
A Dissertation submitted in fulfilment of the
requirements for the degree of Doctor of

Philosophy

New Information Model that Allows
Logical Distribution of the Control

Plane for Software-Defined
Networking

The Distributed Active Information Model (DAIM) can enable
an effective distributed control plane for SDN with OpenFlow as

the standard protocol

Pakawat Pupatwibul

Autumn 2016

University of Technology Sydney
Faculty of Engineering and Information Technology

Centre for Real Time Information Networks

Supervisor
Professor Robin Braun

Co-supervisor
Dr. Bruce Moulton

Date of the graduation
May 2016

I dedicate this thesis to my lovely father, mother, sister,
beloved wife and sons for their love and support.

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a de-
gree nor has it been submitted as part of requirements for a degree except as fully
acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received
in my research work and the preparation of the thesis itself has been acknowledged.
In addition, I certify that all information sources and literature used are indicated
in the thesis.

Signature of Student:

Date:

Abstract

In recent years, technological innovations in communication networks, computing
applications and information modelling have been increasing significantly in com-
plexity and functionality driven by the needs of the modern world. As large-scale
networks are becoming more complex and difficult to manage, traditional network
management paradigms struggle to cope with traffic bottlenecks of the traditional
switch and routing based networking deployments. Recently, there has been a grow-
ing movement led by both industry and academia aiming to develop mechanisms to
reach a management paradigm that separates the control plane from the data plane.
A new emerging network management paradigm called Software-Defined Networking
(SDN) is an attempt to overcome the bottlenecks of traditional data networks. SDN
offers a great potential to ease network management, and the OpenFlow protocol
in particularly often referred to a radical new idea in networking. SDN adopts
the concept of programmable networks which separate the control decisions from
forwarding hardware and thus enabling the creation of a standardised programming
interface. Flow computation is managed by a centralised controller with the switches
only performing simple forwarding functions. This allows researchers to implement
their protocols and algorithms to control data packets without impacting on the
production network. Therefore, the emerging OpenFlow technology provides more
flexible control of networks infrastructure, are cost effective, open and programmable
components of network architecture.
SDN is very efficient at moving the computational load away from the forward-
ing plane and into a centralised controller, but a physically centralised controller
can represent a single point of failure for the entire network. This centralisation
approach brings optimality, however, it creates additional problems of its own in-
cluding single-domain restriction, scalability, robustness and the ability for switches
to adapt well to changes in local environments.
This research aims at developing a new distributed active information model (DAIM)
to allow programmability of network elements and local decision-making processes
that will essentially contribute to complex distributed networks. DAIM offers ad-
aptation algorithms embedded with intelligent information objects to be applied
to such complex systems. By applying the DAIM model and these adaptation al-
gorithms, managing complex systems in any distributed network environment can
become scalable, adaptable and robust. The DAIM model is integrated into the SDN
architecture at the level of switches to provide a logically distributed control plane
that can manage the flow setups. The proposal moves the computational load to the

i

switches, which allows them to adapt dynamically according to real-time demands
and needs. The DAIM model can enhance information objects and network devices
to make their local decisions through its active performance, and thus significantly
reduce the workload of a centralised SDN/OpenFlow controller.

In addition to the introduction (Chapter 1) and the comprehensive literature reviews
(Chapter 2), the first part of this dissertation (Chapter 3) presents the theoretical
foundation for the rest of the dissertation. This foundation is comprised of the logic-
ally distributed control plane for SDN networks, an efficient DAIM model framework
inspired by the O:MIB and hybrid O:XML semantics, as well as the necessary ar-
chitecture to aggregate the distribution of network information. The details of the
DAIM model including design, structure and packet forwarding process are also
described.

The DAIM software specification and its implementation are demonstrated in the
second part of the thesis (Chapter 4). The DAIM model is developed in the C++
programming language using free and open source NetBeans IDE. In more detail,
the three core modules that construct the DAIM ecosystem are discussed with some
sample code reviews and flowchart diagrams of the implemented algorithms. To
show DAIM’s feasibility, a small-size OpenFlow lab based on Raspberry Pi’s has
been set up physically to check the compliance of the system with its purpose and
functions. Various tasks and scenarios are demonstrated to verify the functionalities
of DAIM such as executing a ping command, streaming media and transferring files
between hosts. These scenarios are created based on OpenVswitch in a virtualised
network using Mininet.

The third part (Chapter 5) presents the performance evaluation of the DAIM model,
which is defined by four characteristics: round-trip-time, throughput, latency and
bandwidth. The ping command is used to measure the mean RTT between two IP
hosts. The flow setup throughput and latency of the DAIM controller are measured
by using Cbench. Also, Iperf is the tool used to measure the available bandwidth
of the network. The performance of the distributed DAIM model has been tested
and good results are reported when compared with current OpenFlow controllers
including NOX, POX and NOX-MT. The comparisons reveal that DAIM can out-
perform both NOX and POX controllers. The DAIM’s performance in a physical
OpenFlow test lab and other parameters that can affect the performance evaluation
are also discussed.

Because decentralisation is an essential element of autonomic systems, building a
distributed computing environment by DAIM can consequently enable the develop-
ment of autonomic management strategies. The experiment results show the DAIM
model can be one of the architectural approaches to creating the autonomic service
management for SDN. The DAIM model can be utilised to investigate the function-
alities required by the autonomic networking within the ACNs community. This
efficient DAIM model can be further applied to enable adaptability and autonomy
to other distributed networks such as WSNs, P2P and Ad-Hoc sensor networks.

Contents

Abstract i

Nomenclature xiii

Acknowledgments xvii

Related Publications xix

I. Elaborating on the “Propositions” 1

1. Introduction 3
1.1. Introduction . 3
1.2. Background of Network Management Complexity 3
1.3. Research Motivations . 5

1.3.1. Motivation fromManagement of Distributed Complex Networks 5
1.3.2. Motivation from Self-Management Strategies 5
1.3.3. Motivation from OpenFlow-Based SDN 6

1.4. Research Objectives and Scope . 6
1.4.1. Research Objectives . 7
1.4.2. Research Scope . 7

1.5. Problem Statement . 9
1.5.1. Research Questions . 10
1.5.2. Propositions Derived from the Research Questions 10

1.6. Approach and Methodology . 11
1.6.1. Reviewing the Scholarly Literature 11
1.6.2. Designing a Candidate System 12
1.6.3. Emulating the Candidate System Using Mininet 13
1.6.4. Implementing the Candidate System 15
1.6.5. Validating the Candidate System 16
1.6.6. Concluding Observations . 16

1.7. Outline of the Thesis . 17
1.8. Statement of Contributions . 19

2. Background and Literature Review 23
2.1. Introduction . 23

iii

2.2. Network Management Background 24
2.2.1. Five ISO Functional Areas in Network Management 25
2.2.2. Network Management Protocols 27
2.2.3. Centralised Management Paradigm 29
2.2.4. The Needs of Distributed Systems 31

2.3. Standard Sets of Information Model 34
2.3.1. Common Information Model (CIM) 35
2.3.2. Shared Information and Data model (SID) 35
2.3.3. Limitations of CIM and SID 36
2.3.4. Current Information Models vs. Proposed DAIM Model . . . 37

2.4. Software Defined Networking (SDN) 37
2.4.1. Overview of OpenFlow-Based SDN 41
2.4.2. Packet Processing in OpenFlow 43
2.4.3. OpenFlow Switch . 44
2.4.4. OpenFlow Controller . 47
2.4.5. OpenFlow Channel and Protocol 53
2.4.6. SDN Development Tools . 56

2.5. SDN Scalability Issues . 59
2.6. Related Work to Solve OpenFlow Scalability Issues 61

2.6.1. Optimisation Techniques . 62
2.6.2. Devolving Some Control Functions Back to the Switches . . . 62
2.6.3. Designing a Distributed Control Platform 64

2.7. Autonomic Communications . 66
2.7.1. Background of Autonomic Communications 66
2.7.2. Overview of Self-X Properties 69

3. Distributed Active Information Model Theory 73
3.1. Introduction . 73
3.2. Theoretical Framework . 74

3.2.1. O:MIB Theory . 74
3.2.2. Use of O:XML . 78
3.2.3. Using DAIM as a Logically Distributed Control Plane 80

3.3. DAIM Model Paradigm . 83
3.3.1. Objectives of Designing DAIM 84
3.3.2. DAIM Model Architecture . 85
3.3.3. DAIM Agents Implementation 86
3.3.4. Uniqueness of DAIM Model 87

3.4. Packet Processing Within DAIM . 88
3.5. Risk Scenarios of the DAIM Model 91

II. Proving the “Propositions” 93

4. Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator 95
4.1. Introduction . 95
4.2. DAIM Model Implementation . 96

4.2.1. Phase 1: Basic Carrier Functionality 97
4.2.2. Phase 2: Semi-Distributed Functionality 98
4.2.3. Phase 3: Fully Distributed Functionality 99

4.3. DAIM Software Specification . 101
4.3.1. Overview of Model . 101
4.3.2. The Communication Module 104
4.3.3. The Local Storage Module . 109
4.3.4. The Controller Module . 113

4.4. Setup Requirements for Testing DAIM 119
4.4.1. Scenarios for Testing DAIM 120

4.5. DAIM System Validation . 123
4.5.1. Communication Example . 123
4.5.2. Flow Table Buildup with Example of Ping Traffic 125
4.5.3. Creating a Linux Command Line Chat Server 128
4.5.4. Network Streaming via VLC Media Player 130
4.5.5. Run a Simple Web Server and Client 131

5. DAIM Performance Results and Evaluation 133
5.1. Introduction . 133
5.2. Test Bed Description . 134
5.3. Experiment Setup and Methodology 135

5.3.1. Network Performance Metrics 137
5.3.2. Scenarios . 141

5.4. Results of Performance Evaluation 143
5.4.1. DAIM Communication Channel Results 143
5.4.2. Layer 2 Learning Switch Application Results 149

5.5. Build a Physical OpenFlow Test Lab Controlled by DAIM 154
5.5.1. Configuration Summary . 155
5.5.2. Setup OpenFlow Switch and DAIM Controller on a Rasp-

berry Pi . 156
5.5.3. Basic Test . 157
5.5.4. Preliminary Hardware Performance Results 158

5.6. Other Parameters That Can Affect the Performance Evaluation . . . 160

III. Drawing Conclusions 163

6. Conclusion and Future Work 165
6.1. Research Propositions Validation . 166

6.2. Research Contributions and Findings 170
6.3. Research Limitations . 172
6.4. On-going Work and Future Directions 173

Bibliography 175

A. DAIM Source Code for Data Analysis 185
A.1. Cross-controller Communications . 187

B. Create OpenFlow Network with Multiple PCs 191
B.1. Configuration Summary . 191
B.2. Assigning Static IP Address for Network Interfaces 192
B.3. Set Bridge IP Address for NOX Controller 192
B.4. NOX Controller Setup . 193
B.5. Installing OpenVswitch on a Node . 194
B.6. Installing OpenFlow Switching Reference System 196
B.7. NOX Controller Graphical User Interface (GUI) 196
B.8. Installing OpenFlow Wireshark Dissector 197

C. OpenFlow Laboratory with Mininet 199
C.1. Setting up Mininet Environment . 199
C.2. Experimenting with Mininet . 201
C.3. Running External Controllers . 205

D. OpenFlow Setup in OMNeT++ INET Framework 207
D.1. Installing OMNeT++ 4.2 . 207
D.2. Configuring and Building OMNeT++ 208
D.3. Verifying the Installation . 208
D.4. Starting the IDE . 208
D.5. Installing INET Framework 2.0 . 209
D.6. Installing OpenFlow Extension for the OMNeT++ 209
D.7. Example of Simple OpenFlow testing in OMNeT++ 210

E. Hardware for OpenFlow Test Lab 215

List of Figures

1.1. The Connections and Components of Two-Host Network Created by
Mininet[57] . 14

1.2. Mininet Emulation Software . 15
1.3. Thesis Structure . 17

2.1. Four Elements of Policy-Based Framework [112] 29
2.2. Centralised Network Paradigm [84] 31
2.3. SDN Evolution - Segregation of Control and Data Plane [97] 38
2.4. The Three-Tier Logical Layers of SDN[44] 39
2.5. Idealised OpenFlow Switch. A remote controller manages the Flow

Table via the Secure Channel. 42
2.6. Flowchart Detailing Packet Flow Through OpenFlow Switch [33] . . 44
2.7. Components of a Flow Entry in a Flow Table 45
2.8. OpenFlow-enabled Switch with Flow Entries [116] 47
2.9. Components of a NOX-based network: OpenFlow (OF) switches, a

server running a NOX controller process, and a centralised database
containing the network view [47]. 51

2.10. Example NOX-based network setup. Each switch has its own con-
troller but network state is stored centrally [116]. 53

2.11. Mapping of OpenFlow Network Protocol Layers 54
2.12. Self-X Functions [53] . 68
2.13. Autonomic Computing Tree [102] . 70

3.1. Comparison Between Traditional SNMP MIB and O:MIB [84] 75
3.2. Algorithms and Methods in O:MIB [29] 76
3.3. Self-Maintained Process [20] . 77
3.4. Script Sample of Method Described O:XML Format for O:MIB [32] . 79
3.5. Integration of Multi-Agent Framework with O:XML Implemented

O:MIB [30] . 80
3.6. The Mapping of Conventional Networks and SDN 82
3.7. DAIM Model Architecture as an Intelligent Computational Environ-

ment . 86
3.8. DAIM Agent Owns a Flow Entry in the Flow Table 87
3.9. Flow Chart Detailing Packet Processing Within DAIM Model 89

4.1. DAIM Implementation Phase 1 . 97
4.2. DAIM Implementation Phase 2 . 98

vii

4.3. DAIM Implementation Phase 3 . 100
4.4. DAIM Model Ecosystem . 102
4.5. Implemented OpenFlow Messages 103
4.6. Unix Socket Connection Setup . 105
4.7. DAIM Storage Block of Memory (Object) 109
4.8. Flowchart Detailing the Process of add_object () 111
4.9. Flowchart Detailing the Process of remove_object () 112
4.10. Flowchart Detailing the Process of free_list () 113
4.11. Packet Flow in an OpenFlow Switch Controlled by DAIM 116
4.12. DAIM Model Integration with Mininet 119
4.13. Simple Linear Topology Setup . 121
4.14. Ring Network Topology Setup . 121
4.15. Tree Network Topology Setup . 122
4.16. Fully Mesh Network Topology Setup 122
4.17. Communication between two nodes in an OpenFlow network man-

aged by DAIM. 124
4.18. Screenshot of netcat UDP Chat Session 129
4.19. Screenshot of VLC Video Streaming Session 130
4.20. Screenshot of HTTP Web Server Session 132

5.1. Scenario Used to Evaluate Mean RTT and Maximum TCP Band-
width . 141

5.2. Scenario Used to Evaluate the Flow Setup Throughput and Latency 142
5.3. Mean RTT DAIM Channel and NOX 144
5.4. Mean RTT DAIM Channel and POX 145
5.5. Number of Flow Requests Handled per Second 146
5.6. Delay to Respond to Flow Requests 147
5.7. TCP Bandwidth Utilisation Comparison 148
5.8. Mean RTT Comparison . 150
5.9. Average Maximum Throughput Achieved with Different Number of

MACs . 151
5.10. Flow Setup Latency Comparison . 153
5.11. Network Bandwidth Comparison . 154
5.12. Physical OpenFlow Test Lab Topology 155

A.1. Controller Message from DAIM 1 to DAIM 2 189
A.2. Controller Message from DAIM 2 to DAIM 1 189

B.1. OpenFlow-Based SDN Lab Using OpenVswitch and Controlled by
NOX via OpenFlow Protocol . 191

B.2. OpenFlow Dissector in Wireshark 198

C.1. Enabling X11 Forwarding in PuTTY 200
C.2. OpenFlow Laboratory Using Mininet 201

D.1. OpenFlow Mesh Topology with Spanning Tree Protocol 211
D.2. Measured RTT of TCP/IP vs. OpenFlow 213

E.1. A Small-Size OpenFlow Network . 216
E.2. Raspberry Pi 2 Model B 1GB . 216

List of Tables

2.1. Characteristics of a Reliable Distributed System 33
2.2. Details of Flow Headers (Twelve Tuples) 46
2.3. Current Software Switch Implementations Compliant with the Open-

Flow Standard . 48
2.4. Current Available Hardware Switches by Markets, Compliant with

the OpenFlow Standard . 48
2.5. Current SDN Controller Implementations Compliant with the Open-

Flow Standard . 50
2.6. A Comparison of NS-3, OMNeT++, Mininet and EstiNet [115] . . . 58
2.7. DIFANE Wild-Card Rules . 64

3.1. Comparison of Normal and Candidate Processes 90

4.1. DAIM Application Header Files . 103
4.2. API Dependencies Used to Implement DAIM Modules 104
4.3. Public Functions with Associate Actions in the Object List Class . . 112
4.4. OpenFlow Messages Handled by the Controller Module 114

5.1. The Minimum Response Time . 152
5.2. SDN/OpenFlow Controllers: Code Extension 160

xi

Nomenclature

AA Autonomous Agent

ACNs Autonomic Communication Networks

ACs Autonomic Communications

ADSs Autonomous Decentralised Systems

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BGP Border Gateway Protocol

CLI Command Line Interface

DAI Distributed Artificial Intelligent

DAIM Distributed Active Information Model

DHCP Dynamic Host Configuration Protocol

DMI Desktop Management Interface

DMTF Distributed Management Task Force

DNS Domain Name System

FCAPS fault, configuration, accounting, performance, security

FTP File Transfer Protocol

IETF Internet Engineering Task Force

ISO International Organization for Standardization

LLDP Link Layer Discovery Protocol

LTE Long Term Evolution

MANET Mobile Ad hoc Network

xiii

MEs Managed Elements

MIB Management Information Base

NETCONF Network Configuration Protocol

NFV Network Functions Virtualisation

NGN Next Generation Network

NIB Network Information Base

NOS Network Operating System

OFLOPS OpenFlow Operations Per Second

OSCA Operating System Communication Application

OSPF Open Shortest Path First

OSS Operations Support System

OVSDB OpenvSwitch Database Management Protocol

QoS Quality of Service

RESTful Representational State Transfer

RNC Radio Network Controllers

SDN Software-Defined Networking

SID Shared Information and Data Model

SLAs Service Level Agreements

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

STP Spanning Tree Protocol

TLS Transport Layer Security

TMF TeleManagement Forum

UML Unified Modelling Language

VETH Virtual Ethernet

VMs Virtual Machines

WASNs Wireless Ad-hoc Sensor Networks

WiMAX Worldwide Interoperability for Microwave Access

WSN Wireless Sensor Network

XACML eXtended Access Control Markup Language

XML Extensible Markup Language

XML-RPC XML-encode Remote Procedure Call

Acknowledgements
I would like to acknowledge all the support and encouragement received during my
PhD research. Firstly, I would like to express my deep gratitude to Professor Robin
Braun, who has been my supervisor and very good friend. His valuable guidance
through this research was a great source of support and encouragement and always
made me go that extra mile to solve the various problems that lead to this work. I
cherished the opportunity to watch and learn from his knowledge and experience.
His frequent insights and patience with me are always appreciated.
I also thank my co-supervisor, Dr. Bruce Moulton, for supporting me throughout
this work. During the course of this research, I also benefited greatly from inter-
actions and technical discussions with other talented and warm-hearted members
from the CRIN centre, including Dr. Zenon Chaczko and Dr. Abdallah Al Sab-
bagh, to whom I wish to give sincere thanks. The technical conversations with
them also helped me over the course of this project not only in terms of resolving
quick technical difficulties but also with regards to lightening up.
It has been my privilege to work closely with Ameen Banjar, my research collabor-
ator and best friend, I am gratefully thanking him for his invaluable contributions
and innovative ideas towards this project. My special mention also goes to Md.
Imam Hossain, for helping me with the solution to the problems in C/C++ pro-
gramming, and setting up the test bed used for this research. I am very proud of
what we have achieved together, thank you both.
I would like to thank Suan Dusit University, Bangkok, Thailand for providing inter-
national student academic research scholarship, and Emeritus Professor Tony Moon
for nominating me for UTS International Research Scholarship (IRS) to support my
PhD degree financially.
I am truly indebted to all my friends who have supported me over the last few
years: Wael Alenazy, Jiajia Shi, Raniyah Wazirali, Lucia Gordon, Anup Kale, Denise
Umuhoza, Shaher Slehat and Sanya Khruahong for their help in various ways. I have
enjoyed many useful and happy chats with them. I have been very fortunate to have
them around during my PhD study.
Last but by no means the least, I wish to give special thanks to my lovely family,
Dr. Sawarng, Asst. Prof. Dr. Kanungnit and my sister Pitinut, for their immense
support and all of the sacrifices that they have made on my behalf. My parents
always gave me constant support and tried to provide me with the best education
they can afford. They have been an important driving force to encourage me behind
this PhD research.

xvii

I would like to express my sincere appreciation to my beloved wife, Duangporn, for
her endless support, dedicated love, patience and understanding in every possible
way. She always supported me in the moments when there was no one to answer
my queries. Finally, I would like to thank my sons, Neptune and Neymar, for the
happiness and cheers they have given me as their own way to support me.

Related Publications

The technical contributions and discussions in the thesis are mainly based on the
following publications written by the author in which five of them are co-authored:

A. International Journal Publications:

[J1] Pupatwibul, Pakawat, Ameen Banjar, Abdallah AL Sabbagh, and Robin Braun.
”A Comparative Review: Accurate OpenFlow Simulation Tools for Prototyping.”
Journal of Networks 10, no. 5 (2015): 322-327.

[J2] Banjar Ameen, Pakawat Pupatwibul, and Robin Braun. ”DAIM: A Mechanism
to Distribute Control Functions Within OpenFlow Switches.” Journal of Networks
9.1 (2014): 1-9.

[J3] Banjar Ameen, Pakawat Pupatwibul, Abdallah AL Sabbagh, and Robin Braun.
”Using an ICN Approach to Support Multiple Controllers in OpenFlow.” Interna-
tional Journal of Electrical & Computer Sciences 14, no. 2 (2014).

B. International Conference Publications:

[C1] Pupatwibul, Pakawat, Ameen Banjar, and Robin Braun. ”Using DAIM as a
Reactive Interpreter for OpenFlow Networks to Enable Autonomic Functionality.”
ACM SIGCOMM Computer Communication Review. Vol. 43. No. 4. ACM, 2013.

[C2] Pupatwibul, P., Jozi, B. and Braun, R. 2011, “Investigating O:MIB-Based Dis-
tributed Active Information Model (DAIM) for Autonomics”, International Con-
ference on Information and Communication Technologies and Applications IIIS,
Orlando, Florida, USA, pp. 7-12.

[C3] Pupatwibul, P., Sabbagh, A.A.L., Banjar, A. & Braun, R. 2012, “Distributed
Systems in Next Generation Networks”, 1st Australian Conference on the Applica-
tions of Systems Engineering ACASE’12, p. 32.

[C4] Pupatwibul, P., Banjar, A., Al Sabbagh, A., & Braun, R. (2013, October).
“Developing an Application Based on OpenFlow to Enhance Mobile IP Networks”.
In Local Computer Networks Workshops (LCN Workshops), 2013 IEEE 38th Con-
ference on (pp. 936-940). IEEE.

[C5] Al Sabbagh, A., Pupatwibul, P., Banjar, A., & Braun, R. (2013, October).
“Optimization of the OpenFlow Controller in Wireless Environments for Enhancing
Mobility”. In Local Computer Networks Workshops (LCN Workshops), 2013 IEEE
38th Conference on (pp. 930-935). IEEE

xix

[C6] Banjar, A., Pupatwibul, P., Braun, R., & Moulton, B. (2014, February). “Ana-
lysing the Performance of the OpenFlow Standard for Software-Defined Networking
Using the OMNeT++ Network Simulator”. In Computer Aided System Engineering
(APCASE), 2014 Asia-Pacific Conference on (pp. 31-37). IEEE.

[C7] Pupatwibul, P., Banjar, A. & Braun, R. 2014, “Performance Evaluation of
TCP/IP vs. OpenFlow in INET Framework Using OMNeT++, and Implementation
of Intelligent Computational Model to Provide Autonomous Behaviour.” The Asian
Conference on Technology, Information & Society 2014, The International Academic
Forum (IAFOR) Osaka, Japan, pp. 43-56.

C. International Book Chapter Publications:
[B1] Pupatwibul, Pakawat, Ameen Banjar, Abdallah AL Sabbagh, and Robin Braun.
”An Intelligent Model for Distributed Systems in Next Generation Networks.” In
Advanced Methods and Applications in Computational Intelligence, pp. 315-334.
Springer International Publishing, 2014.

[B2] Banjar, Ameen, Pakawat Pupatwibul, and Robin Braun. ”Comparison of
TCP/IP Routing Versus OpenFlow Table and Implementation of Intelligent Com-
putational Model to Provide Autonomous Behaviour.” Computational Intelligence
and Efficiency in Engineering Systems. Springer International Publishing, 2015.
121-142.

Part I.

Elaborating on the “Propositions”

1

1. Introduction

1.1. Introduction

In this chapter, the goal of this research on developing a new information model
named: Distributed Active Information Model (DAIM) as a logically distributed
control plane for OpenFlow networks and its impact on the Software-Defined Net-
working (SDN) community are described. Furthermore, the motivations of this
research are explained. The promising research questions are defined on the basis of
understanding and identifying a gap in the scholarly literature. The overall thesis
structure is also presented. The statements of technical contributions are demon-
strated.

1.2. Background of Network Management
Complexity

Data communication networks were first invented in the early 1900’s; back then most
of the computing power was from human brains. The only way networks could be
managed was from centralised manual exchanges and to use common management
and data paths. When the first evolution of automatic exchanges arose, they were
actually just mimicking the manual exchanges. Also, networks gradually evolved
towards the separation of the management plane and the data plane. All the alloc-
ation of system resources was made before a communication could be established.
Network operators did not truly understand the separation of work required to make
a connection, and hence had very little need for the “layered” networking structure.

In the 1970’s, there was a rapid increase in computing power (Moore’s Law) [91].
This power has made it possible to shift the computing needs of the network away
from the centre to the end points. Moreover, this power also made it possible for the
network to divide data into “chunks”, which are called packets. Packets get delivered
based on the meta-data that they carry with them such as source and destination
IP addresses. Therefore, it is feasible to add meta-data to these “chunks” of data,
so that they can become packets and can be delivered by the network elements
themselves. When the network delivers packets, first it has to deliver packets to the
local post office, and then the postal service delivers them globally, and then locally

3

1.2 Background of Network Management Complexity

to the destination. This packet delivering process can be clearly seen as a division
of labour, and hence the 7/5 layer model.

All of this proliferation of devices and division of labour gives rise to the allocation of
management to the network elements, and thus to the massive rise in complexity of
telecommunication networks. A recent count suggests that there have been upwards
of 15 Billion connected devices with at least 1 CPU. The networks have become
complex in the classic sense of the word. Networks are stochastic, non-linear, chaotic,
and they are intractable. Not only do network operators have to consider the above,
but also this distributed nature forces them to combine the management and data
forwarding paths, leading to further management complexity and vulnerability.

These issues will be the real inhibitor to network growth in the future. Complexity
is the barrier, not electronics or optics. There is a need to re-evaluate the basic
management model so as to reduce complexity. Some of the research trends have
been proposed to tackle network complexity for example by separating the data and
management planes, and by swapping network parameters for network requirements.
If network control can separate the data and management planes, then it only has
two areas of work (the bosses and the workers). All data forwarding then practically
becomes a layer 2 function. The functionalities of layers 3 and 4 are subsumed into
the management function.

Complex electronic environment refers to a group of electronic devices connected
(wired or wireless networks) to share information and resources. Any networked
system needs a management protocol that performs different kinds of tasks such as
operation (monitoring the performance of the network and detecting any occurred
problem as soon as possible), and maintenance (fix any occurred problem and always
maintain network infrastructure to ensure the network is configured and operating
at optimal performance).

Most of the proposed network management protocols are based on the Interna-
tional Organisation for Standardisation (ISO) definition for management model.
Performance management, Configuration management, Accounting management,
Fault management and Security management are five characteristics of this defin-
ition [2]. Performance management refers to the operation task with the aid of
collecting and processing important management information. Configuration man-
agement refers to monitoring and controlling the effects of any device on network
performance. This characteristic can be used to search for any useful information
when any problem occurs. Accounting management guarantees a fair usage of net-
work resources by any user. Fault management refers to the maintenance task that
can detect the problem, isolate and fix it in the network. Security management
controls the access level of all users to the resources of the network based on specific
policies [40].

4

Introduction

1.3. Research Motivations

1.3.1. Motivation from Management of Distributed Complex
Networks

Firstly, the research is inspired by the consideration of many new characteristics of
complex distributed networks, which are expected to support multiple IP-based ser-
vices. Furthermore, the current static network architecture is not sufficient to cope
with the dynamic computing and storage needs of today’s enterprise and carrier en-
vironments. The existing networks are growing rapidly in size and complexity, thus
may generate significant challenges in network management, operations and main-
tenance. The aim is to study the growth of large-scale technological renovations in
telecommunication core and access networks that would be deployed in the next 5
to 10 years. For example, these networks include mobile communication, peer-to-
peer networks, pervasive/nomadic computing, and wireless ad-hoc sensor networks
(WASNs). They have dramatically influenced our daily life in the past few years. It
is expected that high-end devices such as routers and switches will become increas-
ingly programmable, and become able to execute more software control directly on
the devices. In the conventional configuration, management approaches are often
inefficient and involve too many human efforts. The research outcome can be read-
ily applied to manage these distributed networking systems. This thesis analyses
the relationship among adaptation algorithms, managed elements, and distributed
computing systems, and applies distributed management strategies to achieve an
effective distributed control plane for SDN.

1.3.2. Motivation from Self-Management Strategies

Secondly, this research is motivated by the emergence of autonomic systems and the
concepts of self-x properties. Because current networks are evolving rapidly in size
and complexity, this may bring important challenges in terms of administration, op-
eration, and maintenance of networks and services. Moreover, traditional network
management typically needs to reconfigure most of the devices if any circumstances
or requirements change. Therefore, the autonomic configuration capabilities should
be implemented to manage the networks. Also, dynamic configuration and topo-
logy will require quick response and network wide configuration capability in order
to manage large-scale networks. Self-management in autonomic communication is
considered as one of the promising solutions to cope with such complex distributed
environments. It gives systems the capability to adapt to ever-changing environ-
ments in order to improve its scalability, survivability of services, and robustness,
as well as reducing the need for human operations from low-level reconfiguration
work. With autonomic functionality, future networks could resist any attacks and
positional damage, under the ability to reconfigure themselves. It is important to

5

1.4 Research Objectives and Scope

research the proposed self-x paradigm and other available mechanisms as they are
essentially required in achieving high-level network autonomy and recognised as be-
ing extremely related to Autonomic Communication Networks (ACNs) as well as
other real networks. The implementation of the DAIM model will enable the de-
velopment of autonomic communication with some level of distributed features to
overcome the scalability issues in the SDN architecture.

