

Development of specific membrane bioreactors for membrane fouling control during wastewater treatment for reuse

By

Lijuan Deng

A Dissertation Submitted in fulfilment for the degree of DOCTOR OF PHILOSOPHY

In

Faculty of Environmental and Information Engineering

University of Technology, Sydney New South Wales, Australia December 2015

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

SIGNATURE OF STUDENT:

Production Note: Signature removed prior to publication.

Lijuan Deng

DATE: 18 December 2015

ACKNOWLEDGEMENTS

It is my great pleasure to express my sincere gratitude to my supervisors, Prof. Huu Hao Ngo and Dr Wenshan Guo. As my principal supervisor, Prof. Ngo has been supporting me since the beginning of my PhD study by giving me the wonderful research topic and providing his research knowledge and experience. Without his invaluable guidance and supports, I will not be able to finish my study within the scheduled time. He has always inspired me whenever I confronted with difficulties and lost my confidence. In addition, he has also helped me to overcome my drawbacks and limitations in English writing and research approach. Although Dr Wenshan Guo is my alternative supervisor, the time and the efforts she has dedicated to my study is equal to that done by Prof. Ngo. Dr Wenshan Guo trained me for the experimental-setup and the sample analyses. She consistently encouraged me with her great patience. She always provided me with very helpful suggestions and advice for my experiments. Moreover, her great helps in revising the papers as well as improving my English writing to a better level with logical and systematic manner.

I would also like to thank the joint University of Technology Sydney–China Scholarship Council (UTS–CSC) Doctor of Philosophy (Ph.D.) Scholarship for supporting my study during my stay in Australia. Besides, I am also deeply grateful for the financial support from Prof. Ngo's MBR research project, which covered the expenses of consumables for my experiments.

My earnest thanks go to M.E. Johir, who is UTS Environmental Engineering Laboratories Manager, for his kindly assistance on the operating of the analysis instruments. I am very grateful to Tram for her sincere help with binding this thesis.

Finally, I would like to expand my gratitude to my parents and friends who were very considerate of me and gave me their love and encouragement throughout my entire PhD study.

TABLE OF CONTENTS

Title page	
Certificate of original authorship	i
Acknowledgements	ii
Table of contents	iii
Table titles	ix
Figure captions	xi
Abbreviations	xiv
Nomenclatures	xviii
Greek symbols	xxi
Abstract	xxii

CHAPTER 1 Introduction

1.1. Research Background	1-1
1.1.1. Membrane fouling	1-1
1.1.2. Current fouling control strategies	1-1
1.2. Research motivations and scope	1-3
1.3. Research significance	1-3
1.4. Organization and major contents of thesis	1-4

CHAPTER 2 Literature Review

2.1. Introduction	2-1
2.2. Membrane bioreactor	2-3
2.2.1. Fundamental aspects of membrane bioreactor and its properties	2-3
2.2.2. Membrane bioreactor configurations	2-5
2.2.3. Membrane fouling	2-6
2.3. Biofilm formation	2-8
2.4. Factors affecting biofouling in MBR	2-10
2.4.1. Mixed liquor properties	2-11
A. Bound extracellular polymeric substances (EPS)	···· 2 - 11

B. Soluble microbial products (SMP) and biopolymer clusters (BPC) \cdots	·2-14
C. Mixed liquor suspended solids (MLSS) and sludge viscosity	·2-17
D. Floc size	·2-18
2.4.2. Operating conditions	2-19
A. Sludge retention time (SRT)······	·2-19
B. Hydraulic retention time (HRT) and filtration flux	·2-25
C. Dissolved oxygen (DO) ······	·2-26
D. Temperature	-2-28
2.4.3. Feed water characteristics	2-30
A. Organic loading rate (OLR) or food/microorganism (F/M) ratio	-2-30
B. Carbon to nitrogen or phosphorus ratio (C/N or C/P)······	·2-31
C. Salinity and cations	-2-32
2.4.4. Membrane materials	2-35
2.5. Biofouling control strategies	2-40
2.5.1. Membrane cleaning	2-40
2.5.2. Addition of flocculants	2-42
2.5.3. Addition of media	2-44
2.5.4. Other methods	2-48
2.6. Conclusion remarks	2-50

