
A Dissertation submitted in fulfilment of the
requirements for the degree of Doctor of

Philosophy

New Information Model that Allows
Logical Distribution of the Control

Plane for Software-Defined
Networking

The Distributed Active Information Model (DAIM) can enable
an effective distributed control plane for SDN with OpenFlow as

the standard protocol

Pakawat Pupatwibul

Autumn 2016

University of Technology Sydney
Faculty of Engineering and Information Technology

Centre for Real Time Information Networks

Supervisor
Professor Robin Braun

Co-supervisor
Dr. Bruce Moulton

Date of the graduation
May 2016

I dedicate this thesis to my lovely father, mother, sister,
beloved wife and sons for their love and support.

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a de-
gree nor has it been submitted as part of requirements for a degree except as fully
acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received
in my research work and the preparation of the thesis itself has been acknowledged.
In addition, I certify that all information sources and literature used are indicated
in the thesis.

Signature of Student:

Date:

Abstract

In recent years, technological innovations in communication networks, computing
applications and information modelling have been increasing significantly in com-
plexity and functionality driven by the needs of the modern world. As large-scale
networks are becoming more complex and difficult to manage, traditional network
management paradigms struggle to cope with traffic bottlenecks of the traditional
switch and routing based networking deployments. Recently, there has been a grow-
ing movement led by both industry and academia aiming to develop mechanisms to
reach a management paradigm that separates the control plane from the data plane.
A new emerging network management paradigm called Software-Defined Networking
(SDN) is an attempt to overcome the bottlenecks of traditional data networks. SDN
offers a great potential to ease network management, and the OpenFlow protocol
in particularly often referred to a radical new idea in networking. SDN adopts
the concept of programmable networks which separate the control decisions from
forwarding hardware and thus enabling the creation of a standardised programming
interface. Flow computation is managed by a centralised controller with the switches
only performing simple forwarding functions. This allows researchers to implement
their protocols and algorithms to control data packets without impacting on the
production network. Therefore, the emerging OpenFlow technology provides more
flexible control of networks infrastructure, are cost effective, open and programmable
components of network architecture.
SDN is very efficient at moving the computational load away from the forward-
ing plane and into a centralised controller, but a physically centralised controller
can represent a single point of failure for the entire network. This centralisation
approach brings optimality, however, it creates additional problems of its own in-
cluding single-domain restriction, scalability, robustness and the ability for switches
to adapt well to changes in local environments.
This research aims at developing a new distributed active information model (DAIM)
to allow programmability of network elements and local decision-making processes
that will essentially contribute to complex distributed networks. DAIM offers ad-
aptation algorithms embedded with intelligent information objects to be applied
to such complex systems. By applying the DAIM model and these adaptation al-
gorithms, managing complex systems in any distributed network environment can
become scalable, adaptable and robust. The DAIM model is integrated into the SDN
architecture at the level of switches to provide a logically distributed control plane
that can manage the flow setups. The proposal moves the computational load to the

i

switches, which allows them to adapt dynamically according to real-time demands
and needs. The DAIM model can enhance information objects and network devices
to make their local decisions through its active performance, and thus significantly
reduce the workload of a centralised SDN/OpenFlow controller.

In addition to the introduction (Chapter 1) and the comprehensive literature reviews
(Chapter 2), the first part of this dissertation (Chapter 3) presents the theoretical
foundation for the rest of the dissertation. This foundation is comprised of the logic-
ally distributed control plane for SDN networks, an efficient DAIM model framework
inspired by the O:MIB and hybrid O:XML semantics, as well as the necessary ar-
chitecture to aggregate the distribution of network information. The details of the
DAIM model including design, structure and packet forwarding process are also
described.

The DAIM software specification and its implementation are demonstrated in the
second part of the thesis (Chapter 4). The DAIM model is developed in the C++
programming language using free and open source NetBeans IDE. In more detail,
the three core modules that construct the DAIM ecosystem are discussed with some
sample code reviews and flowchart diagrams of the implemented algorithms. To
show DAIM’s feasibility, a small-size OpenFlow lab based on Raspberry Pi’s has
been set up physically to check the compliance of the system with its purpose and
functions. Various tasks and scenarios are demonstrated to verify the functionalities
of DAIM such as executing a ping command, streaming media and transferring files
between hosts. These scenarios are created based on OpenVswitch in a virtualised
network using Mininet.

