpf(ti, tj) = 0. To avoid ambiguity, this type of

graphs are precisely described as undirected.

Intra-coupling Graph

Figure 3.3: The Intra-coupling Graph

Based on the intra-term couplings, in the Figure 3.3, GIaR is constructed

to represent terms and their intra-couplings of all term pairs across document

collection, formalized as:

GIaR = (T,EIaR)

where the term set T stands for vertexes, the edge set EIaR stands for edges to

draw lines between every two vertexes. An edge is related with two vertexes,
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and the intra-coupling is represented as an unordered pair of the vertexes

with respect to the particular edge.

The intra-couplings are represented as an unordered pair of vertexes with

respect to a particular edge, and GIaR is a complete graph of Gtpf , every two

vertexes are related, which means the intra-couplings capture the explicit

interactions of all term pairs, including the terms from different documents.

Then the intra-coupling graph of the sport article and the human healthy

article is able to represent more relations between the terms that cannot be

find in both articles based on the human function words, such as the relation

between some professional words of motor skills and human diseases.

However, to reflect the semantic relatedness of term pairs completely,

GIaR is fail to provide a reasonable way to consider the influence of all other

term pairs. Then how to draw a special ”line” to connect them, which means

how to find a sensible approach to capture the implicit couplings of them is

the main problem solved in following sections.

Inter-coupling Graph

Due to GIaR fails to provide a reasonable way to consider the influence of all

other term pairs, thus cannot reflect the couplings of term pairs completely.

This triggers the question of how to draw a special “line” to connect them,

namely to capture the implicit couplings of term pairs.

Figure 3.4: The Inter-coupling Graph
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Firstly, for a term pair inGtpf , no matter it is connected or not, intuitively,

it can be related through other terms, in Figure 3.4, there exist paths starting

at ti and ending at tj, ti → tl → tj for instance. To capture the inter-

couplings of term pairs across a document set, no matter how two terms

appear separately in different documents or they co-occur in some documents,

their interactions with other terms play a major role, i.e the human function

words. In other words, we discover paths containing other terms to connect

every term pair in Gtpf . The definition of path is given as:

Definition 3.3 A path is a subgraph of Gtpf , containing a finite sequence

of edges which connect a sequence of vertexes,

Path(ti, tj) =
{

(T Pi;j, E
P
i;j)
∣∣ ti, tl1 , · · · , tln , tj ∈ T Pi;j,

eil1 , el1l2 , · · · , elnj ∈ EP
i;j, ti 6= tj,

T Pi;j ⊂ T, EP
i;j ⊂ Etpf , n ∈ [1, θ]

} (3.7)

where ti is the initial vertex and tj is the terminal vertex, tln stands for the

terms between them on Path(ti, tj), n is the number of these terms. θ is a

user-defined threshold to limit the number of tln , i.e., the length of a path.

The definition of path has three critical assumptions:

• The paths of a term pair at least go through one another term, edges

that connect term pairs directly are not defined as paths;

• The longer the path is, the weaker the coupling is, only the paths with

their length falling into [2, θ + 1] are chosen;

• The path here defined is simple, meaning that no vertexes (and thus

no edges) are visited repeatedly.

Secondly, vertexes tln between ti and tj build a bridge to link them. We

further define the n vertexes between two terms ti and tj on path Path(ti, tj)

as link term set Tlink:

Tlink =
{
tl | tl ∈ T P\(ti, tj), T P ∈ Path(ti, tj)

}
(3.8)
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where T P contains all vertexes on Path(ti, tj). For simplicity, link terms

include all terms on a path except the first and last vertexes. So for all

term pairs in Gtpf , their inter-couplings can be captured by considering the

interactions of every term pair on all possible paths.

Furthermore, it is understandable that every term pair in Gtpf is inter-

related since there always exists at least one path from one term to the

other through link terms. The inter-coupling graph GIeR based on Gtpf is

represented as:

GIeR = (T,EIeR)

where EIeR stands for the inter-couplings of every two terms, which is calcu-

lated by the couplings of all term pairs on all possible paths between them

on Gtpf . The detailed algorithm of inter-term coupling is concluded in the

following section.

Inter-coupling Similarity

To calculate the inter-coupling similarity between term pairs, we need to

concern the RS of every term pair on all possible paths. For this, the tpf -idf

scheme is adjusted to term pair occurrence frequency - inverse path frequency

(tpf -ipf) to represent the impact of a term pair on paths, defined as:

Definition 3.4 tpf-ipf reflects the importance of a term pair to all possible

paths between paired terms. For a term pair, ipf is computed by path fre-

quency pf , which counts the number of paths in which the term pair occurs.

tpfipf((ti, tj), d,m) = tpf((ti, tj), d)× log(
m

pf(ti, tj)
) (3.9)

where m is the total number of Path(ti, tj).

According to the tpf -ipf scheme, the weight of a random term pair (tk, ti)

in graph GIeR is, for ∀(tk, ti) ∈ D(k, i ∈ [1, K], k 6= i),

W (tk|ti) =
tpfipf(tk,ti)∑K
k=1 tpfipf(tk,ti)

(3.10)
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where tpfipf(tk,ti) is the tpf -ipf of the term pair (tk, ti),

Secondly, for term pairs in Gtpf , no matter whether they are connected

or not, there are various paths going through link terms to connect them.

For ∀tk, ti ∈ T, tln ∈ Tlink(k, i, ln ∈ [1, K], k 6= i 6= ln), the weight of one path

through tl1 , · · · , tln between term pair (tk, ti) in Gtpf is:

Wtl1 ,··· ,tln (tk|ti) = W (tl1 |ti) ·
n−1∏
p=1

W (tlp+1|tlp) ·W (tk|tln) (3.11)

In this way, on all possible paths from ti to tk, those edges passed more

frequently, the value of tpf -ipf is larger, and it has more weight. In addition,

longer path goes through more edges, the value of product is smaller, and

the weight of long path is lighter.

Thirdly, for m possible paths from ti to tk, we acquire the weight of m

paths between term pair (tk, ti) in

Wm(tk|ti) =
m∑
q=1

Wq(tk|ti) (3.12)

We normalize it as the weight of a term pair on all possible paths di-

vided by the weight of all term pairs on all possible paths in graph, it is the

probability of a term pair (tk, ti) on all m paths:

P Ie(tk|ti) =
Wm(tk|ti)∑
Wm(tk|ti)

(3.13)

Then, the probability distribution of ti, consisted of the probabilities over

all term pairs on m possible paths for given ti, is formalized as:

P Ie(ti) = {P Ie(t1|ti), P Ie(t2|ti), · · · , P Ie(tk|ti)}

= {P Ie(tk|ti)}Kk=1

(3.14)

Finally, the inter-coupling similarity IeR(ti, tj) of a term pair (ti, tj) in

D is represented as the RS of two possibility distributions to measure the

similarity between them,

Definition 3.5 Given a document set D, the inter-term couplings (IeR)

between a term pair (ti, tj) in D is represented in terms of relation strength

considering all possible paths Path(ti, tj) with n link terms, n ∈ [1, θ].
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IeRn(ti, tj) = RSn(P Ie(ti), P
Ie(tj)) (3.15)

where IeRn(ti, tj) is the nth order inter-coupling which stands for the RS of

(ti, tj) with n link terms.

IeR(ti, tj) is the integration of n order inter-coupling of (ti, tj) with the

coefficient exponential decay,

IeR(ti, tj) =

∑
n=1

exp(1− n)IeRn(ti, tj)∑
n=1

exp(1− n)
(3.16)

The value of IeR(ti, tj) is bounded to [0, 1], the larger the value is, the

more similar distributions ti and tj have, the closer the terms inter-relate.

Algorithm 2 calculates the Inter-coupling similarity IeR(ti, tj) of term

pairs (ti, tj), which considers both directly and indirectly linked terms.

Algorithm 2: Inter-coupling Similarity

Input: Document-Term matrix D, User-defined link term quantity n

and threshold θ

Output: IeR(ti, tj)

1 Construct Mtpf ;

2 for term ti in Mtpf do

3 for term tj(tj 6= ti) in Mtpf do

4 Search all possible paths Path(ti, tj) with n link terms,

n ∈ [1, θ];

5 Compute P Ie(tj|ti) (Equation 3.13);

6 end

7 Compute P Ie(ti) (Equation 3.14);

8 end

9 for term pair (ti, tj)(ti 6= tj) do

10 Compute IeR(ti, tj) (Equations 3.15 & 3.16);

11 end
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Accordingly, the semantic relatedness is further enriched by exploring the

semantic inter-term coupling, due to it is not based on terms themselves, but

interactions with all other terms in a document set.

3.2.3 Semantic Couplings of Term Pairs

The semantic intra-term coupling captures the explicit relatedness of term

pairs based on the occurrence frequency pattern of every term pair across

corpus, the semantic inter-term coupling further explores the implicit relat-

edness by considering the occurrence frequency patterns of all linked term

pairs on all possible paths. Further, they are integrated as a Semantic Cou-

pling Similarity (SCS) , to capture the semantic relatedness of term pairs

completely and comprehensively.

Definition 3.6 Given a document set D, the Semantic Coupling Simi-

larity (SCS) of a term pair (ti, tj) in D is:

SCS(ti, tj) = (1− α) · IaR(ti, tj) + α · IeR(ti, tj) (3.17)

where IaR(ti, tj) and IeR(ti, tj) represents the intra- and inter-coupling of

(ti, tj), respectively. α ∈ [0, 1] is a parameter to control the weight of intra-

and inter-coupling, here we take the simplest way, i.e. linear combination to

show the performance.