1.3.3. Motivation from OpenFlow-Based SDN

Currently, network management is changing towards a more flexible network man-
agement. Open Network Foundation (ONF) has been dedicated to the promotion
and adoption of Software-Defined Networking (SDN) that emerged in recent years.
SDN is an emerging computer networking architecture in which the control plane
is separated from the physical network and implemented in a software application.
This setup allows network administrators to have programmable central control of
network traffic without requiring physical access to routers and switches. The sep-
aration of the control plane from data forwarding plane offers the promise of new
paradigms in the management of networks, including the development of autonomic
behaviours.
By increasing network resource utilisation and decreasing operational costs, net-
works can be more flexible and cost effective with the deployment of SDN. This
research is motivated by the development of OpenFlow network, which enables re-
searchers to easily run their experiments and deploy innovative routing and switching
protocols in campus networks we use every day. OpenFlow is an open standards-
based protocol that can be used for services and applications such as high-security
networks, virtual machine mobility, and next generation distributed IP-based net-
works. However, OpenFlow system is implemented with a centralised control plane,
and thus is struggling to cope with key limitations concerning performance, lack of
scalability, reliability, and large establishment delay issues. Therefore, OpenFlow
will be a very useful test bed networking system for applying and extending the
DAIM model to enable autonomic functions. By adopting this DAIM structure, it
is possible to improve the performance of a centralised OpenFlow controller.

1.4. Research Objectives and Scope

This research aims at applying the DAIM principles to the SDN structure to provide
a logically distributed control plane for OpenFlow networks. The notion of distrib-
uted communication networks is proposed as a promising solution to accommodate
the increased complexity of enterprise-grade networks. The key is to design a com-
prehensive distributed system in which the computational load will be distributed
to a lower level at the switches, allowing them to manage local information of net-
work entities. This study will provide the methodologies, structures and algorithms

6

Introduction

working to support self-adaptation strategies. Once being developed and tested by
experiment in this dissertation, the research outcomes will create an environment
that enables autonomic functionality to be introduced, and can also be applicable
for other real networks such as Wireless Sensor Network (WSN), mobile computing,
and bush fire alarm system.

1.4.1. Research Objectives

1. The primary goal of this research is to develop a new network management base
structure, the DAIM model, to be integrated into the SDN architecture at the level
of the switches. This will enhance switches to manage flows locally by using dis-
tribution controllers that operate on packets instead of a centralised controller in
OpenFlow environment in order to improve its performance, scalability and robust-
ness.

2. To produce the methodologies, models and algorithmic protocols that will help
enable a desirable distribution paradigm to improve its survivability for the com-
plexity in future telecommunication networks. The DAIM model can be developed
with more dynamic and consistent configuration of policies, fewer errors and reduced
operational expenses. After being designed and implemented in this thesis, they can
migrate to other real networks such as WSNs, pervasive communication networks,
and mobile communications.

3. To investigate direct network development efforts that will enable and support
advanced technology development such as distributed learning and self-adaptation
strategies, quality of service (QoS), and autonomic management strategies to main-
tain the system in case of changing requirements and unexpected threats. This will
also open the possibility for future thesis research by other students at the University
of Technology Sydney (UTS) with relevant research field.

The expected outcome of this research is a successful integration of the DAIM model
in an OpenFlow network, and in so doing enable it to perform operational functions.
This will enable the richness of innovative adaptation algorithms to be applied to any
distributed computing environment. The DAIM model is developed as a physically
distributed control plane to organise massive network elements. DAIM has a local
processing engine that instructs the switch to forward flows without the vetting
from a centralised controller. DAIM is implemented based on the SDN paradigm
with some level of distributed functions that can simplify network management.
The practical feasibility of DAIM is demonstrated through experimental evaluations
conducted with the Mininet emulator.

1.4.2. Research Scope

The scope of this research covers the following areas and can be described as follows:

7

1.4 Research Objectives and Scope

• Proposing a new distributed active information model (DAIM) theory

One possible implementation of DAIM introduced in this thesis is the creation of a
DAIM cloud embedded with smart agents implemented in a Java virtual machine
environment (e.g. JadeX). These agents will be bounded to a particular variable or
a value in the routing table, and have some level of distributed intelligence and self-
adaptation strategy to manage those variables if any changes occur in the network
environment.

In the case of OpenFlow networks, the concept of managing the variables is having
each one of the entries in the flow table or each OpenFlow message ”owned” by a
unique DAIM agent. In addition, an OpenFlow-enabled switch has flow tables built
into it and a Secure Sockets Layer (SSL) connection to the controller to manage
these flow tables and install the flow entries. The DAIM theory proposes to convert
the controller into a system requirement database and have some level of distributed
intelligence environment (DAIM agents) that resides in all the switches. These smart
agents should then be able to identify what values to compute in the flow tables
based on the system requirements, which are driven by the business needs.

• Implement and re-engineer the OpenFlow-based SDN structure by integrating the
DAIM model at the level of the switches to create a physically distributed control
platform. This may also include a portion of the network operating system within
switches to support some level of network control. Moreover, the thesis scope covers
the deployment of a distributed flow management architecture in which each DAIM
controller manages its connected switch in order to collect network information (e.g.,
links, hosts, and ports) using the OpenFlow protocol and communicating messages
(get, get-response, and set). This information will be stored in the system’s local
memory, which is used for managing the network. After deploying the DAIM model,
an OpenFlow-based SDN network can perform operational functions in terms of
forwarding packets and installing appropriate flows along the chosen path.

• Decentralisation is an essential element of autonomic systems: any centralised
resource such as an SDN controller or control point will act as a brake on a sys-
tem’s ability to adapt, especially in terms of robustness and performance. New
techniques are urgently needed to understand the exact robustness, performance,
and complexity characteristics of decentralised algorithms. Each DAIM controller
will be physically distributed across OpenFlow switches with the ability to organise
local information of distributed network elements for management purposes. By
adopting the DAIM model, OpenFlow switches will have the capability to manage
flows locally by using DAIM to operate on packets instead of a centralised controller
in an OpenFlow environment.

Note that it is outside the scope of this research to develop the autonomic
strategies themselves.

8

Introduction

1.5. Problem Statement

The increasing demand and growth of network traffic over the past few years has led
to the bottlenecks of the traditional networking paradigm. Moreover, today’s net-
working environment typically contains a large number of communication devices
such as router, switches and hosts with many complex protocols that are embed-
ded and implemented on them. Network operators are responsible to ensure best
connectivity and configure policies to accommodate a wide range of network events
and application services. They usually transform these high-level policies into lower
level of configuration commands manually. This is a complex task that often is
achieved with very limited access to tools. As a result, network control and man-
agement including other activities related to provisioning of networked systems are
quite challenging and error-prone tasks.

Furthermore, current networks have many restrictions including difficulties to meet
the business and technical requirements over the past few decades, while the in-
dustry has developed protocols for the networks to provide an optimal performance,
reliability and greater connectivity, and security is more stringent. Moreover, there
are difficulties to add, modify and remove any device or configure these devices,
which must be touched by an IT person that needs to configure many switches,
routers and firewalls using the device-level management tools [44].

The explosive deployment of Internet ossification is another challenge for network
operators and researchers. Because of huge Internet adoption and its effects on
many aspects in our life, it is difficult to develop the Internet in regards to physical
infrastructure along with the protocols and performance. The demands of new
emerging applications are becoming more complex, and thus the existing state of
the Internet seems unable to evolve to overcome these emerging challenges.

One of the promising research directions in data communication is stimulated by
Software Defined Networking that emerged in recent years. The technology deploys
the concept of programmable networks as a way to facilitate network evolution,
which endeavour to resolve the bottlenecks of traditional switching and routing
based network deployments. By adopting SDN, network operators can gain network
programmability, network control and automation, which will enable them to create
highly scalable and flexible networks that can adapt to changing business needs.

Although SDN is able to provide flexibility in network management and promises
to dramatically simplify network control to enable innovation and evolution, SDN
particularly opens a set of currently unresolved key challenges concerning reliabil-
ity, service orchestration, scalability and performance. How to adopt and operate
SDN in a reliable manner by providing redundancy and load balancing? Can SDN
provide performance figures required for network operations and where should SDN
be placed to optimise the network subject to different design criteria? How can SDN
applications be orchestrated? How can network monitoring be adapted to such flex-
ible networks? This research aims at addressing some of these and similar questions

9

1.5 Problem Statement

in OpenFlow-based SDN focusing specifically on performance and scalability.

1.5.1. Research Questions

The ultimate goal of this research is to develop the DAIM model that allows lo-
gical distribution of the control plane for SDN with OpenFlow as the standardised
protocol. Using DAIM, systems will react according to predefined rules and create
their own adaptation strategies driven by system objectives to meet the operators’
Service-Level Agreements (SLAs) and able to satisfy users. The implemented DAIM
model will hopefully address current OpenFlow problems as well as the research
challenges in managing future distributed network systems aiming at an autonomic
management strategy.
There is an urgent need to explore the distributed autonomic ways in managing
network systems to address the proposed issues above. The main research question
can be further expanded into sub-questions as follows:

1. Can we develop a new distributed active information model (DAIM), and integ-
rate into the OpenFlow architecture at the level of the switches to provide a logically
distributed control plane?

2. Can the OpenFlow switches manage flows locally by using DAIM to operate on
packets instead of a centralised controller in an SDN environment?

3. Can the performance of DAIM model be proven to provide efficiency, robust-
ness, resilience, flexibility and improve the flow setup throughput and latency of an
OpenFlow controller?

4. Can the DAIM model provide a distributed computing environment that will cre-
ate the appropriate “hooks” and allow the development of autonomic management
strategies?

1.5.2. Propositions Derived from the Research Questions

This dissertation describes the author’s research over the last years in developing the
DAIM model as a logically distributed control plane with the hope to address the
limitations of current OpenFlow deployments with respect to scalability and a single
point of failure. Moreover, the expected research outcomes will also contribute to
the SDN and the networking research community.
To the best of the author’s knowledge, this work proposes one of the most recent
efforts to develop a distributed active information model and enable distributed
computing strategies in an OpenFlow network. The aim of this research is to build
up a scalable, robust and efficient distributed control plane for SDN.

10

Introduction

Given that we have an OpenFlow environment as a standardisation of Software
Defined Networking, this research proposes that:

Proposition 1: The DAIM model will be able to integrate seamlessly into the Open-
Flow architecture at the level of the switches to provide a logically distributed
control plane.

Proposition 2: This logically distributed control plane will allow the switches to
manage flows locally by having DAIM operate on packets instead of a central-
ised controller in an SDN environment.

Proposition 3: The performance of the DAIM model can be proved to possess
efficiency, robustness/resilience, flexibility, and will improve the flow setup
throughput and latency of an OpenFlow controller.

Proposition 4: Most importantly, in building the distributed computing environ-
ment offered by DAIM, this can create the appropriate “hooks” that will allow
the development of autonomic management strategies.

To facilitate the propositions above, the DAIM controllers are physically distributed
where each controller manages its connected switch and distributes useful informa-
tion to other instances within the cluster and communicates if necessary with the
neighbouring domain.

1.6. Approach and Methodology

The section describes the methods for analysing problems and identifying gaps, fol-
lowed by proposing a potential solution to resolve the problems, implementing the
designed model, conducting experiments and verifying the outcomes. Finally, results
evaluation are discussed to demonstrate that the implemented DAIM model is op-
erating functionally. This thesis has presented a list of activities and steps to obtain
outcomes that will give evidence as well as test (prove/disprove) the propositions,
which are described in the following sections.

1.6.1. Reviewing the Scholarly Literature

The literature review focuses on identifying the problems of OpenFlow in regards to
scalability and performance, and analyses them to obtain research gaps. The goal
of the literature study is to evaluate alternative approaches and to propose the most
feasible and desirable systems for development. Moreover, it aims to review several
theoretical and practical aspects of previous research. For this purpose, various
network management protocols and other implementations that were proposed to
improve the performance of OpenFlow have been revised in detail. Many related
works in the past few years have been summarised and evaluated in order to generate

11

1.6 Approach and Methodology

new research hypothesis as well as showing similarities and differences (consistencies
and inconsistencies) in previous research.

The study is conducted mainly in the field of distributed systems and its functional-
ities, which include what, why, where, and how they can be implemented, and what
are the potential development environments (e.g., SDN/OpenFlow). This review
also surveys the state of the art in programmable networks, which focuses par-
ticularly on OpenFlow and discusses other perspectives from earlier ideas to recent
developments. Then current alternatives of OpenFlow for implementation, testing of
SDN-based applications, services and protocols are examined. The literature search
used standard sources and tools such as UTS Library databases, online resource pa-
pers and other related dissertation. Thus, the method to form this literature review
is identifying the candidate system requirements, which requires the interpretation
of network services that can improve the scalability issues in the current OpenFlow
network. These reviews have been analysed to specify the gaps, which motivates
this research approach.

1.6.2. Designing a Candidate System

After the research gaps are determined, the next phase to facilitate the development
of DAIM is system design. Designing a candidate system is a process to solve the
issues and consider as a plan for research software solution. System design may be
regarded as the most creative and challenging phase of the research methodology due
to the fact that it is critical and very important, which involves technical activities
such as defining the required system output, specifying data required to produce
the output, documenting all aspects of design, and so on. The main purpose of the
design phase is to create a DAIM structure that is suitable for implementation in
some programming language. There are two main activities in the design phase.
Firstly, a high-level architectural design is conducted to decompose the system into
modules, and representing the interfaces and the invocation relationships among
the modules. Secondly, a low-level design is undertaken to design the internal struc-
ture of individual modules in greater detail. In addition, the algorithms and data
structure of the modules are designed and documented.

It is important to have a well-defined software requirement specification for the
designed DAIM model, which is a description of the system laying out the functions
that DAIM must perform. The aim is to distribute the DAIM controllers and
have them running on every OpenFlow switch. These controllers can also actively
share network information between each other to manage the network and process
flows locally according to the information collected. For example, the task where a
switch encapsulates an incoming packet and forwards it to the controller, instead
the switch should be able to pass the packet to a local processing engine, which
could be addressed by a distributed processing system like DAIM. In order achieve
this, flow table entries need to be observed and a set of rules developed on how the

12

Introduction

DAIM model will process the flows. Once a switch has received an unknown packet,
the action does not require forwarding to the controller for high-level decisions. This
should be the case where DAIM is actually accessing its own information database
(local memory) and checking for the designated destination, and making their local
decisions to install the necessary flow entries in the flow table.
In this phase, the functionalities of the DAIM and the communication protocol
between each DAIM controller need to be clearly defined in order to develop a fully
distributed network environment. For example, the communication protocol is to
specify the network structure in terms of network topology, traffic type, and how
network data are shared among each DAIM controller. Two main elements of the
shared information are (1) describing the infrastructures that are available, and
(2) describing the requirements and services that the infrastructure has to provide.
Once the DAIM model has been designed, it is ready for implementation.

1.6.3. Emulating the Candidate System Using Mininet

Specifying a benchmark network and building up scenario topologies is done in
Mininet (virtual machine environment). Mininet is a Linux-based networking envir-
onment giving the ability to handle and test IP packets, FTP transfer, Ping, and so
on. Mininet uses Linux processes in network namespaces instead of running multiple
VMs to be more scalable. It allows you to quickly create an emulated OpenFlow
network and provides a smooth path to running on hardware. The codes that are
developed and tested on Mininet for an OpenFlow controller, modified switch or
host, can move to a real system with no changes for real-world testing, performance
evaluation, and deployment.
After setting up the Mininet environment, the proposed DAIM model can be tested
by having DAIM controllers manipulate the flow entries in a flow table. In addition,
the environment setup will use dedicated OpenFlow-enabled switches. This way
the DAIM controller can manage the flow entries according to the flow modification
messages computed from the collected network information. To start experimenting
with OpenFlow, we will need both an OpenFlow switch (either a software-based
switch or a hardware one) and a controller that supports higher-level applications.
According to Lantz (2010), Mininet is a network emulation platform that supports
research, development, prototyping, testing, debugging, and other tasks related to
having a complex experimental network on a single device. Mininet gives a simple
and inexpensive network test bed for implementing OpenFlow applications. It uses
OS-level virtualisation features, including Linux processes, virtual Ethernet pairs,
and network namespaces to create a virtual OpenFlow network. In virtual machine
environment, Mininet can provide an easy way to quickly create, customise, and
share a software defined network prototype with gigabits of bandwidth up to hun-
dreds of nodes (e.g. controller, switches and hosts). Lantz further states that users
can develop a new network architecture, run it on large topologies with application

13

1.6 Approach and Methodology

Figure 1.1.: The Connections and Components of Two-Host Network Created by
Mininet[57]

traffic, and then apply the exact same codes and scripts into the real production net-
work. Figure 1.1 illustrates a virtual network created by Mininet, placing a two-host
process in network namespaces and connecting them with Ethernet pairs (veth). It
is an example of a connection to a user-space OpenFlow switch.

By combining both extensible CLI and API with lightweight virtualisation, Mininet
emulates hosts, links, switches, and controllers of the OpenFlow network.

Hosts – the network namespace that contains network state. It provides processes
of interfaces, ports, and routing tables. Every host has its own virtual Ethernet
interface(s) and a pipe to a parent Mininet process in order to send monitor outputs
and commands.

Links – A virtual Ethernet pair, which acts as a wire connection of two virtual
interfaces. Each interface is functioned as a full Ethernet port; sending and receiving
packets from all system and application software. Is may be attached to virtual
switches (e.g., Linux bridge, software OpenFlow switch).

Switches – software-based OpenFlow switches, which perform the same packet
delivery semantics as a hardware switch. They are available in both kernel-space
and user-space switches.

Controllers – Controllers can be anywhere in the real or simulated network as
long as the running switch has IP-level connectivity to the controller. As Mininet
operates in VMs, the controller could run in the VMs, natively on the host, or in
the cloud.

Figure 1.2 shows the console application using Mininet API to interact with and
monitor hosts, switches, controllers and MiniEdit is a simple graphical network
editor to open up CLI for nodes.

14

Introduction

Figure 1.2.: Mininet Emulation Software

1.6.4. Implementing the Candidate System

This phase is the practical implementation of the candidate DAIM system. In this
phase, the main goal is to implement the model in the best possible manner. For
the implementation of DAIM, the openflow.h header file is used to model the Open-
Flow protocol and its defined messages. DAIM is developed based on the theory
and the designed model presented in Chapter 3 as closely as possible. Firstly, it is
important to specify the new system’s components and structure in order for it to
be successfully implemented. Also, the functionality of the NOX controller needs
to be identified. A thorough study of the NOX controller, OpenFlow protocol, and
flow table contents and rules are required to develop the DAIM model efficiently.
This new system needs to mimic NOX functionalities and have the ability to process
incoming packets locally, directing them from source to destination without forward-
ing to a centralised controller for routing decisions. This research is done following
the NOX controller implementation. This choice is based on the fact that the NOX
controller is fully open source and the modules which dictate the behaviour of the
controller can be programmed in C++. Moreover, NOX has few dependencies and
does not contain any complex networking functions such as routing, host detec-
tion, or topology reconstruction. It also comes with some useful example network
applications.

The programming language used to develop DAIM is C++. In addition, a free and
open source NetBeans IDE is used to develop DAIM, which provides a great set of
tools for C/C++ applications. The DAIM model is implemented in three phases
including a basic carrier, semi-distributed and fully distributed functionality. The
main purpose of this work is to develop a logically distributed control plane by in-
tegrating the DAIM model into the SDN structure at the level of the switches. This
will enable the switches to process events locally by distributing DAIM to operate
flows instead of a centralised controller in an SDN environment. Furthermore, the
three core modules that construct the DAIM ecosystem are described on the basis
of a software specification. The implemented modules are comprised of the Com-
munication module, the Local Storage module, and the Controller module as well as

15

1.6 Approach and Methodology

the most significant messages that are needed for the communication between the
switch and the DAIM controller. More details are presented in Chapter 4.

1.6.5. Validating the Candidate System

After developing the DAIM model, a set of actions have been conducted to check the
compliance of the overall system. These actions include testing and verifying that
DAIM is operating functionally and meets requirements and specifications which
fulfil its intended purpose. The method for testing DAIM is to generate a ping
command and measure the mean RTT in different network scenarios. The scenario is
created in a virtualised network using Mininet. For performance evaluation, Cbench
[96] tool is used to determine controller performance in terms of throughput and
latency, whereas Iperf [50] is performed to measure the maximum TCP and UDP
bandwidth utilisation of the network. Moreover, a small-size OpenFlow network
based on Raspberry Pi’s has been set up physically to demonstrate that DAIM can
be deployed in real networks.

Next step is collecting the experiment results for performance evaluation, which
will show that the DAIM controller produces comparable results to the current
SDN/OpenFlow controllers and that it is possible to run DAIM on productive
networks. The performance of the DAIM model is compared with NOX, POX
and NOX-MT controllers and good results are reported regarding throughput and
latency. Validation is to ensure the DAIM system is implemented to deliver all func-
tionalities as defined in the requirements. There are important distinctions between
verification and validation. Verification evaluates documents, code, requirements
and specifications to determine whether they meet the specified requirements for
that phase. In contrast, validation evaluates the candidate system at the end of
the development process to determine whether it satisfies specified business require-
ments. The inputs of verification are illustrated as checklists, issues lists and reviews.
The input of validation is the actual testing of the candidate DAIM system.

1.6.6. Concluding Observations

The purpose of a conclusion is to demonstrate the significance of the thesis and the
implications of the key research findings. The main goal of this phase is to summar-
ise the results that have been achieved by comparing DAIM performance with other
OpenFlow controller implementations. The conclusions are presented and validated
by referring back to the research propositions. The results will demonstrate that an
effectively distributed network for business needs can be implemented by applying
DAIM to the SDN architecture. After deploying DAIM in OpenFlow networks, it is
also possible to introduce the self-x functionalities that will allow the development of
autonomic management strategies. The performance evaluation shows the proposed

16

Introduction

DAIM model is operational, flexible, scalable and adaptable for any complex elec-
tronic environment. Furthermore, the limitations and weaknesses of this research
as well as how these factors can be improved in future research are discussed in the
conclusions. The discussion ends with some suggestions for possible follow-up study
in response to this research.
Ultimately, the proposed DAIM structure will hopefully address the limitations of
current approaches in the novel and future distributed network systems aiming at
an autonomic management strategy.

1.7. Outline of the Thesis

This thesis consists of six chapters and is organised as follows:
Chapter 2: Literature Review
Chapter 2 gives a comprehensive review of related literature sorted in terms of
different main aspects and the current state of art in software defined networking.
In addition, it provides an overview of the standard sets of the information model,
issues of managing complex telecommunication networks, and additional problems
of SDN including single-domain restriction, scalability, and the ability for switches to
act autonomously. Relevant previous approaches to resolving the scalability issues
are described, and their possible connections with this study are also analysed.

Figure 1.3.: Thesis Structure

17

1.7 Outline of the Thesis

Chapter 3: Distributed Active Information Model Theory

The theoretical background based on the O:MIB structure and O:XML technique
are presented in this chapter. Details of the proposed DAIM model are described and
its practical feasibility is also discussed. In addition, the fundamental principles of
the DAIM model such as design, architecture and agent implementation have been
introduced to the SDN paradigm. The difference between conventional networks
and SDN have been analysed in the context of implementation and deployment.
The reason why the DAIM model is important and required is further explained,
the contribution of DAIM therefore is justified. The DAIM model is expected to
satisfy the requirements of distributed network functionalities. This chapter also
discussed the process of packet forwarding within DAIM as well as the risk scenarios
of the DAIM model.

Chapter 4: Integrating DAIM to OpenFlow-Based SDN using Mininet Emulator

DAIM model implementation have been described in three phases including the
basic carrier, semi-distributed and fully distributed functionality. The details of
the overall system are further discussed from a software specification perspective.
In more details, the three core modules that construct the DAIM ecosystem are
discussed with some sample code reviews and flowchart diagrams of the implemented
algorithms. The developed modules consist of the communication module, the local
storage module and the controller module. The most significant OpenFlow messages
required for the communication between the switch and the DAIM controller are also
explained. To validate DAIM, a set of actions is used to check the compliance of the
system with its purpose and functions. In addition, various tasks and scenarios are
demonstrated to test the functionality of the DAIM controller such as executing a
ping command, streaming media and transferring files between hosts. The scenarios
are created based on OpenVswitch in a virtualised network using Mininet emulator.

Chapter 5: DAIM Performance Results and Evaluation

The technical details and testing methodology of experimental evaluation are presen-
ted in the first place. The network topology and scenarios used for the performance
evaluation are further explained. Performance evaluation of the DAIM controller
is defined by four characteristics: round-trip-time, throughput, latency and band-
width. In order to quantify DAIM controller performance, the ping command is
executed to measure the average RTT values. Moreover, the Cbench tool is used to
measure the number of flow setups per second that the DAIM controller can handle
in terms of throughput and latency. Also, Iperf is served as a benchmarking tool
for measuring the network’s maximum TCP and UDP bandwidth utilisation. The
performance of the distributed DAIM controller has been tested and good results
are reported when compared with current OpenFlow controllers including NOX,
POX and NOX-MT. Other parameters that can affect the performance evaluation
are also described in this chapter.

Chapter 6: Research Findings, Conclusions and Future Works

18

Introduction

Lastly, on the basis of the research propositions presented in Chapter 1, the proposed
model and its implementation as well as results of analyses in Chapter 3, 4 and 5,
the major research findings are discussed in Chapter 6. This chapter concludes
with some suggestions for possible future research and developments. Chapter 6
summarises the contribution (achievements and impact) to knowledge, with results,
developed models and approaches to other related networking research areas such as
wireless, mobile, and sensor networks, or infrastructures that provide global services
like the National Broadband Network (NBN). Figure 1.3 depicts a block diagram of
the thesis structure.

The contents of this thesis have been published in part in the following papers by
the author and co-author in recent years [9], [79], [80], [81], [82], [83], [84], [85].

1.8. Statement of Contributions

In this thesis, there has been an investigation of the research questions as well as
proof of the propositions. Moreover, all proposed propositions have been evaluated
with new Information Modelling theories and new distributed network architectures,
and further results of the research contribute to the current knowledge system of
Software Defined Networking and the network management paradigm. The key
contributions have been made according to the following:

With regard to Chapter 3:

• A new theory of distributed active information model (DAIM) is proposed
and designed as an alternative to the previous efforts on object-oriented man-
agement information base (O:MIB) and hybrid O:XML semantics [31]. The
DAIM model is further integrated with the SDN architecture at the level of the
switches to provide a physically distributed control plane that can manage the
flow setups. Details of the DAIM framework are explained and documented. A
journal paper and a conference paper based on this model have been published
as contributions to the knowledge [83], [9].

With regard to Chapter 4:

• An effective DAIM model is implemented from scratch based on its theory
and designed architecture as closely as possible. A new message channel is
created to facilitate the communications between the controller and Open-
Flow switches. This communication channel is implemented using UNIX BSD
socket programming API to process OpenFlow messages without any modific-
ation.

• The three core modules that construct the DAIM ecosystem are also imple-
mented including the communication module, the storage module and the con-
troller module. Inside the communication module, there are various routines

19

1.8 Statement of Contributions

for creating different types of OpenFlow messages. The storage module has
two main components, the Hosts and the Ports table to store the information
of network devices. The controller module is responsible for maintaining the
connectivity with the switches and all control functions.

• An intelligent L2 switch application is developed in DAIM. When a packet
arrives at a switch, DAIM can simply maintain a lookup table that associates
the MAC address of the host with the port on which they are connected.
DAIM stores the source MAC address of the packet and the incoming port
in the table. Upon receiving a packet, DAIM looks up the destination MAC
address and in the case of a match, it installs the necessary flows with a specific
output port to its correct destination host.

• Currently, the cross-controller communication protocol has not been widely
explored in the OpenFlow specification. It is one of the early approaches to be
introduced based on the LLDP mechanism. The initial implementation can
demonstrate that it is possible to share messages between DAIM controllers
through the existing network medium.

• The feasibility of using distributed DAIM controller in different OpenFlow
scenarios has been tested, discovered and documented. In addition, a set of
experiments is carried out to verify the functionality of the implemented DAIM
controller and to check the compliance of the overall system with its purpose
and functions.

With regard to Chapter 5:

• The experimental validation of DAIM communication channel is conducted
and shows its good performance regarding flow setup speed. The DAIM chan-
nel when connected to NOX and POX are compared to normal NOX and POX
controllers with respect to handling events.

• The performance evaluation of the DAIM controller is carried out and shows
its better performance with respect to throughput and latency. The DAIM
controller is compared with the current SDN/OpenFlow controllers including
NOX, POX and NOX-MT.

• Different network performance metrics comprising mean RTT, throughput,
latency and bandwidth have been tested and discovered by the used of available
and appropriate benchmarking tools (Cbench and Iperf).

• A small-size OpenFlow network has already been set up physically in the
lab with a set of Raspberry Pis to show that DAIM can perform operational
functions and can be deployed in real networks. The setup installation and
configuration as well as some useful tests are also performed and documented.

• There are different factors such as programming language and device resources
influencing the performance of an OpenFlow controller. The important para-
meters that can affect the performance evaluation have been analysed.

20

Introduction

With regard to Chapters 3, 4 and 5:

• A reference implementation of the distributed DAIM controller is made avail-
able to help further research, trials and validation of the performance of scalab-
ility and robustness for other researcher’s use. It is accessible on the public
domain (GitHub) and is considered as a contribution to the SDN and the
networking research community.

• The DAIM model with distribution management strategy is developed to en-
able autonomic communication as a promising solution to versatile service
requirements. The implemented DAIM model will hopefully address the lim-
itations of current approaches in the novel and future distributed network
systems aiming at an autonomic management strategy.