The third part (Chapter 5) presents the performance evaluation of the DAIM model,
which is defined by four characteristics: round-trip-time, throughput, latency and
bandwidth. The ping command is used to measure the mean RTT between two IP
hosts. The flow setup throughput and latency of the DAIM controller are measured
by using Cbench. Also, Iperf is the tool used to measure the available bandwidth
of the network. The performance of the distributed DAIM model has been tested
and good results are reported when compared with current OpenFlow controllers
including NOX, POX and NOX-MT. The comparisons reveal that DAIM can out-
perform both NOX and POX controllers. The DAIM’s performance in a physical
OpenFlow test lab and other parameters that can affect the performance evaluation
are also discussed.

Because decentralisation is an essential element of autonomic systems, building a
distributed computing environment by DAIM can consequently enable the develop-
ment of autonomic management strategies. The experiment results show the DAIM
model can be one of the architectural approaches to creating the autonomic service
management for SDN. The DAIM model can be utilised to investigate the function-
alities required by the autonomic networking within the ACNs community. This
efficient DAIM model can be further applied to enable adaptability and autonomy
to other distributed networks such as WSNs, P2P and Ad-Hoc sensor networks.

Contents

Abstract i

Nomenclature xiii

Acknowledgments xvii

Related Publications xix

I. Elaborating on the “Propositions” 1

1. Introduction 3
1.1. Introduction . 3
1.2. Background of Network Management Complexity 3
1.3. Research Motivations . 5

1.3.1. Motivation fromManagement of Distributed Complex Networks 5
1.3.2. Motivation from Self-Management Strategies 5
1.3.3. Motivation from OpenFlow-Based SDN 6

1.4. Research Objectives and Scope . 6
1.4.1. Research Objectives . 7
1.4.2. Research Scope . 7

1.5. Problem Statement . 9
1.5.1. Research Questions . 10
1.5.2. Propositions Derived from the Research Questions 10

1.6. Approach and Methodology . 11
1.6.1. Reviewing the Scholarly Literature 11
1.6.2. Designing a Candidate System 12
1.6.3. Emulating the Candidate System Using Mininet 13
1.6.4. Implementing the Candidate System 15
1.6.5. Validating the Candidate System 16
1.6.6. Concluding Observations . 16

1.7. Outline of the Thesis . 17
1.8. Statement of Contributions . 19

2. Background and Literature Review 23
2.1. Introduction . 23

iii

2.2. Network Management Background 24
2.2.1. Five ISO Functional Areas in Network Management 25
2.2.2. Network Management Protocols 27
2.2.3. Centralised Management Paradigm 29
2.2.4. The Needs of Distributed Systems 31

2.3. Standard Sets of Information Model 34
2.3.1. Common Information Model (CIM) 35
2.3.2. Shared Information and Data model (SID) 35
2.3.3. Limitations of CIM and SID 36
2.3.4. Current Information Models vs. Proposed DAIM Model . . . 37

2.4. Software Defined Networking (SDN) 37
2.4.1. Overview of OpenFlow-Based SDN 41
2.4.2. Packet Processing in OpenFlow 43
2.4.3. OpenFlow Switch . 44
2.4.4. OpenFlow Controller . 47
2.4.5. OpenFlow Channel and Protocol 53
2.4.6. SDN Development Tools . 56

2.5. SDN Scalability Issues . 59
2.6. Related Work to Solve OpenFlow Scalability Issues 61

2.6.1. Optimisation Techniques . 62
2.6.2. Devolving Some Control Functions Back to the Switches . . . 62
2.6.3. Designing a Distributed Control Platform 64

2.7. Autonomic Communications . 66
2.7.1. Background of Autonomic Communications 66
2.7.2. Overview of Self-X Properties 69

3. Distributed Active Information Model Theory 73
3.1. Introduction . 73
3.2. Theoretical Framework . 74

3.2.1. O:MIB Theory . 74
3.2.2. Use of O:XML . 78
3.2.3. Using DAIM as a Logically Distributed Control Plane 80

3.3. DAIM Model Paradigm . 83
3.3.1. Objectives of Designing DAIM 84
3.3.2. DAIM Model Architecture . 85
3.3.3. DAIM Agents Implementation 86
3.3.4. Uniqueness of DAIM Model 87