The value of SCS(ti, tj) is bounded in (0, 1], it equals to 1 when ti = tj.

The higher the value is, the stronger semantic coupling exists, the closer

they are semantic-related, the more similar the terms are. Five important

properties are further identified from the calculation procedure and served

as a foundation of our SCS approach.

Property 1: Identity Property

The coupled similarity of term pairs reaches the highest value 1 when

the terms have identical meaning, which means the distance between them

is zero.

Property 2: Symmetrical Property
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On the undirected graphs GIaR and GIeR, there is only one type of relat-

edness for term pairs on each graph, then the order is disregarded, so that

the coupled similarity for term pairs is symmetrical.

Property 3: Positive Property

The value of SCS(ti, tj) of ti and tj is always non negative and larger

than 0, ranged in (0, 1].

Property 4: Minimal Distance Property

Early edge-based model of semantic relatedness assumes that the seman-

tic distance is based on the number of edges between terms (Rada et al. 1989),

in other words, a shorter distance controls a higher similarity. Our ap-

proach also follows the Shortest Path Length assumption, for term pair (ti, tj)

(ti 6= tj) on GIaR, the minimal distance equals to 1, while on GIeR, it equals

to 2.

Property 5: A Path’s Finite Length Property

As we identify the SCS as a path length-relative measure, more closely

connected term pairs are more semantically related. Consequently, we set a

user-determined threshold to limit the maximum length of path to improve

computational efficiency.

With the combination of intra- and inter-term couplings, both explicit and

implicit couplings of term pairs are discovered. This remarkably captures the

semantic richness of documents. Specifically, the main contributions of our

proposed SCS measure are summarized as follows:

• The intra-term coupling is calculated from relation strength of proba-

bility distributions of terms, it especially fixes the lack of relatedness

of term pairs that cross different documents; the inter-term coupling is

introduced to capture the implicit couplings of term pairs, which takes

the full advantage of the interactions with other terms in a document

set.

• Our inter-term coupling method is based on weighted paths with lim-

ited length. On one hand, it distinguishes strong link terms from weak

link terms, the strong link terms which are visited frequently on all
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possible paths occupy higher weights; on the other hand, it emphasizes

that less link terms build the closer relatedness, only strong link terms

are reserved so that the efficiency of calculation is improved.

• SCS is helpful for managing the synonymy and polysemy for two rea-

sons: (1) intra- and inter-coupling are based on term pair occurrence

frequency patterns across corpus (tpf -idf) and all possible paths (tpf -

ipf) respectively, accordingly the term-pair occurrence frequency pat-

terns appear across a document set or all possible paths instead of

each single term, the semantic meaning for every term pair is richer

than individual terms; (2) coupling similarity is built on RS between

term distributions. For terms that are semantically similar, their dis-

tributions are similar, the value calculated via RS is large; for terms

that are subject to synonymy and/or polysemy, the probability values

of specific term pairs could be close, but the probability distributions

over all term pairs in document collection or all possible paths are

quite different. Consequently, RS is surely weaker than real similar

term pairs.

In summary, SCS measure represents documents based on the comprehen-

sive couplings of term pairs. In contrast to previous work, SCS can deal with

unstructured data and terms coupled in terms of various reasons, addressing

natural language ambiguity problems.

3.3 Coupled Document Analysis

We here apply our SCS measure: the semantic coupling similarity of term

pairs, to analyze documents by capturing the semantic related documents.

After an optimal combination of intra- and inter-term coupling, a new

coupled similarity graph GSCS is drawn as the integration of GIaR and GIeR,

it can be transferred into a K × K coupled similarity matrix Mcou, whose

elements reflect the couplings of each term pair as follows:
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Mcou =



t1 t2 · · · tk

t1 1 SCS12 · · · SCS1k

t2 SCS21 1 · · · SCS2k
...

...
...

. . .
...

tk SCSk1 SCSk2 · · · 1


Firstly, each document is defined as the mapping:

φ : d→ φ(d) =
{
P (t1, d), P (t2, d), · · · , P (tk, d)

}
(3.18)

where P (tk, d) = tf(tk,d)∑K
k=1 tf(tk,d)

is the probability of term tk in document d.

Secondly, documents are further represented in coupled semantic space

considering SCS,

φ̃(d) = φ(d)Mcou (3.19)

Then the document similarity Sim(di, dj) is the product in this new vector

space:

Sim(di, dj) = φ(di)McouM
T
couφ(dj)

T (3.20)

Thus, the new document representation φ̃(d) is computed efficiently di-

rectly from the original data using Equation 3.19, documents are represented

in new coupled semantic feature space based on the term occurrence fre-

quency pattern and comprehensive term pair couplings.

φ̃(d) can be widely applied to document clustering, classification and

information retrieval, etc. Here we illustrate the application of φ̃(d) into

hierarchical agglomerative clustering (HAC), to generate a SCS-based HAC

(CHAC), catering for both complete and average term linkages, which mea-

sure the cosine similarity between two clusters based on the average and

minimum of their document similarities, respectively.

3.4 Experiments and Evaluation

In this section, SCS is incorporated into HAC as CHAC with both complete

and average linkages, evaluating the CHAC performance in terms of the
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impact of inter-coupling, by considering three scenarios: “no link term”,

“one link term”, “two link terms” and “three link terms”. Then, 5-fold

cross-validation is employed to present parameter tuning and automatically

estimate the optimal value of parameter α in Equation 3.17 on various data

sets. Finally, we compare our best performance with similar and typical

document representations.

3.4.1 Experimental Settings

Data Sets

Three most popular text data sets are chosen: Reuters-215781, TDT21 and

WebKB2.

• The documents in the Reuters-21578 collection appeared on the Reuters

newswire in 1987. It contains 21578 documents in 135 categories. After

preprocessing, this corpus contains 18933 distinct terms with 65 classes.

• The Nist Topic Detection and Tracking corpus (TDT2) consists of data

collected during the first half of 1998 and taken from 6 sources, includ-

ing 2 newswires (APW, NYT), 2 radio programs (VOA, PRI) and 2

television programs (CNN, ABC). It consists of 11201 on-topic docu-

ments which are classified into 96 semantic categories. In this subset,

those documents appearing in two or more categories were removed,

and only the largest 30 categories were kept, thus leaving us with 9,394

documents in total.

• WebKB data set contains WWW-pages collected from computer sci-

ence departments of various universities in January 1997 by the World

Wide Knowledge Base project of the CMU text learning group. The

8,282 pages were manually classified into the following 7 categories:

1http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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Table 3.1: Characteristics of Data Sets

Data Sets n m mdoc k nclass

re1 7085 8933 42 8 886

re2 6387 4312 37 4 1597

re3 6632 4563 38 4 1658

td1 5476 8000 118 7 782

td2 5476 8000 138 5 1095

td3 5476 8000 118 7 782

td4 5476 8000 119 7 780

w1 4087 7770 79 4 1022

w2 3268 7770 78 4 817

w3 3268 7770 80 4 817

n, m and k are the number of documents, terms and class, respectively.

mdoc is the average number of terms per document, nclass is the average

number of documents per class.

student (1641), faculty (1124), staff (137), department (182), course

(930), project (504), other (3764).

In our experiments, re1, re2 and re3 are subsets of Reuters-21578, td1,

td2, td3 and td4 are subsets of TDT2, w1, w2 and w3 are subsets of WebKB

data. Detailed information of 10 data sets are summarized in Table 3.1.

Evaluation Metrics

Four generally accepted evaluation metrics of clustering: Rand Index (RI), F1

measure, Purity and Normalized Mutual Information (NMI) are adopted to

evaluate the performance of CHAC with baseline approaches. Higher values

indicate better clustering solutions.

• Purity is an external evaluation criterion for cluster quality, each clus-

ter is assigned to the most frequent class, then the accuracy of the
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assignment is measured by:

purity(Ω, C) =
1

N

∑
k

maxj|ωk ∩ cj|

where Ω = {ω1, ω2, · · · , ωk} is the set of clusters and C = {c1, c2, · · · , cj}
is the set of classes, k is the number of clusters and N is the number

of documents.

• Rand Index measures the percentage of decisions that are correct, it

penalizes both false positive and false negative decisions during clus-

tering.

RI =
TP + TN

TP + FP + FN + TN

where TP , TN , FP , FN stand for true positive, true negative, false

positive and false negative, respectively.

• F1 measure considers precision and recall in evaluation of clustering,

supports different weighting of false positive and false negative errors.

F1 = 2× precision× recall
precision+ recall

where precision = TP/(TP + FP ), recall = TP/(TP + FN).

• Normalized Mutual Information is a popular information-theoretically

interpreted metric for evaluating clustering quality, it trades off the

quality of the clustering against the number of clusters, due to high

Purity is easy to achieve when the number of clusters is large.

NMI(Ω, C) =
I(Ω;C)

[H(Ω) +H(C)]/2

where I is mutual information, H(Ω) and H(C) is the entropy of Ω

and C.

3.4.2 Inter-coupling Ordering

SCS introduces the innovative concept of inter-couplings with multi-link

terms. Here we evaluate the influence of inter-couplings by comparing the
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clustering results of inter-couplings with different ways of ordering the linked

terms.

The inter-coupling algorithm strongly relies on the interactions between

link terms. To test the contribution of using link terms and deeply analyze

the impact of inter-coupling ordering, we present the comparison of clustering

performance by considering 0 (intra-coupling only) order, 1st order and the

integration of 1st, 2nd and 3rd order inter-coupling on ten data sets.