21

2. Background and Literature Review

2.1. Introduction

Technological innovations in communication networks, computing applications, and
information modelling have played a significant role in providing management ser-
vices for large and complex systems. The adoption of these advanced technologies
have dramatically escalated over the past few decades, especially distributed net-
works, which has led to an increase in the complexity of network systems. Using
a human operator as the manager is not economical and also error-prone. As dis-
tributed systems grow significantly in both size and complexity, effective manage-
ment requires monitoring, interpreting, and handling the behaviour of the managed
resources to ensure required Quality of Service (QoS) and optimal network per-
formance. Currently, large-scale electronic systems like Wireless Sensor Networks
(WSNs) and bush fire alarm systems are becoming more difficult to manage, config-
ure, operate, maintain and re-structure. It is important to propose a new Operations
Support System (OSS) management structure to cope with such complex distributed
networks and systems.
Currently, many network management systems pursue a platform centred paradigm,
where all of the computation is controlled at a central location. As an example,
in traditional Simple Network Management Protocol (SNMP), a fully centralised
management paradigm is used. Agents are accessed by applications via management
protocol to monitor the system and collect the network information. Furthermore,
several researchers in the network management field believe that in most, if not all,
network management problems can be addressed by using appropriate centralised
systems and intelligence control. However, in today’s real networks, there are many
network management complexities and limitations that cannot be adequately solved
by a fully centralised approach such as lack of flexibility and information bottlenecks.
Software-Defined Networking (SDN) is one of the most promising and disruptive
network management paradigms in recent years. SDN has gained considerable at-
tention from both academia and industry with the potential to imply network innov-
ation and create choice, which help realise new capabilities and address persistent
networking challenges. SDN can also allow network administrators more control
of their infrastructure providing customisation and optimisation. This results in
significant reduction in the overall operational and capital costs.
OpenFlow-based SDN, initially developed by Stanford University in 2008, is a way
for researchers to run their experimental protocols in networks that carry production

23

2.2 Network Management Background

traffic. OpenFlow is regarded as a useful project tool for researchers to easily de-
ploy innovative applications like DAIM, in which some or all of the intelligence and
management control are logically distributed within the network entities. Open-
Flow will be used as a standardised communication protocol to employ and extend
functionalities of the DAIM model.

This research is also applicable to the area of communication networks of wired
and wireless telecommunication networks. The DAIM model is proposed with the
hope to solve new core challenges in managing future heterogeneous and large-scale
distributed networks. An effective DAIM model can provide a distributed com-
puting environment that will enable the richness of adaptation algorithms to be
implemented in such complex systems. These algorithms could be implemented
with intelligent agents that are essentially distributed, and have some self-learning
strategies to make their local decisions according to the changing topology. The
DAIM structure can also be applied to other distributed communication networks
to enable autonomic functions, and therefore reduce the high-level decision making
of a centralised remote controller.

In this chapter, the FCAPS network management principles and some conventional
network protocols, including their advantages and disadvantages are investigated.
Because centralised management cannot stand and achieve the requirements for dis-
tributed network environments, the needs of distributed systems in next generation
networks are further described. Moreover, a background review of fundamental SDN
paradigm is discussed and the associated scalability problems, as well as related work
solutions in this area, are covered afterwards. Three approaches to solving OpenFlow
scalability issues are summarised because they are the most relevant literature to
the research presented in this dissertation. This chapter concludes with an overview
and the current state of the art in the autonomic communications network.

The Autonomic Communications (ACs) is a concept to deal with the ever-growing
complexity of distributed networks. This term gives systems the ability of self-
management, which means each component in ACs can adapt itself to changing
conditions of the dynamic environment. Autonomic networks with high-level func-
tions can manage themselves and create their adaptation strategies driven by the
system requirements to support self-management capability. The concept of auto-
nomic behaviour is classically encapsulated in the self-x capabilities enunciated by
IBM. Using DAIM, we can imagine how a logically distributed control plane in an
OpenFlow network could be made to exhibit autonomic behaviour.

2.2. Network Management Background

In the last few years, network technologies have been increasing significantly in per-
formance, complexity and functionality driven by the needs of the modern world.
However, existing network infrastructure lacks adaptability, and demands device

24

Background and Literature Review

centric and centralised management paradigms. Networks today have become massive
and intractable due to complexity leading to challenges of scalability. Moreover,
communication networks need to support a wide range of services and function-
alities with the capability of autonomy, scalability and adaptability for managing
applications to meet business needs. Networking devices are increasing in complex-
ity among various services and platforms from different vendors. Managing these
complex networks can bring many challenges and may require expert operators.
New network management paradigms may take several years to develop, and much
longer to become widely spread. From the vendors’ side, they have a lack of standard
and open interfaces, and there are limitations on the ability of network operators
to design the network to meet different individual requirements. This makes a gap
between market requirements and network capabilities [14]. Also, vendors do not
have standardised and open interfaces. Hence, there is a need for open and flexible
architectures to implement autonomic management functionality, which has been
considered as a promising solution to ameliorate the complexity of network man-
agement [105]. This section focuses on the FCAPS network model and framework
for network management and some of the conventional network management proto-
cols such as SNMP and NETCONF. Different network structures of centralised and
distributed management paradigms are also explained.

2.2.1. Five ISO Functional Areas in Network Management

International Organisation for Standardisation (ISO) has classified and standardised
network management into five major categories: Fault, Configuration, Accounting,
Performance, and Security management. This standardisation is also widely known
as FCAPS. It is used to organise and sort network management techniques. In
today’s market, most of the network management tools support FCAPS via Simple
Network Management Protocol (SNMP). This section will describe the five func-
tional categories of the FCAPS framework.

• Fault Management
Boutaba and Polyrakis (2001) define network fault as “network downtime, poor
performance and service degradation”. The main purpose of fault management is to
detect, log network faults, and inform individuals of the problem and remotely fix
them to have the network working properly. Fault management increases the net-
work’s reliability by giving the network management tools to quickly detect problems
and initiate recovery procedures. Fault management also deals with identifying fault
symptoms within the network and isolating the problem [86]. Regarding fault man-
agement tools, network managers use them to detect or predict unusual events. If a
network fault is identified, it is either resolved automatically or reported to network
administrators to fix the problems manually. After the problems are resolved, the
solution needs to be stored for future use in case a similar event occurs [19].

• Configuration Management

25

2.2 Network Management Background

Configuration management is a procedure of collecting configuration information
as well as updating the relationships between each component and its status dur-
ing network operation. Configuration management is also responsible for managing
network equipment remotely. According to Rao and Mohapatra (2010), configura-
tion management aims to monitor configuration information in networking devices,
so that the effect on network process of new versions of software and hardware
elements can be identified and managed. Additionally, configuration management
information is recorded in a database and when a problem arises, this configuration
database can be searched to solve the problem [86]. Moreover, network professionals
can add and modify network configuration remotely from a centralised location by
using configuration management tools. These tools can perform many tasks such
as auto discovery and auto mapping of new devices to maintain consistent topology
information.

• Accounting Management

Rao and Mohapatra (2010) point out that the purpose of accounting management
is to understand the behaviour of converged networks. This can be accomplished
by having an inventory of networking devices, clients, bandwidth consumption and
analyse the information to provide current network utilisation data. In addition to
this analysis, the quotas of resource usage such as memory, bandwidth, CPU, and
schedule priority can be set to users fairly [19], [86]. Accounting management also
refers to managing the user and administration as well as billing users for using the
network resources and services. Account management includes tasks such as setting
the cost for network usage, giving access to use network resources, logging network
utilisation, name and address registration, and charging the clients according to this.
Because the users are charged for the services that they consume, the billing process
is more accurate.

• Performance Management

Network performance is characterised by multiple performance characteristics and
can be measured according to throughput, delay, loss and jitter. Hence, perform-
ance management deals with measuring the performance of a network as well as
maintaining the network performance at a satisfactory level [19], [86]. One of the
most important tasks of performance management is data collection. By collecting
statistical performance data, network operators can have a better understanding of
the current network load. They can also develop long-term trends for capacity plan-
ning based on the current growth. Furthermore, network administrators can use
performance management tools to measure the overall throughput, average utilisa-
tion, error rates and maintain to control them. However, performance management
is often related to setting performance thresholds such as TCP links and traffic of
packets sent and received, so exceeding these thresholds on a variety of items can
affect the network performance.

• Security Management

26

Background and Literature Review

The purpose of security management is to secure the safety within the network en-
vironment. It also aims to control traffic in and out of a secure network, which pre-
vents a network from external attacks. For example, intruders attempting to place
a virus on critical servers, reconfiguring, or causing network faults that will debase
the network performance. Moreover, functions of security management can protect
sensitive information on network devices by specifying the configuration of network
clients and devices to control access point. Security management functions can also
advise network administrators of actual or attempted breaches of security. Rao and
Mohapatra (2010) state that security management deals with controlling users’ ac-
cess to network resources as well as preventing them from damaging or accessing
unauthorised devices and data. To meet these security management goals, net-
work operators need to identify and secure access points, analyse potential threats,
conduct security policies, and monitor the user’s identities to network resources.

2.2.2. Network Management Protocols

Current networks have many restrictions, including difficulties to meet the business
and technical needs over the past few decades. The industry has developed protocols
for the networks to provide a high performance, reliability and greater connectivity,
and to make security more stringent. Some of the important network management
protocols are explained in this section. The new DAIM model is proposed as an
alternative approach to these conventional schemes.

1. SNMP: First protocol for network management was Simple Network Manage-
ment Protocol (SNMP) proposed in 1988, which was easy to use and did not
need complex management support, was flexible and could be used in most of
the devices. Moreover, it was the first protocol that was widely accepted and
used for a long period of time. SNMP protocol consists of three parts: man-
aged devices, agents, and network management system. Agents are software
modules running on each managed device, which can provide management
information of the device asked by the manager through a communication in-
terface called Management Information Base (MIB). MIB is a database that
holds important management information used for managing the entities in a
communications network. As this communication is in-band, if any problem
occurs in the network, it is almost impossible to diagnose and recover the net-
work without using an external device. Management information in devices is
always different from MIB; a table called method routines is defined in SNMP
in order to implement the access mechanism to management information on
each device. Another disadvantage of SNMP is the lack of standard definition
of mentioned implementation. There are also other shortcomings as follows:
completely centralised and agents rarely have an active role; inferior scalabil-
ity and inflexible; cannot handle the massive increasing size and complexity of
networks [40], [24].

27

2.2 Network Management Background

2. NETCONF: The limitation of SNMP has lead to the development of altern-
ative approaches in managing large-scale and complex network environments.
One of the newly approved network management protocols proposed by IETF
in December 2006 is the Network Configuration Protocol (NETCONF). It is
a document-oriented approach based on Extensible Markup Language (XML)
technology that aims to address the weaknesses of SNMP, especially the ap-
plication in configuration management. NETCONF protocol is regarded as
the next generation of automated XML-based network management system.
This is because the communication between the NETCONF manager and the
agents are formed in an XML document and based on XML-encoded Remote
Procedure Call (XML-RPC) [119]. Moreover, NETCONF can also upload
and retrieve configuration data of the network devices separately with high-
level configuration operations. To assure the security of message transmis-
sions, NETCONF adopts a transport independent protocol so-called Simple
Object Access Protocol (SOAP) [25]. The NETCONF protocol brings many
great advantages when compared to SNMP. For example, NETCONF provides
more advanced functionalities, more effective transactions of complex config-
uration data, it is more secure and much easier to develop new applications
than SNMP. Although NETCONF protocol is better than SNMP in some as-
pects for instance in configuration management, there are also some important
drawbacks associated with this approach. Firstly, one major issue related to
NETCONF is the lack of support from industries and because there are few
publications regarding NETCONF implementation. Secondly, new elements
of NETCONF security aspects should be added, especially for access control.
For example, using an XML-based access control standard, the eXtended Ac-
cess Control Markup Language (XACML) as a good open source support [117].
Thirdly, there is a need for a new data model and new data modelling language
as this plays a significant role in the universality of NETCONF.

3. Policy-Based Network Management: Policy-based management frame-
work was proposed by Internet Engineering Task Force (IETF) in 2001 [1].
Applying this method can make a network highly automated in terms of con-
figuration. Policies that are defined by the administrator in this method will
be used to configure all of existing or future devices of the network, and there
would be no need for the admin to configure any device itself. As a result, the
administrator’s configuration task will be simplified and this task will be done
automatically. There are four elements in this framework (see Figure 2.1) as
follows:

• Policy repository which is used to save the policies made by the administrator.

• Policy enforcement point which refers to a controlled device in the network.

• Policy decision point which is a communication element between enforcement
point and repository, as these two elements can be placed in same or different devices;
previous protocols such as SNMP can be used to make communication between these

28

Background and Literature Review

Figure 2.1.: Four Elements of Policy-Based Framework [112]

two elements.
• Policy management tool that enables the administrators to define their desired
policies. In this element, two levels of policies were defined, (1) business level that
is based on business needs as well as the user language (does not include technical
terms and specifications), and (2) technology level policy that is the interpretation
of business terms into a technically applicable policy for devices.
The policy management tool consists of four basic elements. Firstly, a user inter-
face is a tool that the administrator can input the policies in a form of business
levels. Secondly, a resource discovery that verifies the network topology. Thirdly,
transformation policy logic is the most important aspect of this framework, which
guarantees reliability, suitability and practicability of the network as well as the
administrator’s policies. Fourthly, a policy distributor that distributes the policies
to all network devices [112].
Although policy-based network management brings many benefits such as the state
of being automatic and highly user-friendly, the main disadvantage of this method
is using a centralised information model where all policies are defined by a central
manager. By increasing the complexity of networks, conflicts between high-level
policies will increase and, as a result, the framework performance will drop or the
network will not operate functionally.

2.2.3. Centralised Management Paradigm

The increasing adoption of advanced technologies in communication networking,
computing applications, and information modelling have played a significant role in

29

2.2 Network Management Background

providing management services for large and complex systems. As the complexity of
the centralised system grows over time, effective management requires monitoring,
interpreting, and handling the behaviour of the managed resources to ensure required
Quality of Service (QoS) and improve networks performance.

This subsection briefly reviews the centralised network paradigm and some of its
limitations. Figure 2.2 illustrates a centralised network that consists of one single
computer server and a number of computers connected to that server by using Op-
erating System Communication Application (OSCA) [71]. In a centralised network,
this server will have its own operating system and applications to configure the
communicated computers, which also have their own operating systems and applic-
ations.

The centralised network (star) paradigm has a single node as a core node, and
multiple nodes connected to that core node where each node has an operating sys-
tem and applications. The core node is able to configure all connected nodes using
an OSCA. Many network management systems today pursue a platform centred
paradigm, where all of the computation is controlled at a central location. As
an example, in traditional Simple Network Management Protocol (SNMP), a fully
centralised management paradigm is used. Agents are accessed by applications via
management protocol to monitor the system and collect the network information.
Moreover, researchers in the network management domain state that a centralised
network implies a central point of control, and through effective management, it
can control customer service, speed, reorganisation and flexibility within the net-
work [62]. However, in today’s real networks, there are many network management
complexities and limitations that cannot be adequately addressed by a fully cent-
ralised approach such as the possibility of a complete failure and traffic bottlenecks.

The centralised management paradigm has a major drawback. For example, increas-
ing the number of connected nodes will affect the performance and the processing
power of the core node. It will also increase the overhead on the server because of the
increasing number of connected computers [65]. In addition, this type of network is
often vulnerable if destruction happens to the central server, which can terminate
the communication between end nodes [12].

Centralised implementations are also inefficient to handle the huge number of high-
level decision makings. This subsection compares the centralised paradigm with the
distributed system paradigm (decentralised), in which some or all of the intelligence
and management control is locally distributed within the network entities. In wired
networks, distributed system minimises the complexity that occurs in layer 3 devices
(e.g. routers) by distributing some roles into layer 2 devices (e.g. Ethernet switches).
OpenFlow is an example of a network that may be able to apply new distributed
models. In wireless networks, a distributed system also minimises the complexity
that occurs in the core network. For example, the Radio Network Controllers (RNC)
such as in Beyond 3G (B3G) network can reduce complexity by distributing some
management functions (e.g., decision making for allocation of radio resources) into

30

Background and Literature Review

Figure 2.2.: Centralised Network Paradigm [84]

the Evolved Nodes B (eNodes B). In Long Term Evolution (LTE) networks, the
management functions are distributed into Base Stations (BSs) such as in mobile
Worldwide Interoperability for Microwave Access (WiMAX) [90], [87].
However, the main advantage of the centralised architecture is that one core node
can be responsible for managing all connected nodes, and thus managing the entire
network from a single point [65]. As a result, this research expects that the Next
Generation Network (NGN) should rely on distributed paradigm such as mesh and
grid networks.

2.2.4. The Needs of Distributed Systems

Over the past twenty years, network technology has been improved rapidly regarding
speed, performance, components and functionalities. Many different types of net-
work devices have been developed and this has led to an increase in the complexity
of network systems. Traditional network structures are inadequate to meet today’s
requirements. It is the centralised network that requires human operators to have
a high level of experience on how to detect changes, configure new services, recover
from failures and maximise Quality of Service (QoS). Therefore, network manage-
ment involves heavy reliance on expert operators. The adopted centralised network
management is not suitable for new technologies emerging, which are complex and
difficult to interact with heterogeneous networks that contain different types of ser-
vices, products and applications from multiple vendors. As a result, the current
network management lacks efficiency and scalability; however, it has an acceptable
performance in general. The centralised information model cannot stand and achieve
the requirements from such complex, distributed electronic environments.
In recent times, there has been a growing movement led by both industry and
academia, aiming to design mechanisms to reach a control model which achieves

31

2.2 Network Management Background

the separation of the control plane from data plane and to build it as a distributed
system [40]. Different network management examples show that centralised systems
have some fundamental problems. This subsection discusses the needs of distributed
systems and shows that a decentralised network system has many benefits over a
conventional centralised network, and would be a promising evolutionary approach
in the network management development of next generation networks.
Traditional static networks are struggling to meet the rapidly growing requirements
of today’s enterprises, carriers, and end-users. Besides, as the networks increase
in size and complexity, a distributed networking system is needed to ensure good
quality of network services and performance. A distributed network system can refer
to an application that executes a set of protocols to correspond with the actions of
multiple processes on a network [108]. Moreover, all components work together to
operate a single or small set of related tasks. The devices that are in a distributed
system can be physically linked together and connected to a local network. They
can also be geographically distant and connected by a wide area network [49]. A
distributed system can consist of any number of possible configurations such as
personal computers, minicomputers, mainframes and workstations.
A distributed system aims to make a network environment work as a single computer
in order to cope with the extremely significant demand of users in both data storage
and processing power. Examples of distributed systems may include Distributed File
Systems (Hadoop), P2P Network, Cloud Network, Grid Computing, Web Server and
Indexing Server, and Pervasive Computing.
There are several advantages such as the ability to connect remote users with re-
mote resources in an open and scalable way. Regarding open, we mean that each
component is continually open to interaction with other components. Regarding
scalable, we mean that the system can easily be altered to accommodate changes in
the number of users, computing entities, and resources [108].
Therefore, a distributed system can bring many benefits given the combined cap-
abilities of the distributed components, more than the combinations of stand-alone
systems [59]. However, it is not enough for a distributed system to be useful; it
should provide system reliability as well. This is a very difficult goal to achieve due
to the complexity of the interactions between simultaneously running components.
Birman (2005) indicates the concern for reliability in distributed computing systems
[18]. The following Table 2.1 summarises the characteristics of a reliable distributed
system.
Some of the key computing trends driving the need for a distributed system paradigm
include [44]:

2.2.4.1. Change of Traffic Patterns

Regarding the enterprise data centre, traffic patterns have changed dramatically. In
contrast to client-server applications, the bulk of the traffic occurs between one client

32

Background and Literature Review

Characteristic Description
Fault Tolerant It can recover from network failures without performing

incorrect actions.
Highly Available It can restore operations, instructing it to resume network

services even when some components have failed.
Recoverable Failed components can reboot themselves and re-join the

system after the cause of failure has been recovered.
Consistent The system can execute corresponding actions of multiple

components often in the case of concurrency and failure.
This underlies the ability of a distributed system to act as
a non-distributed system.

Scalable It can operate properly even some aspect of the system is
scaled to a larger size. For example, if the number of users
or servers increases, the overall load on the system should
not have a significant effect.

Predictable
Performance

The ability to provide desired responsiveness in a timely
manner.

Secure The system authenticates access to data and network
services.

Table 2.1.: Characteristics of a Reliable Distributed System

and one server, applications today access various databases and servers, and thus
creating a flurry of “east-west” machine-to-machine traffic before returning data to
the users’ device in the classic “north-south” traffic pattern. Meanwhile, network
traffic patterns are changed by users as they push for access to corporate content and
applications connecting from any type of device anywhere and anytime. Moreover,
many enterprise and carrier managers are contemplating a utility computing model,
which might include a public cloud, private cloud, or a mix of both. This may result
in additional traffic across the wide area network.

2.2.4.2. The Consumerisation of IT

Users are increasingly employing mobile technology such as smartphones, tablets,
and laptops to access the corporate network. This can cause pressure for IT to
accommodate these personal devices in a fine-grained manner while protecting in-
tellectual property as well as corporate data and meeting compliance mandates.

2.2.4.3. The Rise of Cloud Services

The high demand of enterprises for both public and private cloud services has res-
ulted in an unprecedented growth of these services. Today’s enterprises want the
ability to access applications, infrastructure, and resources on demand. Providing

33

2.3 Standard Sets of Information Model

self-service provisioning in either a public or private cloud requires flexible scaling
of storage, computing, and network resources, basically from a common viewpoint
and with a common suite of tools.

2.2.4.4. Huge Data Demand More Bandwidth

Dealing with today’s mega datasets requires efficient parallel processing on thou-
sands of servers, which all need direct connections to each other. This emerging
trend of mega datasets has led to a constant demand for additional network capa-
city in the data centre. Administrators of large-scale data centre networks face the
daunting task of managing the network to previously unimaginable size due to ever
increasing network complexity.

2.3. Standard Sets of Information Model

An information model in software engineering and data modelling is a structured
representation of concepts, rules, the relationships and operations that specifies
relations between kinds of things or relations with individual things. The term of the
information model is typically an abstract, formal representation of entity types that
may include their properties, the relationships and operations that can be performed
on them. The information model can build a data model, which is embedded in a
platform, language and protocol. The data model is used to define how data is
structured and accessed to specify data semantics and for implementation purposes
[103]. The common standard sets of information models that are used in network
management to enable self-management functionalities in heterogeneous networks
and complex electronic environments include:

• The Distributed Management Task Force (DMTF) Common Information Model
(CIM).

• The TeleManagement Forum (TMF) Shared Information and Data Model (SID).

The SID model uses roles that can be played with network elements in a scalable
manner. Also, roles in the SID model are not limited to just people, rather, they
may also represent products, locations, resources or other managed entities of in-
terest. The CIM model enables multiple parties to exchange information of managed
elements. In addition, it provides the ways to control and manage these elements act-
ively. These information models cover most of today’s elements in IT resources such
as computer systems, communication networks and operating systems. Moreover,
information models have a lot of similarities and overlap in the domain they cover
and currently they are used by a number of different management solutions.

34

Background and Literature Review

2.3.1. Common Information Model (CIM)

A number of standardised information models are currently industry standards. The
standard of Common Information Model (CIM) has developed by Distributed Man-
agement Task Force (DMTF), with the goal to produce an object-oriented scheme
to model the hierarchical data of the managed IT environment. CIM is a conceptual
view of the managed environment that attempts to unify and extend the existing tra-
ditional management standards such as SNMP and Desktop Management Interface
(DMI) using object-oriented constructs and design [3]. Moreover, CIM can provide a
consistent definition and structure of data by presenting managed elements as a ba-
sic set of objects and relationships between objects. This standard includes the CIM
infrastructure specification and the CIM schema. In regard to its infrastructure,
the managed objects are described as a class, and the relationship between them
are represented by associations. In addition, CIM applies object-oriented concepts
of inheritance to effectively define the common framework of managed objects and
inherited sub-objects [26]. The values of object orientation techniques from CIM
also provide support for object design with the following capabilities:

• Classification – High-level and fundamental concepts are defined when objects are
grouped into types (class), identify common features and characteristics (properties),
relationship (associations), and behaviour (methods).

• Object inheritance – Subclassing the high-level and fundamental objects. A sub-
class inherits all the information (properties, associations, methods) defined for its
higher level objects. Sub-classes are created to manage the same level of detail and
complexity at the same level in the model.

• Ability to show dependencies, components and the connection or relationship
between objects.

• Standard inheritable methods – The capability to identify standard object beha-
viour (methods) and encapsulate standard methods with an object’s data.

Regarding the structure of data modelling, CIM scheme can provide greater rep-
resentation of information than SNMP static MIBs. Conventional SNMP MIBs,
on the other hand, have been used in IT industries for decades since the ISO layer
model was introduced. Moreover, SNMP MIBs describe the information of managed
objects from a different view in contrast with CIM models.

2.3.2. Shared Information and Data model (SID)

Another standard set of the information model is the Shared Information and Data
model, or SID. It is one of the frameworks defined by the Telecommunication Man-
agement Forum (TMF) as an advanced object model for the telecommunication
domain. The SID model uses the Unified Modelling Language (UML), a stand-
ardised general-purpose modelling, to define entities and the relationships between

35

2.3 Standard Sets of Information Model

them as well as the attributes and operations/methods that make up the entity or
object. The SID model is a unified data reference model that provides common
information and data vocabulary, and common language for communicating with
business, system, implementation and deployment. They include views of the busi-
ness, service and resource domains within the telecommunication industry as the
standard rules for OSS designers [26]. The main objective is to provide a single set
of terms for business objects in telecommunications and enable people from different
departments, geographical locations or companies to use this same term to describe
the same real world objects, relationships and practices. By providing definitions
that are simple to understand, the SID model is applicable to most network re-
sources, which also makes it possible to align between businesses as an organisation
and IT as software.
Although the released specification of SID model has covered the business domain
and the device management field well, SID was insufficient in its ability to support
information integration, logical networks and capacity [45]. These limitations are
currently addressed through the revision of the model by including concepts such as
topologies. However, the results have shown poor utilisation of the model in certain
telecommunication fields in terms of inventory management.

2.3.3. Limitations of CIM and SID

The SID and the CIM are not related to each other. Traditionally, the SID has a
different operational domain than the CIM model. The CIM mainly focuses on the
IT resources such as systems, storage and IP networks. On the other hand, SID
provides a description of technical and business systems. However, SID and CIM
principles are overlapping and have a lot of similarities, where both are used by
many in management solutions.
The TeleManagement Forum (TMF), producer of the SID model, have tried to align
with the Distributed Management Task Force (DMTF), producer of the CIM model,
for more than five years of collaboration. They have joined their efforts together to
start a new project that aims to develop an alternative approach, which can apply
to other domains.
This project was divided into two phases. The first phase includes all the res-
ults presented in these two documents: (1) DMTF/TMF Model Alignment Phys-
ical sub-Model Alignment, DMTF DSP2004/TMF GB932; and (2) DMTF/TMF
Model Alignment SID Logical Resources and CIM Networks Sub-Models, DMTF
DSP2000/TMF GB933. Moreover, this phase identifies physical and logical re-
sources. The second phase was aiming to identify guidelines and processes for CIM-
SID model mapping, with a focus on logical and physical resources as identified in
the first phase.
Unfortunately, this collaborative project was not successful due to three major issues
[103]. The first issue relates to the concepts of building the CIM model such as

36

Background and Literature Review

classes, attributes and relationships. CIM does not use UML as a data and process
modelling language to construct its proprietary meta-model, whereas SID uses UML
to define entities, relationships and attributes between them [103], [104]. The second
issue is that CIM does not use patterns in model design. Unlike CIM, the SID
framework uses patterns, where “patterns” in this context are the enabler to reuse
the successful designs and can help produce models that are easier and faster to
learn. The third issue is that CIM does not use roles like the SID model. Roles
make a design more scalable by abstracting individual services, devices and users
into roles that can be played by different managed entities [103], [104]. Entities can
also play many roles while retaining a basic set of facts about the entity in general.

2.3.4. Current Information Models vs. Proposed DAIM Model

The CIM model is a conceptual scheme that encapsulates all the Managed Elements
(MEs) such as devices, applications, services, storages, network systems and com-
puter systems. Essentially, CIM provides a common management information of
various applications and devices, so that network administrators can easily access
them in a universal way. CIM also applies object-oriented notation and can be de-
scribed in XML syntax in several ways. Similar to CIM, Shared information model
(SID) also uses UML to formalise the expression of the needs in terms of business
view. However, the CIM schema contains limited methods or implementations for
each class, as predefined methods are limited to the static class methods. Further-
more, executing corresponding actions are still in need of separate control (e.g.,
centralised control) to be achieved, which is independent of the CIM structures.
In comparison, the proposed DAIM model is not only providing a distributed service
but also aiming to adopt the object-oriented principle to manage the entire network
effectively. OpenFlow-based SDN can be considered as a possible environment to
implement the DAIM model, where the DAIM controller will be distributed to pro-
cess the flow entries and the messages between network components. Doing this
may essentially divert the CPU load into a large amount of local CPU of a cur-
rent OpenFlow controller. However, distributed DAIM controller residing on each
OpenFlow switch can use its built-in methods, algorithms, attributes and messages
to dynamically invoke the execution of corresponding actions. Most of the decision-
making tasks are processed locally at the switches, and thus reduce the workload
of network administrators or management systems in CIM standard. Consequently,
the DAIM model is designed particularly for distributed components with local ex-
ecution capabilities to improve the network’s overall performance [20], [31], [28].

2.4. Software Defined Networking (SDN)

”Software Defined Networking (SDN) may often be referred to as a revolutionary
new idea in computer networking and promises to dramatically simplify network

37

2.4 Software Defined Networking (SDN)

Figure 2.3.: SDN Evolution - Segregation of Control and Data Plane [97]

control, management and enable innovation through network programmability” [6].

The future of the networking domain will rely more and more on software. Software-
Defined Networking, standardised by a non-profit industry called the Open Network-
ing Foundation (ONF), is an emerging network architecture that seeks to transform
traditional static networks into flexible programmable platforms by decoupling the
network control and data planes. This is a migration of control from being formerly
tightly bound to individual network devices, now into accessible computing devices.
In addition, network intelligence and state are logically centralised, can enable the
underlying infrastructure to be abstracted for applications and network services,
which can treat the network as a logical or virtual entity [68]. With SDN, carriers
and enterprises can gain unprecedented automation, programmability and vendor-
independent control over the entire network from a single logical point that will
enable them to create highly scalable and flexible networks in order to meet the
changing business needs.

In Figure 2.3, on the left-hand side of the diagram is the structure of conventional
network deployments comprising of switches and routers interconnected to each
other and devices such as servers and Virtual Machines (VMs) on the edge. Distrib-
uted protocols are used to build the control path that current network deployments
rely on. After the control path is built, the data path is installed in device hardware
and productive traffic can pass on a programmed route. In conventional networks,
distributed protocols such as Border Gateway Protocol (BGP), Spanning Tree Pro-
tocol (STP), and Open Shortest Path First (OSPF) are dispersed across the network

38

Background and Literature Review

Figure 2.4.: The Three-Tier Logical Layers of SDN[44]

to make the control path and data path that are mainly Layer 2 and Layer 3 pro-
tocols.

