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I. INTRODUCTION

State redistribution is a fundamental protocol in quantum information theory and

serves as a primitive for various other information theoretic protocols, such as state

merging, coherent state merging, and quantum channel simulation and rate distortion

in the presence of quantum side information (see for e.g.1,2 and references therein).

It can be described as follows. Suppose Alice and Bob share a tripartite state ρABC

with the systems A and C being with Alice and the system B being with Bob.

Let ψABCR denote a purification of ρABC , with R being the inaccessible, purifying

reference system. In addition, Alice and Bob are allowed to share entangled states.

The task is for Alice to transfer the state of her system A to Bob, possibly with

the help of the prior shared entanglement, such that the purity of the global state

is preserved. Alice and Bob can both do local operations (LO) on systems in their

possession and Alice can send qubits to Bob, i.e., she is allowed one-way quantum

communication (QC) with Bob. The minimum number of qubits needed for this task

is referred to as the quantum communication cost of the protocol.

This protocol was first introduced by Devetak and Luo3, but only an outer bound

was proved. It was studied by Devetak and Yard4,5 in the so-called ‘asymptotic

i.i.d. setting’, in which Alice and Bob share multiple (say n) identical copies of the

state ρABC , instead of just one. The quantum communication cost, Q, in this setting

is defined as the minimum rate of quantum communication from Alice to Bob needed

so that the error incurred in achieving the goal (of transferring the states of the

systems labelled by A from Alice to Bob) vanishes in the asymptotic limit (n→∞).

Let the corresponding rate of entanglement consumption18 be denoted as E. Devetak

and Yard4 proved that state redistrubution is possible in this setting if and only if Q

and E satisfy the following bounds:

Q ≥ 1

2
I(A;R|B); Q+ E ≥ H(A|B). (1)

Here I(A;R|B) denotes the conditional mutual information of the state ρABR :=

TrCψABCR, and H(A|B) is the conditional entropy of ρAB. In fact, this provided the
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first operational interpretation of the quantum conditional mutual information1,4.

In this paper, we first consider state redistribution in the ‘one-shot setting’ in

which Alice and Bob share a single copy of the state ρABC . Instead of requiring that

the error incurred in the protocol vanishes asymptotically, it is natural in this case

to allow for a small but non-zero error ε > 0. We refer to the minimum number

of qubits which are needed to be transferred in this case as the ε-error one-shot

quantum communication cost. We derive an upper bound on this quantity in terms

of the smooth min- and max-entropies of One-shot Information Theory (see e.g.9,10

and references therein).

Our ultimate goal is to derive an upper bound on the second order asymptotic

expansion for the quantum communication cost of state redistribution, for n identical

copies of the state ρABC , with an error of at most ε. We establish that, for any

tripartite state ρABC , and any given ε ∈ (0, 1), an upper bound on the quantum

communication cost of achieving quantum state redistribution of ρ⊗nABC , with an error

of at most ε, can be expressed in the form

an+ b
√
n+O(log n);

here the first order coefficient a is equal to 1
2
I(A;R|B) (as expected from the result of

Devetak and Yard4). We obtain an explicit expression for the second order coefficient

b, which depends on both the state ρABC and the allowed error threshold ε.

A simple corollary of the above expansion is the following result: in the asymptotic

i.i.d. setting4, state redistribution can be achieved if Alice sends qubits at a rate

(1/2)I(A;R|B) to Bob (as is implied by (1)).

Our result employs the protocol of coherent state merging19 which is described in

the one-shot setting as follows. One starts with a tripartite pure state ψABR, where

the system A is with Alice, B is with Bob and R denotes the purifying reference

system. Alice and Bob do not share any entanglement at the start of the protocol.

The aim is for Alice to transfer the state of the system A to Bob and at the same

time generate entanglement with him. Alice and Bob can both do local operations

on systems in their possession and Alice can send qubits to Bob. The quantities of
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interest are the quantum communication cost and the entanglement gain: the former

is the minimum number of qubits that Alice needs to send to Bob in order to achieve

the state transfer (up to a given finite accuracy) and the latter is the maximum

entanglement created in this process. In previous work8 we obtained bounds on these

quantities under the constraint that the error incurred in the protocol was at most ε

(for an arbitrary but fixed ε ∈ (0, 1)).