In Table 3.2 & 3.3, we compare the impact of inter-coupling ordering in

terms of four clustering evaluation metrics on the selected data sets, the re-

sults of best performance are bold. Overall, for every evaluation metric, all

ten data sets are sensitive to the inter-coupling ordering, and achieve remark-

able improvements compared to the performance based on intra-coupling

only. In addition, in 20 experiments, there are 17 experiments show that we

achieve better performance with the import of inter-coupling no matter how

many link terms are involved.

The performance of CHAC on a particular order of inter-coupling has

been greatly improved compared to the 0 order inter-coupling, the reason is,

when no link term exists, couplings between terms only reflect the explicit re-

lations. After introducing inter-couplings, richer interactions between terms

are disclosed, which are abundant or diversified, leading to improved perfor-

mance. However, the trends on the higher order of inter-coupling are not so

remarkable, or even start to descend, but still better than 0 ordering, which

reflect that more link terms and longer path will result in weaker indirect

influence of term couplings.

Consider there are 15 experiments prove that the inter-coupling with 1st

or 2nd ordering achieve best performance, and time complexity, we recom-

mend that SCS on as far as 2nd order of Inter-coupling is likely acceptable

to our need.
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3.4.3 Tuning Parameter α

As the parameter α controls the effect of intra- and inter-couplings, it is

essential to optimize α to achieve the best possible performance. We ran

the experiments using different value of α, and the values that achieve the

best performance are chosen as the optimal values. By exploiting 5-fold

cross-validation, the value of α is automatically estimated. The Purity scores

calculated from each fold are averaged to reflect the performance of clustering

on testing sets.

5-fold cross-validation is employed in our experiments to estimate the

optimal value of α, the original data set is randomly partitioned into 5 equal

sized subsets. Of the 5 subsets, a single subset is retained as the validation

data for testing the model, and the remaining 4 subsets are used as training

data. The cross-validation process is then repeated 5 times (the folds), with

each of the 5 subsets used exactly once as the validation data. The 5 results

from the folds are then be averaged to produce a single estimation. The

advantage of this method over repeated random sub-sampling is that all

observations are used for both training and validation, and each observation

is used for validation exactly once. The 5-fold cross-validation is helpful to

estimate how accurately a predictive model will perform in practice and limit

the problems like overfitting.

For each data set, the automatic selection of α equals 0.40, 0.05, 0.20,

0.45, 0.20, 0.25, 0.15, 0.10, 0.10 and 0.25 for complete-link CHAC, and

the corresponding Purity scores are 0.8051, 0.8876, 0.8859, 0.8425, 0.8898,

0.8202, 0.8112, 0.6511, 0.6561 and 0.6365. For average-link CHAC, α equals

0.25, 0.50, 0.15, 0.35, 0.15, 0.25, 0.30, 0.05, 0.10 and 0.40, the corresponding

RI scores are 0.8264, 0.8863, 0.8926, 0.8699, 0.9126, 0.8646, 0.8651, 0.5806,

0.6334 and 0.5624 respectively.

The growth trends of Purity scores on each value of α ranged from 0

to 1 with the increment of 0.05 on different data sets are represented in

Figure 3.5 & 3.6. In particular, for every data set, the trend keeps grow-

ing from the beginning, then starts to descend after it reaches the peak, it
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shows that the Purity results achieve the best performance at a peak point

with respect to a certain value of α, and for different value of α, there are

considerable difference between the validation performance. In addition, the

optimal value of α is always achieved between 0 and 1 for all data sets, much

better than both ends of the diagrams. This proves that the combination of

intra- and Inter-coupling similarity achieves better performance than using

Intra-coupling only (when α = 0) or Inter-coupling only (when α = 1).

3.4.4 Experimental Results

CHAC is compared with Bag of Words (BOW) , LSA (Deerwester et al. 1990),

LDA (Blei et al. 2003) and CRM (Cheng et al. 2013). We first use various

models to represent document or calculate the document similarity, then

apply HAC to either the document representation or the similarity matrix.

MATLAB function linkage is used. The 5-fold cross validation is employed

in our experiments, and each fold composes of 80% of data for training and

20% for testing. The best performance of CHAC demonstrated in Table 3.2

& 3.3 with an optimal value of α are selected to compare with other typical

document representation models with respect to Purity, RI, F1 measure and

NMI scores on ten data sets.

The technical performance for different document representation models

on testing data is evaluated and concluded in Table 3.4 & Table 3.5. Specifi-

cally, for each model, each cell illustrates the practical HAC with complete or

average linkage results considering various evaluation metrics. For each eval-

uation metric, a larger value indicates a more accurate and reliable model.

We present CHAC scores with bold face when it achieves best performance

over all models.

Obviously, CHAC on both average and complete linkages achieves great

improvement and outperforms majority models by considering the given clus-

tering evaluation criteria on various data sets. CHAC significantly improve

the performance over the traditional model, like BOW and LSA; it also

achieve considerable improvement comparing with more advanced and com-
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plicated document representation models, such as GVSM and LDA; consid-

ering CRM, a model which calculate term relation through link terms as well,

CHAC is better than it on all data sets with respect to all evaluation metrics.

In specific, for the results of different model using HAC with complete

linkage in Table 3.4, CHAC is the best model which achieve highest score

on both four clustering metrics over 8 data sets; for the results of HAC with

average linkage in Table 3.5, CHAC is competitive over 6 data sets.

The reason lies in that SCS offers a deeper way to capture the semantic

relations of term pairs. Unlike BOW, LSA and LDA methods which overlook

the internal interactions between terms, SCS accomplishes a comprehensive

consideration of not only the intra- (explicit) couplings which is captured via

term co-occurrence frequency patterns, but also the effect of inter- (implicit)

couplings to represent the indirect contact between terms. SCS also addresses

the term ambiguity problems in CRM. Specifically, for a single document, the

semantic relation between terms is more fully represented to capture richer

semantic contents in a document, so as to achieve better clustering results.

3.5 Conclusions

We have proposed a semantic coupling similarity (SCS) measure to compre-

hensively capture the coupling relationships both within and between term

pairs in a document through representing term couplings as a term linkage

graph and considering probabilistic distributions of terms and term couplings.

A document set is then represented as a term coupling vector for document

analysis.

SCS achieves this in terms of a four-step procedure:

1. captures the semantic intra-coupling of term pairs based on its occur-

rence frequency information across a document set;

2. capture the semantic inter-coupling of term pairs based on the interac-

tions with link terms on all possible paths after term connections are

plotted to a graph structure;
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3. via an optimal combination, a full coupled semantic similarity of term

pairs is achieved;

4. the original document set can then be represented by a coupled seman-

tic similarity matrix to measure the document similarity.

Experiments on real data sets have shown that SCS-based hierarchical

agglomerative document clustering achieves impressive improvement over

typical document clustering methods. More specifically, inter-coupling of

term pairs plays an important role in comprehensively capturing semantic

couplings. For this, it is essential to tune the weight between intra- and

inter-coupling of term pairs across documents. In addition, experimental

performance illustrates that SCS is a path-length-sensitive model, although

a path showing term linkage could be quite long, our comprehensive test

shows that we may only need as far as two steps of term linkage for most of

cases for an acceptable level of running time.

This research opens new opportunities to deeply explore semantic similar-

ity, our further research efforts include: first, all relatedness is built on term

pairs in our approach to avoid the polysemy of every single term; however,

document representation constructed by term pairs will expand the feature

space, which will result in low efficiency. A sensible way needs to be identi-

fied to project documents to a new and smaller space. Second, we are also

introducing the coupled idea into the calculation of document pair related-

ness. Finally, the time complexity brought by the increase of link terms also

needs further improvement.

We are working on theoretical analysis of the effect of the number of link

terms, and comparing SCS with the most recent machine learning methods

for latent semantic analysis and document classification.
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Table 3.2: The Impact of Inter-coupling Ordering Using HAC with Complete

Linkage

Data Sets Ordering Purity RI F1 measure NMI

re1

0 0.7332 0.6930 0.4433 0.4128

1 0.7927 0.7401 0.5163 0.4929

2 0.8051 0.8437 0.7395 0.5946

3 0.7910 0.7345 0.5284 0.4855

re2

0 0.8414 0.7410 0.6835 0.4902

1 0.8876 0.8089 0.7516 0.5885

2 0.8868 0.7833 0.7341 0.5741

3 0.8751 0.7739 0.7061 0.5540

re3

0 0.8081 0.7279 0.6268 0.4997

1 0.8691 0.8254 0.7568 0.5910

2 0.8859 0.8261 0.7591 0.5923

3 0.8593 0.8122 0.7397 0.5669

td1

0 0.7096 0.8137 0.5440 0.5858

1 0.8425 0.8957 0.7395 0.7326

2 0.8095 0.8745 0.6899 0.6999

3 0.7922 0.8593 0.6777 0.6859

td2

0 0.7563 0.7620 0.6026 0.6265

1 0.8898 0.9305 0.8531 0.7730

2 0.8858 0.8927 0.7916 0.7728

3 0.8791 0.9004 0.8138 0.7703

td3

0 0.7597 0.8320 0.5913 0.5940

1 0.8202 0.9003 0.7594 0.7188

2 0.7980 0.8694 0.6789 0.6830

3 0.8041 0.8494 0.6701 0.6620

td4

0 0.7456 0.8049 0.5688 0.5901

1 0.8112 0.8997 0.7496 0.6936

2 0.8072 0.8684 0.6798 0.6755

3 0.8015 0.8386 0.6283 0.6498

w1

0 0.5224 0.5768 0.4928 0.3037

1 0.6462 0.6760 0.5063 0.3550

2 0.6007 0.6477 0.4638 0.3315

3 0.6511 0.6946 0.5019 0.3667

w2

0 0.5615 0.5525 0.5264 0.3557

1 0.6197 0.6570 0.4906 0.3200

2 0.6365 0.6761 0.5065 0.3422

3 0.6561 0.6985 0.5221 0.3615

w3

0 0.5557 0.6003 0.4694 0.3266

1 0.6098 0.6311 0.4798 0.3193

2 0.6102 0.6424 0.4830 0.3265

3 0.6365 0.6910 0.5082 0.3436
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Table 3.3: The Impact of Inter-coupling Ordering Using HAC with Average