CHAPTER 3 Experimental Investigations

3.1. Introduction	3-1
3.2. Materials and methods	3-1
3.2.1. Wastewater characteristics	3-1
3.2.2. Experimental setup and operating conditions of a submerged	membrane
bioreactor (MBR)	3-2
3.2.3. Organic and nutrient analyses	3-4
3.2.4. Oxygen uptake rate (OUR) and specific oxygen uptake rate (SOU	R)3-4
3.2.5. Membrane fouling analysis	3-5
A. Filtration characteristics	3-5
B. Membrane fouling rate	3-6
3.2.6. Biomass concentration and growth rate	

3.2.7. Characterization of mixed liquor and cake layer
A. Extraction of extracellular polymeric substances (EPS), soluble microbial
products (SMP) and biopolymer clusters (BPC)3-7
B. Apparent viscosity, zeta potential, relative hydrophobicity (RH), sludge
floc size ····································
3.3. Analysis schedule

CHAPTER 4 A Comparison Study on the Performance of a Sponge-Submerged Membrane Bioreactor and a Conventional Membrane Bioreactor

4.1. Introduction	4-1
4.1.1. Background	4-1
4.1.2. Objectives	4-1
4.2. Materials and methods	4-2
4.2.1. Experimental setup and operating conditions of the SSMBR and	
the CMBR	4-2
4.2.2. Sponge specifications	4-2
4.2.3. Analysis methods	4-3
4.3. Results and discussion	4-5
4.3.1. Attached biomass growth on sponge during acclimatization	4-5
4.3.2. The performance of the SSMBR and the CMBR	4-7
A. Treatment performance of the SSMBR and the CMBR	4-7
B. TMP development in the SSMBR and the CMBR	4-7
4.3.3. Mixed liquor suspended solids (MLSS) concentration	
and sludge viscosity	4-8
4.3.4. Zeta potential, relative hydrophobicity (RH)	
and particle size distribution	4-11
4.3.5. Bound EPS and SMP in activated sludge	4-13
4.3.6. Membrane fouling behaviour	4-15
A. Fouling resistance distribution	4-15
B. Cake layer on membrane surface	····· 4 - 16
C. Effects of mixed liquor properties on membrane fouling	4-18

Γ	D. A new fouling indicator ······4-19
4.4. Conclu	1sions

CHAPTER 5 Enhanced Performance of Submerged Membrane Bioreactor by Bioflocculant Addition

5.1. Introduction
5.1.1. Background
5.1.2. Objectives
5.2. Materials and methods
5.2.1. Experimental setup and operating conditions of the MBR-G
and the CMBR
5.2.2. Analysis methods
5.3. Results and discussion
5.3.1. The performance of the MBR-G and the CMBR
A. Treatment performance of the MBR-G and the CMBR
B. TMP development in the MBR-G and the CMBR
5.3.2. Mixed liquor suspended solids (MLSS) concentration, mixed liquor volatile
suspended solids (MLVSS) and apparent viscosity
5.3.3. Particle size distribution, zeta potential
and relative hydrophobicity (RH)5-7
5.3.4. EPS and SMP in mixed liquor
5.3.5. Membrane fouling behaviour
A. Fouling resistance distribution
B. Cake layer on membrane surface
C. Effects of mixed liquor properties on membrane fouling5-14
5.3.6. Modeling of membrane fouling in the MBR-G and the CMBR5-15
5.4. Conclusions

CHAPTER 6 Effects of Hydraulic Retention Time and Bioflocculant Addition on the Performance of a Sponge-Submerged Membrane Bioreactor