It is easy to see that this protocol can be considered as a special case of state

redistribution: the system C which Alice has at the start of state redistribution can

be viewed as quantum side information; then coherent state merging corresponds to

the case in which no such side information is available to Alice. In this sense, state

redistribution can be used as a primitive for coherent state merging. However, Op-

penheim7 proved that the reverse is also true: state redistribution can be achieved in

the asymptotic i.i.d. setting by using coherent state merging as a primitive. In this

paper we make use of this idea, and employ the bounds on the quantum communica-

tion cost and entanglement gain for one-shot coherent state merging8, to obtain an

upper bound on the quantum communication cost for one-shot state redistribution.

We would like to point out that the same upper bound derived in this paper here was

also independently obtained in the work by Berta, Christandl and Touchette17.

In Section II we define the entropic quantities in terms of which our results, The-

orem 1 and Theorem 3, are expressed, and state some of their relevant properties.

In addition, we define the operational quantities of one-shot coherent state merging

which we employ in our proof of Theorem 1. In Section III we give a precise defini-

tion of the operational quantity that we study, namely, the quantum communication

cost of ε-error one-shot state redistribution and state our first theorem (Theorem 1)

which consists of an upper bound on this cost. In Section IV we recall the protocol

of coherent state merging, which we use as a primitive in our proof of Theorem 1,

which is given in Section V. The statement and proof of our main result (Theorem 3),

which consists of an upper bound on the second order asymptotic expansion for the

quantum communication cost of state redistribution, is given in Section VI.
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II. NOTATIONS AND DEFINITIONS

Let P(H) denote the set of positive semi-definite operators acting on a finite-

dimensional Hilbert spaceH, and let D(H) ⊂ P(H) denote the set of density matrices

(states) on H. Furthermore, let D≤(H) denote the set of subnormalized states20. For

any given pure state |ψ〉 ∈ H, we denote the projector |ψ〉〈ψ| simply as ψ. For

ωAB ∈ P(HA ⊗ HB), let ωA := TrBωAB denote its restriction to the subsystem A.

For ρ, σ ∈ D(H), the fidelity is defined as F (ρ, σ) := Tr
√√

ρσ
√
ρ. We use the same

expression for fidelity when either one of ρ or σ is subnormalized. For simplicity,

we denote a quantum operation (i.e., a completely positive trace-preserving (CPTP)

map) Λ : D(HA) 7→ D(HB) as Λ : A 7→ B. The identity map is denoted as id. A

quantum operation on a bipartite system, shared between two distant parties (say,

Alice and Bob), which consists of local operations on the two subsystems and quantum

communication from Alice to Bob is said to be a (one-way) LOQC map.

The results in this paper involve various entropic quantities. The von Neumann

entropy of a state ρA ∈ D(HA) is given by H(A)ρ = −TrρA log ρA. For a bipar-

tite system, ρAB the conditional entropy of the subsystem A given B is defined as

H(A|B) = H(ρAB) − H(ρB). For a tripartite state ρABC , the conditional mutual

information of the subsystems A and B given C is defined as:

I(A;B|C) = H(B|C)−H(B|AC).

In addition to the above entropic quantities, we make use of the following gen-

eralized entropies9,11 which arise naturally in one-shot quantum information theory:

Let ρAB ∈ D≤(HA⊗HB). For a bipartite state ρAB, the min-entropy of A conditioned

on B is defined as

Hmin(A|B)ρ = max
σB∈D(HB)

[−Dmax(ρAB||IA ⊗ σB)] ,

where for any ρ ∈ D≤(H) and ω ∈ P(H), Dmax(ρ||ω) is the max-relative entropy12:

Dmax(ρ||ω) := inf{γ : ρ ≤ 2γω}.
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For any ε ∈ (0, 1), a smooth version of these quantities are given by

Dε
max(ρ||ω) := min

ρ∈Bε(ρ)
Dmax(ρ||ω)

Hε
min(A|B)ρ := max

ρAB∈Bε(ρAB)
Hmin(A|B)ρ, (2)

where for any state ρ ∈ D(H), Bε(ρ) denotes the ε-ball around ρ and is defined as

Bε(ρ) := {ρ ∈ D≤(H) : F 2(ρ, ρ) ≥ 1− ε2}.