Linkage

Data Sets Ordering Purity RI F1 measure NMI

re1

0 0.8186 0.7633 0.5794 0.5172

1 0.8136 0.7613 0.5729 0.5215

2 0.8264 0.7699 0.7826 0.5408

3 0.8127 0.7641 0.5751 0.5161

re2

0 0.8221 0.7551 0.7160 0.5749

1 0.8863 0.7973 0.7474 0.5775

2 0.8863 0.8038 0.7504 0.5813

3 0.8812 0.7804 0.7320 0.5697

re3

0 0.8872 0.8245 0.7534 0.6016

1 0.8393 0.7915 0.7283 0.5888

2 0.8862 0.8261 0.7586 0.5995

3 0.8926 0.8263 0.7588 0.6137

td1

0 0.8011 0.9034 0.7458 0.7412

1 0.8629 0.9105 0.7964 0.7739

2 0.8699 0.9197 0.8209 0.7936

3 0.8548 0.9167 0.8161 0.7825

td2

0 0.9008 0.9268 0.8618 0.8213

1 0.9104 0.9392 0.8840 0.8317

2 0.9126 0.9408 0.8866 0.8499

3 0.9071 0.9324 0.8712 0.8353

td3

0 0.8396 0.9185 0.8102 0.7570

1 0.8521 0.9040 0.7915 0.7659

2 0.8646 0.9345 0.8430 0.7730

3 0.8506 0.9057 0.7951 0.7621

td4

0 0.8420 0.9063 0.7961 0.7618

1 0.8526 0.9006 0.7747 0.7490

2 0.8651 0.9225 0.8280 0.8018

3 0.8383 0.9318 0.8354 0.7685

w1

0 0.5596 0.5812 0.4437 0.2919

1 0.5789 0.5871 0.5633 0.4010

2 0.5804 0.5986 0.5670 0.3895

3 0.5806 0.5992 0.5671 0.3942

w2

0 0.4801 0.4125 0.4662 0.1858

1 0.5719 0.5738 0.5506 0.3706

2 0.6334 0.6942 0.5582 0.3800

3 0.5765 0.5930 0.5586 0.3780

w3

0 0.5318 0.5003 0.5061 0.2910

1 0.5588 0.5553 0.5364 0.3459

2 0.5624 0.5540 0.5402 0.3650

3 0.5569 0.5482 0.5355 0.3492
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(a) re1 (b) re2 (c) re3

(d) td1 (e) td2 (f) td3

Figure 3.5: Tuning of α (1)
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(a) td4 (b) w1

(c) w2 (d) w3

Figure 3.6: Tuning of α (2)
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Table 3.4: Results of Different Model Using HAC with Complete Linkage

Model \ Data sets re1 re2 re3 td1 td2 td3 td4 w1 w2 w3

Purity

BOW 0.5668 0.6133 0.6175 0.2922 0.3314 0.3010 0.2887 0.3969 0.3856 0.4079

GVSM 0.7403 0.8052 0.8239 0.8263 0.8825 0.8790 0.8460 0.4125 0.4905 0.4535

LSA 0.5268 0.6103 0.5749 0.6090 0.5487 0.5180 0.5262 0.3854 0.3856 0.3917

LDA 0.8038 0.7115 0.8332 0.8362 0.8521 0.8888 0.8402 0.5055 0.5499 0.5756

CRM 0.6100 0.6219 0.6642 0.4670 0.6015 0.4353 0.4272 0.3881 0.3911 0.4168

CHAC 0.8051 0.8876 0.8859 0.8425 0.8898 0.8202 0.8112 0.6511 0.6561 0.6365

RI

BOW 0.4470 0.5086 0.5395 0.2362 0.3013 0.2450 0.2346 0.3967 0.3153 0.3492

GVSM 0.7767 0.7511 0.7916 0.8788 0.9111 0.9277 0.9047 0.3322 0.4341 0.3924

LSA 0.4640 0.5412 0.5928 0.7330 0.6623 0.6546 0.6535 0.5091 0.4905 0.4641

LDA 0.8435 0.6361 0.8100 0.8850 0.8977 0.9367 0.8836 0.5589 0.5702 0.6121

CRM 0.6282 0.5820 0.6364 0.6482 0.7131 0.6641 0.6462 0.6012 0.6067 0.5921

CHAC 0.8437 0.8089 0.8261 0.8957 0.9305 0.9003 0.8997 0.6946 0.6985 0.6910

F1-measure

BOW 0.5146 0.6420 0.6347 0.3342 0.4009 0.3269 0.3241 0.4125 0.4330 0.4433

GVSM 0.6772 0.6856 0.7079 0.7379 0.8294 0.8127 0.7036 0.4391 0.4726 0.4497

LSA 0.4906 0.5654 0.4913 0.4671 0.4351 0.4556 0.4396 0.3529 0.3721 0.3846

LDA 0.7323 0.6373 0.7546 0.6792 0.7945 0.8338 0.6868 0.4519 0.5174 0.4725

CRM 0.3231 0.5812 0.5471 0.3563 0.4619 0.3447 0.3147 0.3051 0.3447 0.3036

CHAC 0.7395 0.7516 0.7591 0.7395 0.8531 0.7594 0.7496 0.5019 0.5221 0.5082

NMI

BOW 0.1795 0.1813 0.2477 0.2551 0.2096 0.2522 0.2381 0.1212 0.1099 0.1348

GVSM 0.5301 0.4778 0.5717 0.7043 0.7724 0.7690 0.7218 0.1514 0.2014 0.1187

LSA 0.1371 0.1561 0.1410 0.3377 0.2658 0.3600 0.3560 0.1031 0.1034 0.1062

LDA 0.5744 0.3304 0.5745 0.7040 0.7316 0.7883 0.7367 0.1891 0.2680 0.2260

CRM 0.4910 0.4881 0.4839 0.5659 0.5279 0.5524 0.5311 0.2149 0.2062 0.2235

CHAC 0.5946 0.5885 0.5923 0.7326 0.7730 0.7188 0.6936 0.3667 0.3615 0.3436

89



C
H
A
P
T
E
R

3.
D
O
C
U
M
E
N
T

R
E
P
R
E
S
E
N
T
A
T
IO

N
:
C
A
P
T
U
R
IN

G
E
X
P
L
IC

IT
A
N
D

IM
P
L
IC

IT
C
O
N
T
E
N
T

C
O
U
P
L
IN

G
S

Table 3.5: Results of Different Model Using HAC With Average Linkage

Model \ Data sets re1 re2 re3 td1 td2 td3 td4 w1 w2 w3

Purity

BOW 0.5303 0.5831 0.5620 0.3859 0.3004 0.3862 0.3867 0.3859 0.3865 0.3862

GVSM 0.7715 0.8580 0.7886 0.7646 0.6033 0.7674 0.7663 0.3859 0.3871 0.3862

LSA 0.5265 0.5818 0.5639 0.2712 0.4008 0.2716 0.2711 0.3876 0.3856 0.3856

LDA 0.7140 0.8589 0.6439 0.9242 0.9571 0.9415 0.9159 0.5366 0.5474 0.5404

CRM 0.6237 0.7136 0.6968 0.4408 0.5875 0.3532 0.4494 0.3876 0.3859 0.3886

CHAC 0.8264 0.8863 0.8926 0.8699 0.9126 0.8646 0.8651 0.5806 0.6334 0.5624

RI

BOW 0.3729 0.4473 0.4167 0.4097 0.2412 0.4073 0.4095 0.2871 0.2873 0.2873

GVSM 0.7356 0.7507 0.7898 0.8591 0.7090 0.8606 0.8603 0.2868 0.2879 0.2870

LSA 0.4325 0.4588 0.4277 0.2051 0.4234 0.2032 0.2031 0.3001 0.2994 0.3139

LDA 0.7231 0.7951 0.6301 0.9518 0.9577 0.9593 0.9381 0.5211 0.5397 0.5172

CRM 0.6125 0.6434 0.6495 0.5961 0.6653 0.4015 0.6033 0.3130 0.2875 0.2925

CHAC 0.7699 0.8038 0.8263 0.9197 0.9408 0.9345 0.9225 0.5992 0.6942 0.5540

F1-measure

BOW 0.5364 0.6169 0.5866 0.3996 0.3874 0.4005 0.4007 0.4448 0.4450 0.4447

GVSM 0.7815 0.7318 0.7455 0.7036 0.5961 0.7062 0.7041 0.4448 0.4449 0.4448

LSA 0.5132 0.6160 0.5849 0.3330 0.4396 0.3337 0.3336 0.4415 0.4424 0.4340

LDA 0.5818 0.6634 0.6751 0.8749 0.9118 0.8969 0.8427 0.5126 0.5112 0.4930

CRM 0.5358 0.6226 0.6105 0.4094 0.4996 0.3671 0.4140 0.4385 0.4444 0.4446

CHAC 0.7826 0.7504 0.7588 0.8209 0.8866 0.8430 0.8280 0.5671 0.5582 0.5402

NMI

BOW 0.1197 0.1040 0.1045 0.3182 0.3016 0.3216 0.3222 0.1894 0.2571 0.2079

GVSM 0.5298 0.5671 0.4846 0.6403 0.5504 0.6507 0.6414 0.1696 0.3753 0.2119

LSA 0.3557 0.2018 0.1479 0.2051 0.2502 0.2035 0.2546 0.1441 0.1700 0.1627

LDA 0.5140 0.4932 0.4832 0.8376 0.8628 0.8441 0.8038 0.2820 0.2769 0.2410

CRM 0.1747 0.2556 0.2058 0.2283 0.3370 0.1531 0.2426 0.2427 0.2070 0.2444

CHAC 0.5408 0.5813 0.6137 0.7936 0.8499 0.7730 0.8018 0.3942 0.3800 0.3650
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Chapter 4

Semantic Representation Using

Hierarchical Tree Augmented

Naive Bayes

4.1 Introduction

Classification is one of the basic problems of data mining. Currently, there

is a diverse range of classification methods, including decision tree classifi-

cation, the support vector machine, neural network classifiers, etc. Among

them, Bayesian classifiers based on the probability theory have received con-

siderable attention in recent years.