6.1. Introduction
6.1.1. Background
6.1.2. Objectives
6.2. Materials and methods
6.2.1. Experimental setup and operating conditions of the SSMBR and the
SSMBR with bioflocculant addition (SSMBR-G)6-2
6.2.2. Analysis methods
6.3. Results and discussion
6.3.1. Effects of HRT on SSMBR performance
A. Treatment performance ······6-6
B. TMP development ······6-7
C. Mixed liquor suspended solids (MLSS), mixed liquor volatile suspended
solids (MLVSS) and apparent viscosity
D. EPS and SMP in mixed liquor ······6-9
E. Membrane fouling analysis ·······6-11
6.3.2. Effects of bioflocculant addition on SSMBR fouling
A. The performance of the SSMBR-G and the SSMBR ·········6-14
B. Membrane fouling analysis ···································
6.4. Conclusions

CHAPTER 7 A New Functional Media for Enhancing Performance of Integrated Moving Bed Biofilm Reactor-Membrane Bioreactor Systems

7.1. Introduction	7-1
7.2. Materials and methods	7-3
7.2.1. Wastewater and media specifications	7-3
7.2.2. Experimental setup and operating conditions	7-3
7.2.3. Analysis methods	7-6

7.3. Results and discussion7-6
7.3.1. Treatment performance of the S-MBBR and the MBBR during the start-up
period7-6
7.3.2. Treatment performance of the S-MBBR and the MBBR during the
experimental period7-7
7.3.3. The performance of the integrated MBBR-MBR systems
A. Treatment performance 7-9
B. Membrane fouling behaviour ······ 7-9
7.4. Conclusions

CHAPTER 8 Conclusions and Recommendations

8.1.	Conclusions	8-1
8.2.	Recommendations	8-2

References	 R-1
Appendix	

Table titles

Chapter 2

Table 2.1	Comparison between submerged MBR and side-stream MBR (modified from Radjenović et al., 2008)	2-6
Table 2.2	Effects of MLSS concentration on biofouling	2-18
Table 2.3	Effects of SRT on biofouling	2-23
Table 2.4	Effects of DO on biofouling	2-27
Table 2.5	Effects of temperature on biofouling	2-29
Table 2.6	Effects of OLR or F/M ratio on biofouling	2-31
Table 2.7	Effects of C/N ratio, salinity and cations on biofouling	2-34
Table 2.8	Membrane characteristics associated with biofouling	2-38
Table 2.9	The applications of different chemical reagents for membrane cleaning	2-41
Table 2.10	Flocculant addition induced membrane fouling reduction in batch tests and short-term dead end or cross-flow filtration tests (adapted from Deng et al., 2015)	2-44
Table 2.11	Comparison on effects of different kinds of biomass carriers for membrane fouling reduction in MBR	2-48

Chapter 3

Table 3.1	Compositions of synthetic wastewater	3-2

Chapter 4

1		
Table 4.1	System descriptions and operating conditions of the SSMBR and the CMBR	4-4
Table 4.2	Removal efficiencies of DOC, COD, PO ₄ -P, NH ₄ -N and TN in the SSMBR and the CMBR during the operational period	4-7
Table 4.3	SMP compositions and total SMP concentrations of mixed liquor in SSMBR and CMBR at two different stages (within and after 7 days of operating) during the operational period	4-14
Table 4.4	Bound EPS compositions and total bound EPS concentrations of mixed liquor in SSMBR and CMBR at two different stages (within and after 7 days of operation) during the operational period	4-15

Chapter 5

Table 5.1	System descriptions and operating conditions of the MBR-G and the CMBR	5-4
Table 5.2	Fouling resistance distribution in the MBR-G and the CMBR	5-13