The smooth conditional max-entropy is given in terms of the smooth conditional

min-entropy via the following duality relation11,14,15:

Let ρAB ∈ D(HA ⊗ HB) and let ρABC ∈ D(HA ⊗ HB ⊗ HC) be an arbitrary

purification of ρAB. Then for any 0 ≤ ε ≤ 1,

Hε
max(A|C)ρ := −Hε

min(A|B)ρ. (3)

We also make use of the Rényi entropy of order zero, which for a state ρ ∈ D(H)

is defined as

H0(A)ρ = log(rkρA),

where rkρA denotes the rank of ρA. Its smooth version for any ε ∈ (0, 1) is given by

Hε
0(A)ρ = min

ρ∈Bε(ρ)
H0(A)ρ.

In order to obtain an upper bound on the second order asymptotic expansion for the

quantum communication cost, we make use of the second order asymptotic expansion

for the smooth max-relative entropy which was derived by Tomamichel and Hayashi

in13: for any ρ ∈ D(H) and σ ∈ P(H) with suppρ ⊆ suppσ, ∀ ε ∈ (0, 1):

Dε
max(ρ⊗n‖σ⊗n) = nD(ρ‖σ)−

√
n s(ρ‖σ)Φ−1(ε2) +O(log n), (4)

where D(ρ‖σ) := Tr (ρ log ρ− ρ log σ) is the quantum relative entropy,

s(ρ‖σ) :=
√
V (ρ‖σ), with V (ρ‖σ) := Tr

[
ρ(log ρ− log σ)2

]
−D(ρ‖σ)2, (5)

being the quantum information variance, and Φ−1(ε) := sup{x ∈ R | Φ(x) ≤ ε} is the

inverse of the cumulative distribution function of a standard normal random variable.
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III. ONE-SHOT STATE REDISTRIBUTION

Our first result is an upper bound on the ε-error quantum communication cost

and the ε-error entanglement cost of state redistribution. It is given by Theorem 1

below. Before stating it we need the following definition.

Definition 1. (One-shot state redistribution)

Consider a tripartite state ρABC shared between two parties Alice and Bob, with the

systems A and C being with Alice and the system B being with Bob. Let ψABCR

denote a purification of ρABC , with R being the inaccessible, purifying reference sys-

tem. Let Alice and Bob have further registers A0, A1 and B0, B1, respectively. A

one-shot ε-error state redistribution protocol is then defined as a joint quantum oper-

ation Λ : ACA0⊗BB0 → CA1⊗B1B
′B, which is one-way LOQC (with the quantum

communication being from Alice to Bob) and such that

F
(
ρCA1B1B′BR,Φ

m
A1B1

⊗ ψCB′BR

)
≥ 1− ε, (6)

where ρCA1B1B′BR := (Λ⊗ idR)
(
ψABCR ⊗ Φk

A0B0

)
and Φk

A0B0
, Φm

A1B1
are maximally

entangled states of Schmidt rank k, m, respectively. Here, B′ is a local ancilla of

Bob’s of the same size as A. The quantum communication cost of the protocol, which

we denote as q
(1)
ε (ρABC ,Λ), is the minimum number of qubits that Alice needs to send

to Bob for (6) to hold. Moreover, the number (log k− logm) := e
(1)
ε (ρABC ,Λ) is called

the entanglement cost of the protocol.

The quantum communication and entanglement cost of ε-error one-shot state re-

distribution for a state ρABC are then defined as

q(1)
ε (ρABC) := min

Λ
q(1)
ε (ρABC ,Λ), (7)

e(1)
ε (ρABC) := min

Λ
e(1)
ε (ρABC ,Λ), (8)

where the minimum is taken over all ε-error one-shot state redistribution protocols

Λ.

Our first main result in this paper is given by the following theorem.
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Theorem 1. Fix ε ∈ (0, 1). Then for any tripartite state ρABC, there exists an

ε-error one-shot state redistribution protocol Λ, with quantum communication and

entanglement cost given by

q(1)
ε (ρABC ,Λ) =

1

2

(
Hε′

max(A|B)ψ −Hε′

min(A|RB)ψ

)
− 2 log ε′, (9)

e(1)
ε (ρABC ,Λ) =

1

2

(
Hε′

max(A|B)ψ −Hε′

max(A|C)ψ

)
, (10)

where ε′ = ε2/(
√

5 + 1)2, and ψAB and ψABR are the reduced states of a purification

ψABCR of the state ρABC.