According to the Bayes school of thoughts, in the absence of any observa-

tions, our knowledge is represented by a prior distribution. We then update

the prior distribution based on an observation of attributes in terms of the

posterior probability, which is the probability that the attribute belongs to

a class. The Bayesian classifiers, select the class having the largest posterior

probability as the class that the attribute belongs to.

In the Bayesian classifiers family, the naive Bayes classifier attracts a lot

of attention because of its simple implementation and good performance,

but its independence requirement between attributes nevertheless limits its
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scope. This limitation leads to more evident flaws when it is applied to

text classification. Document representation based on naive Bayes treats

attributes independently given the class label, that is to say, that it treats

the terms document and representation in the text mining articles and library

management articles equally. However, empirically, they rarely co-occur in

library management articles and there is a certain dependence which exists

between them in the text mining articles.

Compared with general classification problems, text classification faces

the unavoidable problem that there might be a certain dependence among

attributes. A great amount of extended structure based on pure naive

Bayes have been proposed to relax the strong independence assumption.

This will allow extra dependencies between attributes (Friedman, Geiger

& Goldszmidt 1997) (Rubio & Gámez 2011) , embedding them with other

classification models (Kohavi 1996) (Frank, Hall & Pfahringer 2002) (Jiang,

Zhang & Su 2005), or using local data learning models(Webb, Boughton

& Wang 2005) (Zhang, Jiang & Su 2005), which will further improve clas-

sification performance and maintain computation simplicity. However, as

text classification is a special kind of classification, representing documents

as terms and pairwise correlations is still not enough to fully capture the

meaning of documents.

The reasons for this lie in (1) the term independence assumption is not

necessarily correct in practice, but relaxing the independence assumption or

even considering each pairwise term dependence as a complete graph may

be problematic owing to the high computational cost; (2) representing doc-

uments as terms and pairwise correlations is still lacking in terms of the

dependence of term pairs. Furthermore, high order semantics are overlooked.

For example, term pairs document representation and machine learning

co-occur frequently in text mining articles. Bio informatics and machine

learning may be easily found in the articles about biological sciences, how-

ever, single-layer Bayesian networks cannot find the dependence between

term pairs.
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The proposed method addresses the above issues by constructing a hier-

archical tree-like structure to extract highly correlated terms in a layerwise

fashion while pruning weak correlations to keep efficiency. We propose a

Hierarchical Tree Learning method. There are three main contributions

that our work makes to the field:

• A hierarchical tree structure with hierarchical feature extraction and a

correlation computation procedure. Highly correlated terms are merged

into sets and this is associated with more complete semantic informa-

tion.

• Through the means of a hierarchical tree structure, features are turned

into more comprehensively-connected term sets and these carry more

semantic information than that of a single term. Moreover, it is able

to avoid word sense ambiguity.

• Each layer is a maximal weighted spanning tree to prune weak feature

correlations, which, in turn, leads to improvements in the efficiency of

the implementation.

• It can be applied to wide range of applications, including both su-

pervised and unsupervised learning approaches. In this chapter, we

associate the tree with TAN as Hierarchical Tree Augmented Naive

Bayes (HTAN).

The hierarchical tree is able to capture the dependence between terms,

term pairs, or even term sets. The higher the order of the tree, the more

semantics it can carry. The hierarchical tree is much closer to a human un-

derstanding of texts, grouping them into different classes by comprehending

the topics and contents of the texts.

The remainder of this chapter is organised as follows: Section 2 reviews

and evaluates the related work of Bayesian text classifier measures. Section

3 proposes the hierarchical tree learning procedure and its application in
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HTAN. Finally, a conclusion and future work recommendations are provided

in Section 4.

4.2 Bayes Classification Methods

Text Classification (alternatively Text Categorization) concerns the task of

labelling natural language texts D = {d1, d2, · · · , d|D|} with thematic cate-

gories |C| from a predefined set C = {c1, c2, · · · , c|C|}. Generally, text cate-

gorization approaches have two steps,

• The learning step, where a text classifier is trained, it produces a clas-

sification function F : D → C that maps labeled training documents

to categories;

• The classification step, where the classifier is used to predict class labels

for testing data.

Many standard machine learning techniques have been applied to au-

tomated text categorization problems, such as Bayes classifiers, decision

tree classifiers, support vector machines, neural networks, regression meth-

ods, on-line methods and so on so forth(Peng, Schuurmans & Wang 2004).

Among them, Bayes classifier and its extensions have shown the surprising

performance in text classification domain due to their simple and efficient

implements(Rennie, Shih, Teevan, Karger et al. 2003).

Normally, for the training set U = {D,C}, D = {d1, d2, · · · , d|D|}, C =

{c1, c2, · · · , c|C|}, cj ∈ C is the category label of document di ∈ D, the

inductive construction of Bayes learning methods is defined in terms of the

posterior probability as an application of Bayes’ theorem:

P (cj|di) =
P (cj)P (di|cj)

P (di)
(4.1)

where the posterior probability P (cj|di) is the probability that document di

belongs to category cj.
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Figure 4.1: The structure of the naive Bayes network

Posterior probability is a composition of a likelihood function P (di|cj)
and a prior probability P (cj), and P (di) is constant for all classes, then only

P (cj)P (di|cj) needs to be estimated, Equation (1) is rewritten as

P (cj|di) = P (cj)P (di|cj) (4.2)

Based on Maximum a Posterior (MAP) hypothesis, the classifier will

predict that di belongs to cj which has the highest posterior probability

conditioned on di
c∗ = arg max

c∈C
{P (cj|di)}

= arg max
c∈C
{P (cj)P (di|cj)}

(4.3)

Then the classier is constructed by seeking the optimal category which

maximize the posterior probability.

4.2.1 Naive Bayes Classifier

In text categorization, documents are normally represented based on vector

space models in Bayes classifier, every term is a feature and every document

is represented as a vector di = {t1i, t2i, · · · , tτi} of weighted terms, which

gives data with many attributes, it is expensive to calculate P (di|cj) since

the space of possible documents di is vast. To simplify calculation, it is

common to make the naive assumption of “class-conditional independence”,

which means all attributes tki are statistically independent of each other given
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the value of the category label cj. This independence assumption is encoded

as

P (di|cj) =
τ∏
k=1

P (tki|cj) (4.4)

Probabilistic classifiers that adjust this assumption are called Naive Bayes

classifiers, which has the simple structure depicted in Figure 4.1, that predict

the category with the highest posterior probability, simplify computation by

reducing Equation 4.3 to

c∗ = arg max
c∈C

{
P (cj)

τ∏
k=1

P (tki|cj)

}
(4.5)

Text categorization approaches under such assumption, the learning step

is to estimate the conditional probability of each feature given a category;

and then the classification step is to determine the category which testing

document belongs according to these conditional probabilities(Hong-Bo, Zhi-

Hai, Hou-Kuan & Li-Ping 2002).

Naive Bayes classifiers are still frequently used in some literature due to its

low complexity and easy implementation (Rennie et al. 2003), in the mean-

time, they perform surprisingly well in some classification problems(Frank

et al. 2002). However, it is unrealistic since there might be certain depen-

dence among terms across various documents, the “naive assumption” is

obviously not verified in practice.

There are a great amount of approaches had been proposed to augment

the performance of pure naive Bayes classifiers that account for relaxing the

strong independence assumption and still keep the computational advantages

of efficiency, e.g. Semi-naive Bayes (Kononenko 1991), which increases depen-

dencies by using clusters of variables instead of single ones; Tree Augmented

Naive Bayes (TAN) (Friedman et al. 1997) and k-Dependence Bayesian Net-

work (KDB) (Rubio & Gámez 2011) allow extra dependencies between pre-

dictive attributes by adding augmenting edges; also, it has been observed

that the naive Bayes especially fit to be a local model embedded into an-

other model, such as a decision tree or a k-nearest neighbor, corresponding
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methods are Naive Bayes Tree (NBTree) (Kohavi 1996), Locally Weighted

Naive Bayes (LWNB) (Frank et al. 2002) and Instance Cloning Local Naive

Bayes (ICLNB) (Jiang et al. 2005). There are also approaches consider the

influence of attributes which avoid problem of structure learning, like Aver-

aged One-Dependence Estimators (AODE) (Webb et al. 2005) and Hidden

Naive Bayes (Zhang et al. 2005).

4.2.2 Tree Augmented Naive Bayes Classifier

A popular extension of naive Bayes classifier that relaxing the independence

assumption is based on a tree-like structure Bayesian network, called Tree

Augmented Naive Bayes Classifier (TAN) (Friedman et al. 1997). It con-

siders the correlations among attributes by allowing additional augmenting

edges, for each attribute, it has as parents the class variable and at most one

other attribute.