Table 5.3	Values of coefficients and constants used to simulate the model	5-17
Chapter 6		
Table 6.1	System descriptions and operating conditions of the SSMBR and the SSMBR-G	6-4
Table 6.2	Total EPS concentrations and EPS compositions (average EPS_P/EPS_C) of activated sludge in the SSMBR and the SSMBR-G at different phases during the operational period.	6-16
Table 6.3	Total SMP concentrations and SMP compositions (average SMP_P/SMP_C) of the supernatant in the SSMBR and the SSMBR-G at different phases during the operational period	6-17
Chapter 7		
Table 7.1	Operating conditions at different phases over the entire experimental period	7-5
Table 7.2	Treatment performance of MBBRs at HRTs of 12 and 6 h during experimental period	7-8
Table 7.3	Fouling resistance distribution in the MBBR-MBR and the S-MBBR-MBR	7-11
Table 7.4	The compositions of bound EPS, SMP and BPC in membrane	7-14

cake layer

Figure captions

CHAPTER 1

Figure 1.1	Main structure of this research	1-4
CHAPTER	2	
Figure 2.1	Conventional activated sludge process (adapted from Water Environment Federation, 2012)	2-4
Figure 2.2	Schematic of biofilm formation on a surface (modified from Bitton, 2005)	2-9
Figure 2.3	Factors affecting fouling in the submerged MBRs (modified from Le-Clech et al., 2006)	2-10
Figure 2.4	Schematic diagram of the classification paradigm of EPS in activated sludge (adapted from Wang et al., 2014c)	2-12
Figure 2.5	Schematic illustration of correlation between SMP and BPC in MBR	2-16

CHAPTER 3

Figure 3.1	Hollow fiber PVDF membrane module	3-3
Figure 3.2	Experimental set-up of MBR	3-3
Figure 3.3	The major resistances of membrane during filtration (modified from Shirazi et al., 2010)	3-6
Figure 3.4	Procedure for EPS, SMP, and BPC extraction	3-8
Figure 3.5	Photo of centrifuge (Clements 2000)	3-10
Figure 3.6	Total protein kit (TP0300 SIGMA, Sigma-Aldrich) for protein analysis	3-10
Figure 3.7	The instruments for analysis of sludge samples: a) Brookfield Viscometer M/OO-151-E0808 for sludge viscosity; b) Separatory funnel for RH; c) Zetasizer Nano ZS for zeta potential; d) Olympus System Microscope Model BX41 for obtaining images of sludge flocs	3-12
Figure 3.8	Diagram of analyses in the research	3-13

CHAPTER 4

Figure 4.1	Experimental set-up of the SSMBR	4-3
Figure 4.2	The attached growth on sponge during acclimatization	4-5
Figure 4.3	SOUR variation of attached growth on sponge during acclimatization	4-6
Figure 4.4	TMP profile for the SSMBR and the CMBR	4-8

Figure 4.9	Fouling indicator profile for the CMBR	4-20
D• (0		4.00
Figure 4.8	Compositions of bound EPS and SMP in the cake layer in the SSMBR and the CMBR	4-18
Figure 4.7	Fouling resistance distribution in the SSMBR and the CMBR	4-16
Figure 4.6	Microscopic images of the sludge flocs in mixed liquor on day 20 in (a) the SSMBR and (b) the CMBR	4-12
Figure 4.5	Microscopic images of filamentous bacteria in mixed liquor on (a) day 83 in the SSMBR and (b) day 14 in the CMBR	4-10

CHAPTER 5

Figure 5.1	Experimental set-up of the MBR-G (a) and the CMBR (b)	5-3
Figure 5.2	TMP profile for the MBR-G and the CMBR	5-6
Figure 5.3	Microscopic images of the sludge flocs in mixed liquor in the MBR-G and the CMBR (100 \times)	5-9
Figure 5.4	Variations of SMP (including SMP _P and SMP _C) concentrations in the supernatant in the MBR-G and the CMBR	5-11
Figure 5.5	Variations of EPS concentrations and EPS_P/EPS_C ratio in activated sludge in the MBR-G and the CMBR	5-12
Figure 5.6	Compositions of bound EPS, SMP and BPC in cake layer in the MBR-G and the CMBR	5-14
Figure 5.7	SMP profile of the supernatant in the MBR-G and the CMBR	5-17
Figure 5.8	R_P profile drawn for the MBR-G and the CMBR with the modified equation (Eq. (5.4))	5-18
Figure 5.9	Variation of MLSS concentration in activated sludge in the MBR-G and the CMBR	5-19
Figure 5.10	TMP profile after model calibration for the MBR-G and the CMBR	5-20