3.4. Packet Processing Within DAIM . 88
3.5. Risk Scenarios of the DAIM Model 91

II. Proving the “Propositions” 93

4. Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator 95
4.1. Introduction . 95
4.2. DAIM Model Implementation . 96

4.2.1. Phase 1: Basic Carrier Functionality 97
4.2.2. Phase 2: Semi-Distributed Functionality 98
4.2.3. Phase 3: Fully Distributed Functionality 99

4.3. DAIM Software Specification . 101
4.3.1. Overview of Model . 101
4.3.2. The Communication Module 104
4.3.3. The Local Storage Module . 109
4.3.4. The Controller Module . 113

4.4. Setup Requirements for Testing DAIM 119
4.4.1. Scenarios for Testing DAIM 120

4.5. DAIM System Validation . 123
4.5.1. Communication Example . 123
4.5.2. Flow Table Buildup with Example of Ping Traffic 125
4.5.3. Creating a Linux Command Line Chat Server 128
4.5.4. Network Streaming via VLC Media Player 130
4.5.5. Run a Simple Web Server and Client 131

5. DAIM Performance Results and Evaluation 133
5.1. Introduction . 133
5.2. Test Bed Description . 134
5.3. Experiment Setup and Methodology 135

5.3.1. Network Performance Metrics 137
5.3.2. Scenarios . 141

5.4. Results of Performance Evaluation 143
5.4.1. DAIM Communication Channel Results 143
5.4.2. Layer 2 Learning Switch Application Results 149

5.5. Build a Physical OpenFlow Test Lab Controlled by DAIM 154
5.5.1. Configuration Summary . 155
5.5.2. Setup OpenFlow Switch and DAIM Controller on a Rasp-

berry Pi . 156
5.5.3. Basic Test . 157
5.5.4. Preliminary Hardware Performance Results 158

5.6. Other Parameters That Can Affect the Performance Evaluation . . . 160

III. Drawing Conclusions 163

6. Conclusion and Future Work 165
6.1. Research Propositions Validation . 166

6.2. Research Contributions and Findings 170
6.3. Research Limitations . 172
6.4. On-going Work and Future Directions 173

Bibliography 175

A. DAIM Source Code for Data Analysis 185
A.1. Cross-controller Communications . 187

B. Create OpenFlow Network with Multiple PCs 191
B.1. Configuration Summary . 191
B.2. Assigning Static IP Address for Network Interfaces 192
B.3. Set Bridge IP Address for NOX Controller 192
B.4. NOX Controller Setup . 193
B.5. Installing OpenVswitch on a Node . 194
B.6. Installing OpenFlow Switching Reference System 196
B.7. NOX Controller Graphical User Interface (GUI) 196
B.8. Installing OpenFlow Wireshark Dissector 197

C. OpenFlow Laboratory with Mininet 199
C.1. Setting up Mininet Environment . 199
C.2. Experimenting with Mininet . 201
C.3. Running External Controllers . 205

D. OpenFlow Setup in OMNeT++ INET Framework 207
D.1. Installing OMNeT++ 4.2 . 207
D.2. Configuring and Building OMNeT++ 208
D.3. Verifying the Installation . 208
D.4. Starting the IDE . 208
D.5. Installing INET Framework 2.0 . 209
D.6. Installing OpenFlow Extension for the OMNeT++ 209
D.7. Example of Simple OpenFlow testing in OMNeT++ 210

E. Hardware for OpenFlow Test Lab 215

List of Figures

1.1. The Connections and Components of Two-Host Network Created by
Mininet[57] . 14

1.2. Mininet Emulation Software . 15
1.3. Thesis Structure . 17

2.1. Four Elements of Policy-Based Framework [112] 29
2.2. Centralised Network Paradigm [84] 31
2.3. SDN Evolution - Segregation of Control and Data Plane [97] 38
2.4. The Three-Tier Logical Layers of SDN[44] 39
2.5. Idealised OpenFlow Switch. A remote controller manages the Flow

Table via the Secure Channel. 42
2.6. Flowchart Detailing Packet Flow Through OpenFlow Switch [33] . . 44
2.7. Components of a Flow Entry in a Flow Table 45
2.8. OpenFlow-enabled Switch with Flow Entries [116] 47
2.9. Components of a NOX-based network: OpenFlow (OF) switches, a

server running a NOX controller process, and a centralised database
containing the network view [47]. 51