The Construct-TAN Procedure

More precisely, let U = {D,C}, D = {d1, d2, · · · , d|D|}, C = {c1, c2, · · · , c|C|},
cj ∈ C is the category label of document di ∈ D, each document is represent

as a vector di = {t1i, t2i, · · · , tτi}. In both Naive Bayes and TAN classifiers,

the class variable is the root, i.e. Πcj = ∅, where Πcj denotes the set of

parents of cj. For Naive Bayes, each attribute has the class variable as its

unique parent, namely, Πtki = {cj}, while in TAN, the class variable is a

parent of each attribute, i.e. cj ∈ Πtki ; besides cj, each attribute has at most

one other attribute as a parent, i.e. |Πtki| ≤ 2.

TAN models are formed by adding directional augmenting edges between

attributes, see Figure 4.2 as an example, in this augmented structure, an

edge from A2 to A1 implies the influence of A2 on the assessment of the class

variable also depends on the value of A1. While in Figure 4.1, the influence

of each attribute on the class variable is independent of other attributes.

The Construct-TAN learning procedure consists of seven main steps:
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1. Input training data U = {D,C}, D = {d1, d2, · · · , d|D|}, C = {c1, c2, · · · , c|C|},
cj ∈ C is the category label of document di ∈ D, di = {t1i, t2i, · · · , tτi}.

2. Compute Conditional Mutual Information (CMI) between each pair of

attributes given the class variable, it is formatted as

IP̂U (X;Y |C) =
∑
x,y,c

P̂U(x, y, c)log
P̂U(x, y|c)

P̂U(x|c)P̂U(y|c)
(4.6)

where X and Y denote pair of attributes (terms), their values are x

and y, x 6= y.

CMI is based on empirical distribution P̂U on the training data, which

is defined by frequencies of observations.

3. Build a complete undirected graph in which the nodes are the attributes

t1i, t2i, · · · , tτi, and the weight of edges that connect each node pair are

annotate by IP̂U (ti; tj|c).

4. Select a subset of arcs from the graph to construct a maximal weighted

spanning tree in which the sum of weights is maximized.

5. Choose a root variable and transform the undirected tree to a directed

one by setting the direction of all edges to be outward from it.

6. Choose a class variable and set the directions from it to all attributes.

7. Learn the parameters and output the TAN.

TAN for Text Classification

Based on the augmented tree structure above, a TAN classifier model can be

applied to text classification in a similar manner to a naive Bayes model by

computing the highest posterior probability,

c∗ = arg max
c∈C

{
P (cj)

τ∏
k=1

P (tki|Πtki)

}
(4.7)

where Πtki is learned based on TAN model, which has two forms:
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Figure 4.2: A simple tree augmented naive Bayes structure

• Πtki = {cj}, tki has no non-category parent.

• Πtki = {cj, tπ(ki)}, tki has one non-category parent.

TAN approaches relax the strong assumption of independence in naive

Bayes by exploring correlations among attributes, and experimentally out-

perform it while maintaining computational simplicity on learning (Friedman

et al. 1997). A number of TAN algorithms have been proposed to enhance

classification accuracy and efficiency, such as SuperParent TAN (Keogh &

Pazzani 1999) and StumpNetwork (Zhang & Ling 2001). Some methods

further relax the conditional independence assumption of TAN by taking

more attributes correlation into account, e.g. KDB (Rubio & Gámez 2011),

assuming that every attribute has k parents at most.

However, TAN and its extensions have rarely been used in text classifica-

tion applications, the reason is that these methods only concern the depen-

dence of terms, but overlook the high order semantics capturing, underlying

information is ignored. To address this problem, we proposed a Hierarchical

structured TAN (HTAN) to represent documents as hierarchical trees that

extract implicit relation of attributes layer by layer, high order semantics is

fully captured.
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4.3 Hierarchical Tree Learning

Documents should be expressed in a representation before classification algo-

rithms are performed. This assists in building a feature space that consists of

all the necessary terms with their correlations captured and embedded in a

similarity learning model. In this section, we propose a novel tree augmented

model containing a hierarchical structure to select features and extract fea-

ture correlations. Based on our concrete analysis, the hierarchical tree is a

term-set level semantic representation and it is able to capture high order

semantics.

4.3.1 Feature Extraction

In order to enhance classification efficiency, the feature is identified before the

feature space construction. When traditional TAN is applied to text classi-

fication, the feature-vector document representation is used. This takes one

document as a set of term occurrence frequency sequence. Term frequencies

are regarded as features, and then applied to a weighted scheme CMI, which

is used as a weighting factor to reflect the correlation strength of a pairwise

terms to a document in a corpus. This representation proves to be efficient

and powerful, however, it is not enough to match the main task of text and

natural language learning, that is, to learn the semantics of words without

prior linguistic knowledge. The reasons behind this lie in the fact that it is a

term-level document representation with the feature selected individually. In

addition, it considers the meaning of documents only in terms of the mutual

information of each pairwise term share, regardless of the real contents and

themes that the documents express.

Probabilistic topic modelling is a reasonable way to represent documents

with thematic information. Through this approach, the selected features

are not original terms in a corpus, but semantic topics that are probability

distributions over the terms in a corpus (Blei 2012).

Our hierarchical tree model borrows this feature extraction idea and con-
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Figure 4.3: Schematic diagram of feature extraction procedure in HTAN

structs a tree-like hierarchical structure. The features of each layer are ex-

tracted from the lower layer by building a maximal weighted spanning tree in

which the sum of weights is maximised. The terms that are close in meaning

are merged as term sets and then treated as new features for the purposes of

the next level. By this hierarchical feature extraction method, features can

carry more information to characterise a document, and at the higher layer

structure, more semantics may be contained.

Specifically, the Hierarchical Feature Extraction procedure consists

of the following steps:

• For the first hierarchical tree layer, the elements in the selected feature

set are the original terms in a corpus;

• From the second hierarchical tree layer, based on the results of the

maximal weighted spanning tree of the former order, the features that

have high correlations are aggregated as a new feature;
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• If we repeat the computation of each order until the last layer, features

that are extracted from the former order are used to construct matrices

of classification or clustering.

As the illustration in Figure 4.3 demonstrates, each node denotes a fea-

ture, and the edges denotes correlations that connect each pair, while every

layer is a maximal weighted spanning tree. From the bottom to top, only

strong correlations are kept and terms are aggregated hierarchically. Fur-

thermore, each feature carries more and more terms with their correlations,

i.e. semantics.

This hierarchical feature extraction structure guarantees that with the

higher layer hierarchical tree, the features are reflected as term sets with

more comprehensive semantic information involved. It is not a simple term-

level document representation, but a layer-increased term set-level document

representation. This contains the correlations and similarity between terms

and term sets which form a document. Moreover, this efficient layer-wise

learning results in two distinct advantages:

• High order and implicit semantics are mined. We no longer represent

the semantics in a document by cutting it into the smallest pieces but

merge the terms into larger and more comprehensive features based on

their semantic relatedness.

• Word sense ambiguity is avoided by higher order features.

Intuitively, if we imagine a document is just like a photo, there is no

doubt that the bigger pieces carry more information than the pixel data,

so it is easier to understand ”what actually has been expressed” and ”what

was intended” of that photo based on the representation of pieces and their

correlations.

In the following section we outline detailed approaches for the purposes

of more deeply exploring feature correlations.
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4.3.2 Feature Correlation

It is very challenging to analyse semantic relation due to it being driven by

both intrinsic textual/linguistic complexity (such as natural language ambi-

guity) and various relationships (such as co-occurrence) between terms and

documents.

In traditional TAN, conditional mutual information (CMI) IP̂U (X;Y |C)

is employed to reflect the correlation strength of variables. This measures the

information that Y provides about X when the value of class C is known.

Empirical distribution, which is defined by frequencies of observations, is

embedded in so that we can compute the joint probability between features.

Here, we propose a more general concept to summarise the feature corre-

lation strength from single-level to multi-level structure, the Hierarchical

Correlation Ratio (HCR).

Definition 4.1 For the training data set U = {D,C}, D = {d1, d2, · · · , d|D|},
C = {c1, c2, · · · , c|C|}, cj ∈ C is the category label of document di ∈ D, and

di is represented as terms or term sets sequence for different layer of a hi-

erarchical tree, di = {t1i, t2i, · · · , tτi}. Assume that there are n layers, for

∀tα, tβ ∈ di,

• on the [1, n−1] layers, HCR of features is calculated by an unsupervised

dependency function, Corr(tα, tβ);

• on the nth layer, HCR of features is calculated by a supervised depen-

dency function with class variable known, Corr(tα, tβ|cj).

HCR is able to detect almost any functional second-moment (pairwise

or quadratic) dependency, e.g. the entropy-based mutual information, total

correlation, dual total correlation and even more general dependencies. We

have chosen mutual information (MI) in this instance.

• On the [1, n− 1] layers, HCR is denoted as MI of each term (term set)
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pair

Corr(tα, tβ) = MI(tα, tβ)

=
∑
tα,tβ

P (tα, tβ) log
P (tα, tβ)

P (tα)P (tβ)

(4.8)

• On the nth layer, HCR is denoted as CMI of each term (term set) pair

with class variable cj is given

Corr(tα, tβ|cj) = CMI(tα; tβ|cj)

=
∑

tα,tβ ,cj

P (tα, tβ, cj) log
P (tα, tβ|cj)

P (tα|cj)P (tβ|cj)
(4.9)

Except some correlation methods which captures dependency directly

from data characteristics (e.g. Pearson’s correlation) or distance (e.g. dis-

tance correlation), various correlation measures in use may be undefined for

certain joint distributions. That is to say, HCR holds a sensitivity to data

distribution. In the following section we illustrate several typical approaches

to compute joint distribution with a different data structure hypothesis.