CHAPTER 6

Figure 6.1	Experimental set-up of the SSMBR (a) and the SSMBR-G (b)	6-5
Figure 6.2	TMP profile for the SSMBRs at different HRTs	6-8
Figure 6.3	Variations of EPS concentrations in activated sludge in the SSMBRs at different HRTs	6-10
Figure 6.4	Variations of SMP_P/SMP_C ratio and SMP concentrations in the supernatant of mixed liquor in the SSMBRs at different HRTs	6-11
Figure 6.5	Fouling resistance distribution in the SSMBRs at different HRTs	6-12

Figure 6.6	Compositions of bound EPS, SMP and BPC of cake layer in the SSMBRs at different HRTs	6-13
Figure 6.7	TMP profile for the SSMBR, the SSMBR-G, the CMBR and the MBR-G with similar operating conditions (flux of 12 L/m^2 , initial biomass of 5 g/L and HRT of 6.67 h)	6-15

CHAPTER 7

Figure 7.1	Experimental set-up of the S-MBBR-MBR and the MBBR-MBR	7-4
Figure 7.2	Hollow fiber PE membrane module	7-5
Figure 7.3	DOC, COD, NH ₄ -N, T-N and PO ₄ -P removals in the S-MBBR-MBR, the S-MBBR, the MBBR-MBR, and the MBBR	7-9
Figure 7.4	TMP development profile for the MBBR-MBR and the S-MBBR-MBR	7-11
Figure 7.5	Variations of EPS_P and EPS_C concentrations of activated sludge in the MBR unit at different TMPs	7-13
Figure 7.6	Variations of SMP concentrations and SMP _P /SMP _C ratio of mixed liquor in the MBR unit at different TMPs	7-13

Symbol	Description
AC	Acylase
AFM	Atomic force microscopy
AnMBR	Anaerobic membrane bioreactor
AOB	Ammonium oxidizing bacteria
AOMBR	Anaerobic-oxic membrane bioreactor
A/O	Anoxic/oxic
A^2/O	Anaerobic/anoxic/oxic
BAP	Biomass-associated products
BNR	Biological nutrient removal
BOD	Biological oxygen demand
BPC	Biopolymer clusters
BPC _C	Polysaccharides in biopolymer clusters
BPC _P	Proteins in biopolymer clusters
СА	Cellulose acetate
CEB	Chemical enhanced backwashing
CEBs	Cell entrapping beads
CER	Cation exchange resin
CF	Concentration factor
CIOF	Combined inorganic-organic flocculant
CIP	Cleaning in place
CMBR	Conventional membrane bioreactor
COD	Chemical oxygen demand
C/N or COD/N	Carbon to nitrogen ratio
C/P	Carbon to phosphorus ratio
CST	Capillary suction time
DC	Direct current
DO	Dissolved oxygen
DOC	Dissolved organic carbon
DOC'	Deoxycholate
DOM	Dissolved organic matter