2.10. Example NOX-based network setup. Each switch has its own con-
troller but network state is stored centrally [116]. 53

2.11. Mapping of OpenFlow Network Protocol Layers 54
2.12. Self-X Functions [53] . 68
2.13. Autonomic Computing Tree [102] . 70

3.1. Comparison Between Traditional SNMP MIB and O:MIB [84] 75
3.2. Algorithms and Methods in O:MIB [29] 76
3.3. Self-Maintained Process [20] . 77
3.4. Script Sample of Method Described O:XML Format for O:MIB [32] . 79
3.5. Integration of Multi-Agent Framework with O:XML Implemented

O:MIB [30] . 80
3.6. The Mapping of Conventional Networks and SDN 82
3.7. DAIM Model Architecture as an Intelligent Computational Environ-

ment . 86
3.8. DAIM Agent Owns a Flow Entry in the Flow Table 87
3.9. Flow Chart Detailing Packet Processing Within DAIM Model 89

4.1. DAIM Implementation Phase 1 . 97
4.2. DAIM Implementation Phase 2 . 98

vii

4.3. DAIM Implementation Phase 3 . 100
4.4. DAIM Model Ecosystem . 102
4.5. Implemented OpenFlow Messages 103
4.6. Unix Socket Connection Setup . 105
4.7. DAIM Storage Block of Memory (Object) 109
4.8. Flowchart Detailing the Process of add_object () 111
4.9. Flowchart Detailing the Process of remove_object () 112
4.10. Flowchart Detailing the Process of free_list () 113
4.11. Packet Flow in an OpenFlow Switch Controlled by DAIM 116
4.12. DAIM Model Integration with Mininet 119
4.13. Simple Linear Topology Setup . 121
4.14. Ring Network Topology Setup . 121
4.15. Tree Network Topology Setup . 122
4.16. Fully Mesh Network Topology Setup 122
4.17. Communication between two nodes in an OpenFlow network man-

aged by DAIM. 124
4.18. Screenshot of netcat UDP Chat Session 129
4.19. Screenshot of VLC Video Streaming Session 130
4.20. Screenshot of HTTP Web Server Session 132

5.1. Scenario Used to Evaluate Mean RTT and Maximum TCP Band-
width . 141

5.2. Scenario Used to Evaluate the Flow Setup Throughput and Latency 142
5.3. Mean RTT DAIM Channel and NOX 144
5.4. Mean RTT DAIM Channel and POX 145
5.5. Number of Flow Requests Handled per Second 146
5.6. Delay to Respond to Flow Requests 147
5.7. TCP Bandwidth Utilisation Comparison 148
5.8. Mean RTT Comparison . 150
5.9. Average Maximum Throughput Achieved with Different Number of

MACs . 151
5.10. Flow Setup Latency Comparison . 153
5.11. Network Bandwidth Comparison . 154
5.12. Physical OpenFlow Test Lab Topology 155

A.1. Controller Message from DAIM 1 to DAIM 2 189
A.2. Controller Message from DAIM 2 to DAIM 1 189

B.1. OpenFlow-Based SDN Lab Using OpenVswitch and Controlled by
NOX via OpenFlow Protocol . 191

B.2. OpenFlow Dissector in Wireshark 198

C.1. Enabling X11 Forwarding in PuTTY 200
C.2. OpenFlow Laboratory Using Mininet 201

D.1. OpenFlow Mesh Topology with Spanning Tree Protocol 211
D.2. Measured RTT of TCP/IP vs. OpenFlow 213

E.1. A Small-Size OpenFlow Network . 216
E.2. Raspberry Pi 2 Model B 1GB . 216

List of Tables

2.1. Characteristics of a Reliable Distributed System 33
2.2. Details of Flow Headers (Twelve Tuples) 46
2.3. Current Software Switch Implementations Compliant with the Open-

Flow Standard . 48
2.4. Current Available Hardware Switches by Markets, Compliant with

the OpenFlow Standard . 48
2.5. Current SDN Controller Implementations Compliant with the Open-

Flow Standard . 50
2.6. A Comparison of NS-3, OMNeT++, Mininet and EstiNet [115] . . . 58
2.7. DIFANE Wild-Card Rules . 64

3.1. Comparison of Normal and Candidate Processes 90

4.1. DAIM Application Header Files . 103
4.2. API Dependencies Used to Implement DAIM Modules 104
4.3. Public Functions with Associate Actions in the Object List Class . . 112
4.4. OpenFlow Messages Handled by the Controller Module 114

