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Abstract

In recent years, technological innovations in communication networks, computing
applications and information modelling have been increasing significantly in com-
plexity and functionality driven by the needs of the modern world. As large-scale
networks are becoming more complex and difficult to manage, traditional network
management paradigms struggle to cope with traffic bottlenecks of the traditional
switch and routing based networking deployments. Recently, there has been a grow-
ing movement led by both industry and academia aiming to develop mechanisms to
reach a management paradigm that separates the control plane from the data plane.
A new emerging network management paradigm called Software-Defined Networking
(SDN) is an attempt to overcome the bottlenecks of traditional data networks. SDN
offers a great potential to ease network management, and the OpenFlow protocol
in particularly often referred to a radical new idea in networking. SDN adopts
the concept of programmable networks which separate the control decisions from
forwarding hardware and thus enabling the creation of a standardised programming
interface. Flow computation is managed by a centralised controller with the switches
only performing simple forwarding functions. This allows researchers to implement
their protocols and algorithms to control data packets without impacting on the
production network. Therefore, the emerging OpenFlow technology provides more
flexible control of networks infrastructure, are cost effective, open and programmable
components of network architecture.
SDN is very efficient at moving the computational load away from the forward-
ing plane and into a centralised controller, but a physically centralised controller
can represent a single point of failure for the entire network. This centralisation
approach brings optimality, however, it creates additional problems of its own in-
cluding single-domain restriction, scalability, robustness and the ability for switches
to adapt well to changes in local environments.
This research aims at developing a new distributed active information model (DAIM)
to allow programmability of network elements and local decision-making processes
that will essentially contribute to complex distributed networks. DAIM offers ad-
aptation algorithms embedded with intelligent information objects to be applied
to such complex systems. By applying the DAIM model and these adaptation al-
gorithms, managing complex systems in any distributed network environment can
become scalable, adaptable and robust. The DAIM model is integrated into the SDN
architecture at the level of switches to provide a logically distributed control plane
that can manage the flow setups. The proposal moves the computational load to the
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switches, which allows them to adapt dynamically according to real-time demands
and needs. The DAIM model can enhance information objects and network devices
to make their local decisions through its active performance, and thus significantly
reduce the workload of a centralised SDN/OpenFlow controller.

In addition to the introduction (Chapter 1) and the comprehensive literature reviews
(Chapter 2), the first part of this dissertation (Chapter 3) presents the theoretical
foundation for the rest of the dissertation. This foundation is comprised of the logic-
ally distributed control plane for SDN networks, an efficient DAIM model framework
inspired by the O:MIB and hybrid O:XML semantics, as well as the necessary ar-
chitecture to aggregate the distribution of network information. The details of the
DAIM model including design, structure and packet forwarding process are also
described.

The DAIM software specification and its implementation are demonstrated in the
second part of the thesis (Chapter 4). The DAIM model is developed in the C++
programming language using free and open source NetBeans IDE. In more detail,
the three core modules that construct the DAIM ecosystem are discussed with some
sample code reviews and flowchart diagrams of the implemented algorithms. To
show DAIM’s feasibility, a small-size OpenFlow lab based on Raspberry Pi’s has
been set up physically to check the compliance of the system with its purpose and
functions. Various tasks and scenarios are demonstrated to verify the functionalities
of DAIM such as executing a ping command, streaming media and transferring files
between hosts. These scenarios are created based on OpenVswitch in a virtualised
network using Mininet.

The third part (Chapter 5) presents the performance evaluation of the DAIM model,
which is defined by four characteristics: round-trip-time, throughput, latency and
bandwidth. The ping command is used to measure the mean RTT between two IP
hosts. The flow setup throughput and latency of the DAIM controller are measured
by using Cbench. Also, Iperf is the tool used to measure the available bandwidth
of the network. The performance of the distributed DAIM model has been tested
and good results are reported when compared with current OpenFlow controllers
including NOX, POX and NOX-MT. The comparisons reveal that DAIM can out-
perform both NOX and POX controllers. The DAIM’s performance in a physical
OpenFlow test lab and other parameters that can affect the performance evaluation
are also discussed.

Because decentralisation is an essential element of autonomic systems, building a
distributed computing environment by DAIM can consequently enable the develop-
ment of autonomic management strategies. The experiment results show the DAIM
model can be one of the architectural approaches to creating the autonomic service
management for SDN. The DAIM model can be utilised to investigate the function-
alities required by the autonomic networking within the ACNs community. This
efficient DAIM model can be further applied to enable adaptability and autonomy
to other distributed networks such as WSNs, P2P and Ad-Hoc sensor networks.
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