Abbreviations

DPB	Denitrifying-phosphate-accumulating bacteria
DTPA	Diethylenetrinitrilopentaacetic acid
ECPS	Extra-cellular polymers
e-MBR	Electro-membrane bioreactor
DTPA	Diethylenetrinitrilopentaacetic acid
EDTA	Ethylene diamine tetraacetic acid
EL	Electrostatic double layer
EMPS	Extra-microcolony polymers
EPS	Extracellular polymeric substances
EPS _C	Polysaccharides in extracellular polymeric substances
EPS _P	Proteins in extracellular polymeric substances
EPS _P /EPS _C	Protein to polysaccharide ratio in extracellular polymeric substances
F/M	Food to microorganisms ratio
GBF	Green bioflocculant
GF	Glass fiber
HIS	Hydrophilic substances
HMBR	Hybrid membrane bioreactor
HRT	Hydraulic retention time
КМТ	Kaldnes MijiØteknologi, TØnsberg
LB-EPS	Loosely bound extracellular polymeric substances
LMW	Low molecular weight
Mag-S-MPS	Magnetically separable mesoporous silica
MBBR	Moving bed biofilm reactor
MBR	Membrane bioreactor
MBR-G	Membrane bioreactor with bioflocculant addition
MBBR-MBR	Moving bed biofilm reactor-membrane bioreactor
MCE	Mixed cellulose ester
ME	Mixed ester
MF	Microfiltration
MLE	Modified Luzack-Ettinger
MLSS	Mixed liquor suspended solids
MLVSS	Mixed liquor volatile suspended solids

MRD	Membrane rejection degree
MW	Molecular weight
MWCO	Molecular weight cutoff
NLR	Nitrogen organic loading
NOB	Nitrite oxidizing bacteria
NPOC	Non-purgeable organic carbon
ОНО	Ordinary heterotrophic organisms
OLR	Organic loading rate
OUR	Oxygen uptake rate
PAC	Powdered activated carbon
PACI	Polyaluminium chloride
PAC-MBR	Powdered activated carbon-membrane bioreactor
PAM	Polyacrylamide
PAN	Polyacrylonitrile
PAOs	Polyphosphate accumulating organisms
РС	Polycarbonate
PE	Polyethylene
PES	Polyethersulfone
PFC	Polymeric ferric chloride
PFS	Polymeric ferric sulfate
Phenex-NY	Phenex-Nylon
PN/PS	Protein to polysaccharide ratio
POC	Purgeable organic carbon
PP	Polypropylene
PSD	Particle size distribution
PSU	Polysulfone
PU	Polyurethane
PUS	polyurethane sponge
PVC	Polyvinyl chloride
PVDF	Polyvinylidene fluoride
PVDF _H	Hydrophobic polyvinylidene fluoride
QQ	Quorum quenching
QQMBR	Quorum quenching membrane bioreactor

RH	Relative hydrophobicity
SCMBR	Submerged conventional membrane bioreactor
SDS	Sodium dodecyl sulfate
SEM	Scanning electronic microscopy
S-MBBR	Moving bed biofilm reactor with sponge modified plastic carriers
S-MFC	Sludge microbial fuel cell
SMBR	Submerged membrane bioreactor
SMP	Soluble microbial products
SMP _C	Proteins in soluble microbial products
SMP _P	Polysaccharides in soluble microbial products
SMP _P /SMP _C	Protein to polysaccharide ratio in soluble microbial products
SND	Simultaneous nitrification and denitrification
SOUR	Specific oxygen uptake rate
SRT	Sludge retention time
SSMBR	Sponge-submerged membrane bioreactor
SSMBR-G	Sponge-submerged membrane bioreactor with bioflocculant addition
STP	Sodium tripolyphosphate
SVI	Sludge volume indexes
TB-EPS	Tightly bound extracellular polymeric substances
ТСА	Trichloroacetic acid
ТМР	Transmembrane pressure
ТОС	Total organic carbon
TSAMBR	Thermophilic submerged aerobic membrane bioreactor
TSS	Total suspended solids
UAP	Utilization-associated products
UCT	The University of Cape Town
UF	Ultrafiltration
UTS	University of Technology, Sydney
WSW	Without sludge wasting
VFAs	Volatile fatty acids
VSS	Volatile suspended solids