Joint Probability Estimator

Since undefined feature distribution leads to a difference of HCR results, the

crucial part of feature correlation is to estimate the joint probability of terms

and term sets.

Let P be a joint probability distribution over the discrete feature variables

in D, for ∀ term (term set) pair tα, tβ ∈ di, various methods to compute

P (tα, tβ) are listed as follows.

1. Empirical Distribution

(1) Binary Scheme

Traditional TAN uses empirical distribution to measure joint probability.
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Let P̂T (·) be the empirical distribution, which is defined by frequencies of

observations T = {t1, t2, · · · , tτ}, is given by

P̂T (A) =
1

τ

∑
i

δA(ti) (4.10)

where the delta function returns δA(ti) = 1 if ti ∈ A, δA(ti) = 0 otherwise.

Similarly,

P (tα, tβ) = P̂T (tα, tβ) =
1

τ

∑
i

δtα,tβ(ti) (4.11)

where the joint probability is defined as the probability of documents that

contain corresponding terms or term sets.

This simple counting method is under the assumption that documents

are independent and identically distributed (iid), any documents with term

(term set) tα, tβ are counted as 1, or 0 otherwise.

(2) Raw Frequency Scheme

In vector space models, it is common to calculate joint probabilities con-

sidering term frequencies. tpf, short for term pair occurrence frequency, re-

flects the importance of a term pair to a document in a corpus. tpf((tα, tβ), di)

counts the number of times a term pair tα, tβ occurs in a document di. The

joint probability based on tpf scheme is formatted as:

P (tα, tβ) =

∑
di
tpf
(
(tα, tβ), di

)∑
tα,tβ

∑
di
tpf
(
(tα, tβ), di

) (4.12)

where (tα, tβ) stands for a term pair, and di is a single document in a docu-

ment collection D, the joint probability of a term pair is the probability of

the term pair in document set D.

Term occurrence frequency method treats terms bounded with weights to

reflect their importance and only keeps multiplicity, but disregards the order,

structure, meaning, grammar, etc. of the terms. It assumes that terms are

regarded highly relational if they co-occur frequently in the same documents.
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2. Multinomial Distribution

LDA (Blei et al. 2003) is a generative probabilistic model which repre-

sent documents as random mixtures over latent topics, where each topic is

characterized by a distribution over words.

Joint distribution in LDA is calculated as

Pθ(tα, tβ) =
∑
z

P (tα, tβ, z, θ)

=
∑
z

P (tα|z)P (tβ|z)P (z|θ)
(4.13)

where θ is a Dirichlet distributed random vector; a topic z follows multino-

mial distribution on the condition of θ, P (zi|θ) = θi; a term (term set) is a

multinomial probability conditioned on the topic, denoted as P (tα|z).

LDA assumes that terms are conditional independent given the latent

topics.

Various correlation methods can be employed here to compute the feature-

wise dependencies in hierarchical trees, with corresponding joint probability

estimator. Empirically, we recommend joint probability estimator which con-

sider more term couplings and relax the strong iidness assumption.

Algorithm below summarize the hierarchical tree learning procedure.

Algorithm 3: Hierarchical Tree Learning

Input: Terms T1, joint probability estimator j, n layers.

Output: Treen(Tn, Corrj)

1 for i = 1, · · · , n do

2 for tα, tβ ∈ Ti, (tα 6= tβ) do

3 Compute Corrj(tα, tβ);

4 end

5 Construct a maximal weighted spanning tree Treei(Ti, Corrj);

6 Ti+1 is a set of aggregation of linked nodes in Treei;

7 end
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After the construction of a hierarchical tree, the top layer of the tree is

a network which contains dependencies between extracted term sets, it has

a broad application. In the next section, we demonstrate an example of its

application in a TAN text classifies.

4.4 Hierarchical Structured TAN (HTAN)

In this section, we describe a procedure for constructing a hierarchical tree

augmented naive Bayes network (HTAN), which is a combination of the hi-

erarchical tree and the tree augmented naive Bayes model, containing as it

does, a hierarchical structure to select features and extract feature correla-

tions.

4.4.1 The Construct-HTAN Procedure

Algorithm 3 generalise a tree-like hierarchical structure to extract features

and calculate feature correlations. It is represented as a complete undirected

graph with the features and correlations associated. This means that, it has

a wide application, not only in terms of classifications but also unsupervised

learning measures. HTAN is one of the applications in the text classification

area.

The Construct-HTAN Procedure consists of the following steps:

1. Input training data U = {D,C}, D = {d1, d2, · · · , d|D|}, C = {c1, c2, · · · , c|C|},
cj ∈ C is the category label of document di ∈ D, and di is represented

as terms from corpus originally, di = {t1i, t2i, · · · , tτi}. Assume there

are n layers.

2. For each layer from the 1st to (n− 1)th, compute Hierarchical Corre-

lation Ratio (HCR) between each pair of features (terms or term sets),

it is formatted as Corr(tα, tβ).
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3. Build a complete undirected graph in which the nodes are the features,

and the weight of edges that connect each node pair are annotate by

HCR.

4. Select a subset of arcs from the graph to construct a maximal weighted

spanning tree in which the sum of weights is maximized.

5. As features with high HCR are kept, those features are aggregated as

new features to compute HCR for the next layer.

6. Repeat step 2 to 5 until the nth layer, compute Corr(tα, tβ|cj) with

class variable known and construct the maximal weighted spanning

tree.

7. Choose a root variable and transform the undirected tree to a directed

one by setting the direction of all edges to be outward from it.

8. Choose a class variable and set the directions from it to all attributes.

9. Output the HTAN.

Figure 4.4 is a simple instance of the HTAN structure. From the bottom

to the top, each node denotes a feature, and the edges denote the HCR

that connects each pair of them so that every layer is a maximal weighted

spanning tree. It is unsupervised learning from the 1st to (n−1)th ordering,

whereby the features are original terms from the corpus at the first order (the

bottom layer), and then they are merged hierarchically in order to maximise

the HCR. In the meantime, the features are presented as bigger and bigger

term sets that can contain more information and correlations hierarchically.

Until the last order (the top layer), it is through supervised learning that

we consider the HCR of features in relation to the assessment of the class

variable. Similar to the TAN, the undirected maximal weighting spanning

tree is transformed to a directed one by choosing a start node and setting

the direction so that all edges point outward from it. There are arcs from C

to each feature, ensuring that the class variable is the parent of each feature,
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Figure 4.4: The structure of the hierarchical tree augmented naive Bayes

network

i.e. cj ∈ Πtα ; besides cj, and each feature has, at most, one other feature as

a parent, i.e. |Πtα| ≤ 2.

Theorem 4.1 Let U be a collection of N instances C,D. The procedure

Construct-HTAN builds a HTAN network that maximizes
∑

tα,tβ
Corr(tα, tβ)

from the first to the (n−1)th ordering, and maximize
∑

Πtα
Corr(tα,Πtα) for

the nth ordering. It has the time complexity O(n · τ 2 ·N).

Πtα is learned from HTAN model, which has two forms:

• Πtα = {cj}, tα has no non-category parent.

• Πtα = {cj, tπ(α)}, tα has one non-category parent.

The next section we demonstrate how to apply HTAN to distinguish

documents from categories as a text classifier.
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4.4.2 Using HTAN as Text Classifiers

After hierarchical tree learning procedure, the tree at the top layer is a pruned

tree consist of nodes which are features containing more semantics, and edges

which are feature correlations. This tree-like structure supports wide applica-

tions, both supervised and unsupervised learning algorithms. When applied

to classification, various approaches can be employed, e.g. naive Bayes, TAN,

KDB and more advanced models. We here also borrow TAN to continue the

follow-on contents.

As a HTAN classifier is trained, the second step of text classification ap-

proaches is the classification step, where the classifier is used to predict class

labels for testing data. A HTAN model can be applied to text classification

in a similar manner to a TAN model. In this case, maximum a posterior

(MAP) classifier can be constructed by seeking the optimal category which

maximizes the posterior P (cj|di),

c∗ = arg max
c∈C
{P (cj|di)}

= arg max
c∈C
{P (cj)P (di|cj)}

= arg max
c∈C

{
P (cj)

τ∏
k=1

P (tα|Πtα)

} (4.14)

HTAN encodes conditional independence statements that each feature is

independent of its non-descendants given the state of its parent(s), a MAP

classifier based on Equation 4.14 is optimal.

Then, classifying a new document from testing set is to estimate two

groups of probabilities from the training set, P (cj), the prior probability of

class variables; and P (tα|Πtα), the likelihood function which is the probability

of each feature (term or term set) given its parent(s).

In Bayesian probability theory, if the posterior distributions are in the

same family as the prior probability distribution, the prior is called a conju-

gate prior for the likelihood function. It has an algebraic convenience, giving

a closed-form expression for the posterior; otherwise a difficult numerical in-
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tegration may be necessary. Further, conjugate priors may give intuition, by

more transparently showing how a likelihood function updates a prior distri-

bution (Heckerman 2008). The Dirichlet distribution is a conjugate prior for

the multinomial distribution. This means that if the prior distribution of the

multinomial parameters is Dirichlet then the posterior distribution is also a

Dirichlet distribution (with parameters different from those of the prior).