In particular, the RHS of (9) and (10) provides an upper bound on the quantum

communication cost q
(1)
ε (ρABC) defined by (7) and the entanglement cost q

(1)
ε (ρABC)

defined by (8), respectively.

IV. ONE-SHOT COHERENT STATE MERGING: A PRIMITIVE

FOR ONE-SHOT STATE REDISTRIBUTION

The proof of Theorem 1 employs a result on one-shot coherent state merging (or

FQSW) proved in8, which is given by Theorem 2 below. Before stating it, we need

to introduce the following definition.

Definition 2 (One-shot coherent state merging or FQSW). Consider a bipartite state

ρAB shared between Alice and Bob, with the system A being with Alice and the system

B being with Bob. Let ψABR denote its purification, with R being the inaccessible, pu-

rifying reference system. We call a quantum operation Λ̃ : A⊗B → A1⊗B1B
′B one-

shot ε-error coherent state merging of ρAB if it is one-way LOQC (with the quantum

communication being from Alice to Bob) and the state ΩA1B1B′BR :=
(

Λ̃⊗ idR

)
ψABR,

is such that

F
(
ΩA1B1B′BR,Φ

m
A1B1

⊗ΨB′BR

)
≥ 1− ε, (11)

where Φm
A1B1

denotes a maximally entangled state of Schmidt rank m. Here, B′

is a local ancilla of Bob’s of the same size as A. The number logm is called the

entanglement gain of the protocol and denoted as ẽ
(1)
ε (ρAB, Λ̃). Let q̃

(1)
ε (ρAB, Λ̃) denote

8



the corresponding quantum communication cost, that is the minimum number of

qubits that Alice needs to send to Bob for (11) to hold.

Theorem 2. 8 Fix ε ∈ (0, 1). Then for any bipartite state ρAB, there exists an ε-error

one-shot coherent state merging protocol, Λ̃, with entanglement gain and quantum

communication cost respectively given by21,

ẽ(1)
ε (ρAB, Λ̃) =

1

2

[
Hε′

0 (A)ψ +Hε′

min(A|R)ψ

]
+ log ε′ (12)

q̃(1)
ε (ρAB, Λ̃) =

1

2

[
Hε′

0 (A)ψ −Hε′

min(A|R)ψ

]
− log ε′ (13)

where ε′ = ε2/(
√

5 + 1)2, and ψA and ψAR are the reduced states of a purification

ψABR of the state ρAB.

Remark: The proof of the above theorem8 relies on a decoupling argument and

ensures the existence of a unitary operator U and an isometry V , such that ε-error

one-shot coherent state merging is achieved if (i) Alice acts on the state of her system

A with U , (ii) sends q̃
(1)
ε qubits to Bob, and (iii) Bob acts on the composite state of

the qubits that he receives from Alice and the state of his system B by the isometry

V .

V. PROOF OF THEOREM 1

For any tripartite state ρABC , an expression for the quantum communication cost

of an ε-error one-shot state redistribution protocol, for any fixed ε ∈ (0, 1), can be

obtained by a direct application of one-shot coherent state merging, if we simply

consider Alice to transfer the state of her system A to Bob, without exploiting the

additional system C which is in her possession. In this case, we can consider C to

be part of the reference system. From eq.(13) of Theorem 2 we then infer that state

redistribution can be achieved by the transfer of the following number of qubits from

Alice to Bob:

∆q =
1

2
[Hε′

0 (A)ψ −Hε′

min(A|CR)ψ]− log ε′, (14)
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where ε′ is as stated in Theorem 1. Meanwhile, from eq.(12) of Theorem 2, the

amount of entanglement generated is

∆e1 =
1

2
[Hε′

0 (A)ψ +Hε′

min(A|CR)ψ] + log ε′. (15)

However, one-shot state redistribution can be achieved at a lower quantum commu-

nication cost than that given by (14) above. A simple way to see this is by employing

the one-shot version of a novel construction which was introduced by Oppenheim7 in

the asymptotic i.i.d. setting. In it the system C plays the role of a coherent relay as

explained below (see also Figure 1). For this construction, it is convenient to split the