Nomenclatures

Symbol	Description
ADIPAP KD 452 or KD452	Cationic polymers
Al ₂ (SO ₄) ₃	Aluminium sulfate
CaCl ₂ ·2H ₂ O	Calcium chloride
Cc	Concentration of potential cake forming particles in the bulk liquid (e.g. MLSS) which typically varies over time in membrane bioreactor
CGMS	Modified corn starch
$C_6H_{12}O_6$	Glucose
CO ₂	Carbon dioxide
CoCl ₂ ·6H ₂ O	Cobalt chloride
CPE	Organic cationic polyelectrolyte
C _{SMP}	Time-dependent concentration of soluble particles entering the pores
CuSO ₄ ·5H ₂ O	Cupric sulphate
d _{p,used}	The initial pore diameter of the membrane in μm
dTMP/dt	Membrane fouling rate
f	The membrane's porosity
FeCl ₃	Ferric chloride or Ferric chloride anhydrous
Fe-MBR	Electro-membrane bioreactor with stainless steel mesh as the anode
h _c	Variable depth of the cake layer expressed as a first order differential function in time, which relies on the attachment and detachment of cake layer
h _m	The membrane's effective thickness
H_2O_2	Hydrogen peroxide
H_2SO_4	Sulphuric acid
J	The permeate flux
k	The factor representing the detachment of the cake layer from the membrane surface
kDa	Unified atomatic mass unit

$K_2Cr_2O_7$	Potassium dichromate
KH ₂ PO ₄	Potassium phosphate
MLSS _e	The MLSS concentration in the aqueous phase after emulsification
MLSS _i	The initial MLSS concentration of the mixed liquor sample
m _{d,o}	Outer membrane diameter
m _{d,i}	Inner membrane diameter
Mg	Magnesium
MGMS	Modified corn starch
MgSO ₄ ·7H ₂ O	Magnesium sulphate
MPE	Organic flocculant
MPE50	Organic flocculant (cationic polymers)
MPL30	Cationic polymers
MnCl ₂ ·7H ₂ O	Manganese chloride
NALCO MPE50	Cationic polymers
n _c	Cake fouling factor to explain the typically observed exponential rise of TMP due to the cake layer resistance especially at the final stage of operation of an MBR system
n _p	Pore fouling factor to explain the typically observed exponential rise of TMP due to the pore fouling resistance especially at the final stage of operation of an MBR system
NaCl	Sodium chlorite
NaClO	Sodium hypochlorite
NaHCO ₃	Sodium hydrogen carbonate
Na ₂ MoO ₄ ·2H ₂ O	Sodium molybdate dehydrate
NH ₂ OH	Hydroxylamine
NH ₄ -N or NH ₄ ⁺	Ammonia nitrogen
(NH ₄) ₂ SO ₄	Ammonium sulphate
NO ₂ -N or NO ₂ ⁻	Nitrite
NO	Nitric oxide
N_2	Nitrogen gas
N_2O	Nitrous oxide
NO ₃ -N or NO ₃ ⁻	Nitrate
PAM-MGMS	Polyacrylamide-starch composite flocculant

рН	Power of hydrogen or potential hydrogen
PM30	A kind of polyethersulfone membrane
PO ₄ -P	Orthophosphate
Poly-1	Cationic polymers
Poly-2	Modified cationic polymers
r _p	Membrane pore radius
R80	Membrane bioreactor with 80 nm pore-sized ceramic membrane
R100	Membrane bioreactor with 100 nm pore-sized ceramic membrane
R200	Membrane bioreactor with 200 nm pore-sized ceramic membrane
R300	Membrane bioreactor with 300 nm pore-sized ceramic membrane
\mathbb{R}^2	Squared value of correlation coefficient
R _C	Cake layer resistance
R _M	Intrinsic membrane resistance
R _{IR}	Irreversible fouling resistance
R _P	Pore blocking resistance
R _T	Total fouling resistance
SMP _{total}	Total soluble microbial products
t	The filtration time
Τ	Temperature
TATE & LYLE Mylbond 168	Starch
Ti-MBR	Electro-membrane bioreactor with titanium anodes
TN	Total nitrogen
ZnSO ₄ ·7H ₂ O	Zinc sulphate
X	Independent variable
У	Variable
Δ MLSS/ Δ t	Biomass growth rate
ΔΡ	Transmembrane pressure gradient
$\Delta TMP / \Delta t$	Membrane fouling rate
YW 30	A kind of regenerated cellulose membrane