On the right-hand side of Figure 2.3 represents the definition of SDN in the same
network. The Network Operating System (NOS) will run on a single external device
(e.g., controller), and all of the high-level flow decisions will be made by this con-
troller. After the decision is made, the controller will compute the data path of
the switch making the network. The communication between the controller and
OpenFlow switch via a secure channel is represented by the dotted line in the right
half of Figure 2.3. The controller can obtain full network view of deployments from
these links. The solid lines are normal data links in which data can flow once the
routers and switches hardware are installed.

Figure 2.4 depicts the three tier logical layers of SDN, where network intelligence
is (logically) centralised in software-based SDN controllers, which maintain a global
view of the network. As a result, the network appears to the policy engines and
applications as a single logical switch. SDN provides vendor independent control
over the entire network from a single logical point and a programmatic interface for
application designers to build a wide variety of management applications [60], [44],
[51]. This can greatly simplify the network design and operation for enterprises and
carriers. Moreover, SDN also greatly simplifies the network devices themselves, as
they no longer need to understand and process thousands of standard protocols but
merely accept instructions from the SDN controllers.

In essence, the SDN paradigm allows application designers to use a single control
platform for developing a set of control functions such as routing, access control,

39

2.4 Software Defined Networking (SDN)

and traffic engineering over a range of control granularities in various contexts (e.g.,
data centres, WANs, enterprises) [17]. Most importantly, network operators and
administrators can programmatically configure this simplified network abstraction.
They do not have to hand-code tens of thousands of lines of configuration scattered
among thousands of distributed nodes [69]. This migration of control gives network
operators the flexibility to manage, configure, secure, and optimise network resources
via the SDN control software dynamically. As a result, they can efficiently alter
the network behaviour in real-time as well as deploying new network services and
applications.

By using OpenFlow-based SDN technologies, it is possible for IT to address the
high demand for business needs, dynamic nature of today’s services and applications,
adaptation to the ever-changing network environments, and consequently reduce the
complexity of network management and operations. OpenFlow-based SDN can bring
several advantages to carriers and enterprises by modifying the network architecture
in such a way including [44]:

• One of the greatest benefits of OpenFlow is creating flexibility in networks on how
it will be used, operate and sold. The control program specifies the behaviour of the
abstract model and configures the abstract network view, which can be written by
network operators and administrators using common programming environments.

• OpenFlow increases the automation of management by using common APIs to ab-
stract the underlying networking details from provisioning systems and applications
to meet business objectives.

• OpenFlow-based SDN can introduce rapid innovation through customisation be-
cause network administrators can develop the features they need in the control
program, instead of having to wait for software vendors to find a place in the plan
for their trademark products.

• It can allow programmability by administrators, enterprises, users, and software
vendors using common programming environment. It enables network virtualisation
and network integration of computing and storage. This makes all the IT operations
to be managed more easily by using a single viewpoint and tool set.

• It can increase network reliability and security as a result of centralised and
automated management of networking devices, low configuration errors, and uniform
policy statement.

• Users have a better experience since applications exploit the central view of net-
work information to seamlessly adapt the network behaviour to user needs.

• OpenFlow-based SDN provides a standard way to convey flow table information
to network devices and thus fosters open and multiple vendor markets.

This SDN paradigm requires some method for network control to communicate with
the switch data path. One such mechanism is “OpenFlow” which is a standard in-
terface for controlling computer networking switches. The OpenFlow platform is an

40

Background and Literature Review

open standard that enables new opportunities to realise rich network control mech-
anisms and experiments by allowing researchers to flexibly program control path
functionalities on the controller in production networks. The OpenFlow architec-
ture separates the high-level routing decisions from the forwarding elements, which
makes it possible to run in software and to be programmable [56]. Therefore, the
OpenFlow switches become simple and flexible to manage. It only implements the
data path packet switching functions. A specific node, the controller manages the
control path functionalities and centralises the execution of all decision tasks by in-
stalling, deleting, and modifying flow entries on the OpenFlow switches. The Open-
Flow protocol is used to communicate between the OpenFlow switch and controller.
This protocol defines messages such as packets received, send packets out, modify
forwarding tables, and get stats [80]. As a result, companies can gain program-
mability, automation, and the control of the network, which enable them to build
highly scalable, flexible networks that can be easily adapted to different changing
environment [5]. Recent development techniques enable dynamic reprogramming of
the devices through the data flow.

2.4.1. Overview of OpenFlow-Based SDN

OpenFlow was initially developed by Stanford University in 2008 as the first stand-
ard communications interface defined between the control and forwarding layers of
the SDN architecture. It is a networking protocol that allows researchers to operate
experimental protocols in switches and routers in a uniform way, without having to
expose the vendor’s internal workings of their products. OpenFlow is based on an
Ethernet switch with the goal to encourage networking vendors to apply OpenFlow
features to their product devices for deployment in university backbone networks
and wiring closets. OpenFlow could serve as a useful project tool in proposed large-
scale test bed as well as offering researchers the ability to evaluate their ideas in
real-world traffic settings. The OpenFlow protocol is a key enabler for SDN, and it
allows direct manipulation of the forwarding plane of network devices. OpenFlow
is being widely adopted by infrastructure vendors, who typically have implemented
it via a simple firmware or software upgrade [74], [97], [68].
A protocol like OpenFlow separates network control from switches to logically cent-
ralised control software. OpenFlow can be compared to the instruction set of a
CPU. The protocol specifies basic primitives that can be used by an external soft-
ware application to program the forwarding plane of network devices, just like the
instruction set of a CPU would program a computer system [6]. OpenFlow can be
implemented on both sides of the interface between network infrastructure devices
and the SDN control software. OpenFlow uses the concept of flows and identifies
network traffic based on predefined match rules, which can be statically or dynam-
ically programmed by the SDN control software [46]. It also allows IT to define
how traffic should flow through network devices based on parameters such as usage
patterns, applications and cloud resources since OpenFlow allows the network to be

41

2.4 Software Defined Networking (SDN)

Figure 2.5.: Idealised OpenFlow Switch. A remote controller manages the Flow
Table via the Secure Channel.

programmed on a per-flow basis. An OpenFlow-based SDN architecture provides
extremely granular control, enabling the network to respond to real-time changes in
the application, user, and session levels. Figure 2.5 is an example of an OpenFlow
switch implementation.

Before continuing, it is helpful to define the term of what a flow means. In general
terms, a flow is a set of packets transferred from one network endpoint (or set of
end points) to another end point (or set of end points) that share a set of header
field values. For instance, a flow could consist of all packets with the same VLAN
ID or all packets with the same IP source address and destination address. The end
points may be defined as IP address, TCP/UDP port pairs, VLAN end points, L3
tunnel end points or input ports, among other things.

The basic idea of OpenFlow is providing an open protocol to program the internal
flow table and standardised interface in different switches and routers to add and
remove flow entries. In addition, researchers can control a portion and a flow of their
local network by choosing the routes of the packets and also the processing they re-
trieve. By adopting OpenFlow, researchers can run experiments on new networking
protocols, security testing, and addressing schemes without disrupting others who
depend on the production traffic [8]. OpenFlow provides high flexibility of novel
packet forwarding and routing of network flows that can be adapted to real-time
demands and needs by using virtualisation and flow-based routing. However, the
flow tables are controlled by a remote centralised controller via the Secure Socket
Layer (SSL) connection. This notion has raised legitimate questions concerning
performance, scalability, and reliability of a centralised controller [60].

42

Background and Literature Review

In traditional switches and routers, the fast packet forwarding (data plane) and
the high-level routing decisions (control plane) operate on the same device. An
OpenFlow-enabled switch separates these two functions. Using this strategy, Open-
Flow allows network element devices such as routers and switches to be program-
mable via a standardised interface. The data plane portion still resides on the
switches, while all of the high-level decision makings are moved to a separate con-
troller or a standard server. This allows the controller to modify the forwarding
rules in modern switches and enable implementations of user mobility, virtual net-
works, and new network protocols for example [51]. The controller communicates
with the OpenFlow switch via the OpenFlow protocol, which defines messages such
as, packets sent out, packets received, modify forward tables, and get stats. By
using this protocol, the controller can also proactively add, update, and remove flow
entries in response to packets [33].

2.4.2. Packet Processing in OpenFlow

The handling of incoming packets where an OpenFlow switch performs the functions
is shown in Figure 2.6. Whenever an OpenFlow switch receives a flow’s first packet,
in which it has never seen before nor has a matching flow entries, that first packet
will be transmitted to the controller. The first packet is called a “Flow Request”.
The controller then makes a decision and computes a path for this flow, and installs
flow entries on every switch throughout that chosen path. Ultimately, the packet
itself will be forwarded back to the origin switch from the controller and sent to the
destination.

The forwarding plane of an OpenFlow switch contains one or more flow tables ab-
straction. Each flow table entry consists of a set of packet fields to match (e.g.,
switch ingress port and different packet header fields), counters, and an action (e.g.,
modify-field, send-out-port, or drop). Each entry is identified by its expendable
match fields that contain various packet header fields and the switch ingress port.
When an OpenFlow switch receives a packet, it tries to match the ingress port and
packet headers within match fields of the flow entries. The matching can continue to
additional flow tables starting from fully defined entries and to less defined entries.
This will allow further processing and provide information, in the form of metadata,
to communicate between tables. If similar flow entries are defined, in that case, a
priority field indicates which entry should be selected.

The packet header fields in the flow table look-ups are matched depending on the
type of the packet. This typically includes various match fields such as the MAC
source address or IP destination address. Matching packets with flow table have
two methods; one is specific match and the other one is wild-cards. For the specific
matching, the packet arrives to the flow table with many identification fields such
as source/destination address, MAC address, Ethernet type, TCP, IP, and exact
port(s), whereas the wild-carded matching receive packets and send them to any

43

2.4 Software Defined Networking (SDN)

Figure 2.6.: Flowchart Detailing Packet Flow Through OpenFlow Switch [33]

port(s), address and destination, often depicted to in diagrams with the identifica-
tion (*), which means has a value of ANY. An OpenFlow switch must update the
associate counters and apply the instruction set of only the highest priority flow
entry that matches the packet [11], [33].

The instructions specified in the associated flow entry are executed when a matching
entry is found in a flow table. However, if an OpenFlow Switch receives a packet
with no matching rules of flow entries in the flow table, depending on the switch
configuration, the default is to send packets to the controller. The controller will
first verify this flow against security policies. It can drop the packet, or it can install
a flow entry directing every switch along the chosen path how to handle similar
packets in the future [33].

2.4.3. OpenFlow Switch

An OpenFlow switch is a basic forwarding element in the data plane, which is
accessible through OpenFlow interface and protocol. It is a typical networking
switch that lacks the intelligent and distributed protocols. In an OpenFlow net-
work, OpenFlow switch is classified into two types, Hybrid (OpenFlow-enabled)
and Pure (OpenFlow-only). Hybrid switches support OpenFlow in addition to tra-
ditional Ethernet protocols (L2/L3 switching). Pure OpenFlow switches have no
legacy features and support only OpenFlow, which completely rely on a controller
for high-level decisions. Currently, most available and commercial switch implement-

44

Background and Literature Review

Figure 2.7.: Components of a Flow Entry in a Flow Table

ations are hybrids. Because OpenFlow switches are managed via an open interface,
it is crucial for that communication link to remain secure and available. Regard-
less of switch type, the OpenFlow switch needs to support a module to establish
a connection (SSH/TCP) with the controller and a flow table. OpenFlow protocol
(a messaging protocol) is a standard implementation of SDN controller and switch
interactions, which defines the communication between an OpenFlow controller and
the OpenFlow switch.

The basic principal of a logical OpenFlow switch architecture is the flow table. The
data plane of an OpenFlow switch presents a clean flow table abstraction, which
performs packet lookups and forwarding. The OpenFlow switch consists of several
flow tables, and every one of them includes multiple flow entries. Each of the flow
table stores flow entries consist of three main components as shown in Figure 2.7:
(1) Rules containing a set of packet headers that specifies the flow; (2) Action an
associated action that is implemented to specify the procedure of the packets such as
modifying field, forwarding out a port, or to drop the packet; (3) Stats that update
the statistics for a particular matching flow such as the number of dropped packets,
duration of a flow entry that has been installed in the switch, the number of packets
and bytes that have been received and transmitted per port, per flow table, and per
flow table entry. When an OpenFlow switch receives an unknown packet in which
it has no matching in the flow entries, the switch will encapsulate this packet and
send to the controller. The controller then determines how to forward and process
this packet. It can drop, update the packet, or add a new flow entry directing the
switch on how to handle similar packets in the future [69], [33], [60].

A flow table may include a table-miss flow entry, which renders all Match Fields
wildcards (every field is a match regardless of value) and has the lowest priority
(priority 0). When defining a flow, there are variables taken into account called

45

2.4 Software Defined Networking (SDN)

Field When applicable Bits Overview Description
Switch Port All packets 16 Numerical representation of incoming port
VLAN ID All packets of

Ethernet type
0x8100

Last
12

0xffff means untagged

VLAN Priority All packets of
Ethernet type

0x8100

Last 3 VLAN PCP field

Ethernet Source
address

All packets 48 L2 MAC source address

Ethernet
Destination

address

All packets 48 L2 MAC destination address

Ethernet Type All packets on
enabled ports

16 An OpenFlow switch needs to match the
type in both standard Ethernet and 802.2
with SNAP header and OUI of 0x000000.
The special value of 0x05FF is used to
match all 802.3 packets without SNAP
headers.

IP Source address All IP and ARP
packets

32 L3 Source IP address

IP Destination
address

All IP and ARP
packets

32 L3 Destination IP address

IP TOS bits All IP packets First
6

Specify as 8-bit value and place TOS upper
6 bits

IP Protocol App IP and ARP
packets

8 Only the lower 8 bits of ARP op-codes are
used

TCP/UDP Source
Ports

All TCP, UDP and
ICMP packets

16 Only lower 8 bits used for ICMP Type

TCP/UDP
Destination Ports

All TCP, UDP and
ICMP packets

16 Only lower 8 bits used for ICMP codes

Table 2.2.: Details of Flow Headers (Twelve Tuples)

tuples. When a packet arrives at an OpenFlow switch, it needs to match a specific
value out of these twelve tuples of the header field. As per the OpenFlow 1.0
spec, the match field components of a table entry consist of the following required
12-tuples header field listed in Table 2.2.

Therefore, network traffic that involves a variety of network services and protocols
can use OpenFlow. It is also important to state that at the MAC/link layer, only
Ethernet is supported. Unfortunately, OpenFlow in its current definition cannot
manage Layer 2 traffic over wireless networks. The term flow can now offer a
more precise definition. In regards to an individual switch, a flow can refer to a
sequence of packets that matches a specific entry in a flow table. The definition is
packet-oriented, in the sense that it is a function of the values of header fields of the
packets that constitute the flow, and not a function of the path they follow through
the network. A set of flow entries on multiple switches defines a flow that belongs
to a specific path.

46

Background and Literature Review

Figure 2.8.: OpenFlow-enabled Switch with Flow Entries [116]

For more flexibility, Figure 2.8 illustrates an example of a flow table entry. This
can be seen in the OpenFlow switch, where one attached device acts as a controller.
When a packet arrives, the header information is extracted and then matched with
the header fields of the flow entries. The translation of a valid Flow Table entry
will be “send all packets from any interface with VLAN ID 10 (taken from Ethernet
Header) and destination port 80 (taken from TCP/UDP Header) out on interface 20”
[116]. An OpenFlow switch can also cope with multiple flows, having the capability
to handle up to 128k exact matches and up to 100 wild-card matches, combined
with fairness throughput, latency and good performance [17].
There are a number of OpenFlow software switches available today that can be used
to run an SDN test bed or when implementing new services and applications over
SDN. In Table 2.3, a list of recent software switch implementations are shown. In
addition, the OpenFlow standard version that the current implementation supports
and a short description of the implementation language are also described.
It is readily apparent that the industry has a strong commitment to SDN due to
the availability of commercial hardware switches that are OpenFlow-enabled. The
OpenFlow standard is the main SDN-based technology that is currently being im-
plemented in commodity networking hardware. Table 2.4 presents a list of native
SDN switches currently available on the market with a brief description including
the version of OpenFlow they support and some information regarding their model
and manufacturer.

2.4.4. OpenFlow Controller

An OpenFlow controller is the brain of the protocol, making all of the high-level
decisions per flow and installing those decisions to OpenFlow switches. These de-

47

2.4 Software Defined Networking (SDN)

Software Switch Version Language Overview Description
OpenvSwitch [114] v1.0 C/Python This is a multi-layer and production

quality virtual switch, which supports
standard management interfaces and
provides network automation through
programmatic extension. Can be
ported into ASIC switches

Pantou/OpenWRT [42] v1.0 C This turns a commercial wireless
Access Point or router into an
OpenFlow-enabled switch.

ofsoftswitch13 [75] v1.3 C/C++ An OpenFlow 1.3 compatible
user-space software switch
implementation.

Indigo [100] v1.0 C Open source OpenFlow
implementation that runs on physical
switches and uses the hardware
features of Ethernet switch ASICs to
run OpenFlow.

LINC [6] v.1.2/1.3.1 Erlang Open source project led by
FlowForwarding effort designed to use
generally available commodity x86
hardware

Table 2.3.: Current Software Switch Implementations Compliant with the Open-
Flow Standard

Manufacturer Switch Model OpenFlow Version
Hewlett-Packard 8200zl, 6600, 6200zl,

5400zl, and 3500/3500yl
v1.0

Brocade NetIron CES 2000 Series v1.0
Broadcom BCM 56846 v1.0

IBM RackSwitch G8264 v1.0
NEC PF5240 PF5820 v1.0

Extreme Networks Black Diamond 8K,
Summit X440, X460,

X480

v1.0

Pronto 3290 and 3780 v1.0
Juniper Junos MX-Series v1.0
Netgear GSM 7352Sv2 v1.0
Pica8 P-3290, P-3295, P-3780

and P-3920
v1.2

Arista 7150, 7500 7050 series v1.0
Table 2.4.: Current Available Hardware Switches by Markets, Compliant with the
OpenFlow Standard

48

Background and Literature Review

cisions are pushed to the flow table in the form of actions such as adding, deleting,
and modifying a flow in the switch. The OpenFlow controller works similarly to the
operating system, which offers a programmatic interface to the OpenFlow switches.
By using this programmable interface, network applications (Net Apps) can be writ-
ten to perform management and control tasks and provide new functionalities. An
SDN controller of the control plane is considered logically centralised, and Net Apps
are developed as if the network is a single domain.
The controller is responsible for maintaining an entire view of the network, providing
policy decisions, and managing all the SDN nodes that comprise the network infra-
structure, and offering a northbound API for services and applications. The network
applications of an OpenFlow controller usually come with their own set of common
application modules such as a learning switch, a router, a simple firewall and a basic
load balancer [92]. An OpenFlow controller has several modules that provide its core
functionality as well as network applications that are used to manage the network.
The southbound API is used as an interface to connect with network devices on the
data plane. In an SDN architecture, OpenFlow is the first and probably most well-
known southbound interface because of its definition and standardisation. There are
other de facto standards for the southbound-facing interface such as OF-CONFIG a
companion protocol to OpenFlow [6], [97], Cisco CLI and SNMP, and OpenVswitch
Database Management Protocol (OVSDB) by Nicira. However, they are limited to
configuration rules. Unlike the controller-switch interface, there is currently no ac-
cepted standard for controller-to-applications interactions. This lack of a standard
is one of the main drawbacks of SDN. Implementing a northbound API can provide
collaboration opportunities between the open source community and vendors, which
are likely to be implemented on an ad hoc basis for specific applications.
Currently, there are many existing SDN controller implementations available on
the market. Table 2.5 presents a summary of current controller implementations
including both open source SDN controllers and commercial SDN controllers. Un-
less stated otherwise, all the controllers in the table today support the OpenFlow
protocol version 1.0. The table also gives a short overview description, language
implementations, and the developers of the listed controllers.
The SDN-based controller used mainly for testing purposes in this research is the
popular NOX OpenFlow controller. This choice is based on the fact that the NOX
controller is fully open source and targeted largely at research and education, and
the modules can be programmed to dictate the behaviour of the controller. In an
OpenFlow system, NOX is a “Network Operating System” that acts as a central
controller to provide control and visibility into a network of OpenFlow switches
[116]. It is a platform for building network control applications written in either
C++ or Python, which is loaded dynamically. NOX aims to provide abstraction
layers for the network infrastructures (e.g., the routers and switches), giving net-
work applications an execution environment, while developing similar management
concepts and multiplexing between them [38]. Gude et. al. (2008) give an overview
of NOX by describing its main components, observation and control granularity,

49

2.4 Software Defined Networking (SDN)

Controller Open
Source

Language Developer Overview Description

NOX [47] Yes Py-
thon/C++

Nicira The first OpenFlow controller in Python and
C++ implementations.

POX [78] Yes Python Nicira A general open-source SDN controller
written in Python.

Floodlight
[41]

Yes Java BigSwitch An OpenFlow controller written in Java,
based on the Beacon implementation
(supports v1.3) that works with physical and
virtual OpenFlow switches

OpenDaylight
[61]

Yes Java/
C++

Linux
Foundation

Open platform for network programmability
to enable SDN and NFV for networks at any
size and scale a combination of components
including a fully pluggable controller,
interfaces, protocol plug-ins and applications.

Beacon [15] Yes Java Stanford A cross-platform, modular OpenFlow
controller written in Java, which supports
threaded and event-based operations [36].

Maestro [22] Yes Java Rice
University

A Java-based network operating system that
provides interfaces for implementing modular
network applications and for them to access
network state for control and modifications.

Ryu
[89]

Yes Python NTT, OSRG
group

An SDN controller that provides a logically
centralised control and APIs to develop new
network control applications. Ryu fully
supports OpenFlow v1.0, v1.2, v1.3 as well as
the Nicira Extensions.

Trema [76] Yes Ruby/C NEC A framework for implementing OpenFlow
controllers based on Ruby and C.

SNAC [98] No C++ Nicira An OpenFlow controller based on NOX-0.4,
which uses a web-based and user-friendly
policy manager for network management,
device configuration and events monitoring.

MUL
[67]

Yes C Kulcloud An OpenFlow controller that has a C-based
multi-threaded infrastructure at its core,
which supports a multi-level north-bound
interface for application development.

Helios [21] No C NEC An extensible OpenFlow controller written in
C that supports a programmatic shell for
performing integrated experiments.

Jaxon [13] Yes Java Independent
Developers

An OpenFlow controller written in Java
based on NOX implementations.

NodeFlow [72] Yes Java
Script

Independent
Developers

An OpenFlow controller written in
JavaScript for Node.JS [73].

Flowvisor [94] Yes C Stanford/
Nicira

Special purpose controller implementation.

RouteFlow
[70]

Yes C++ CPqD Special purpose controller implementation.

ovs-controller
[114]

Yes C Independent
Developers

A basic OpenFlow controller reference
implementation with OpenVswitch for
managing any number of remote switches
using OpenFlow protocol. As a result, the
switches function as L2 MAC-learning
switches or hubs.

Table 2.5.: Current SDN Controller Implementations Compliant with the Open-
Flow Standard50

Background and Literature Review

Figure 2.9.: Components of a NOX-based network: OpenFlow (OF) switches, a
server running a NOX controller process, and a centralised database containing
the network view [47].

switch abstraction, basic operation, scaling, and implementation status [47].

Components – The main components of an NOX-based network are visualised in
Figure 2.9, which consists of a set of switches and one or more network attached
servers. These servers are run by the NOX software and its management applica-
tions. The NOX software involves several different controller processes and a single
network view. The network view is a centralised database containing the results of
NOX’s network observations such as network topology, abstractions like users and
host names, and low-level information like MAC and IP addresses. Applications use
this state information to make management decisions. In order to control network
traffic, NOX instructs the OpenFlow switch to forward all packets from certain pro-
tocols such as Dynamic Host Configuration Protocol (DHCP) and Domain Name
System (DNS) to its controller. Then, this controller processes the packets to filter
out information regarding a topology change in which it updates the database [47],
[116].

Granularity – This is an important design issue in which NOX can provide observa-
tion and control. NOX’s observation granularity can provide adequate information
for many network management tasks, as well as changing slowly enough that it can
be maintained in sizable networks in terms of scalability. The intermediate granu-
larity for NOX is flows. Once the control is exerted on some packets, subsequent
packets that have the same header portion are treated in the same way. In regards
to this flow-based granularity, it is possible to develop a large-scale system while
still giving flexible control.

51

2.4 Software Defined Networking (SDN)

Switch Abstraction – NOX uses management applications to control network
traffic by passing the instructions to an OpenFlow switch. These switches should
support flow-level control granularity mentioned above, and also should be inde-
pendent of the particular switch hardware. To meet the requirements, the OpenFlow
switches are presented by flow tables containing flow entries with the form:

< Match Fields: Counters, Instructions>

Each packet matches a specified header, the counters are updated, and an appro-
priate instruction is taken. If a packet is matched to multiple flow entries, the entry
with the highest priority will be chosen.

Operation – NOX is primarily responsible for handling unknown packets and of-
ten the first packet of a flow (flow-initiations). NOX controller processes may also
choose to receive all the packets from certain protocols like DNS and Link Layer
Discovery Protocol (LLDP), and therefore will not insert a flow entry for them.
The NOX controller uses these flow-initiations as well as other forwarded packets to
create and update the network view, and determine whether to forward the packets,
and if so, along which path (control). Gude et. al. (2010) have developed rout-
ing applications and access-control to determine whether a flow should be allowed,
process an appropriate L2 route, and install flow entries in all OpenFlow switches.

Scaling – NOX can process at three different rates in terms of timescales: (1)
Packet arrivals - scale of millions of packets per second for a 10 Gbps link, (2)
Flow initiations - typically one or more orders of magnitude less than the packet
arrival rate, (3) Changes in the network view - scale of tens of events per second
for a network of thousands of nodes. In regards to consistency, the network view
is the only global application state information. This is because applications draw
information from the network view to make control decisions such as policies to be
enforced in the network. Gude et. al. (2010) claim that a single NOX controller
running on a generic PC can handle up to 100,000 flow-initiations per second, which
is sufficient to accommodate large campus networks.

Implementation status – The NOX controller runs in user-space on the network
servers. At present, NOX has two separate lines of development. The “NOX-Classic”
line is written in Python and C++ with many applications, whereas the “new NOX”
only contains support for C++. For those who prefer Python, they can either stick
with the classic NOX or might be interested in POX, a younger sibling of NOX
using Python. However, developers have no current plan to do any other significant
development on the classic NOX. The NOX’s core infrastructure and speed-critical
functions are implemented in C++ (around 32,000 lines) [47].

Werner (2010) separates the NOX’s interaction with network traffic into a three
layer model. The highest layer is the changes in the network view. It is determ-
ined by the controllers, and by means of a centralised database, propagates to the
entire system. A topology change is considered as an expensive operation in terms
of overhead, but can still be manageable due to their rarity. The middle layer is

52

Background and Literature Review

Figure 2.10.: Example NOX-based network setup. Each switch has its own con-
troller but network state is stored centrally [116].

termed flow-initiations. A flow is typically a single end-to-end application transmis-
sion, which is identified by a flow table entry. The first packet of a flow is always
forwarded to the controller. The controller then makes management decisions on
how to process that flow. When a path is specified, NOX inserts appropriate entries
in the flow tables of associated switches, so that similar packets for this specific flow
can be processed by switches themselves without having to bother the controller
again [99]. The lowest layer of the NOX model represents all packets within the
network. They are typically regarded as part of a configured flow, so the processing
occurs entirely inside the switches without any interactions from the controller. The
traffic is processed by fast, hardware-accelerated devices, with only a small fraction
that constitute flow-initiations being handled by the NOX software. Figure 2.10
illustrates a possible small NOX-based network set up.

2.4.5. OpenFlow Channel and Protocol

The connection between the controller and the OpenFlow switch is through an
interface of OpenFlow channel. Through this interface, the controller exchanges
messages with the switch in order to configure and maintain the switch, receive
events from the switch, and finally send packets out through the switch. The in-
terface is implementation-specific between the data path and OpenFlow channel,
but all messages exchanged between the controller and the switch must follow the
format indicated by the OpenFlow protocol. Transport Layer Security (TLS) is the
cryptographic protocol usually used to encrypt the OpenFlow channel; however it
may be run directly over TCP.

53

2.4 Software Defined Networking (SDN)

Figure 2.11.: Mapping of OpenFlow Network Protocol Layers

The detailed requirements of an OpenFlow switch are defined in the OpenFlow
switch specification, published by the ONF. It is important to note that the Open-
Flow protocol in this thesis is describe based on the OpenFlow specification, Version
1.0 (Wire Protocol 0x01), December 31, 2009. This original specification 1.0 was
developed at Stanford University and was widely implemented. OpenFlow 1.2 was
the first release from ONF after inheriting the project from Stanford University.
OpenFlow 1.3 significantly expands the functions of the specification and is likely to
become the stable base upon which future commercial implementations for Open-
Flow will be built. However, fine-grained security settings in regards to scenarios
with multiple OpenFlow controllers are outside the scope of the present specification.

Figure 2.11 shows the mapping of OpenFlow control plane and forwarding plane
with network protocol layers. The NOX controller, for example, can be seen as an
operating system performing at Layer 5, which provides a northbound API (e.g.,
RESTful, Java and Python API) for network applications. On the other hand,
OpenFlow is considered as a standardised southbound API used for the communic-
ations between the controller and switches. In the forwarding plane, an OpenFlow
switch can provide header matching rules from Layer 1 (Ingress port), Layer 2 (L2
switching), Layer 3 (L3 routing) and up to Layer 4 (L4 firewalling). For example, it
can match the header fields with MAC source/destination address, IP source/des-
tination address, and TCP/UDP source and destination port.

The OpenFlow protocol is defined into three message types including Controller-to-
switch, Symmetric, and Asynchronous, each with multiple sub-types.

54

Background and Literature Review

2.4.5.1. Controller-to-Switch

Controller-to-switch messages are initiated by the controller and used to directly
manage or inspect the state of the switch. These types of messages may or may not
need a response from the switch and are categorised as follows:

Features: Once the TLS session is established, the controller sends a features
request to request the capabilities of a switch. The switch must reply with a features
reply message specifying the capabilities and the features that are supported by the
switch.

Configuration: The controller is able to set and query configuration parameters
in the switch. The switch only responds to a query from the controller.

Modify-State: These messages are sent by the controller to manage state on the
switches. Their main purpose is to add, delete and modify flow table entries in the
OpenFlow tables as well as to set switch port properties.

Read-State: The controller uses Read-State messages to collect various informa-
tion from the switch flow tables, ports and each flow entries such as current config-
uration, statistics and capabilities.

Packet-out: The controller uses this type of message to send packets out of a
specified port on the switch. Packet-out messages must contain the whole packet
or a buffer ID referencing a packet stored in the switch. Also, the message must
contain a list of actions to be applied in the order they are specified.