5.1. The Minimum Response Time . 152
5.2. SDN/OpenFlow Controllers: Code Extension 160

xi

Nomenclature

AA Autonomous Agent

ACNs Autonomic Communication Networks

ACs Autonomic Communications

ADSs Autonomous Decentralised Systems

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BGP Border Gateway Protocol

CLI Command Line Interface

DAI Distributed Artificial Intelligent

DAIM Distributed Active Information Model

DHCP Dynamic Host Configuration Protocol

DMI Desktop Management Interface

DMTF Distributed Management Task Force

DNS Domain Name System

FCAPS fault, configuration, accounting, performance, security

FTP File Transfer Protocol

IETF Internet Engineering Task Force

ISO International Organization for Standardization

LLDP Link Layer Discovery Protocol

LTE Long Term Evolution

MANET Mobile Ad hoc Network

xiii

MEs Managed Elements

MIB Management Information Base

NETCONF Network Configuration Protocol

NFV Network Functions Virtualisation

NGN Next Generation Network

NIB Network Information Base

NOS Network Operating System

OFLOPS OpenFlow Operations Per Second

OSCA Operating System Communication Application

OSPF Open Shortest Path First

OSS Operations Support System

OVSDB OpenvSwitch Database Management Protocol

QoS Quality of Service

RESTful Representational State Transfer

RNC Radio Network Controllers

SDN Software-Defined Networking

SID Shared Information and Data Model

SLAs Service Level Agreements

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

STP Spanning Tree Protocol

TLS Transport Layer Security

TMF TeleManagement Forum

UML Unified Modelling Language

VETH Virtual Ethernet

VMs Virtual Machines

WASNs Wireless Ad-hoc Sensor Networks

WiMAX Worldwide Interoperability for Microwave Access

WSN Wireless Sensor Network

XACML eXtended Access Control Markup Language

XML Extensible Markup Language

XML-RPC XML-encode Remote Procedure Call

Acknowledgements
I would like to acknowledge all the support and encouragement received during my
PhD research. Firstly, I would like to express my deep gratitude to Professor Robin
Braun, who has been my supervisor and very good friend. His valuable guidance
through this research was a great source of support and encouragement and always
made me go that extra mile to solve the various problems that lead to this work. I
cherished the opportunity to watch and learn from his knowledge and experience.
His frequent insights and patience with me are always appreciated.
I also thank my co-supervisor, Dr. Bruce Moulton, for supporting me throughout
this work. During the course of this research, I also benefited greatly from inter-
actions and technical discussions with other talented and warm-hearted members
from the CRIN centre, including Dr. Zenon Chaczko and Dr. Abdallah Al Sab-
bagh, to whom I wish to give sincere thanks. The technical conversations with
them also helped me over the course of this project not only in terms of resolving
quick technical difficulties but also with regards to lightening up.
It has been my privilege to work closely with Ameen Banjar, my research collabor-
ator and best friend, I am gratefully thanking him for his invaluable contributions
and innovative ideas towards this project. My special mention also goes to Md.
Imam Hossain, for helping me with the solution to the problems in C/C++ pro-
gramming, and setting up the test bed used for this research. I am very proud of
what we have achieved together, thank you both.
I would like to thank Suan Dusit University, Bangkok, Thailand for providing inter-
national student academic research scholarship, and Emeritus Professor Tony Moon
for nominating me for UTS International Research Scholarship (IRS) to support my
PhD degree financially.
I am truly indebted to all my friends who have supported me over the last few
years: Wael Alenazy, Jiajia Shi, Raniyah Wazirali, Lucia Gordon, Anup Kale, Denise
Umuhoza, Shaher Slehat and Sanya Khruahong for their help in various ways. I have
enjoyed many useful and happy chats with them. I have been very fortunate to have
them around during my PhD study.
Last but by no means the least, I wish to give special thanks to my lovely family,
Dr. Sawarng, Asst. Prof. Dr. Kanungnit and my sister Pitinut, for their immense
support and all of the sacrifices that they have made on my behalf. My parents
always gave me constant support and tried to provide me with the best education
they can afford. They have been an important driving force to encourage me behind
this PhD research.

xvii

I would like to express my sincere appreciation to my beloved wife, Duangporn, for
her endless support, dedicated love, patience and understanding in every possible
way. She always supported me in the moments when there was no one to answer
my queries. Finally, I would like to thank my sons, Neptune and Neymar, for the
happiness and cheers they have given me as their own way to support me.