FIG. 1. The ε-error one-shot state redistribution protocol using one-shot coherent state

merging and ebit repackaging. Shares of the state ρABC are represented by circles, while

shared entanglement is represented by wiggly lines. The protocol of ebit repackaging is con-

tained in the dashed rectangle. Due to the ebit repackaging, ẽ
(1)
ε (ρAB, Λ̃) qubits (highlighted

in red and given by (12) of Theorem 2) are effectively sent to Bob without being physically

transferred. Here Λ̃ denotes the coherent state merging protocol from Alice to Charlie.

two-party protocol between Alice and Bob into a three-party protocol, by considering

the system C to be in the possession of a third party (say, Charlie). The construction
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is implemented through the following steps:

Step 1. One-shot ε-error coherent state merging from Alice to Charlie: Let us denote

this protocol by Λ̃. It results in the transfer of Alice’s state ρA to Charlie (with an

error of atmost ε), with the simultaneous generation of entanglement between them.

By eq.(12) of Theorem 2, the number of ebits of entanglement generated at this stage

is given by

∆e2 :=
1

2

[
Hε′

0 (A)ψ +Hε′

min(A|BR)ψ

]
+ log ε′. (16)

From the remark given after Theorem (2) it follows that this step can itself be broken

down into two steps7: (i) Alice applies a unitary transformation denoted by a unitary

operator U (say) on her system A and sends the required number of qubits (needed

to implement a one-shot ε-error coherent state merging protocol Λ̃) to Charlie. This

number is given by the right hand side of eq.(13) of Theorem 2, with the replacement

of R by BR. This is because in this case BR play the role of the reference. (ii)

Charlie then does the corresponding decoding isometry V (say) on the composite

state of the qubits that he receives from Alice and the system C in his possession.

After applying V , the resulting output will be ∆e2 ebits, shared between him and

Alice, and a remaining subsytem S in Charlie’s possession.

Step 2. Ebit repackaging: Charlie sets aside his share of the ebits that were generated

from the previous step and replaces them by those that he shared with Bob at the

start of the protocol. He then applies V † to the joint state of the latter and S.

Note that the above steps effectively result in the transfer of ∆e2 qubits from

Alice to Bob. Hence, instead of sending ∆q qubits (given by (14)), Alice (or, in this

three-party description, Charlie) only needs to physically send (∆q −∆e2) qubits to

Bob, in order to achieve ε-error one-shot state redistribution. From (14) and (16) we

then infer that there exists an ε-error one-shot state redistribution protocol, Λ, with
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quantum communication cost:

q(1)
ε (ρABC ,Λ) = ∆q −∆e2

=
1

2

(
−Hε′

min(A|CR)ψ −Hε′

min(A|BR)ψ

)
− 2 log ε′,

=
1

2

(
Hε′

max(A|B)ψ −Hε′

min(A|BR)ψ

)
− 2 log ε′, (17)

where the last line follows from the duality relation (3), since ψABCR is a pure state.

To show the entanglement cost of the ε-error one-shot state redistribution pro-

tocol, note that the naive protocol (that treats C as part of a reference system)

generates ∆e1 amount of entanglement. However, the protocol of ebit repackaging

trades ∆e2 amount of generated entanglement into quantum communication. Thus

the entanglement cost of the ε-error one-shot state redistribution protocol is

e(1)
ε (ρABC ,Λ) = −(∆e1 −∆e2)

=
1

2

(
−Hε′

min(A|CR)ψ +Hε′

min(A|BR)ψ

)
,

=
1

2

(
Hε′

max(A|B)ψ −Hε′

max(A|C)ψ

)
. (18)

This completes the proof of Theorem 1.