Barrier: Barrier request/reply messages are used by the controller to assure mes-
sage dependencies have been met or to receive notifications for completed operations.

2.4.5.2. Symmetric

Symmetric messages are initiated by either the switch or the controller and sent
without solicitation in either direction. There are three symmetric message types in
the OpenFlow protocol as following:

Hello: Upon connection start up, Hello messages are exchanged between the con-
troller and the switch.

Echo: Either the switch or the controller can send Echo request/reply messages,
and must return an echo reply. These messages are primarily used to verify the
liveliness of a controller-switch connection, and are also used to measure its latency
and bandwidth.

Vendor: Vendor messages provide a standard way for OpenFlow switches to offer
additional functionality within the OpenFlow message type space. It is the staging
point for features intended for future OpenFlow revisions.

55

2.4 Software Defined Networking (SDN)

2.4.5.3. Asynchronous

Asynchronous messages are initiated by the switch and used to inform the controller
of network events and changes to the switch state. These messages can be sent
without a controller soliciting them from a switch. Asynchronous messages are sent
by the switch to controllers to denote a packet arrival, changing switch state or an
error. The four main asynchronous messages are described as follows:
Packet-in: A packet-in message is sent to the controller for all packets that do not
match a flow entry or if a packet matches a flow entry with an associated ’send to
controller’ action. For switches that have enough memory to buffer packets that
are sent to the controller, the packet-in message will include just a fraction of the
packet header (default of 128 bytes) and a buffer ID of the stored packet to be used
by the controller when it is ready for the switch to forward the packet. In the case
of switches that run out of buffer space or do not support internal buffering, the
packet-in message must contain the encapsulated complete packet to be sent to the
controller.
Flow-Removal: The primary purpose of this message is to inform the controller
regarding the removal of a flow entry from a flow table. A Flow-Removal message is
generated as the result of a controller flow delete request or the switch flow expiry
process when one of the flow timeouts is exceeded. When a flow entry is added, an
idle timeout is configured to indicate when a flow entry should be removed due to
the lack of activity, whereas a hard timeout is also configured to specify when a flow
entry should be removed, regardless of activity.
Port-status: The switch uses this type of message to inform the controller of a
change in a port. The switch is expected to send port-status messages to controllers
in case of port configuration or port state changes. These events include changes
in port configuration events such as port disabled directly by a user, or a change in
the port status events, for example if the link goes down.
Error: The switch is able to notify controllers of problems using error messages.

2.4.6. SDN Development Tools

SDN has been introduced to facilitate network innovation and evolution by allow-
ing rapid deployment of new protocols and services. Currently, not many network
simulators support the OpenFlow protocols. This subsection provides an overview
of currently available emulation and simulation environments for developing SDN-
based services and protocols. There are several recent simulation tools for developing
and testing the OpenFlow protocol and applications such as OpenFlowVMS, NS-3,
Mininet, OMNeT++, and EstiNet. This subsection also explains the efforts related
to these tools.
Simulation tools can provide more suitable task of designing, building, and testing
for users with practical feedback when developing real-world systems. This will

56

Background and Literature Review

allow system designers to determine the correctness and efficiency of a design before
the system is actually deployed. It is also useful to explore the behaviour of these
protocol models, capabilities and shortcomings further, by making use of simulations
[82].

OMNeT++ is a discrete event network simulator based on C++. The primary goal
of OMNeT++ is simplifying the integration of new modules as well as changing
those already implemented [110], [111]. The OMNeT++ environment has the INET
framework, which is an open-source communication networks simulation package.
This framework contains many models for wired and wireless networking protocols
such as UDP, TCP, SCTP, IP, IPv6, Ethernet, and several application models [109].

A variety of new routing protocols focused particularly on the distributed envir-
onment have been developed, but little performance information and no realistic
performance comparisons between them are available. Until now, very few perform-
ance evaluations of OpenFlow architectures using OMNeT++ exist. Recently, the
INET framework has a new extension for the OpenFlow model, which is a new
toolbox for the SDN simulation environment. However, this OpenFlow packet-level
simulator is still in the early development of the INET framework, currently based
on switch specification version 1.2 [54]. The implementation model uses the open-
flow.h header file to develop the protocol and defined messages as closely as possible.
The nodes implemented include the OpenFlow switch, OpenFlow controller and the
most important messages use to communicate between switch and controller via
secure OpenFlow channel [10]. In addition, utility modules were also implemented
to enhance required functions like controller placement and spanning tree modules.

A prior study that aims to simulate OpenFlow networks was OpenVMS started in
2009 [118]. This work was designed to emulate OpenFlow enabled devices based on
using virtual machines. However, virtual machines have significant limitations in
regards to large resource overhead and thus do not scale very well. Moreover, it was
developed to test real-time functionalities of OpenFlow rather than simulating and
evaluating arbitrary scenarios [54]. This also applies to Mininet, in the sense that
Mininet is an emulation platform for the functional testing of OpenFlow protocols
and applications. It uses lightweight OS containers to separate and emulate hosts
and switches in a network, and hence reduces the overhead.

The widely used NS-3 simulator has a project for OpenFlow protocol simulation as
well. However, this approach only supports OpenFlow specification version 0.89,
which is quite old compared to the latest version 1.4 [115], [113]. Furthermore,
the NS-3 simulator is a user-level program, the same as the real OpenFlow con-
trollers like NOX/POX. Therefore, the real OpenFlow controller program cannot be
compiled and linked together with the NS-3 program to form a single executable pro-
gram [115]. For example, it is compulsory to create C++ code from scratch to build
new modules of OpenFlow switches or controller. Consequently, a real OpenFlow
controller cannot be readily run in NS-3 simulations without code modification. Ac-
cording to the NS-3 official website, developers found it too difficult to upgrade NS-3

57

2.4 Software Defined Networking (SDN)

NS-3 OMNeT++ Mininet EstiNet
OpenFlow version 0.8.9 1.2.0 1.0.0 1.0.0/1.1.0

Programming
language

C++ C++ Python C/C++

Operating system
support

GNU/Linux,
FreeBSD, OS X

OS X,
Windows, Linux

distributions

OS X,
Windows, Linux

distributions
(VM image)

Linux Fedora 17
32-bit

Supporting
simulation

Yes Yes No Yes

Supporting
emulation

No No Yes Yes

Ability to use real
controller

No No Yes Yes

Result repeatable Yes Yes No Yes
Scalability High By single

Process
Middle By

single Process
Middle By
multiple
Processes

High By single
Process

Performance result
correctness

No Spanning
Tree Protocol
and no real
controller

No real
controller

Performance
depend on
resources

Yes

GUI support Yes
-Monitoring

Only
-Configuration

by C++

Yes
- Configuration

- Monitoring

Yes
-Monitoring

Only
-Configuration

by Python

Yes
- Configuration

- Monitoring

Table 2.6.: A Comparison of NS-3, OMNeT++, Mininet and EstiNet [115]

for OpenFlow version 1.0, and NS-3 still cannot support a real external OpenFlow
controller.

Other efforts like EstiNet combine the advantages of both the network simulator
and emulator without their respective limitations. As for emulator, EstiNet uses
a real controller run on real devices and applications that can control simulated
OpenFlow switches without any modification. EstiNet uses a new method of kernel
re-entering to support multiple hosts in a single kernel [115]. Regarding scalabil-
ity, the EstiNet simulation engine has the capability to simulate a large number
of OpenFlow switches. Moreover, as EstiNet simulation engine can generate time-
related OpenFlow performance measurements accurately, the results are repeatable
[81]. The EstiNet GUI can also show the playback of OpenFlow control packets
once the simulation is finished. Table 2.6 shows a comparison of the capabilities
provided by NS-3, OMNeT++, Mininet and EstiNet with respect to their latest
developments.

Mininet needs to run a shell process to emulate virtual hosts and start up a user-
space or kernel-space (OpenVswitch) to emulate each OpenFlow switch. Therefore,
Mininet is less scalable compared to EstiNet, NS-3 and OMNeT++. Mininet can

58

Background and Literature Review

only be used to study the behaviour of virtual hosts, but cannot be used to study
the time of network/application performance. Mininet’s GUI can be used for ob-
servation purposes such as observing the packet playback of a simulation run, and
users need to write Python scripts to set up and configure the emulation case. In
contrast, OMNeT++ has a GUI which can be used for observation of results, where
users need to write C++ code to set up and configure the simulation case. Overall,
it is better to use OMNeT++ even if it takes time and effort to create simulations,
though once modules are created, it is much easier to create new ones [57], [11],
[115], [113].

2.5. SDN Scalability Issues

The software-defined networking field has been quite active in the past few years and
is growing at a rapid pace. Still, there are key development and research challenges
that need to be addressed. One of the major limitations of a centralised OpenFlow
controller is the lack of scalability. The fundamental feature of an SDN controller
is that it is responsible for establishing every flow in the network. As the size of
production networks deploying OpenFlow increases, so will the number of flows that
need to be processed. If the controller does not have the capacity to handle all these
flow setups, it can present a scalability bottleneck.

In regards to enterprise data center networks which have 100 edge switches, the
controller can expect to see around 10 million flow requests per second [22]. This
can create significant challenge for deploying centralised OpenFlow controller in a
large-scale data center. Cai (2010) further notes that each flow request is processed
individually, and all packets created accordingly are forward individually by the
OpenFlow controller. In addition, sending out messages individually takes about
80% of the flow request processing time. This can cause overhead of multiple socket
write operations to forward each packet to the same destination individually instead
of a single batch. The NOX controller, for example, did not give the application
developer enough flexibility to achieve scalability, nor adequately address reliability
as the control platform must handle equipment (and other) failures gracefully [55].

A single domain can also lead to scalability issues where the computing power is
loaded to a single point, whereas the distance can affect the higher Round Trip
Time (RTT) for requesting unknown packets to be processed. Tootoonchian and
Ganjali (2010) also explain that relying heavily on only one centralised controller
for the entire network might not be feasible for several reasons. Firstly, the number
of control traffic destined towards the controller increases according to the number
of switches. Secondly, despite where the controller is placed, if the networks have a
large diameter, some switches will face long flow setup latencies. Thirdly, since the
network is bounded by the processing capacity of the controller, flow setup times
can rapidly increase as demand grows in terms of network size and complexity [106].

59

2.5 SDN Scalability Issues

As a result, improving the performance of the SDN controller to keep up with the
rising demand becomes a significant challenge.
On the other hand, Foster et. al. (2010) highlight the difficulties of writing programs
for the OpenFlow-based NOX platform as follows [43]:
• Interactions between concurrent modules – Networks often process multiple tasks
such as routing, monitoring, and access control. These functions cannot be processed
independently unless they perform on non-overlapping portions of the traffic since
a rule (un)installed by one module could undermine the proper functioning of other
modules
• Low-level interface to switch hardware – OpenFlow maintains a low-level interface
to the switches. Applications must establish rules that match on bits in the packet
header. Because rules can have wild-cards, a packet may match different overlapping
rules with multiple priorities. This may translate high-level policy into multiple
low-level rules.
• Two-tiered programming model – Controllers only receives packets that switches
do not know how to process. This can limit the controller’s visibility into the
underlying traffic. Essentially, the execution of an application is split between the
controller and the switches. Applications must avoid installing rules that hide vital
information from the controller.
Early SDN deployments are managed by a centralised domain, which often leads to
a single point of failure. Many solutions can be applied to address this issue such as
control plane architectures with multiple controllers connected to a switch, which
could allow backup controllers to take over in the event of a failure [39]. Other
approaches have been made to physically distribute controllers but this is logically
centralised by synchronising all network information and balancing the load between
several controllers (can distribute network applications, or just synchronise events
between distributed controllers). These proposals provide a simplified central view
of the network as well as reduce the lookup overhead by allowing communication
with local controllers. However, many research projects are still in their research
phase where such solutions produce more complexity on the current OpenFlow ar-
chitecture.
Furthermore, SDN can simplify network management and also lead to more flexible
and faster operations. It depends on abstracting the control functions as network
applications. In addition, the controller has a wide view of the entire network.
The SDN architecture has the control layer and the forwarding layer, this architec-
ture relies on a central point, which manages the forwarding layer. Hence, network
bottleneck can occur at both interfaces, in the controller as well as the switches.
For example, traffic bottleneck within switches can happen in the forwarding table
memory. Thus, the current SDN architecture is not scalable for large and exten-
ded networks, which include all the networks used in transferring data from distant
places and in a wide geographical area (several kilometres to thousands of kilo-
metres). Any such links between network devices in places far away from each other

60

Background and Literature Review

need to connect the branches of their institution within or outside the country to
each other in order for the users to exchange information and e-mail.
The bottleneck of request and response times is another limitation of OpenFlow.
Conventional networks are able to handle events locally and perform actions ac-
cording to those events, whereas in an SDN architecture, the forwarding plane of
each device is not able to handle some events that need to be sent to the control-
ler for managing those events. The controller receives these events and calculates
them, and finally sends the command back to the corresponding switch. In this case,
sending many requests from a large number of switches to a single controller could
lead to a traffic bottleneck. Also, the same thing can happen if many commands of
setting many flow rules are sent to one certain switch.
For an OpenFlow switch, the requested queues are processed by scheduling al-
gorithms that allow the provisioning of different Quality of Service (QoS) levels
for different types of packets. However, enforcing Quality of Service in OpenFlow
protocol, particularly version 1.0, is quite difficult. This version only provides very
basic and not sufficient support for QoS. This is because the main focus of OpenFlow
is based on static configurations.

2.6. Related Work to Solve OpenFlow Scalability
Issues

In the last few years, network technologies have been increasing significantly in per-
formance, complexity and functionality, driven by the needs of the modern world.
This has given rise to a new network paradigm called Software-Defined Networking
(SDN). SDN separates the forwarding plane from the control plane, and in so doing
enables the creation of a standardised programming interface [44]. Flow compu-
tation is done in a centralised controller with the switches only performing simple
forwarding functions. OpenFlow is very efficient at moving the computational load
away from the forwarding plane and into a centralised controller. This centralisation
brings optimality but creates additional problems of its own including single-domain
restriction, scalability, robustness, and the ability for switches to act autonomously.
There are three approaches attempted to resolve the limitations of OpenFlow such
as optimising the centralised controller, empowering the switches to process some
control functions, and distributing the control platform [22]. However, the first
approach still relies on only a single controller and sends batching messages to the
switches not in a run-time configuration. This can significantly affect the packet
forwarding process within large-scaled networks. Furthermore, OpenFlow is more
flexible since its control logic can realise behaviours that cannot be easily achieved
by a set of policy rules installed in authorised switches [34], [63], [120]. Finally,
synchronisation within distributed controllers should be in a run-time mode in order
to provide reliability and robustness [106], [95].

61

2.6 Related Work to Solve OpenFlow Scalability Issues

2.6.1. Optimisation Techniques

A large number of OpenFlow applications have been developed to solve the lim-
itations of an OpenFlow control plane. Maestro is a multi-threaded Java-based
controller from Rice University designed for scalable OpenFlow control. Maestro
has a central controller for a flow-based routing network with an increasing of flow
processing, and thus can enhance network scalability [37]. Maestro can achieve over-
all good performance and scalability by coordinating between centralised controllers
and distributed routing protocols. The Maestro approach works as a hybrid con-
trol plane, which is more robust than the centralised control plane. It keeps the
simple programming model for programmers and uses the technique of parallelism
with additional throughput optimisation techniques to alleviate packet processing.
This includes the use of multi-threading to handle the flow requests from OpenFlow
switches and batches sending when the controller needs to send configuration con-
trol messages back to the switches [107]. Maestro can solve traffic bottlenecks for
SDN-based controllers by using several applications, such as “routing” or “learning
switch” [22].

Maestro has a programmable environment with a high-level language, which can deal
with distribution and concurrency without the need to involve the operator. Maestro
has a common user interface to control the hardware, and it also includes analysis
tools. It can auto-detect the attached hardware including its features. Moreover,
Maestro can make local decisions without involving a controller, and can synchronise
certain actions by using its master machine [22], [5]. The operator is not involved in
the controller configuration, where Maestro is able to insert events automatically. As
a result, Maestro has been accepted as a high-level program application for protected
structures [52]. However, Maestro still relies on only a single controller and sends
batching messages to the switches not in run time configuration. These challenges
can significantly affect the packet forwarding process in OpenFlow.

2.6.2. Devolving Some Control Functions Back to the Switches

• DevoFlow (Devolved OpenFlow) decreases the interactions between Open-
Flow switches and controller by allowing an aggressive use of wild-carded
OpenFlow rules and new mechanisms to detect significant flows. DevoFlow
allows switches to make their routing decisions locally and forward flows that
do not need the vetting by the controller. DevoFlow modifies the Open Flow
model to redistribute as many decisions as possible to the switches, in ways
to enable simple and cost-effective hardware implementations [34]. DevoFlow
can solve the bottleneck of an OpenFlow switch within high-performance net-
works, where unknown packets are usually forwarded to the controller. As-
suming there are several thousand flows being forwarded per second, DevoFlow
proposes to tackle the problem by addressing short-lived (mice) and long-lived

62

Background and Literature Review

(elephant) flow separately. Switches only need to notify the controller of spe-
cific flows, which require more security or any other policies [63].

DevoFlow is forcing the switches to use OpenFlow wild-carded rules in order
to reduce the interactions between the controller and the switch. DevoFlow
uses mechanisms that will allow the switches to make local decisions for rout-
ing when they do not require per-flow checking by the controller. DevoFlow
involves the OpenFlow controller for computation power but puts too much
load on the control plane. Therefore, forcing the wild-cards flow matching rule
can reduce that load, but will prevent the controller from managing the traffic
effectively [34], [63].

• DIFANE [120] provides a way of achieving effective rule-based policy enforce-
ment in the network and aims to resolve the centralised issue by distributing
the rules across authority switches and performing policy matching rules at the
switches themselves. DIFANE is a distributed flow-based architecture built on
OpenFlow switches. The division of labour is changed by DIFANE between
the centralised management system and the switches, by pulling some rule pro-
cessing functions back to the switches, to achieve better scalability. DIFANE
can solve the bottleneck of the current centralised OpenFlow controller by dis-
tributing some of the controller functionalities across authority switches. This
authority can handle unknown packets received from other switches instead of
sending the packets to the controller [120].

DIFANE downgrades simpler tasks from the controller by translating high-
level policies to low-level rules, and distributing the rules and processing all
the packets in the switches. DIFANE reduces the memory usage for rules
at the switches. Therefore, DIFANE builds a distributed rule directory ser-
vice among the switches by partitioning the rules between switches. DIFANE
can be easily implemented with smaller software “medications” to commercial
OpenFlow switches [64].

DIFANE architecture is composed of a controller and a number of authorised switches.
The controller provides rules and installs them in these authority switches. The au-
thority switches will receive the packets and forward them according to the rules
or encapsulate them and send them to other authority switches. Minlan Yu (2011)
indicates that DIFANE has three sets of wild-card rules, which can keep packet pro-
cessing within the forwarding plane instead of sending to the controller. Wild-card
rules include cache rules, authority rules and partition rules as shown in Table 2.7.

However, devolving control functions back to the switches is not easy; it requires
the deployment of a set of relativity rules and configurations installed in OpenFlow
switches in terms of security perspectives.

63

2.6 Related Work to Solve OpenFlow Scalability Issues

Wild-card Rules Description
Cache rules The rules are cached by the ingress switches so that most

data traffic stays in the cache and is processed by the
ingress switches. Authority switches install the cache rules
in the network.

Authority rules The controller can update and install the authority rules in
all authority switches. When a packet matches this rule, it
triggers a control plane function to install rules in the
ingress switch.

Partition rules Partition rules are installed in each switch by the controller
to ensure a packet will always match minimum one rule in
the switch and stay in the forwarding plane.

Table 2.7.: DIFANE Wild-Card Rules

2.6.3. Designing a Distributed Control Platform

• FlowVisor [93] is a similar design as HyperFlow to distribute the OpenFlow
control plane. However, FlowVisor tackles a slightly different problem as it
enables multiple controllers in an OpenFlow environment by slicing network
resources and delegates the control of each slice to a single controller and also
supports isolation between slices. FlowVisor is referred to as one of the first
approaches to promote a network virtualisation architecture for infrastructures
and resembles the hypervisor model for storage and computation. This will
allow multiple controllers to manage overlapping sets of hardware switches
simultaneously [94].

FlowVisor is an early development to visualised SDN, which allows different
networks to share similar OpenFlow network infrastructure. For this purpose,
FlowVisor offers an abstraction layer that can easily slice a data plane of an
OpenFlow-enabled switch. This will provide multiple and diverse networks to
co-exist. FlowVisor has five primary slicing dimensions including device CPU,
topology, bandwidth, traffic, and forwarding tables with each network slice
supporting multiple controllers that can co-exist on top of the same physical
network infrastructure. Each controller is allowed to act only on its own
network slice [95]. In general terms, a slice is defined as a particular set of
flows on the data plane. From a system design perspective, FlowVisor is a
transparent proxy that intercepts OpenFlow messages between switches and
controllers. It partitions the link bandwidth and flow tables of each switch.
Each slice receives a minimum data rate, and each guest controller gets its
own virtual flow table in the switches [93], [94].

• HyperFlow [106] aims to improve the performance of the OpenFlow control
plane by extending the NOX and distributing the event-based control plane
for OpenFlow. By sharing the same consistent network-wide state among dis-

64

Background and Literature Review

tributed controllers, HyperFlow assures that the process of a particular flow
request is localisable to an individual NOX controller. It proposes a physically
distributed control plane, but it is logically centralised by sharing network in-
formation and balancing the load between many controllers. HyperFlow seeks
to have multiple controllers to manage the entire network, and each controller
is responsible for its portion of the network [106]. HyperFlow is an applica-
tion implemented on top of the NOX controller, where the implementation is
changed operations, and allows reuse of existing NOX applications with minor
modifications [47].

Also, each switch makes a local decision (relying on its flow table and its con-
troller) using the HyperFlow to synchronise passively upon the whole network
state of OpenFlow controllers. This can provide a local server by the con-
troller to all packet flows, and thus significantly reduce the response time of
the control plane for data plane requests. With HyperFlow, each controller
synchronises its global network view using a distributed file system. It uses
the Publish/Subscriber messaging communication to support cross-controller
communication [106]. Therefore, HyperFlow is capable of processing more flow
events while keeping the flow setup latency minimal [69].

• Onix [55] approach attempts to maintain a reliable control platform by hav-
ing a logically centralised controller but physically distributed control plane.
Onix aims to cope with large-scale networks using a distributed management
architecture. It provides a useful common programming API to build network
applications. Onix contents are distributed to high-level network services and
applications to ease distributed data coordination. Onix deals with per-packet
registers instead of per-packet events to reduce the interactions between Onix
and the network forwarding elements. Onix was developed to resolve SDN
scalability purposes, which has an in-memory network graph of entities (net-
work state) called Network Information Base (NIB). The NIB contains two
duplicated data storages for exchanging information within the NIB.

Control applications in Onix can also divide the workload and adding instances
to reduce work without only replicating it. In Onix, network state is managed
by a cluster of Onix nodes, which appears as a single node in a separate
cluster’s NIB. This can enhance the hierarchical and federated structuring of
Onix clusters, thus decreasing the overall amount of information needed within
a single Onix cluster. Moreover, Onix provides applications with control over
the durability and consistency of the network view.

Onix also supports OpenFlow protocol, where the controller indirectly modifies
the NIB in the data plane. The controller has to guarantee that changes in the
data plane are reflecting the NIB before the NIB can make any changes in the
data plane configuration. Each Onix can manage a subset of a certain data
plane independently as well as exposing the entire network state using NIBs.
Thus, Onix can scale large networks and provide flexibility for production

65

2.7 Autonomic Communications

deployments.
• Kandoo [48] proposes a hierarchical distributed control platform by defining

two main layers of control. The top layer contains a centralised root controller,
which is responsible for maintaining the desired network behaviour as well
as running non-local applications. The bottom layer comprises several local
controllers to manage local applications that have no knowledge of the network
wide state. Consequently, Kandoo can decrease the number of events received
at the control plane of the network.
Kandoo [48] is a hybrid implementation that uses local controllers with local
applications for network management. Kandoo will redirect a flow to the root
controller only if the decisions require a centralised network state. By filtering
the number of new flow requests, Kandoo can reduce the traffic on the root
controller. It can also provide the data plane with a faster response for flow
requests that are handled by a local controller application.

All these approaches are physically distributed but logically centralised. They pro-
pose a different architecture and layer of SDN. Multiple controllers managing a
network can bring many benefits such as enabling backup controllers to take over
in the case of a failure, simplifying central view of the network, and reducing the
look-up overhead by allowing communication with local controllers. However, dis-
tributing the control platform in FlowVisor, HyperFlow, Onix and Kandoo are not
adapted to large data centres with several Autonomous Systems (AS), and they
need extensive traffic among controllers to maintain a global network view [16].
Moreover, there is also a potential downside related to trade-offs between staleness
and consistency when distributing network state among the controllers. This may
cause applications that believe they have an accurate view of the network to operate
incorrectly [58].

2.7. Autonomic Communications

2.7.1. Background of Autonomic Communications

Over the past twenty years, network technology has been improved rapidly in terms
of speed, performance, component and functionalities. A number of different types
of network devices have been developed and hence have led to an increase in the com-
plexity of network systems. Autonomic communications (ACs) is a concept for man-
aging the ever-growing complexity of distributed networks; this term gives systems
the ability of self-management, which mean each component in ACs can adapt itself
to changing conditions of the dynamic environment. ACs can refer to “distributed
communication systems with the learning and adaptation capability to cope well
with dynamic, uncertain and complex environments – that is, immediately adapt
their strategies in accordance with high-level business objectives and rules in order

66

Background and Literature Review

to maximise service satisfaction within available services and managed resources”
[27]. ACs are systems that can create their own strategies for adaptation according
to the system’s objectives to meet service satisfaction within managed resources. It
is currently in the area of considerable research and industrial interest. ACs adopt
the analogy of human autonomic nervous system, which regulates homeostatic func-
tions without conscious intelligent control, and seeks to simplify the management of
complex communication systems and reduce the needs for human intervention [35].
It deals with a number of existing disciplines. For example, protocol design, per-
vasive computing, network management, artificial intelligence, biology, semantics,
context-aware systems, and sensor networks.

ACs aim to provide systems with the ability of self-management, which means each
component in ACs can adapt itself to changing conditions of the dynamic environ-
ment. ACs can also free networks managers from some management tasks especially
low-level tasks, and in the meantime bring better system behaviour. Moreover, ACs
are considered as a universal concept of self-x management properties such as self-
configuration, self-protection, self-healing, and self-adaptation. These self-x func-
tionalities are the key characteristics of autonomic communication described in the
IBM blueprint. Because of the increasing difficulties of managing complex networks,
ACs are playing a major role and are also regarded as a promising solution to address
the challenges in such distributed electronic environments.

The concept of ACs was built on the employment and extension of Autonomic
Computing principles, initially introduced by IBM in 2001, in order to cope with
the rapidly growing requirements of distributed system management. ACs have
been proposed as a promising solution to managing the increased complexity of
the distributed electronic systems, adopting the automation and minimising the
need for manual operations. In this regard, IBM has introduced a framework of
the advanced mechanism for autonomic decision making and self-x properties such
as self-configuring, self-optimising, self-healing, and self-protecting. ACs have a
very wide scope, which aims to address all aspects of communication networks by
empowering network elements to best suit communication intentions, and providing
self-management behaviour without explicit interventions [66].

Figure 2.12 compares the four fundamental aspects of self-x properties in autonomic
communication and current computing. Each of the self-x property definitions is also
clarified. Despite their evident similarities, it is worth pointing out that autonomic
communications have slight differences from autonomic computing. According to
Dobson et. al. (2006), they both share the same goals. However, autonomic com-
puting is more directly oriented on the IT application software, middleware, and
managing the computing resources while autonomic communication is more likely
oriented towards distributed systems and services. This includes network resources
management at both the user levels and the infrastructure.

The theoretical goals of ACs are to understand how desired element’s behaviours
are learned, changed or influenced, as well as how these behaviours will affect other

67

2.7 Autonomic Communications

Figure 2.12.: Self-X Functions [53]

elements, network and groups in return. While the ultimate goal of ACs research
is that networks and associated devices and services will be able to operate in a
completely unsupervised manner, and to maintain self-x properties [4]. This will
also deliver networks the capability to adapt their behaviours dynamically to meet
the changing specific needs of end users. Moreover, it will dramatically reduce the
complexity and associated costs currently associated with the effective and reliable
deployment of networks and communication services.

Furthermore, it is important to point out that the term “autonomic” is not equi-
valent to “automatic”. This is because ACs work at a high-level network function,
which can create their own adaptation strategies, driven by system requirements,
to support a self-management functionalities for the network [31]. Besides, human
intervention and management is entirely released from the lower level of operation
work, whereas the term “automatic” is a simple self-managed process, meaning that
simple functions are reacting according to predefined rules to manage the network.

ACs aim to assign swarm intelligence into local components in order to improve the
efficiency of applications and services for the next generation networks. In recent
years, intensive research on autonomic communication networks (ACNs) is actively
engaged in by the European research union and The Autonomic Communications
Forum (http://www.autonomic-communication.org/) also coordinates recent work.
Current research mainly focuses on promising methodologies like multi-agent tech-
nologies and biomimetics, which are believed to be the best way to accommodate
complexity in ACNs and meet the requirements of users, vendors and ISPs.

68

Background and Literature Review

2.7.2. Overview of Self-X Properties

Advanced technologies have dramatically escalated over the past few decades, partic-
ularly in communication networks, and play an important role in providing control
applications for complex and distributed networks. The business and modern needs
force network technologies to be increased in performance, complexity, and function-
ality. Moreover, current network paradigms are lacking adaptability and are limited
to a single domain management, which is managed by network operators. Also,
networks have become massive and intractable due to the complexity and that has
lead to challenges of scalability. Traditional operations struggle to cope, and thus
a new management paradigm is required to fulfil the management of such dynamic
infrastructures. Many attempts are introduced to cope with the higher demand on
network management problems, but are still not suitable for large scale networks
and could suffer from scalability issues. To deal with this problem, IBM introduced
the term Autonomic Computing in 2001, which can create its own strategies so it
can constantly adapt itself to dynamic conditions of the environment.

Autonomic computing is considered as a promising solution to cope with network
complexity by providing a self-management capability based on high-level system
objectives. In this regard, each Autonomic Computing System (ACS) should have
two main capabilities; it should be able to adapt itself quickly to the dynamic envir-
onment, and it should have self-x management properties. The main purpose of the
self-x management framework is to work at high-level goal driven functions to deal
with the increasing challenges of managing distributed network environments. It re-
quires the important capabilities of (1) gathering related information, (2) modifying
the attributes of network nodes, and (3) managing its own functions and adapting
itself to the ever-changing environment of the network, which is defined as network
autonomy [29]. Scholars also believed that in order to establish a comprehensive
Autonomic Communication, the systems should have a sustainable and maintain-
able information model, and have the ability to make local decisions when collecting
information. The main properties proposed by IBM as the basics of AC are as
follows [31]:

1. Self-optimisation: system software and hardware should use resources max-
imally to provide optimised functioning and performance of communications,
as well as to detect optimal behaviours in order to improve the systems’ per-
formance.