Related Publications

The technical contributions and discussions in the thesis are mainly based on the
following publications written by the author in which five of them are co-authored:

A. International Journal Publications:

[J1] Pupatwibul, Pakawat, Ameen Banjar, Abdallah AL Sabbagh, and Robin Braun.
”A Comparative Review: Accurate OpenFlow Simulation Tools for Prototyping.”
Journal of Networks 10, no. 5 (2015): 322-327.

[J2] Banjar Ameen, Pakawat Pupatwibul, and Robin Braun. ”DAIM: A Mechanism
to Distribute Control Functions Within OpenFlow Switches.” Journal of Networks
9.1 (2014): 1-9.

[J3] Banjar Ameen, Pakawat Pupatwibul, Abdallah AL Sabbagh, and Robin Braun.
”Using an ICN Approach to Support Multiple Controllers in OpenFlow.” Interna-
tional Journal of Electrical & Computer Sciences 14, no. 2 (2014).

B. International Conference Publications:

[C1] Pupatwibul, Pakawat, Ameen Banjar, and Robin Braun. ”Using DAIM as a
Reactive Interpreter for OpenFlow Networks to Enable Autonomic Functionality.”
ACM SIGCOMM Computer Communication Review. Vol. 43. No. 4. ACM, 2013.

[C2] Pupatwibul, P., Jozi, B. and Braun, R. 2011, “Investigating O:MIB-Based Dis-
tributed Active Information Model (DAIM) for Autonomics”, International Con-
ference on Information and Communication Technologies and Applications IIIS,
Orlando, Florida, USA, pp. 7-12.

[C3] Pupatwibul, P., Sabbagh, A.A.L., Banjar, A. & Braun, R. 2012, “Distributed
Systems in Next Generation Networks”, 1st Australian Conference on the Applica-
tions of Systems Engineering ACASE’12, p. 32.

[C4] Pupatwibul, P., Banjar, A., Al Sabbagh, A., & Braun, R. (2013, October).
“Developing an Application Based on OpenFlow to Enhance Mobile IP Networks”.
In Local Computer Networks Workshops (LCN Workshops), 2013 IEEE 38th Con-
ference on (pp. 936-940). IEEE.

[C5] Al Sabbagh, A., Pupatwibul, P., Banjar, A., & Braun, R. (2013, October).
“Optimization of the OpenFlow Controller in Wireless Environments for Enhancing
Mobility”. In Local Computer Networks Workshops (LCN Workshops), 2013 IEEE
38th Conference on (pp. 930-935). IEEE

xix

[C6] Banjar, A., Pupatwibul, P., Braun, R., & Moulton, B. (2014, February). “Ana-
lysing the Performance of the OpenFlow Standard for Software-Defined Networking
Using the OMNeT++ Network Simulator”. In Computer Aided System Engineering
(APCASE), 2014 Asia-Pacific Conference on (pp. 31-37). IEEE.

[C7] Pupatwibul, P., Banjar, A. & Braun, R. 2014, “Performance Evaluation of
TCP/IP vs. OpenFlow in INET Framework Using OMNeT++, and Implementation
of Intelligent Computational Model to Provide Autonomous Behaviour.” The Asian
Conference on Technology, Information & Society 2014, The International Academic
Forum (IAFOR) Osaka, Japan, pp. 43-56.

C. International Book Chapter Publications:
[B1] Pupatwibul, Pakawat, Ameen Banjar, Abdallah AL Sabbagh, and Robin Braun.
”An Intelligent Model for Distributed Systems in Next Generation Networks.” In
Advanced Methods and Applications in Computational Intelligence, pp. 315-334.
Springer International Publishing, 2014.

[B2] Banjar, Ameen, Pakawat Pupatwibul, and Robin Braun. ”Comparison of
TCP/IP Routing Versus OpenFlow Table and Implementation of Intelligent Com-
putational Model to Provide Autonomous Behaviour.” Computational Intelligence
and Efficiency in Engineering Systems. Springer International Publishing, 2015.
121-142.

	Title Page
	Certificate of Original Authorship
	Abstract
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Acknowledgments
	Related Publications