Greek symbols

Symbol	Description
ac	Specific resistance of the compressible cake layer
α _p	Pore size reduction coefficient
γ	Shear rate
η _f	Average fraction of soluble particles that accumulate in membrane pores
ρ _c	Density of the cake layer
ρ _Ρ	Density of biomass
τ	Shear stress
μ	Viscosity of the permeate

PhD DISSESRTATION ABSTRACT

Author:	Lijuan Deng
Date:	18 December 2015
Thesis title:	Development of specific integrated membrane bioreactors
	(MBRs) for membrane fouling control during wastewater
	treatment for reuse
Faculty:	Environmental and Information Technology
School:	Civil and Environmental Engineering
Supervisors:	Prof. Dr. Huu Hao Ngo (Principal supervisor)
	Dr. Wenshan Guo (Alternative supervisor)

Abstract

In recent years, membrane fouling has become a critical issue of membrane bioreactor (MBR) in wastewater treatment. To resolve this obstacle, introducing biomass carriers or flocculants into submerged MBR (SMBR) has become one of the effective technologies for membrane fouling control. This study aims to provide an indepth analysis on membrane fouling behaviour in SMBRs with sponge and/or the patented green bioflocculant by considering the properties of activated sludge and cake layer. A new functional media (sponge modified plastic carrier) was also developed to enhance the performance of integrated moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) systems. The results suggested that sponge addition in a SMBR (SSMBR) or bioflocculant addition in a SMBR (MBR-G) reduced cake layer formation and limited pore blocking, thus effectively minimizing membrane fouling. Better sludge characteristics were obtained in both of the SSMBR and the MBR-G due to less soluble microbial products (SMP), lower biomass growth and sludge viscosity, higher protein to polysaccharide ratio in extracellular polymeric substances, higher zeta potential, greater relative hydrophobicity, larger floc size and better flocculation ability. The presence of sponge or bioflocculant in the SMBR also eliminated extracellular polymeric substances (EPS), SMP and/or biopolymer clusters (BPC) on membrane surface. Consequently, cake layer (R_C) and pore blocking resistance (R_P) were decreased in the SSMBR and the MBR-G. A modified resistance-in-series model proposed for the SMBR with and without bioflocculant could quantitatively demonstrate the impacts of sludge characteristics on membrane fouling. In the SSMBR, a longer hydraulic retention time (HRT) of 6.67 h permitted more considerably fouling reduction comparing to shorter HRTs (5.33 and 4.00 h). Moreover, lower R_P and R_C at the prolonged HRT were mainly ascribed to the elevated protein to polysaccharide ratio in SMP (SMP_P/SMP_C) of mixed liquor, together with the declined EPS and BPC in cake layer. SMP was not the primary membrane foulant when the SSMBRs were operated at different HRTs. Bioflocculant addition at the optimum HRT of 6.67 h further mitigated fouling in the SSMBR by improving activated sludge and cake layer characteristics. The integrated MBBR-MBR with the sponge modified plastic carriers showed better removal of DOC, NH₄-N, T-N and PO₄-P than the MBBR-MBR with plastic carriers only. Furthermore, the sponge modified plastic carriers also eliminated SMP of mixed liquor, and reduced SMP and BPC on membrane surface, which ameliorated membrane fouling, R_P and R_C as compared to the plastic carriers.

Keywords: Submerged membrane bioreactor (SMBR); Moving bed biofilm reactor (MBBR); Integrated MBBR-MBR; Sponge; Bioflocculant; Hydraulic retention time (HRT); Sponge modified plastic carriers; Membrane fouling; Nutrient removal; Cake layer; Modelling