2. Self-healing: This means that the system should be able to detect and recover
automatically from a potential problem that might occur in the local software
and hardware, for example, the system restarts or reboots a failed element.

3. Self-protection: This means that the system should be able to detect and
prevent automatically any malicious attacks on the network, or take the re-
sources offline in case of severe threats. This property also includes the ability
to maintain the systems’ overall security.

69

2.7 Autonomic Communications

Figure 2.13.: Autonomic Computing Tree [102]

4. Self-configuration: This means that the system should be able to adapt auto-
matically to the ever-changing environment. Moreover, the system should
automate the configuration of components and systems where high-level ob-
jectives are defined.

Figure 2.13 illustrates the general properties of autonomic systems. The objectives
describe the broad system requirements, whereas the attributes identify the primary
implementation mechanisms. In order to meet these objectives, the network system
must be aware of its actual state (self-awareness) and the current external operating
flows (environment-aware). If the conditions change, it will be detected via self-
monitoring and adaptations will be made consequently (self-adapting). In addition,
this means that the network environment has some knowledge of its available re-
sources, its components, its on-going status, and the status of communications with
other systems [101].

In the autonomic research field, key researchers have defined many different attrib-
utes and properties for ACs. Each of the self-x literature on ACs is mainly cat-
egorised based on the working areas of the self-x functions themselves. Since 2001,
the list of self-x properties has grown dramatically. Currently, the self-x frame-
work includes functions such as self-definition, self-organisation, self-adjustment,
self-monitoring, self-regulating and so on. For example, “Sabio” is a program that
automatically classifies large numbers of documents demonstrating self-organisation
and self-awareness properties [77]. IBM and other independent research centres have
recently proposed a model to measure the degree of these autonomic systems. Ex-
amples of distributed systems and applications of distributed computing include the

70

Background and Literature Review

following:

• Telecommunication networks.

• Telephone and cellular networks.

• Internet and other computer networks.

• Wireless sensor networks.

• Network applications and services.

• Peer-to-peer networks.

• Massive multi-player online games and virtual reality communities. Assum-
ing every player is a node, autonomous computing can be mostly used for
controlling interactions between these nodes.

• Real-time process control.

• Industrial control systems. Assuming the industrial system is an autonomous
system consisting of many sensors, control system and actuators (e.g. robots),
each actuator can be assumed as a node that can decide for itself in a way
that the whole system reaches a specific goal.

• Robot control systems. Just like an industrial system, one can assume a robot
is a system reaching a specific goal consisting of many nodes.

• Aircraft or train control systems. Assuming each train or airplane is a node
that can decide for itself, the trafficking control centre or network manager
can be freed from so many tasks.

71

3. Distributed Active Information
Model Theory

3.1. Introduction

OpenFlow is defined as the first standard communications interface between the
control and forwarding layers of an SDN architecture. The OpenFlow approach,
however, has some significant limitations: it restricts its use to a single domain, it is
not scalable, and it does not adapt well to changes in local environments. As a result
of these limitations, network operators today are relatively constant as they seek to
reduce the risk of interruption of services. To stay competitive, next generation
networks must provide a higher value as well as the best customer service than ever
before. There have been many interesting approaches proposed to resolve these
limitations. One promising solution for these requirements is to deploy a highly
distributed network architecture. Decentralisation is often used to compensate for
the single point of failure, one main drawback that is presented when using a single
SDN controller as a central node.
The important background based on the O:MIB structure and O:XML technique is
presented in this chapter. In addition, a new information model called Distributed
Active information Model (DAIM) is proposed to incorporate into the OpenFlow
structure at the level of the switches to provide a distributed control plane that will
effectively manage the flow tables. The candidate DAIM architecture is also intro-
duced to allow the local decision-making process that will essentially contribute to
complex distributed network environments. The DAIM model is a sustainable and
maintainable information model that collects, maintains, updates and synchronises
all the related information and data objects, in which some or all of the intelli-
gence and management control is locally distributed within the network entities.
DAIM provides an adaptable decision-making capability that requires smart agents
to manage themselves autonomically and adapt to the ever-changing environments.
This chapter also presents one possible implementation of the DAIM model by us-
ing adaptation algorithms embedded with intelligent agents and information objects
to be applied to such complex systems. By adopting the DAIM model and these
adaptation algorithms, managing complex systems in any distributed network envir-
onment can become autonomous, adaptable and scalable. The autonomic approach
of distributed systems leads to rapid innovation through the ability to provide net-
work capabilities and new services without having to configure individual devices.

73

3.2 Theoretical Framework

The DAIM model can enhance objects to make their own local decisions through
its active performance, and thus significantly reduce the workload of centralised
decision-maker. In order to achieve the system’s goal, a large number of distributed
objects needs to be highly integrated with the DAIM model. Details of the effi-
cient DAIM model and its packet forwarding process are also described, which will
hopefully address the schemes of some of the traditional network management proto-
cols such as Simple Network Management Protocol (SNMP), Common Information
Model (CIM), and the mechanisms like Policy-Based Network Management.

3.2. Theoretical Framework

Autonomic communication relies heavily on a functional information model that
provides source data to drive both decision-making processes and information min-
ing processes. The development of the DAIM model is derived from two major
concepts (1) O:MIB, (2) hybrid O:XML. In this section, a new information model
is required to cope with the dynamics in distributed ACNs. In addition, an active
Object-oriented Management Information Base (O:MIB) is presented as a theoret-
ical framework for the rest of the research with the hope of replacing the traditional
management information base (MIB). The corresponding programming language
hybrid O:XML is explored as a practical technology to implement O:MIB, with
platform-independent Java agents (e.g. Jade and JadeX). Chiang and Braun [29]
further found that a variation of XML called O:XML would allow developers to
embed Java fragments into XML tags. In addition, they described the MIB as an
XML structure, and could embed methods with properties of objects to give them
the ability to modify themselves.

3.2.1. O:MIB Theory

The DAIM model can be applied to distributed communication networks for en-
abling autonomic functions. One of the most significant barriers when dealing with
large-scale and complex network systems is the lack of decentralised service man-
agement. Because the development of agent-based in the field of Distributed Ar-
tificial Intelligence (DAI) has grown rapidly, Autonomous Decentralised Systems
(ADSs) and multi-agent technology are by far the best solution for managing com-
plex network environments. The DAIM model consists of adaptation algorithms
for adapting the intelligent agents and information objects to be deployed to such
distributed electronic systems. The main purpose of designing the DAIM model
is to re-engineer the structure of the network information model so that this new
structure can effectively cope with the next generation communication networks. It
also aims to redesign the traditional MIB structure by adopting the object-oriented
principles, which is required to fulfil management services such as configuration man-
agement, topology discovery, activating application process, and assigning resource

74

Distributed Active Information Model Theory

Figure 3.1.: Comparison Between Traditional SNMP MIB and O:MIB [84]

process. Figure 3.1 shows a characteristic comparison between the standard MIBs
and proposed O:MIBs.

Furthermore, O:MIB can operate as a part of the distributed information model to
enable autonomic software agents that act as the network elements (other routers,
switches, hosts, etc.). The Autonomous Agent (AA) inherits the surrounding agent’s
behaviour and also makes local decisions based on the state of the network. The
agents of distributed O:MIB technology will allow the richness of self-organised man-
agement. For example, it will allow dynamic software configurations, service activ-
ation, and service discovery. Therefore, it is possible to develop the DAIM model
specifically with embedded smart algorithms for distributed elements to improve the
efficiency of local execution abilities.

These large numbers of heterogeneous O:MIBs need to be well organised in a way to
favour the distributed complex environments. This implies a distributed intelligent
holonic system in order to manage and implement the O:MIBs in the hierarch-
ical telecommunication system efficiently. The main characteristics of the holonic
O:MIBs include; (1) they are object-oriented MIBs with methods embedded, and (2)
this O:MIB exists on a holonic-level. For example, they are embedded into individual
electronic devices such as mobile phones, printers, and even further in the sub-level
of devices (chip-level). Braun and Chiang (2008) state that the holonic system is
not only a component-based communication architecture but also a universal way
to construct distributed MEs at various levels. The proposed holonic agent-based
O:MIB consists of three parts: (1) conventional MIB; (2) user-accessible provision-
ing; (3) methods/operation. Intelligent algorithms and functions are embedded in
each holonic subsystem to fulfil any network tasks for agents to cooperate together

75

3.2 Theoretical Framework

Figure 3.2.: Algorithms and Methods in O:MIB [29]

and share synchronised information.

Figure 3.2 shows the necessary contents of an O:MIB class. It should cover four
divisions of information: QoS parameters; device information; service information;
application information and dependency information related to devices and ser-
vices. Chiang et. al. (2007) designed this O:MIB class for each category of network
components. When an object is required for activation during run time, any in-
stance of the O:MIB_Class is directly created by java codes via the keyword “new”:
OMIB_Class OMIB_object = new OMIB_Class();

The O:MIB model is expected to be used in peer-to-peer networks, mobile techno-
logy, and Wireless Ad-hoc Sensor Networks (WASNs) as well as to address other
complex issues. O:MIB adopts the object-oriented principles to manage the MIB ob-
jects. It has multiple distributed agents that remain in every network component and
node, which functions with its own O:MIB as a way to activate applications when
required. These network components can also analyse the important data, learn-
ing the systems environment, calculate situations, and perform adapting capability.
Therefore, a full understanding of autonomic communication will be obtained. Ob-
ject or element is the basic information unit of the O:MIB. Each important element
comprises [20], [9], [79]:

• Attributes: It specifies the information values that represent the characteristics
of the managed object identifiers (OIDs).

• Method behaviours: An action that helps to achieve autonomic communica-
tions. This can include the self-awareness function in real time and intensive
and spatial data.

• Algorithms: These are the algorithms that will support a specific network task

76

Distributed Active Information Model Theory

Figure 3.3.: Self-Maintained Process [20]

to be embedded into O:MIB domains. It also represents a set of predefined
uses of the total available method calls. For example, humidity of the net-
work environment, temperature monitoring, and predicting the level of raising
alarms and risks in autonomic communication networks.

• Messages: In response to the on-demand requests, local messaging daemon ac-
tion can invoke messages in order to obtain general information about network
topology or mapping discovery.

Figure 3.3 indicates the implementation process of O:MIB via O:XML. The software
agents remain on each node having O:XML employed to populate the recorded data
to the corresponding agents. In addition, Java agents are also involved because it is
platform independent, and due to other agent development tools being mainly based
on Java technology as well. Each agent is defined from instantiated agents according
to their electronic environment. The O:MIB algorithms are invoked by the instan-
tiated agents, whereas information values are re-configured by Java-based agents.
Ultimately, the agent’s life cycle is accomplished while the program is operating.

The overall stages of this approach can be described as the follows [20], [79]:

1. Observing the current agents on distributed nodes and noticing the environ-
ments.

2. Generating new agents when a new environment is identified through the
adaptation and learning strategies.

3. Functioning the local O:MIB by invoking the algorithms and methods instruc-
ted into the local O:MIB systems by default.

77

3.2 Theoretical Framework

4. Adapting the node in regard to the awareness of the system-level objectives.
5. Wrap up the agent’s life cycle until the next round of process is ready.

This efficient O:MIB-based DAIM model approach is introduced to cope with man-
aging autonomic communications in terms of, for example, self-configuring, self-
adapting, self-optimising, self-learning and self-awareness. This new information
model scheme can also be applied to other self-x properties in ACNs. The attributes
of each information object in the O:MIB-based DAIM model can be implemented
in one O:XML file. This brings the possibility of embedding DAIM agents into
portable communication devices as well as applying into real networks in the future
such as wireless networks, including WASNs, Mobile Ad hoc Network (MANET),
Peer-to-Peer networks, and Mesh networks [85], [79].

3.2.2. Use of O:XML

Essentially, XML is a general purpose markup language widely used for defining a
set of rules for encoding documents, data structure recording, and messaging. XML
has a hierarchical structure, which is suitable for most types of documents in the
hierarchical networks. It can also be easily parsed by other parser algorithms due
to its parsing requirements and strict syntax. Therefore, the XML semantics are
widely used to describe the current MIB structure. Java agents can easily parse the
document and apply read/write action with XML. However, with its current syntax,
it is not feasible to have methods and functions or algorithms embedded into the
XML structure. Chiang et. al. (2007) have proposed a hybrid O:XML language with
object-oriented functionality, which combines the advantages of XML semantics and
the advantages of O:XML language in order to achieve these goals and make the
O:MIB structure available in practical use.
O:XML is a newly developed open source language with straight-forward syntax and
is build on the basis of standard XML structural scripts. Chiang et. al. (2007) point
out that O:XML has more features than traditional XML, which is the purpose for
only data structure description, including functions like overloading, polymorphism,
exception handling, and threads. All of these features make O:XML suitable for
describing the functions and variables and in the O:MIB. Chiang further states that
the latest O:XML technology is integrated with Spring application framework. This
allows developers to embed the java code (termed as JavaBean) into O:XML while
the JavaBeans contain algorithms that can function to find unified information. For
example, the probability of neighbourhood availability; or self-reasoning of learning
procedures; or even reconfiguring the data value of the component itself.
ObjectBox is the required compiler to interpreter the methods or algorithms in each
O:XML file. XML can be parsed easily by Java agents and the XML contents can
be integrated into the O:XML output from ObjectBox compiler, therefore, indicates
that XML file is also recognisable in part by O:XML interpreter. This drives the
idea of possibly combining the XML format with O:XML format. Chiang (2007)

78

Distributed Active Information Model Theory

Figure 3.4.: Script Sample of Method Described O:XML Format for O:MIB [32]

79

3.2 Theoretical Framework

Figure 3.5.: Integration of Multi-Agent Framework with O:XML Implemented
O:MIB [30]

combines their advantages and produces a markup structure that hybridises both
XML format and O:XML syntax, where data structures like node attributes are
described in XML format, whereas functions and embedded algorithms are stated in
O:XML format. Figure 3.4 is an example of a sensor network where XML semantics
are used to describe attributes of the MIB variables, and O:XML syntax is used to
describe methods and algorithms.

• Use of Autonomous Agents
Figure 3.5 depicts the process of software agents (or holons in holon-based middle-
ware), which reside on each node, call functions and algorithms in O:MIB during
run-time. O:XML is deployed to populate the recorded information to corresponding
agents. The specific agents can be instantiated from agent templates in accordance
with diverse electronic environments. The O:MIB functions or algorithms can be
invoked by the instantiated agents. Data attributes are able to be reconfigured by
Java-based agents (dash line). As an interpreter of O:XML, the ObjectBox can ex-
pose the interpreted information in the O:MIB to the agent system (solid line). As
a result, the agents’ life cycles are fulfilled in the run-time of the program.

3.2.3. Using DAIM as a Logically Distributed Control Plane

In traditional network configurations, if the circumstances should change or the
requirements should change, the network then requires re-configuration again. For
example, we are applying the classical compiler to the executable paradigm according
to the following method. Firstly, we should get a software requirement specification.
Secondly, create the codes to meet the requirements. Finally, compile these codes
into an executable program. In the case of OpenFlow-based SDN, the process would
be as the following: (1) get the system requirements from business drivers; then

80

Distributed Active Information Model Theory

(2) create system configuration/code to meet the system requirements; finally (3)
compile this into an SDN-enabled configuration.

Thus, the main challenge with complex networks is that if the circumstances or
requirements change, the network requires repeating all the above methodology.
For example, new bandwidth capacity, the performance requirement, traffic load
and traffic requirements change within the network, and hence this would be the
problem. In order to overcome this issue, SDN has decoupled the control plane and
the data plan by developing components on top of the network operating system as
network applications. However, these applications provide very low-level methods
for interfacing with the network as the operators configure them. Examples of these
are application for discovering the links in the network by sending LLDP packets out
of every switch interface, application for mapping network topology, and application
for routing.

Figure 3.6 shows the mapping of conventional networks and SDN on how they are
constructed or implemented. Essentially, the conventional network deployments is
shown on the left-hand side of the diagram in comparison to the SDN paradigm
on the right-hand side. The box at the top is typically the business drivers or the
requirements that the system and the infrastructure have to provide. For conven-
tional networks, the vertical box on the left is the network artefacts such as switches,
routers and links that make up the network, whereas the right vertical box repres-
ents the configuration parameters, which are traditionally stored in MIBs and other
different ways to store these parameters, or simply on the routers and switches.
Current network management paradigm should have the ability to control the con-
figuration in order to manage the network as shown in the configuration column,
which then reflex via the artefacts into network behaviours. In recent years, this
traditional paradigm can not cope with the growing complexity of today’s networks
(old mainframe computer).

On the other side, SDN also has the same requirement specifications and business
needs. The next block down represents the abstraction of the defined system re-
quirements. Then those definition system codes get translated by a compiler into
another abstraction, which is the next block down containing network parameters
(e.g. OpenFlow switches) that cause the infrastructure to behave according to busi-
ness drivers. The SDN approach uses intelligent abstractions to simplify the network
including (1) forwarding – a common API for programming network infrastructure;
(2) state distribution – a single state distribution algorithm for networking; and (3)
global management – where programs interact with the entire network instead of in-
dividual nodes. Ultimately, that creates the infrastructure in the bottom horizontal
rectangular box, which is providing the same services as the conventional networks
would provide but through a different means.

Thus, the alternatives could be implementing the DAIM model as a logically dis-
tributed control plane to enable autonomic communications. The paradigm is very
similar to other SDN approaches. However, this new application model has some

81

3.2 Theoretical Framework

Figure 3.6.: The Mapping of Conventional Networks and SDN

significant differences, which are based on the intelligent DAIM agents for collecting
and exchanging information from the system requirement database driven by the
business needs. The similarity of the proposed model and OpenFlow is the pro-
cess of compiling the system configuration into an intermediary binary code and
then handing over to a run-time environment (e.g., network operating system) for
interpretation/implementation. This process is similar to how the NOX controller
operates in an OpenFlow network environment.
The author is proposing to situate the DAIM model within the OpenFlow switches
as a logically distributed control plane paradigm and have DAIM compute the flows
from local information distributed across network elements. The proposal moves
the computational load to the switches and effectively the DAIM model acts as a
fully distributed control plane [83]. The DAIM controllers are physically distributed
where each controller manages its connected switch and distributes useful inform-
ation to other instances within its domain. Moreover, the decision-making ability
will be local within each switch, on the basis of collecting information by intelligent
agents, which allows it to adapt efficiently and react quickly to network dynamics.
DAIM is a new way of viewing information objects that manage the behaviour of
a network, or any other complex distributed electronic environment. The DAIM
model is proposed with the hope of addressing the limitations of current approaches
in OpenFlow and future distributed network systems aiming at an autonomic com-
puting management strategy.
Developing the DAIM model can be the means of implementing a physically distrib-
uted control plane for SDN. By distributing the DAIM controllers on the network,
and having these controllers compute the flows from local information and central-

82

Distributed Active Information Model Theory

ised requirements database, it moves the computational load to the switches and
could give effect to the so-called fully distributed control plane. Hence, the net-
work would be a truly distributed computing environment. The functionality of the
controller migrates into a requirements database while its computational obligations
migrate into the DAIM model on the switches. The behaviour of the network is then
simply changed through changes in the requirements database. As a consequence,
we can envisage OpenFlow being a candidate transport mechanism for applying
DAIM.

In the case of an OpenFlow network, the DAIM agents will reside in the network ele-
ments such as the OpenFlow switches and would act as the “owners” of the flow table
entries. In addition, the actual variables in the OpenFlow table’s entries, embedded
within the OpenFlow switches, would be the properties of DAIM agents. These
agents would then modify or adapt their variables’ values so as to implement the
requirements of the network driven by the business needs. They would be reacting
to changing network circumstances and requirements by changing their properties.
Therefore, the DAIM model would extend across all these network elements and
could be considered as a logically distributed control plane, which is managing the
system requirements to enable the infrastructure according to the business needs.
In effect, it is possible to develop a truly distributed communication network by
applying DAIM.

3.3. DAIM Model Paradigm

A new information model named: Distributed Active Information Model (DAIM) is
presented to allow the local decision-making processes that will essentially contribute
to complex network systems like the SDN [20]. An implementation of the DAIM
model is expected to enable the requirements of the autonomic components of the
distribution networks such as self-management capabilities. An autonomic system
in this context means that each distributed device can draw its own strategies for
adaptation driven by the goals of the system [27]. The distributed autonomic system
adapts the network for needs of dynamic changing in business and reduces operations
and management complexities.

Scalability can refer to networks with the ability to increase the number of nodes
and the length of links very widely without affecting the performance of the net-
work. To ensure network scalability, it is necessary to use additional communica-
tion equipment and flexible network structures. For example, good scalability has
multi-segment networks built by using switches and routers and has a hierarchical
structure of relationships. Such a network may include several thousand computers
while providing each user the right network service quality. Thus, this research notes
that by deploying the DAIM model, the scalability of any system could be solved
by using a distributed environment as the control platform.

83

3.3 DAIM Model Paradigm

Benefits that can be achieved through implementing the DAIM model include dy-
namic control of network elements, direct manipulation of new network services
without having to configure each individual device, programmability by operators,
and the ability to provide automated management that increases network security
and reliability. This approach accelerates business innovation by allowing network
operators of Information Technology (IT) to program the network in real time to
meet the business needs and specific requirements of the users. Accomplishing such
approaches is a challenging task. This is because the network control plane mech-
anisms take several years to be fully designed, and even longer to spread widely, a
new control protocol. Moreover, it is important to consider the characteristics of
incremental properties, the complexity of new network operators, and some of the
missing functions in the network elements [40]. Another part of the approach is that
complex distributed systems need to have a well-defined system requirement data-
base (SRD), in order to maintain scalability, optimal service configuration, recovery
and stability issues in the functional management domain [20].

3.3.1. Objectives of Designing DAIM

Implementing the proposed DAIM model can also simplify network management by
distributing control functions to organise massively dispersed network elements and
the ability to proceed with rapid configuration of network devices locally. In addi-
tion, the DAIM model could manage complex systems in any distributed network,
which makes it possible to become adaptable and scalable to the changing network
dynamics. The goals of designing DAIM is to address the research challenges such
as managing the complexity of distributed electronic environment and to construct
a distributed flow management architecture that will enable self-x functionalities for
business needs. Thus, the design requirements to build the DAIM model according
to [20], [79], [105] will be as following:
• Compatibility: Consideration is taken of the complexity and the future growth
of the networks, where there are varieties of network devices and business needs.
Therefore, DAIM will use OpenFlow-based SDN environment as a programmable
network to meet different varieties of needs. DAIM can abstract the network man-
agement model and services as network applications.
• Model simplicity: DAIM allows switches to make decisions locally. That ability
is called autonomic network management. This means that the distributed self-
adaptation strategies can maintain the system in the face of changing requirements
and unexpected threats to provide for the defined requirement. Hence, operators and
programmers are no long required to handle any changes of the requirements either
actively or reactively. Network management model and services will be abstracted
as network applications.
• End hosts modification: The DAIM model does not require software or hardware
changing of the end hosts, where DAIM mainly focuses in forwarding packets.

84

Distributed Active Information Model Theory

• Security: DAIM is supporting security by using network security protocols.
For example, the messages between System Requirement Database and OpenFlow
switches, are encrypted by using Transport Layer Security (TLS).

The new candidate system can enable the development of different network services
and applications with embedded autonomic agents. This new paradigm can also
be applied to other infrastructures or distributed environments that provide global
services such as the National Broadband Network (NBN).

3.3.2. DAIM Model Architecture

This section presents the designed architecture of the candidate DAIM system. The
DAIM model can be potentially implemented within each OpenFlow switch us-
ing a multi-agent operating system, which is supported by DAIM agents as a field
of distributed active Artificial Intelligence (AI) to enable autonomic functionality.
The DAIM model is composed of a system requirement database and smart DAIM
agents. These components use augmented OpenFlow protocol called DAIM protocol
for corresponding messages between them. Intelligent DAIM agents that reside in
each switch as an independent computational environment are implemented in a
Java Virtual Machine (JVM). In addition, they interact with the database and
neighbouring switches to exchange information. Therefore, the DAIM agents can
compute their own local decisions according to the business needs defined in the
database. The DAIM system requirement database schema holds business needs
and the network information such as host identifier, business requirements, topo-
logy discovery, QoS, connectivity, bandwidth, security policies, and global view of
the entire network (see Figure 3.7). The DAIM model uses this information to make
management and routing decisions. The monitoring data includes changing of net-
work links, network topology, changing of host locations, so that would facilitate
the calculation and installation of shortest route.

The basic information unit of each DAIM agent includes attributes, method beha-
viours, algorithms and messaging. These four characteristics can modify the value of
its own property. This inverts the traditional get→compute→set process in network
management. Instead, property values are changed by either calling methods, or
by the modules proactively calling processes that compute the required values, and
then call those methods.

To facilitate our approach of managing a distributed environment autonomically, it
is necessary to have a well-defined system requirement database or a central database
containing the global network view. These databases can support the DAIM agents
to make local decisions in terms of forwarding, maintaining, and adapting to the
unexpected changes. A local processing engine like DAIM could then be distributed
across OpenFlow switches to allow the development of autonomous behaviours.

85

3.3 DAIM Model Paradigm

Figure 3.7.: DAIM Model Architecture as an Intelligent Computational Environ-
ment

3.3.3. DAIM Agents Implementation

One possible implementation of the DAIM model is to deploy a multi-agent oper-
ating system such as JADE/JADEx (Java Agent DEvelopment Framework) that
can create, change, and terminate the intelligent DAIM agents. Essentially, these
agents have the responsibility to maintain their own values, which they can ad-
apt and modify their properties according to the collected information. The DAIM
agents can make their local decisions based on the system requirements driven by
the business applications. Moreover, these intelligent agents will also compute the
forwarding destination for packets, exchanging data between agents, and update the
flow table entries using its built-in methods and algorithms [9], [83], [84].

When the DAIM model receives an unmatched packet, it creates a unique DAIM
agent that will query and access the system requirement database or interact with
other agents to obtain the local network information needed to determine the for-
warding rules. The DAIM agent should be able to check this packet flow against
system requirements and other policies to see whether it should be allowed and if
allowed, the DAIM agent needs to compute a path for this flow and install the flow
entries on every switch along the chosen path. Finally, the DAIM model will send
the packet itself back to the origin switch with an action to forward out a specific
port. The DAIM agents could provide a distributed environment where the network
information is the property (values) of software agents residing on virtual machines
that are distributed throughout the network elements. The properties or values are
the familiarity notions of object-oriented programming. These software agents not
only have the responsibility for maintaining their own property or value but also for
adapting and modifying them. Therefore, the DAIM agents have the ingredients to
implement autonomic behaviours.

One promising way to effectively implement the DAIM model within each OpenFlow

86

Distributed Active Information Model Theory

Figure 3.8.: DAIM Agent Owns a Flow Entry in the Flow Table

switch is to develop a multi-agent operating system, which will support the creation
of the DAIM agents as a field of distributed active artificial intelligence to enable
the autonomic behaviour. Figure 3.8 shows the basic information unit of the DAIM
model where DAIM agents manage flow entries, and each of them includes [20]:

• Attributes: specific variables that represent characteristics of the flow entries such
as header fields, counters and actions.

• Method behaviours: actions that provide the autonomic functionalities such
as self-awareness instantly (temperature, humidity), and self-configuration (switch
down).

• Algorithms: algorithms for fulfilment of a network task, can be embedded into
DAIM agents, such as informing the DAIMmodel if any circumstances change within
the network and synchronise information between databases.

• Messaging: messages that can be created by the DAIM model as a response of re-
quests to get information (track host location, track topology changing and shortest
route). The control databases are connected together and use the DAIM protocol
for corresponding messages. At the same time, each switch must be connected to a
system requirement database as well as a discover route database to ensure optimal
performance of the network.

3.3.4. Uniqueness of DAIM Model

The DAIM model derives its design principles from previous SDN-based research
approaches. That is, dividing the control functions, and implementing them on
the data forwarding layer as a physically distributed control plane. In so doing,
the switches will have more control functions and the routing decisions will be made
locally. Furthermore, the DAIM model tries to solve current issues of the centralised
management paradigm and difficulties in managing complex networks by enabling

87

3.4 Packet Processing Within DAIM

autonomic behaviours for network management based on DAIM agents implement-
ation [20], [79], [105].
The autonomic approach in SDN has not been introduced before. This is because,
in the classical routing or switching, fast forward packets (data plane), and high-
level routing decisions (control plane) occur on the same device. In addition, most
vendors’ devices are closed and not accessible. Moreover, if the device is not de-
scribed by Management Information Base (MIB), the device does not exist. There-
fore, each device has an MIB in the ASCII format that network operators can access
and edit to achieve the new requirements [23]. From the vendors’ side, they have
a lack of standard and open interfaces, and there are limitations in the ability of
network operators to design the network to meet different individual requirements.
This makes a gap between market requirements and network capabilities.
There are five unique aspects of the DAIM model as follows:

• Firstly, the DAIM model is a programming framework for creating distributed
control functions within the SDN environment. The DAIM model can be
applied to a flow-based routing network such as OpenFlow.

• Secondly, the DAIM model provides clear and direct control over interactions
with the system requirement database, and over network state synchronisation
by using DAIM agents to gather information and set instruction.

• Thirdly, the DAIM model could solve the scalability issue of centralisation, by
distributed control functions within OpenFlow switches.

• Fourthly, using the DAIM model in distributed network environment can solve
the robustness and responsiveness issues of the current centralised paradigm.
The adaptation algorithms can adapt the distributed nodes by synchronising
the network state with the system requirement database.

• Finally, the DAIM model is not similar to the cloud computing model, where
cloud computing typically has many separated computing entities, presented
as a one computational infrastructure. The DAIM model has many network
entities, which are distributed and working independently, where each is rep-
resented as an independent computing environment.

3.4. Packet Processing Within DAIM

Packet forwarding of DAIM in an OpenFlow environment would significantly de-
pend on another structural component such as a centralised database to obtain all
information regarding network graph and links for computing the shortest path. In
addition, the DAIM model can query the registered events from this central data-
base, so that other switches can actively reconstruct the entire network state. As
an important advantage of distributing the DAIM model, it will provide some self-
management capabilities if any local change happens within an individual switch.