VI. SECOND ORDER ASYMPTOTICS

Consider the situation in which Alice and Bob share n identical copies of the state

ρABC . In this case, it follows from Theorem 1 that an upper bound on the quantum
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communication cost, q
(1)
ε (ρ⊗nABC), for state redistribution is given by the following:

q(1)
ε (ρ⊗nABC) ≤ 1

2

[
Hε′

max(An|Bn)ψ −Hε′

min(An|RnBn)ψ

]
− 2 log ε′,

=
1

2

[
−Hε′

min(An|CnRn)ψ −Hε′

min(An|RnBn)ψ

]
− 2 log ε′,

=
1

2
[ min
σCnRn

Dε′

max(ψAnCnRn||IAn ⊗ σCnRn)

+ min
ωBnRn

Dε′

max(ψAnBnRn||IAn ⊗ ωBnRn)]− 2 log ε′

≤ 1

2

[
min
σCR

Dε′

max(ψ⊗nACR||I
⊗n
A ⊗ σ

⊗n
CR)

+ min
ωBR

Dε′

max(ψ⊗nABR||I
⊗n
A ⊗ ω

⊗n
BR)
]
− 2 log ε′, (19)

where ψAnBnCnRn ≡ ψ⊗nABCR, with ψABCR being a purification of ρABC . The first

equality follows from the duality relation (3), the second equality follows from the

definition (2) of the smooth conditional min-entropy, the second inequality follows

from the restriction of the minimization to a smaller set, and the fact that the reduced

states of ψAnBnCnRn are tensor-power states. The minimizations in the above equation

are all over (normalized) states.

We now employ the second order asymptotic expansion of the max-relative entropy,

given by (4), which we recall here for convenience:

Dε
max(ρ⊗n‖σ⊗n) = nD(ρ‖σ)−

√
n s(ρ‖σ)Φ−1(ε2) +O(log n).

Note that for ε ∈ (0, 1
2
), Φ−1(ε) < 0 and hence the second term on the right hand

side of the above equation is positive.

Substituting the above expansion for the smooth max-relative entropies, with the

smoothing parameter given by ε′ = ε2/(
√

5 + 1)2, in the last line of (19), we obtain:
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for any ε ∈ (0, 1/2),

q(1)
ε (ρ⊗nABC) ≤ n

[1

2

[
min
σCR

D(ψACR||IA ⊗ σCR) + min
ωBR

D(ψABR||IA ⊗ ωBR)
]]

+
1

2
min
σCR

[(
−
√
nΦ−1(ε′

2
)
)
s(ψACR||IA ⊗ σCR)

]
+

1

2
min
ωBR

[(
−
√
nΦ−1(ε′

2
)
)
s(ψABR||IA ⊗ ωBR)

]
+O(log n),

≤ n
[1
2
I(A;R|B)ψ

]
−
√
nΦ−1(ε′

2
)
[1

2

[
s(ψACR||IA ⊗ ψCR) + s(ψABR||IA ⊗ ψBR)

]]
+O(log n). (20)

To arrive at the last line of (20), we used the following facts:

(i) ε′ < ε and hence Φ−1(ε′2) < 0;

(ii) for any bipartite state ρAB, minσB∈D(HB) D(ρAB||IA ⊗ σB) = D(ρAB||IA ⊗ ρB),

which simply follows from the fact that the relative entropy of two states is non-

negative (see e.g. Lemma 6 of16)

(iii) For a pure state ψABCR, H(A|CR)ψ = −H(A|B)ψ, where ψACR and ψABR are

the reduced states of ψABCR.

(iv) I(A;R|B) = H(A|B)−H(A|BR).

Thus we have proved the following theorem, which constitutes our second main result:

Theorem 3. Fix ε ∈ (0, 1/2). Then for any tripartite state ρABC, an upper bound

on the second order asymptotic expansion for the quantum communication cost of

achieving state redistribution with an error of at most ε, is given by

n
[1
2
I(A;R|B)ψ

]
−
√
nΦ−1(ε′

2
)
[1

2

[
s(ψACR||IA ⊗ ψCR) + s(ψABR||IA ⊗ ψBR)

]]
+O(log n),

(21)

where ε′ = ε2/(
√

5 + 1)2, and s(·||·), defined by (5), denotes the square root of the

quantum information variance.

As a corollary of this theorem we recover the following result of Devetak and Yard4

stated earlier: in the asymptotic i.i.d. setting, state redistribution for a tripartite state

ρABC can be achieved if Alice sends qubits at a rate (1/2)I(A;R|B) to Bob. This

14



immediately follows from Theorem 3 since the quantum communication cost Q in the

asymptotic i.i.d. setting can be expressed in terms of q
(1)
ε (ρ⊗nABC) as follows:

Q ≡ Q(ρABC) = lim
ε→0

lim
n→∞

1

n
q(1)
ε (ρ⊗nABC). (22)
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