It can certainly be discussed whether these are good reasons to choose a

particular prior, as these criteria are unrelated to actual prior beliefs. Nev-

ertheless, conjugate priors are widely accepted, as they often are reasonably

flexible and convenient to use for the reasons stated above.

When Dirichlet distribution is used as the prior, HTAN assumes the fol-

lowing generative process,

1. Pr
(
C = c1, · · · , c|C|

)
∼ Multinomial(θ)

θ ∼ Dir(θ0)

2. Pr
(
T1 = t1, · · · , Tτ = tτ

∣∣ΠT

)
= Multinomial

(
P (T1 = t1, · · · , Tτ =

tτ
∣∣ΠT )

)
∼ Multinomial(λ)

λ ∼ Dir(λ0)

In Bayesian learning of a Dirichlet distributed prior P (C = cj) for j =

1, · · · , |C|, we set the parameters Θ = {θj : j = 1, · · · , |C|}, where θj =

P (C = cj),

P (C = cj) =

∑
di
tf
(
(ti, di), cj

)∑
di
tf(ti, di)

(4.15)

which indicate the probability of ti labelled by cj, tf(ti, di) is the term ti

occurrence frequency in document di.

Parameters Λ = {λi : i = 1, · · · , τ} of likelihood function also follows

Dirichlet distribution, λi = P (T = ti|Πti). For each value of T , the distribu-

tion given a particular value of its parents is

P (T = ti|Πti) =
τ · P̂T (ti,Πti) +N0 · λ0

τ · P̂T (Πti) +N0
(4.16)
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where λ0 is the prior estimate of P (T = ti|Πti) and N0 is the confidence

associated with that prior. We set marginal probability of T as the prior

probability, λ0 = P̂ (T = ti). In (Friedman et al. 1997), N0 is chosen as 5 in

experiments and performed slightly better than other values. Going back to

Equation 4.16, P̂T (ti,Πti) and P̂T (Πti) are calculated as

P̂T (ti,Πti) = P̂T (ti|Πti) · P̂T (Πti)

=

∑
di
tf
(
(ti, di),Πti

)∑
di
tf(ti, di)−

∑
di
tf(Πti , di)

·
∑

di
tf
(
(Πti , di), cj

)∑
di
tf(ti, di)

(4.17)

which are also probabilities by counting term frequencies that satisfy different

conditions.

Equation 4.16 contains smoothing factors to avoid zero probability esti-

mates. A zero estimate may happen in P̂T (ti|Πti) when the attribute values

do not actually occur in documents, i.e., tf(·) = 0.

Eventually, a graphical model of hierarchical tree augmented naive Bayes

text classifier is given in Figure 4.4, where the root node is the class label,

and each leaf node is a term sequentially occurring in the documents that

are belonged to the category.

4.5 Conclusions

In this chapter, we have proposed a hierarchical tree learning measure to cap-

ture the high order semantics of terms, which have been overlooked by exist-

ing measures. Additionally, the hierarchical tree is able to address the tradi-

tional natural language processing problem, avoiding ambiguity by layer-wise

larger and more comprehensive features.

The hierarchical tree achieves this through the means of a three-step

procedure:

1. For the first hierarchical tree layer, the elements in the selected feature

set are original terms in a corpus;
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2. From the second hierarchical tree layer, based on the results of the

maximal weighted spanning tree of the former order, features that have

high correlations are aggregated as a new feature;

3. The computation of each order is repeated until the last layer and the

features that are extracted from the former order are used for applica-

tions.

We have also introduced an example of the application, which combines

the hierarchical tree with tree augmented naive Bayes network as a feature

extraction procedure for TAN. The top layer of the tree is represented as a

matrix whereby the features are the term sets that have been merged from

the former layer. The matrix is then employed for text classification.

This research opens new opportunities to deeply explore high order se-

mantics. Further research efforts could include: experimentally proving the

advantages of the hierarchical tree, comparing HTAN with the naive Bayes

classifier, training TAN and LDA on the same term set features, and com-

paring HTAN with the traditional TAN that is trained on the original terms.

Each layer of the hierarchical tree is still a bag-of-words model which indi-

cates that each layer is a undirected graph that ignores the semantic structure

information. A sensible way to consider the appropriate direction is needed.

We are working on training the hierarchical tree based on lexical resources,

i.e. human hand-crafted language databases which contain complete seman-

tic structure information.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In conclusion, this thesis presents several techniques to address document

representation modeling based on semantic relatedness.

In Chapter 1, a detailed introduction of the background of my research

topic is presented and the research issues and contributions are outlined.

In Chapter 2, a number of existing semantic measurements are reviewed

and evaluated, including corpus-based document representations and lexical

resource-based models, which offer two different ways to capture the semantic

similarity and relations between terms. For corpus-based models, researchers

try to model lexical semantic information in high-dimensional vectors e.g. by

considering term occurrence patterns, contexts, locations, etc. While lexical

resource-based models are built upon lexical databases, such as WordNet,

this does not provide a term-similarity metric. However, various metrics

based on its structure have been developed.

In Chapter 3, the semantic coupling similarity (SCS) measure is presented

to completely and comprehensively capture the coupling relationships both

within and between the term pairs in a document. This measure represents

term couplings as a term linkage graph and considers the probabilistic distri-

butions of terms and term couplings. A document set is then represented as
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a term coupling vector for document analysis. SCS is a four-step procedure,

containing (1) captures the semantic intra-term couplings based on its pair-

wise term occurrence frequency pattern across a document set; (2) capture

the semantic inter-term couplings based on the interactions with the link

terms on all possible paths of term connections; (3) achieves a full coupled

semantic similarity of term pairs via an optimal combination; and (4) rep-

resents the original document set by a coupled semantic similarity matrix,

which can be broadly applied to document clustering and classification tasks.

The proposed measure is compared with typical document representations

on various benchmark data sets. Our model produce outcomes that are great

significant and consistently exceeds the performance of benchmark methods

on most data sets.

In Chapter 4, the hierarchical tree learning algorithm is proposed to ex-

tract high order semantics between correlated terms and prune weak correla-

tions to maintain efficiency. The hierarchy is built in a three-step procedure:

(1) a hierarchical feature extraction and correlation computation procedure

is employed whereby highly correlated terms are merged into sets and are

associated with more complete semantic information; (2) each layer consti-

tutes a maximal weighted spanning tree to prune weak feature correlations;

(3) the top level of the tree is a high order semantic matrix of terms and can

be applied to both supervised and unsupervised learning algorithms.

Chapter 3 of this thesis is supported by a published conference papers1

listed in the List of Publications. Accordingly, we have sought through the

means of this thesis to add considerable value to the document representation

research and its specific application to the text mining area.

5.2 Future Work

This research opens new opportunities to deeply explore semantic similarity.

Further research efforts could be directed towards some of the issues and

1The paper of Chapter 3 is published, the paper of Chapter 4 is still under modification.
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challenges stated below:

1. A theoretical analysis of the effect of the number of link terms in SCS

should be undertaken.

2. More experiments should be developed regarding the proposed HTAN

algorithm in future works.

3. Semantic measures built on term pairs and term sets are helpful to

avoid the natural language ambiguities of every single term, but such

document representations are experimentally expensive due to the high

dimensional feature space. A sensible way forward needs to be identified

in order to project documents into a new and smaller space.

4. Experimental results should be presented to support the main claims

of the papers in order to enhance in the modelling of polysemy and

synonmy.

5. We have finished the work in relation to coupled term pair similarity

but there is a need to introduce the coupled idea into the calculation

of the document pair relation.

6. Adapting the hierarchical tree with lexical resources would serve to

capture more semantic structure information.
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Appendix A

List of Symbols

The following list is neither exhaustive nor exclusive, but may be helpful.

tfidf(t, d,D) The importance of a term t to a document d in a corpus

D

tf(t, d) The number of times term t occurs in document d

tpfidf((ti, tj), d,D) The importance of a term pair (ti, tj) to a document

d in a corpus D

tpf counts the number of times a term pair occurs in a doc-

ument

Mtpf The term pair occurrence frequency matrix

P Ia(tk|ti) The probability of the term pair (tk, ti) in corpus D

P Ia(ti) The probabilities over all term pairs given ti

RS The relation strength function

IaR(ti, tj) The intra-term coupling similarity

Gtpf The term pair frequency graph

GIaR The intra-term coupling graph
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GIeR The inter-term coupling graph

Path(ti, tj) A path with the initial vertex ti and the terminal vertex

tj

Tlink The link term set

tpfipf((ti, tj), d,m) The importance of a term pair (ti, tj) to all possible

m paths

W (tk|ti) The weight of a term pair (tk, ti) in graph GIeR

Wtl1 ···tln (tk|ti) The weight of one path through tl1 · · · tln between term

pair (tk, ti) in Gtpf

Wm(tk|ti) The weight of m paths between term pair (tk, ti)

P Ie(tk|ti) The probability of the term pair (tk, ti) on all possible m

paths

P Ie(ti) The probabilities over all term pairs on possible m paths

given ti

IeR(ti, tj) The inter-term coupling similarity

CTPS(ti, tj) The coupled similarity of term pair (tk, ti)

Mcou The coupled similarity matrix

Sim(di, dj) The document similarity of document pair (di, dj)

ˆphi(d) The new document representation based on CTPS

P (cj|di) The posterior probability

I(X;Y |C) The conditional mutual information between each pair of

attributes given the class variable

Πtk The parent set of tk in a Bayesian network
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APPENDIX A. LIST OF SYMBOLS

Corr(tα, tβ) The hierarchical correlation ratio of term pair (tα, tβ)

P (tα, tβ) The joint probability estimator

Treei(Ti, Corr) The maximal weighted spanning tree with nodes Ti
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