88

Distributed Active Information Model Theory

Figure 3.9.: Flow Chart Detailing Packet Processing Within DAIM Model

Each switch will be able to serve any coming packets from other switches locally
and adapt to any changed conditions of the dynamic environment. Hence, it is
feasible to deploy the DAIM model as a distributed system structure in OpenFlow,
which has the ability to share information of the whole network and forward packets
locally without support and vetting of the controller. DAIM can create an environ-
ment that provides the infrastructures to enable autonomous behaviour for future
OpenFlow deployments.
When the packet arrives at an OpenFlow switch, it performs the operations shown in
Figure 3.9. Packet headers are used for table lookups depending on the packet type,
and typically include various packet match fields, such as source IP, destination IP
and MAC destination address. The switch begins with performing a table look-up
in the first flow table, and may perform table look-ups in other flow tables [33], [44].
For example, the flow tables are sequentially numbered, so the packet is matched
against flow entries of flow table 0. Other flow tables may be used depending on

89

3.4 Packet Processing Within DAIM

the outcome of the match in the table 0. If a flow entry is matched, the instruction
set included in that flow entry is executed, and the counters associated with the
selected flow entry must be updated. Those instructions may direct the packet to
another flow table, where the same process is repeated again. On the other hand,
the instructions could forward the packet to a Table-miss or the DAIM model in the
case of flow entry not matched.
If there is a no matching rule in the flow table for that particular packet, the switch
sends the packet to a Table-miss flow entry. The flow table configuration defines
the behaviour of a Table-miss entry by using wild-carding rules. A Table-miss flow
entry in the flow table specifies how to process unmatched packets with the options
of sending packets to the DAIM model or passing them to a subsequent table.
Moreover, the table-miss flow entry behaves similarly to any other flow entry, where
it does not exist by default in a flow table. The DAIM model can support this
Table-miss process by adding a Table-miss flow entry or removing it at any time,
as it may also expire. However, the DAIM model is responsible for all unmatched
packets, if there is no Table-miss flow entry.

Normal OpenFlow
process

Candidate OpenFlow + DAIM
process

Unknown packet arrives at
a switch

Unknown packet arrives at a switch

Switch cannot match a flow
table entry

Switch cannot match a flow table
entry

Switch uses OpenFlow
protocol to forward packet

to controller

Switch instantiates a new agent, which
“owns” a new row in the flow table.

Controller computes
forwarding destination for

the packet.

This is a unique Agent (which “owns”
that row in the flow table). It

computes the forwarding destination
for the packet according to the system
requirement database and exchanges

information between agents
Controller uses OpenFlow
protocol to update flow

table entry on the switch,
which now knows how to
forward the packet, and

similar ones

The agent updates the local flow table
row using its built-in methods and

eventually forwards the packet to the
destination

Table 3.1.: Comparison of Normal and Candidate Processes

Table 3.1 shows a comparison between normal OpenFlow processing and the candid-
ate DAIM model within OpenFlow which typically depend on the system require-

90

Distributed Active Information Model Theory

ment database and the intelligent DAIM agents. Therefore, an individual switch
can serve any coming packets locally.
DAIM agents will be bounded to a particular variable such as a flow entry variable
and have some level of self-adaptation strategy to manage the variables for forward-
ing according to the business needs. For example, when the DAIM model receives
an unmatched packet, the switch creates a new agent, which “owns” a new row in
the flow table. This unique agent is able to access and control network elements.
It will compute a path for the unmatched packet, and install flow entries on every
switch within the chosen path to forward that flow. For more details, DAIM agents
are able to check this flow against system requirements and other policies to see
whether it is allowed to be processed.

3.5. Risk Scenarios of the DAIM Model

The theoretical design of the DAIM model includes two main central databases: the
system requirement database and the discovery route database. However, the DAIM
model is logically distributed across OpenFlow switches, which needs to synchronise
with both central databases in order to manage the network effectively. Thus, the
switches are fully responsible for serving all packets within its site, unless a fail-
ure happens (e.g. port down). If any failure occurs, switches that are connected
to the affected switch should be able to reconfigure themselves to their neighbour
switch, forcing the flow modification to happen. This new switch will use its ad-
aptation strategies to synchronise actively among all databases for determining the
requirements and calculating a new path for the connected hosts.
Early SDN architecture relies heavily on a centralised controller, whereas the pro-
posed DAIM model adopts the distributed management paradigm to ensure a high
degree of network reliability. The potential consequences upon the failure of the
system requirement database and discovery route database are the following:
Firstly, when the OpenFlow switch receives an unknown packet, it will not be able
to calculate a path for forwarding to the destination. Furthermore, the switch
will convert the flows to be handled by the normal Ethernet switching operation,
for example, traditional Layer 2 switching capabilities, VLAN isolation and QoS
processing. However, the system will not perform optimally because all autonomic
functions will be disabled. Secondly, DAIM can no longer store the collected inform-
ation in those databases to construct the central view of the network, and hence is
incapable of performing autonomic actions such as self-adaptation, self-configuration
and self-protection [26].
However, the above issues can be avoided by the design and functions of the database
buffer as well as failover capability in DAIM to maintain network state in the case
of any failure. For example, the switch can send a port-status message to the DAIM
model when a link is broken. After receiving this information, DAIM will perform a

91

3.5 Risk Scenarios of the DAIM Model

recalculation of the shortest path and sends the flow modification messages to install
a new path. At the same time, flow entries that are configured in the flow table of
the failed switch will be deleted.

Moreover, the DAIM model can actively synchronise with the rest of the system’s
components upon start-up by using DAIM agents. The network information col-
lected by these DAIM agents serves as the heartbeat of the designed model. In-
telligent DAIM agents can also share local information of managed elements and
immediately synchronise them within both databases. Therefore, the collaboration
of agents to manipulate network elements could enable autonomic services such as
self-adaptation and self-learning.

Ultimately, the proposed DAIM model will hopefully address the limitations of cur-
rent SDN approaches and future distributed network systems aiming at an auto-
nomic management strategy. The invented DAIM model will also enable some
requirements of autonomic functionality for distributed network components such
as self-learning, self-adaptation and self-CHOP (configuration, healing, optimisation
and security). Using DAIM, each system component can be adaptable according to
any changing conditions of the dynamic environment without human intervention.

92

Part II.

Proving the “Propositions”

93

4. Integrating DAIM to
OpenFlow-Based SDN Using
Mininet Emulator

4.1. Introduction

In this chapter, DAIM implementation based on the theory presented in Chapter 3
has been described in three phases including the basic carrier, semi-distributed and
fully distributed functionality. The purpose of developing DAIM controller is to con-
duct a logically distributed control plane by integrating DAIM into the OpenFlow
architecture at the level of the switches. This enables the switches to process flows
locally by distributing DAIM to operate the packets instead of a centralised control-
ler in an SDN environment. In more details, the three main modules that construct
the DAIM ecosystem are discussed with some sample code reviews and flowchart
diagrams of the implemented algorithms (code available at Appendix A). The new
DAIM structure aims to address the limitations of current OpenFlow deployments
with respect to scalability, adaptability and robustness. Moreover, building the dis-
tributed control plane offered by the DAIM controllers could create the appropriate
“hooks” that will allow the development of autonomic management strategies.

The Mininet emulator is used to set up network scenarios for testing and validating
the DAIM controller. Mininet is a network emulation tool that provides researchers
and developers with the ability to emulate OpenFlow network on a single computer.
Mininet can create many virtual hosts and switches by using lightweight process-
based virtualisation on a single OS kernel. It can also create user-space or kernel
OpenFlow switches, controllers and hosts to communicate within the emulated en-
vironment. Virtual Ethernet (veth) pairs are used to connect hosts and switches
in Mininet. Development processes such as testing, debugging and deployment can
be simplified when using Mininet. In addition, new SDN-based applications can
firstly be implemented and tested on an emulation of the anticipated deployment
network. Once a prototype works on Mininet, it can be deployed on actual net-
works with real operational infrastructure for real-world use without any changes.
Unlike a simulation tool, Mininet emulates an environment that runs real, unmod-
ified code, application code, OS kernel code and control plane code. As a result,
implementation of the DAIM controller in Mininet can be repeated in the real world.

95

4.2 DAIM Model Implementation

Furthermore, various tasks and scenarios are demonstrated to validate the function-
ality of DAIM controller such as executing a ping command, streaming media and
transferring files between hosts. Hence, the performance benchmarks of the DAIM
model with distributed network architecture are believable, and can be proved to
possess efficiency, robustness, flexibility and will improve the scalability needed in
an OpenFlow environment.

4.2. DAIM Model Implementation

A new information model named: Distributed Active Information Model (DAIM) is
presented to allow the local decision-making processes, which will essentially con-
tribute to complex distributed network environments. An implementation of DAIM
model is expected to introduce the requirements of the autonomic components of
the distribution systems. An autonomic system in this context means each distrib-
uted device can draw its own strategies for adaptation driven by the goals of the
system. The distributed autonomic system adapts the network for the needs of dy-
namic changing in business and reduces operations and management complexities.
The DAIM model can provide distributed systems with a sustainable information
model, which collects, maintains updates and synchronises all the related informa-
tion. Each device has decision-making ability on the basis of information that was
collected and can adapt autonomously to any changing environments.
Benefits that can be achieved by implementing the DAIM model include better
control of any OpenFlow-enabled network device from any vendor, flexible network
management and automation, and rapid configuration to update devices across the
entire network. The approach accelerates business innovation by allowing network
operators of Information Technology (IT) to program the network in real time to
meet the business needs and specific requirements of the users. The distribution
system approach leads to rapid innovation through the ability to provide network
capabilities and new services without having to configure individual devices or wait
for the launch from the seller. DAIM does not require any changes to the OpenFlow
standard and guarantees loop-free forwarding as well as network resilience.
The initiatives and outcomes of the DAIM model can be applied to currently avail-
able communication networks to resolve complex issues. Deploying DAIM will also
enable the development of autonomic management strategies. An autonomic sys-
tem in this content means that each distributed device can draw its own strategies
for adaptation driven by the goals of the system. The distributed autonomic sys-
tem adapts the network for needs of dynamic changing in business and reduces
operations and management complexities. As a result, enterprises get the program-
mability, automation and the control of the network, which enable them to build
highly scalable and flexible networks that can be easily adapted to different chan-
ging environments. This section describes the three phases of developing the DAIM
model as follows:

96

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

Figure 4.1.: DAIM Implementation Phase 1

4.2.1. Phase 1: Basic Carrier Functionality

In the first phase, DAIM model has been initially integrated to the SDN architecture
by applying the implemented communication channel between the NOX controller
and an OpenFlow switch. The DAIM model is developed in C++ using an open
source NetBeans IDE and NetBeans Platform. It is programmed based on the
object-oriented paradigm where data structures that contain data are created in the
form of fields (attributes), and code in the form of procedures (methods). DAIM
model is designed and developed based on the concepts of objects, which they can
access and modify the data fields of the object with which they are associated and
often interact with one another. Because C++ programming language is class-based,
DAIM model is implemented as instances of classes, which essentially also defines
their type. In addition, DAIM model is created in different classes to represent
each type of OpenFlow messages such as Packet-In, Packet-Out, Set-Config and
Flow-Modification. The openflow.h is included in the header file to facilitate the
implementation of such messages.
At this phase, DAIM is defined as a basic application channel used for message
transmission in an OpenFlow network. No control functions have been implemen-
ted. Essentially, this phase describes a simple communication channel based on a
client-server model (see Figure 4.1). DAIM is developed using UNIX BSD socket
programming API where the server socket connects to OpenFlow switch and the
client socket connects to the NOX controller. The DAIM application listens on a
particular port (default 6633) for messages from the NOX controller. The network
architecture of OpenFlow is still the same, which has all of the high-level routing de-
cisions made by the NOX controller, but will have the DAIM application processing
and forwarding all OpenFlow messages (without any modification) from controller
to switch and vice versa instead of the original secure OpenFlow channel. In this
phase, the communication module of the DAIM model is implemented to accommod-
ate the OpenFlow messages. Moreover, the DAIM model is able to perform get and

97

4.2 DAIM Model Implementation

set process driven by the OpenFlow controller as well as updating the forwarding
table via flow modification message.
DAIM application can also forward statistics and network information to the NOX
controller. This can work in both pull-based (active probing) and push-based (pub-
lish/subscribe mechanism) mechanisms. DAIM application uses the OFPT_Port_Status
protocol message to retrieve a set of statistics from that particular switch. Network
applications on top of NOX can then view these statistics in a key-value format.

4.2.2. Phase 2: Semi-Distributed Functionality

Figure 4.2.: DAIM Implementation Phase 2

The structure of phase 2 is similar to the previous phase but includes some level
of distributed event-based control plane for OpenFlow by distributing the DAIM
controller to each connected OpenFlow switch to perform its own functions locally
(see Figure 4.2). A major distinction from the first phase is that the NOX control-
ler gets replaced by each distributed DAIM controller. Now the DAIM controller
will not only be a basic carrier for OpenFlow messages between switches and con-
troller but also can gather information from the network and propagate its local
MAC address table to act as an intelligent Layer 2 learning Ethernet switch. For
example, it can store network information when connected nodes perform an ARP
or ICMP session, and hence it is possible to forward flows directly from the switch
according to the flow entries that are pre-defined by the DAIM controller. In more
details, DAIM controller is also capable of updating the forwarding tables via flow
modification messages on the switches and can execute some functions across the
managed switches. The algorithm for building an intelligent Layer 2 learning switch
functionality consists of the following steps:
1 Algorithm : Ethernet Learning Switch
2 For each packet from the switch ,

98

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

3 (1) Use MAC source and incoming port number to update the data
s t r u c t u r e .

4 (2) i f Ethernet frame type i s LLDP(0 X88cc)
5 (3) Drop the packet // Do not forward the l i nk− l o c a l t r a f f i c
6 (4) e l s e i f MAC d e s t i n a t i o n i s mult i cast ,
7 (5) Flood the packet
8 (6) e l s e i f the output port i s same as the input port
9 (7) Drop the packets .

10 (8) e l s e i f the data s t r u c t u r e conta in s a port f o r the MAC
des t ina t i on ,

11 (9) Forward the packet to the d e s t i n a t i o n address .
12 (10) e l s e i f the data s t r u c t u r e does not conta in MAC d e s t i n a t i o n

port
13 (11) Flood the packet
14 (12) e l s e i n s t a l l the f low entry in the switch f low tab l e .

At this stage, the DAIM controllers do not have a separate communication channel
to exchange information between one another. The OpenFlow switches listen to its
own connected DAIM controller on a specific port (e.g. 2000) for control messages.
Another significant control function of DAIM in this phase is performing a certain
process for querying network statistics (READ STATE protocol message). In addi-
tion, the DAIM controller is able to identify if a network problem happens, and also
sends the corresponding message to the switch to update the ports and flow tables.
In all cases, the connection is established per the TCP followed by, hello, and feature
request/reply messages. This connection has to be developed in advance in order to
process those functions.

Additionally, it is important to note that each DAIM controller may find it neces-
sary to share information with each other for a number of reasons. For example, an
internal control function may need to reserve resources across multiple domains of
control or a “master” process may need to share policy information with a backup
“child” process. This can also apply to hosts communicating across different do-
mains, where source and destination information are shared and pre-installed among
DAIM controllers. When the packets arrive at a new switch of another domain, this
flow can be sent without controller interactions because of the installed entries in
the flow table of the switch. As a result, distributed DAIM controllers can distribute
their state across multiple running instances for fault tolerance.

4.2.3. Phase 3: Fully Distributed Functionality

Phase three aims at migrating all computational power to the DAIM model, which
can manage each connected switch to produce some level of distributed comput-
ing network system. In addition, the implementation of this phase focuses on dis-
tributing the high-level decision making of traffic control to the DAIM controllers.
Figure 4.3 shows a distributed networking architecture of OpenFlow embedded with
DAIM controllers, supported by the core modules to manage the connected switches.

99

4.2 DAIM Model Implementation

Figure 4.3.: DAIM Implementation Phase 3

Each DAIM controller can actively share all information regarding its portion of the
network to ensure fine-grained network wide consistency. For coordination pur-
poses, DAIM controllers can also publish events as well as actively synchronise its
local information with other associated controllers in order to construct the global
network view. By allocating one DAIM controller for each OpenFlow switch, the
switches can serve any coming packets locally. This distributed traffic management
allows multiple levels of redundancy as each site has the ability to perform wide
area system functions. Thus, DAIM provides a logically distributed control plane,
where each controller manages its affected switch and distributes useful information
to other instances and if necessary communicates with the neighbouring domain.
DAIM has the feasibility to be deployed in any distributed system structure.

Because there is no controller-to-controller communication protocol defined by Open-
Flow, it is necessary for any type of distribution or redundancy in the control plane.
Only one centralised controller may cause a single point of failure for the entire
network. Therefore, distributing the DAIM controllers would allow backup control-
lers to take over in the case of a failure and become a truly distributed networking
system. This can be achieved by each DAIM controller communicating with one
another to share and exchange its local information such as flow tables, links, ports
and hosts. This information can be used to indicate the network’s latency and
bandwidth, or the liveliness of a controller-controller connection. For example, to-
pology discovery within DAIM will depend on the embedded messages in the LLDP
frames sent through the OpenFlow protocol. In addition, network operators can
also maintain multiple DAIM controllers and switches remotely from a single logical
point.

To facilitate cross-controller communications, the mechanism for sharing messages
between DAIM controllers is to mimic LLDP packet in/out and setting Ethernet
frame type inside the OpenFlow message to LLDP. Since messages from the con-
troller will mimic LLDP, the packets will propagate through the existing network

100

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

medium instead of dedicated controller medium. By using this method, the control-
lers have no control over the underlying network medium and hence have to manage
how to forward messages to the destination controller. Inside each DAIM controller,
this function is implemented using a separate thread to send messages independently
(see section A.1). Note that the iteration of LLDP is every ten seconds.

4.3. DAIM Software Specification

This section describes the software specification of the DAIM model, the implemen-
ted OpenFlow messages and modules. The implemented modules are comprised of
the Communication module, the local Storage module, and the Controller module as
well as the most significant messages that are needed for the communication between
the switch and the DAIM controller. More details are presented in the following
subsections.

4.3.1. Overview of Model

The DAIM model is implemented as an application on top of the OpenVswitch
running in Mininet. DAIM uses the OpenFlow protocol to update forwarding tables
in the local memory and switches. In the current design of DAIM, the control
application executes as a thread on top of the Linux sockets. DAIM model uses a
separate control channel to invoke commands between the controller and switches.
It is developed to support a cross-platform architecture, which has improved the
variable types of running on both 32 and 64 bit CPU.

As can be seen in Figure 4.4, the DAIM ecosystem consists of three core modules
namely communication module, controller module and local storage module work-
ing independently to achieve one single goal. The output from the entire ecosystem
is communicated over the OpenFlow protocol, whereas the internal communication
between the modules happens in one single process. The controller module is re-
sponsible for managing all the other modules so that the management and control
can be traced to the controller module. Also, the controller module can actively
support useful services for the other two modules. For example, the communication
module provides routines for creating OpenFlow messages, and the local storage
module provides storage information as well as the retrieval routines. Since all of
the modules reside in a single process, the communication between each module is
extremely fast.

The DAIM ecosystem uses OpenFlow protocol based on the OpenFlow switch spe-
cification version 1.0.0 (Wire Protocol 0x01). For the implementation of DAIM
controller, the openflow.h is included in the header file to model the protocol and its
defined messages as closely as possible. It is important to note that not all Open-
Flow messages are implemented in the current state. However, the most important

101

4.3 DAIM Software Specification

Figure 4.4.: DAIM Model Ecosystem

subsets are implemented to allow extensive emulations of OpenFlow enabled net-
works. The OFPT_Header message class contains all of the messages in sub-classes,
which include the definition of OpenFlow message header and its corresponding C++
structures.

Inside the communication module, there are various routines for creating different
types of OpenFlow messages. Figure 4.5 shows the implemented messages of the
OpenFlow protocol in the DAIM model. The OFPT_Hello, OFPT_Features_Re-
quest, and OFPT_Features_Reply messages are implemented for the initialisation
of the OpenFlow connection between DAIM controller and the switches. Echo re-
quest/reply messages are sent from either controller or switch and must return an
echo reply. These messages are used to indicate the liveliness of a controller-switch
connection and are repeated every 15 seconds. The controller uses an OFPT_Set_Con-
fig message to set the configuration parameters in the switch, whereas the OFPT_Packet_In
message is used by an OpenFlow switch to notify DAIM of an unknown packet or
to forward a packet to DAIM in the case of an associated action of a match. This
message contains either the entire encapsulated packet or just the buffer ID of the
buffered packet. The OFPT_Packet_Out message is a controller-to-switch message
used by DAIM to forward a packet out of a specified port at the switch. Finally,
DAIM can manage the flow table of a switch through the OFPT_Flow_Mod mes-
sage type, which comprises the header match fields as well as the corresponding
actions.

The DAIM application (ani.cpp file) establishes the linking of DAIM modules to

102

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

Figure 4.5.: Implemented OpenFlow Messages

Header Files Description
openflow.h defines the structure for OpenFlow protocol messages

arp.h defines ARP message structure
eth.h defines Ethernet header message structure

linked.h defines the structure and class for ANI linked list
implementation

ani.h main program function declaration
com.h OpenFlow messages creation and function declarations
con.h function and structure definitions and declarations for the

control module
Table 4.1.: DAIM Application Header Files

103

4.3 DAIM Software Specification

API name Purpose
htons () To convert 2 bytes data from host byte order to network byte

order, e.g. messages send from the DAIM to the switch are
converted using hton function series

htonl () To convert 4 bytes data from host byte order to network byte
order

ntohs () To convert 2 bytes data from network byte order to host byte
order, e.g. messages received from the switch to the DAIM are

converted using ntoh function series
ntohl () To convert 4 bytes data from network byte order to host byte

order
memcpy To copy n bytes of memory from one variable to other, e.g. used

by the control and communication subsystem to copy MAC
addresses into the DAIM tables objects

memset To clear the first n bytes of the memory area in the variables,
e.g. used by different sub-systems to give initial zero value to the

variables
memcmp To compare the first n bytes of one variable memory to other

variable memory, e.g. used by the linked list and control module
to determine host matching

strerror To get the string describing the last system call error, e.g. used
by different sub-systems to display error messages

exit To exit from the main program
Table 4.2.: API Dependencies Used to Implement DAIM Modules

the local operating system. Therefore, this holds the entire DAIM application and
produces the executable file for the DAIM controller. Moreover, the DAIM applica-
tion relies on several related dependencies, for example, the Linux operating system
routines as well as other own sub-systems routines. The header files (descriptive
files) for these routines are listed in Table 4.1.

There are other important subroutines commonly called and used repeatedly during
the executable of the program. This makes the program shorter and easier to write.
Table 4.2 presents a list of all the API dependencies used to develop three modules of
DAIM with a brief description including some examples of how these dependencies
are utilised.

4.3.2. The Communication Module

The communication module is responsible for providing the communication mech-
anism and creating sockets of a two-way communication link between the controller
and switch. In more details, it creates two processes for handling the communication
between the switch to DAIM as well as DAIM to OpenFlow controller. The main

104

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

purpose of these two processes is to forward messages both ways among the control-
ler and switch and create signal handlers for notification of errors to the processes
as well as the exiting of processes upon user’s request. Sockets facilitate TCP/IP
communication between two separate systems. Initially, sockets are created and
then transferred over to the respective processes.

Figure 4.6.: Unix Socket Connection Setup

The client-server model is one of the most used communication paradigms in net-
working systems. Clients normally communicate with one server at a time. From
a server’s perspective and at any point in time, it is not unusual for a server to be
communicating with multiple clients. A client needs to know the existence of the
address of the server, but the server does not need to know the address of (or even
the existence of) the client prior to the connection being established. Clients and
servers communicate by means of multiple layers of network protocols in which this
context will focus on the TCP/IP protocol suite.
The scenario of establishing connections between the server socket to receive the
connection from the switch and the client socket to communicate with the controller
is shown in Figure 4.6. Socket creation follows client and server model, where DAIM
is the server socket for the switch and also is acting as the client socket to the
OpenFlow controller.

105

4.3 DAIM Software Specification

The socket API and support for TCP and UDP communications between end hosts
are described. Socket programming is the key API for programming distributed
applications on the Internet.

4.3.2.1. System Calls Used for Creating DAIM Server

1 socket ()
2 // socket for server mode
3 app_sockfd = socket (AF_INET, SOCK_STREAM , 0);
4 if (app_sockfd < 0)
5 {
6 fprintf (stderr, "XApp: Error creating server socket: %s\n",

strerror (errno));
7 return -1;
8 }

The socket () function creates an endpoint for a process to read and write to a dis-
tant or a local process. All the system calls for reading and writing to the files are
also applicable to the socket file returned by socket () function. SOCK_STREAM
in the socket function establishes a socket with connection-oriented TCP/IP com-
munication, which is essential for establishing OpenFlow communication. The third
parameter 0 in the socket function tells the operating system to use a suitable pro-
tocol for the requested socket.
1 bind ()
2 // Bind server socket to the main process
3 memset (&app_addr , '\0', sizeof (app_addr));
4 app_addr.sin_family = AF_INET;
5 app_addr.sin_addr.s_addr = INADDR_ANY;
6 app_addr.sin_port = htons (app_port);
7 // Bind server socket to the main process
8 if (bind (app_sockfd , (struct sockaddr *) &app_addr , sizeof (

struct sockaddr)) < 0)
9 {

10 fprintf (stderr, "XApp: Error binding server socket: %s\n",
strerror (errno));

11 return -1;
12 }

The bind () system call binds the Internet Protocol (IP) address and port to a
specified process. Using bind system call, DAIM behaves like a controller to the
switch by binding controller address and port to its process. By setting s_addr to
INADDR_ANY, DAIM is able to accept connection from a switch with arbitrary
IP address.
1 listen ()
2 // Set clients listening queue size
3 if (listen (app_sockfd , 1) == -1)
4 {

106

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

5 fprintf (stderr, "XApp: Error establishing listening: %s\n",
strerror (errno));

6 return -1;
7 }

The listen () system call fixes the number of clients (switches) which can wait in a
queue before receiving error connection message. By setting the second parameter
to 1 in the listen system call, the pending switch connections are restricted to only
one switch.
1 accept ()
2 // Accept connection from the switch
3 sw_addl = sizeof (sw_addr);
4 memset (&sw_addr, '\0', sizeof (sw_addr));
5 sw_sockfd = accept (app_sockfd , (struct sockaddr *) &sw_addr, &

sw_addl);
6 if (sw_sockfd < 0)
7 {
8 fprintf (stderr, "XApp: Error accepting connection from switch:

%s\n", strerror (errno)); return -1;
9 }

The accept () system call will return a socket describing the client socket file in-
formation and also fill in the client’s IP address to the provided server structure. By
using the socket returned from the accept system call, DAIM is able to read from
the switch as well as write to the switch.

4.3.2.2. System Calls Used for Creating DAIM Client

1 socket ()
2 con_sockfd = socket (AF_INET, SOCK_STREAM , 0);
3 if (con_sockfd < 0)
4 {
5 fprintf (stderr, "XApp: can not create socket for the controller

: %s\n", strerror (errno)); return -1;
6 }

Similar to DAIM server socket, this sample script shows a socket () function para-
meter that is also used for connecting DAIM client to the OpenFlow controller socket
process.
1 connect ()
2 // Define Address for the controller
3 con_addr.sin_family = AF_INET;
4 bcopy ((char *) con_server ->h_addr, (char *) &con_addr.sin_addr.

s_addr, con_server ->h_length); con_addr.sin_port = htons (
con_port);

5 // Connect to the controller
6 if (connect (con_sockfd , (struct sockaddr *) &con_addr , sizeof (

con_addr)) < 0)

107

4.3 DAIM Software Specification

7 {
8 fprintf (stderr, "XApp: can not connect to the controller: %s\n"

, strerror (errno));
9 return -1;

10 }

The connect () system call is used to connect to the remote controller based on the
socket file returned by the socket function, which fills in the remote controller socket
address into the sockaddr structure.
The fork () system call is used to create two processes to handle DAIM to controller
and DAIM to switch communication. For example, inside process 2:
1 while (1)
2 { memset (buffer, '\0', sizeof (buffer));
3 buffer_len = 0;
4 buffer_len = read (con_sockfd , buffer, sizeof (buffer));
5 if (buffer_len < 0)
6 {
7 fprintf (stderr, "XApp: Can not read from the controller: %s

\nExiting\n", strerror(errno)); close_sockets
();

8 _exit (EXIT_FAILURE);
9 }

10 else if (buffer_len > 0)
11 {
12 sw_write_len = write (sw_sockfd , buffer, buffer_len);
13 if (sw_write_len < 0)
14 {
15 fprintf (stderr, "XApp: Can not write to the switch: %s\

nExiting\n", strerror(errno));
close_sockets ();

16 _exit (EXIT_FAILURE);
17 }
18 }
19 }

In the above sample script, the read and write system calls are used to receive and
send data from the controller to the switch respectively.
Furthermore, the implementation code for the signal handler function inside the
main process is as follows:
1 // Set main process exit handler
2 memset (&sigIntHandler , '\0', sizeof (sigIntHandler));
3 sigIntHandler.sa_handler = &exit_handler;
4 sigaction (SIGINT, &sigIntHandler , NULL);

The sigaction function is used to bind a signal to a specified action. The parameter
SIGINT (Ctrl+C) will trigger sigIntHandler function and close the process appro-
priately. The closing of the process requires freeing of allocated memory by the
application as well as closing of open sockets.

108

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

Figure 4.7.: DAIM Storage Block of Memory (Object)

4.3.3. The Local Storage Module

The DAIM local storage module requires two main components including the Hosts
and the Ports table. The information of network devices is stored in these tables,
which are implemented using Linked list based storage. Linked list is a way to store
data with structures so that the programmer can automatically create a new place
to store data whenever necessary. Specifically, the programmer writes a struct or
class definition that contains variables holding information about something, and
then has a pointer to a struct of its type. Each of these individual struct or classes
in the list is commonly known as a node.

To store network information into the storage table, we created a list of objects and
cached information using blocks of memories (objects). Memory for the objects is
then allocated by using C++ dynamic memory allocation methods. In linked list
based storage, each object keeps the address of its preceding and subsequent objects.
Therefore, each object can refer to its next and previous objects. The system’s block
of memory (object) is depicted in Figure 4.7.

The * prefix represents a pointer that holds the address of a memory block. Hence,
the payload *p can point to any block of memory storing single or a combination of
information such as host MAC address, switch data path ID, switch port, and IP
address. The structure for the block of memory is defined by:
1 struct object
2 {
3 void *p;
4 struct object *next;
5 struct object *prev;
6 };

109

4.3 DAIM Software Specification

To store objects, we have created the object_lists (tables) structure in the storage
module. The object_list is a representation of a table, and each of them includes the
host entries object_list and the port entries object_list. Each object_list structure
stores information such as the object size, address of the first object, address of the
current object and address of the last object. Each object_list has a number of
functions to manipulate the object_list itself. These functions can be used to add
a new object, remove an object, free the memories used by the objects and retrieve
an object from the list.

In addition, the objects in the hosts table object_list are used to store the following
data (payload):

• Switch data path ID

• Mac address of the host

• Switch port for host

• IP address of host

Therefore, the objects for the host table entries will have the above payloads which
are defined by:
1 struct switch_host
2 { uint64_t datapath_id;
3 uint16_t port_no;
4 uint8_t mac_addr [MAC_ADDR_LEN];
5 uint32_t ip_addr;
6 };

Furthermore, the class object_list defines an object that is related to a table or
the object list. This object_list class has the following structure shown in the code
below:
1 class object_list
2 {
3 struct object *first;
4 struct object *current;
5 struct object *last;
6 long size_of_object;
7 public:
8 object_list ();
9 void *add_object ();

10 long get_list_size ();
11 int remove_object (const void *ob);
12 int free_list ();
13 void *get_object ();
14 void list_rewind ();
15 void set_object_size (long s);
16 long get_object_size ();
17 };

110

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

Figure 4.8.: Flowchart Detailing the Process of add_object ()

Each object of object_list type holds the address of first element, the current ele-
ment, the last element in the list as well as stores size of each element in the list.
Each object_list object has some methods defined as public functions to perform
some operations on the list such as adding the new elements, removing of existing
elements, and getting an element from the list. These public functions implement
the memory allocation as well as freeing of memory for the elements from the sys-
tem’s heap memory. By using these functions, we can interact with the object list
and modify its properties. The actions of public functions in the object_list class
are listed in Table 4.3.
The most important methods in the storage module (Linked list) are add_ob-
ject, remove_object, and free_list. The examples of the program flow charts for
add_object, remove_object, and free_list are mostly self-explanatory as shown in
Figure 4.8, Figure 4.9, and Figure 4.10 respectively. As can be seen in Figure 4.8,
the add_object () method first allocates memory for the object, and then the method
will check whether there is an element existing in the table. If there is no element
in the table, then set the first and last element to be the allocated object. Further-
more, the method will set the previous and next element of the allocated object to
be NULL (non-existing value). If there is already an element which exists in the
table, set the previous element of the allocated object to the last element in the
table, and set the last element in the table to be the allocated object. Also, the
method will set the next element in the allocated object to be NULL.

111

4.3 DAIM Software Specification

Methods Actions
add_object Allocates memory for a new element and returns the pointer of

allocated element payload
get_list_size Returns number of objects in an object list

remove_object Removes a matching object from an object list
free_list Frees the memory allocated to each element in the list

get_object Returns a pointer to the next element in the list (useful for
reading through elements in the list)

list_rewind Sets the current element in the list to be the first element
set_object_size Sets the size of each object(element) in the list
get_object_size Returns the size of each element in the list
Table 4.3.: Public Functions with Associate Actions in the Object List Class

Figure 4.9.: Flowchart Detailing the Process of remove_object ()

112

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

Figure 4.10.: Flowchart Detailing the Process of free_list ()

The remove_object method matches every element in the table to the object that
needs to be removed. The actions on the matching element are determined by four
conditions: (1) if the match found is both first and last element in the table (in
other words the only element); (2) the match is first element; (3) the match is last
element; and (4) the match does not fall into the first three conditions. The flow
chart detailing the process of remove_object method is shown in Figure 4.9.

The free_list method moves to the last element in the table and frees the element
from the table. After freeing each element, the method moves to the previous
element of the last removed element. This way the method continues freeing each
element in the table until it reaches the first element and finally removes the first
element. Figure 4.10 illustrates a simple flow chart detailing the process of the
free_list method.

4.3.4. The Controller Module

This section summarises the major functions that the controller module must per-
form when a packet arrives at an OpenFlow switch. Detailed descriptions are
provided to elaborate these functions including high-level summary such as al-
gorithms and example code reviews. This will help organising the functions to
make them understandable. A picture of the major groups of related requirements
and how they relate such as a top level data flow diagram is also described. In
addition, the major services provided by the controller module are demonstrated
in this section by mode of operation, object class, and functional hierarchy, which

113

4.3 DAIM Software Specification

OpenFlow Messages Purpose
OFPT_Hello Symmetric Establishing message

OFPT_Features_Reply Features support report from the switch to the
controller

OFPT_Packet_In Packet forwarding decision
OFPT_Echo_Request Checking of liveliness of the controller

Table 4.4.: OpenFlow Messages Handled by the Controller Module

makes the most logical sense for the DAIM model.

The controller module is responsible for maintaining the connectivity with the
switches as well as allowing the switches to decide what actions to apply when
a particular combination of network request is queued to the switch.

Firstly, the controller module establishes the connection to the switch using TCP/IP
protocol stacks. To be able to receive the connection from an arbitrary OpenFlow
switch, the controller module creates a server socket that listens for any incoming
connections from the switch. The process of waiting for a switch connection requires
three actions:

• Establish a server socket (Passive socket, ANI controller socket)

• Binding of server socket to the controller application process

• Accepting connection from remote sockets (Switch socket)

The above tasks are accomplished by using the following two methods inside the
ANI (DAIM) controller:
1 int create_ani_socket ()
2 int create_switch_socket ()

The create_ani_socket method combines the system call functions that are required
for establishing a listing of server sockets, whereas the create_switch_socket ()
combines the system calls for creating an active socket for the switch, which will be
eventually used by the ANI controller for sending and receiving messages from the
switch.

Upon successful connection to the switch, the controller module goes in a sequen-
tial mode of operations by using the “communicate_with_switch” method, which
performs the two functions in order, read a message from the switch and send a
respective reply message to the switch. The methods that reside within the “com-
municate_with_switch” are read_from_switch and send_information.

Depending on the nature of the messages received from the switch, the controller
then decides and directs the switch to perform the follow-up actions. The OpenFlow
message types used by the controller module are listed in Table 4.4. In addition,
the implementation code for the matching of OpenFlow packets is shown below:

114

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

1 pheader = (struct ofp_header *) read_bufferp;
2 if (pheader->type == OFPT_HELLO)
3 {
4 if (action_hello (read_bufferp) == -1) return -1;
5 }
6 else if (pheader->type == OFPT_FEATURES_REPLY)
7 {
8 if (action_features_reply(read_bufferp) == -1) return -1;
9 }

10 else if (pheader->type == OFPT_PACKET_IN)
11 {
12 if (action_packout(read_bufferp) == -1) return -1;
13 }
14 else if (pheader->type == OFPT_ECHO_REQUEST)
15 {
16 if (action_echo(read_bufferp) == -1) return -1;
17 }
18 else if (pheader->type == OFPT_PORT_STATUS)
19 {
20 }

When the switch receives a flow’s first packet, it will be sent to DAIM application
because there is no flow entry in the switch’s flow table to match this flow. The
DAIM controller module determines the action of switch packet forwarding upon re-
ceiving the OpenFlow OFPT_Packet_In message from the switch (see Figure 4.11).
From the Packet_In OpenFlow message, the controller module first checks whether
the packet is an ARP type by analysing the encapsulated Ethernet II frame type.

From the Ethernet II frame, the controller module then parses the MAC address of
the source host as well as its IP address and adds this information into the respective
tables if they are not already stored in the tables. The code for retrieving the host
MAC and IP addresses is displayed below:

1 p_packet_in_eth = (struct of_ethernet *) p_packet_in ->data;
2 src[0] = p_packet_in_eth ->src[0];
3 src[1] = p_packet_in_eth ->src[1];
4 src[2] = p_packet_in_eth ->src[2];
5 src[3] = p_packet_in_eth ->src[3];
6 src[4] = p_packet_in_eth ->src[4];
7 src[5] = p_packet_in_eth ->src[5];
8 dst[0] = p_packet_in_eth ->dst[0];
9 dst[1] = p_packet_in_eth ->dst[1];

10 dst[2] = p_packet_in_eth ->dst[2];
11 dst[3] = p_packet_in_eth ->dst[3];
12 dst[4] = p_packet_in_eth ->dst[4];
13 dst[5] = p_packet_in_eth ->dst[5];
14 p_packet_in_eth++;
15 p_packet_in_arp = (struct arp *) p_packet_in_eth;
16 ip_src = ntohl (p_packet_in_arp ->arp_ip_source);
17 ip_dst = ntohl (p_packet_in_arp ->arp_ip_dest);

115

4.3 DAIM Software Specification

Figure 4.11.: Packet Flow in an OpenFlow Switch Controlled by DAIM

116

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

The functions for checking whether the host has been added to the local storage
table and creating a new entry in the host table are given in the code example
below:
1 while (hostp != NULL) {
2 if (memcmp (hostp->mac_addr , src, sizeof (uint8_t) *

MAC_ADDR_LEN) == 0)
3 {
4 if (verbose == true) cout << "Info: host already in the table"

<< endl;
5 add_host = false;
6 break;
7 }
8 hostp = (struct switch_host *) hosts.get_object();
9 }

10 if (add_host == true)
11 {
12 struct switch_host *p = NULL;
13 memset (&new_host , '\0', sizeof (struct switch_host));
14 new_host.datapath_id = switch_id;
15 new_host.port_no = in_port;
16 new_host.mac_addr[0] = src[0];
17 new_host.mac_addr[1] = src[1];
18 new_host.mac_addr[2] = src[2];
19 new_host.mac_addr[3] = src[3];
20 new_host.mac_addr[4] = src[4];
21 new_host.mac_addr[5] = src[5];
22 p = (struct switch_host *) hosts.add_object ();
23 if (p == NULL) cerr << "Error: can not create object in host table"

<< endl;
24 else {
25 ((struct switch_host *)p)->mac_addr[0] = new_host.mac_addr[0];
26 ((struct switch_host *)p)->mac_addr[1] = new_host.mac_addr[1];
27 ((struct switch_host *)p)->mac_addr[2] = new_host.mac_addr[2];
28 ((struct switch_host *)p)->mac_addr[3] = new_host.mac_addr[3];
29 ((struct switch_host *)p)->mac_addr[4] = new_host.mac_addr[4];
30 ((struct switch_host *)p)->mac_addr[5] = new_host.mac_addr[5];
31 ((struct switch_host *)p)->port_no = new_host.port_no;
32 ((struct switch_host *)p)->datapath_id = new_host.datapath_id;
33 ((struct switch_host *)p)->ip_addr = ip_src;
34 }
35 }

After the MAC addresses are learned, if the destination MAC address in the Eth-
ernet II frame is a broadcast type, then the controller module sends a packet_out
message to the switch with the forwarding action of flooding the packet to all switch
ports except the ingress port. If the destination MAC address is not broadcast, the
controller module then looks up for the host MAC address in the table, and if found
it will send an ARP flow modification message with an action to create a new flow
entry in the switch flow table. This flow entry will regulate the forwarding of all
future packets by matching the incoming packet’s source and destination addresses.

117

4.3 DAIM Software Specification

The implemented code for sending packet out messages to the switch is as follows:

1 p_packet_out = (struct ofp_packet_out *) write_buffer;
2 p_packet_out ->header.version = 1;
3 p_packet_out ->header.type = OFPT_PACKET_OUT;
4 p_packet_out ->header.xid = htonl (transaction_id);
5 p_packet_out ->buffer_id = htonl (buffer_id);
6 p_packet_out ->in_port = htons (in_port);
7 p_packet_out ->actions_len = htons (sizeof (struct ofp_action_output)

);
8 p_action_output = (struct ofp_action_output *) p_packet_out ->actions

;
9 p_action_output ->type = htons (OFPAT_OUTPUT);

10 p_action_output ->max_len = htons (0);
11 p_action_output ->len = htons (8);
12 p_action_output ->port = htons (OFPP_FLOOD);
13 p_packet_out ->header.length = htons (sizeof (struct ofp_packet_out)

+ sizeof (struct ofp_action_output));
14 write_buffer_len = send(sw_sockfd , write_buffer , sizeof (struct

ofp_packet_out) + sizeof (struct ofp_action_output), 0);

Furthermore, if the packet_in message of Ethernet II frame is an IPv4 type, the
controller module parses the protocol type from the IP header frame and then follows
the same procedure as ARP Ethernet type. For TCP and UDP protocol types, the
controller module creates flow modification messages incorporating the TCP and
UDP source and destination ports.

Some of the implemented code for sending ARP flow modification message to the
switch is reviewed below:

1 p_flow_mod = (struct ofp_flow_mod *) write_buffer;
2 p_flow_mod ->header.version = 1;
3 p_flow_mod ->header.length = htons(sizeof (struct ofp_flow_mod) +

sizeof (struct ofp_action_output));
4 p_flow_mod ->header.type = OFPT_FLOW_MOD;
5 p_flow_mod ->header.xid = htonl (transaction_id);
6 p_flow_mod ->match.in_port = htons(in_port);
7 p_flow_mod ->match.wildcards = htonl(0);
8 memcpy (p_flow_mod ->match.dl_src, src, sizeof(uint8_t) *

OFP_ETH_ALEN);
9 memcpy (p_flow_mod ->match.dl_dst, dst, sizeof(uint8_t) *

OFP_ETH_ALEN);
10 p_flow_mod ->match.dl_vlan = htons(65535);
11 p_flow_mod ->match.dl_vlan_pcp = htons (0);
12 uint8_t op = ntohs (p_packet_in_arp ->arp_op);
13 p_flow_mod ->match.nw_proto = op;
14 p_flow_mod ->match.nw_dst = htonl (ip_dst);
15 p_flow_mod ->match.nw_src = htonl (ip_src);
16 p_flow_mod ->match.dl_type = htons (ARP_DATA);

118

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

Figure 4.12.: DAIM Model Integration with Mininet

4.4. Setup Requirements for Testing DAIM

There are a few reasons taken into account when choosing to test the implemented
DAIM model with Mininet. Firstly, Mininet is open and accessible to researchers
and developers for SDN-based experiments. Secondly, Mininet provides a realistic
setting for the SDN-based environment. Figure 4.12 shows the structure of Mininet
with the integration of DAIM model phase 1 (subsection 4.2.1 on page 97). In this
stage, DAIM only operates as a middlebox between the controller and the Open-
Flow switch. More importantly, Mininet emulator includes a simple graphical user
interface editor called MiniEdit. It is an experimental tool developed to illustrate
how Mininet can be extended. MiniEdit is used to create a custom network, config-
ure network elements, save the topology and run the simulation for testing DAIM.
There are several significant requirements to conduct the scenarios for verifying the
functionality of DAIM, which can be summarised below:

• Apparatus Requirements

Networking devices such as a software-based OpenFlow switch (OpenVswitch), host
computers and an SDN controller that supports higher-level applications. An oper-
ating system such as Linux, which supports OpenFlow network model. A network
emulation platform such as Mininet for testing and experimenting the functionalities
of DAIM. A packet analyser software such as open-source Wireshark used for cap-
turing network traffic and packets, troubleshooting and analysis. A programming
language based on C/C++ to develop and compile the DAIM model. An integrated
development environment (IDE) to ease and debug program coding.

119

4.4 Setup Requirements for Testing DAIM

• DAIM System Requirements
A network channel to communicate with the OpenFlow switches. A storage module
to store information of dispersed network elements. A controller module to manage
the installation of flow entries in the switch flow table. OpenFlow protocol version
1.0 to facilitate the communication between DAIM controller and the OpenFlow
switch. Explicitly allocating one dedicated DAIM controller to connect and control
only one OpenFlow switch.

4.4.1. Scenarios for Testing DAIM

This section presents the scenarios used to verify the functionality of the imple-
mented DAIM controller. Using Mininet tool to test the system’s functionality
is considered as the primary goal. In terms of analysing the performance results
correctly, the parameters and configurations such as links, bandwidth, delay, and
network size for the testing topologies have been defined. Furthermore, MiniEdit is
used as a simple user interface that presents a canvas with a row of tool icons on the
left side of the window and a menu bar along the top of the window, which simplifies
the creation of any custom network topology. There are a number of different types
of network topologies that can be categorised into the following basic types:

• Simple linear topology
A linear network topology establishes a two-way link between one host and the
next. In this content, it is a simple topology with two switches connected to each
other with a link and has one host on each switch. Figure 4.13 shows a basic linear
network topology used to test if an UDP port is open by creating a simple UDP
server and client.

• More complex network with ring and tree topology

Each host in a ring network topology is connected to exactly two other hosts and
forms a single continuous data path for signals through each host (a ring). Data
travel from host to host with each host along the path processing every packet (see
Figure 4.14). In contrast, a tree network topology is essentially a multiple level
topology with N levels and two hosts per switch. Figure 4.15 shows a tree network
topology created in Mininet for testing the DAIM controller.

• Heavily interconnected network (full mesh topology)

A mesh network topology has a direct link between all pairs of hosts, where each
host relays data for the network. This scenario consists of four switches and four
hosts cooperating in the distribution of data in the network (see Figure 4.16). A
mesh network can relay messages by either using a routing technique or a flooding
technique. Because there are at least two hosts with two or more paths between
them to provide redundant paths, the mesh topology is used to test the shortest
path calculation of DAIM.

120

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

Figure 4.13.: Simple Linear Topology Setup

Figure 4.14.: Ring Network Topology Setup

121

4.4 Setup Requirements for Testing DAIM

Figure 4.15.: Tree Network Topology Setup

Figure 4.16.: Fully Mesh Network Topology Setup

122

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

4.5. DAIM System Validation

To validate the DAIM controller, a set of actions are used to check the compliance
of the overall system with its purpose and functions. For example, using the ping
command between hosts, creating Linux command line chat server, streaming video
via VLC media player, and running a simple web server and client to verify network
connection can be achieved. This section describes a simple communication scenario
of the DAIM system in an OpenFlow-enabled network. It also focuses on a basic
OpenFlow setup to test that DAIM operates exactly as it is designed to do in a
consistent and functional manner, and to demonstrate the underlying protocol in
action through various network services and applications. The objective of DAIM
validation is to produce documented evidence, which provides a high degree of as-
surance that all components of the system will consistently work correctly when
brought into use.

4.5.1. Communication Example

The following example is a basic OpenFlow network, which consists of two Open-
Flow switches, two DAIM controllers and two hosts. The DAIM controllers in this
example implement an intelligent L2 learning switch behaviour. Switch A is connec-
ted to DAIM via loopback port 2000, host 1 via port 1 and switch B via port 2. In
contrast, switch B is connected to DAIM via loopback port 2001, host 2 via port 2
and switch A via port 1. In addition, the corresponding MAC addresses are presen-
ted for both hosts. In Figure 4.17a, host 1 (MAC address 08-01-30-2A-3E-00)
would like to send a packet to host 2 (MAC address 08-01-3A-0B-FE-FD). When
the data packet from host 1 arrives at switch A, which has no flow entry yet, it
thus sends an OFPT_Packet_In message to its DAIM controller. The controller
determines the action that should be applied for this first flow and how it is handled.
In this example, the DAIM controller implements L2 switch behaviour and hence
answers with an OFPT_Packet_Out message with an action to flood on all ports
of switch A except the ingress port. The data packet gets sent to switch B, which
also has no flow entry yet. Therefore, the signalling process between switch B and
its DAIM controller is repeated. Finally, the packet arrives at host 2.

Furthermore, the source MAC address and the ingress port are mapped and learned
by the DAIM controller. However, there is no flow entry installed in the switch’s
flow table because the destination MAC address has not been learned yet. If the
mapping of both addresses has been learned, the flow entries are then installed via
the flow-mod messages.

Figure 4.17b shows the reverse direction for this communication. Host 2 now for-
wards a reply packet to host 1 which again arrives at switch B. Either the packet
header or the entire packet gets sent to the connected DAIM controller as there is
still no flow entry installed in the flow table. This controller learns the mapping

123

4.5 DAIM System Validation

(a) First Packet in Flow from Host 1 to Host 2

(b) Response Packet from Host 2 to Host 1

Figure 4.17.: Communication between two nodes in an OpenFlow network man-
aged by DAIM.

124

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

from source MAC address to the ingress port and confirms the mapping for the des-
tination MAC address. Hence, both mappings are established, and the dedicated
DAIM controllers now use the flow-mod messages to install the corresponding flow
entries in the flow tables of switch A and B. Both DAIM controllers trigger the
forwarding of data packet on the same port 1 via packet-out messages to switch A
and B. Because the flow entries are installed in the flow tables, similar packets of
this flow can be sent without the vetting from the DAIM controllers.

4.5.2. Flow Table Buildup with Example of Ping Traffic

This setup consists of four switches with a fully mesh connection between them,
and each switch is reachable locally by its own DAIM controller on the management
network (see Figure 4.16 on page 122). In order to show a simple flow installation
on an OpenFlow switch, a ping example has been executed where host 1 would ping
to host 2. The process is explained by showing how the data and control packets are
sent to each host. This is done by sending an ARP request/response and ICMP echo
request/response between the two ends. The ping command sends ICMP Echo_Re-
quest from host 1. The ping utility of host 2 uses the ICMP protocol’s mandat-
ory Echo_Request datagram to elicit an ICMP Echo_Response. Both hosts have
Echo_Request datagrams (pings) that contain an IP and ICMP header, followed by
a “struct timeval” and then an arbitrary number of “pad” bytes used to fill out the
packet. If the results show a series of replies, the connection is working properly.
The time indicates how fast the connection is. If there is a ”timed out” error instead
of a reply, there is a breakdown somewhere between the hosts.

In this example, DAIM implements a normal learning switch, which learns the MAC
address to port binding by analyse incoming packets and look up at the source
address. It uses this information to forward incoming packets, and if the destination
is unknown, the packet will be flooded.

The tables below are defined as follows:
Data Ctrl Source Destination Content

Sequence number
of packet sent

between hosts. If
marked with a,b,c..
this means it is the
same packet but in
a different stage of

forwarding.

Sequence number
control packets
sent between

OpenFlow switch
and DAIM
controller.

Source of
packet

Destination
of packet

Description of the
content of the

packet.

When a ping command is executed from host 1 to ping host 2 on 10.0.0.2, the
mechanism to forward packets with an unknown destination is demonstrated by the
process of an ARP request.

ARP request

125

4.5 DAIM System Validation

Data Ctrl Source Destination Content
1a Host 1 Broadcast ARP: Who has 10.0.0.2?

A normal ARP request is generated by host 1 to broadcast MAC address.

1 Switch 1 DAIM 1 OFPT encoded packet 1 (ARP request)

Switch 1 has no flows yet and does not know how to forward this packet. It sends a packet-in that
will have the ARP request encapsulated in it to DAIM 1 controller.

2 DAIM 1 Switch 1 Flood packet out all ports (except ingress port)

DAIM 1 controller responds by directing switch 1 to send a packet-out to all edge switches with an
action to flood this packet out of all ports (except ingress port).

1b Switch 1 Flood ARP: Who has 10.0.0.2 ?

Switch 1 indeed floods the packet. This process is then repeated exactly the same way for switch 2,
switch 3 and switch 4 until the packet reaches its destination (host 2).

3 Switch 3 DAIM 3 OFPT encoded packet 1 (ARP request)
4 DAIM 3 Switch 3 Flood packet out all ports (except ingress port)

As switch 3 floods the packet, it is received by host 2.

1c Switch 3 Flood ARP: Who has 10.0.0.2 ?

ARP reply

2a Host 2 Host 1 ARP: I’m 10.0.0.2 my MAC is
08-01-3A-0B-FE-FD

Host 2 is now aware of host 1 MAC address and sends an ARP reply back.

5 Switch 3 DAIM 3 OFPT encoded packet 2 (ARP reply)

Switch 3 does not know how to forward the packet and sends an ARP reply in the form of packet-in
to DAIM 3 controller.

6 DAIM 3 Switch 3 Flow-mod: Prot: ARP, Src
08-01-3A-0B-FE-FD, Dst 08-01-30-2A-3E-00 →
IN = 3, OUT = 1

DAIM 3 controller knows where the destination MAC address locates in the network, and hence
instructs switch 3 to install a flow and on how to forward similar packets in the future.

2b Switch 3 Switch 1 ARP: I’m 10.0.0.2 my MAC is
08-01-3A-0B-FE-FD

Switch 3 sends the packet to switch 1.

7 Switch 1 DAIM 1 OFPT encoded packet 2 (ARP reply)

The process is repeated, DAIM 1 controller knows where the destination MAC address locates in
the network, and hence instructs switch 1 to install a flow and on how to forward similar packets
in the future.

8 DAIM 1 Switch 1 Flow-mod: Prot: ARP, Src
08-01-3A-0B-FE-FD, Dst 08-01-30-2A-3E-00 →
IN = 3, OUT = 1

Finally, the packet is delivered to host 1.

126

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

2c Switch 1 Host 1 ARP: I’m 10.0.0.2 my MAC is
08-01-3A-0B-FE-FD

Host 1 can populate its ARP table after receiving ARP reply from host 2. Now that
host 1 has the ARP address of host 2, it will send the ICMP echo request.

ICMP echo request

Data Ctrl Source Destination Content
1a Host 1 Host 2 ICMP echo request

Host 1 sends a ICMP echo request packet to host 2.

1 Switch 1 DAIM 1 OFPT encoded packet 1 (ICMP echo request)

Again, switch 1 does not know how to forward the packet and sends an ICMP echo request in the
form of packet-in to DAIM 1 controller.

2 DAIM 1 Switch 1 Flow-mod: Prot: ICMP, Src 10.0.0.1, Dst
10.0.0.2 → IN = 1, OUT = 3

During the ARP session, DAIM 1 controller has learned where the destination host exists and can
now direct switch 1 to install a flow for this specific traffic.

1b Switch 1 Switch 3 ICMP echo request

Switch 1 sends the packet to switch 3.

3 Switch 3 DAIM 3 OFPT encoded packet 1 (ICMP echo request)

For the incoming packet, switch 3 also sends an ICMP echo request in the form of packet-in to
DAIM 3 controller.

4 DAIM 3 Switch 3 Flow-mod: Prot: ICMP, Src 10.0.0.1, Dst
10.0.0.2 → IN = 1, OUT = 3

1c Switch 3 Host 2 ICMP echo request

Again, the DAIM 3 controller instructs the switch 3 to install a flow for traffic forwarding.

The reply of the ICMP packet will be sent in the same way as the request packet.
The entries are not annotated in this table for better readability.

ICMP echo response

2a Host 2 Host 1 ICMP echo reply
5 Switch 3 DAIM 3 OFPT encoded packet 2 (ICMP echo reply)
6 DAIM 3 Switch 3 Flow-mod: Prot: ICMP, Src 10.0.0.2, Dst

10.0.0.1 → IN = 3, OUT = 1
2b Switch 3 Switch 1 ICMP echo reply

7 Switch 1 DAIM 1 OFPT encoded packet 2 (ICMP echo reply)
8 DAIM 1 Switch 1 Flow-mod: Prot: ICMP, Src 10.0.0.2, Dst

10.0.0.1 → IN = 3, OUT = 1
2c Switch 1 Host 1 ICMP echo reply

127

4.5 DAIM System Validation

4.5.3. Creating a Linux Command Line Chat Server

Many people have been using chat services for a long time such as the popular Google
Chat, Hangout, Facebook chat, Whatsapp, Hike and several other application and
integrated chat services. One of the Linux command line tools used to send data
between networked computers is netcat (nc). This Linux nc command can turn a
Linux box into a chat server with just one line of command, and has the ability to
use any unused local port and any local network source address. The nc utility is
often known as Swiss army knife because of the number of its built-in capabilities.
Netcat is prominently used for port scanning, file transferring, port listening or
media streaming. It is a powerful network utility used as an investigation tool,
debugging tool, reading and writing data to network connections using TCP or
UDP protocol. Netcat is used to create a server and client chat system and test the
TCP/IP connection between two hosts.
This subsection demonstrates a simple UDP chat session based on a linear topology
presented in Figure 4.13 on page 121, where the text from one terminal can be
echoed to the remote terminal. There are two instances of netcat required in order
to create this chat: one to listen for incoming connections (the server); and another
one to start the connection. Use nc command (on a server with IP address: 10.0.0.1)
to create a command line messaging server instantly.
1 $ nc -l -u -v -p 6871

Explanation of the above command switches.
-l : instructs netcat to listen
-u : specifies to specifically use UDP
-v : is for verbose output
-p : the local port number
You may replace 11119 with any other local port number.
Next on the client machine (IP address: 10.0.0.2) run the following command to
initialise chat session to machine (where messaging server is running).
1 $ nc -u 10.0.0.1 6871

Any text that is entered on one screen is echoed to the other screen over the UDP
port specified. Figure 4.18 shows how it will look on the screen. A useful utility
like dpctl that comes with the OpenFlow reference distribution is used to enable
visibility and control of the switch’s flow table. It is particularly useful for verifying
that all necessary flow entries are properly installed by viewing flow state and flow
counters.
Note that you can terminate chat session by hitting the ctrl+c key and also nc chat
is one-to-one service.

128

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

Figure 4.18.: Screenshot of netcat UDP Chat Session

After running a dpctl dump-flows from switch 1, the flow stats and flow entries
installed by DAIM controller can be seen below:

1 ***s1
--
NXST_FLOW reply (xid=0x4):

2 cookie=0x0,duration=5.722s,table=0,n_packets=1,n_bytes=55,
idle_timeout=60,priority=65535,udp,in_port=2,vlan_tci=0x0000,dl_src
=c2:ee:c7:4b:d8:0f,dl_dst=66:17:bc:fe:87:3d,nw_src=10.0.0.1,nw_dst
=10.0.0.2,nw_tos=0,tp_src=6871,tp_dst=41033 actions=output:1

3 cookie=0x0,duration=20.392s,table=0,n_packets=1,n_bytes=53,
idle_timeout=60,priority=65535,udp,in_port=1,vlan_tci=0x0000,dl_src
=66:17:bc:fe:87:3d,dl_dst=c2:ee:c7:4b:d8:0f,nw_src=10.0.0.2,nw_dst
=10.0.0.1,nw_tos=0,tp_src=41033,tp_dst=6871 actions=output:2

4 cookie=0x0,duration=0.702s,table=0,n_packets=1,n_bytes=42,
idle_timeout=60,priority=65535,arp,in_port=1,vlan_tci=0x0000,dl_src
=66:17:bc:fe:87:3d,dl_dst=c2:ee:c7:4b:d8:0f,nw_src=10.0.0.2,nw_dst
=10.0.0.1,arp_op=0 actions=output:2

As can be seen, the flow entries are installed using UDP protocol type with the cor-
responding actions. Moreover, an idle_timeout option for each entry is configured,
which defaults to 60 seconds. This indicates that the flow will expire after 60 seconds
if there is no incoming traffic. ARP sessions are also completed in order to populate
the ARP tables.

129

4.5 DAIM System Validation

Figure 4.19.: Screenshot of VLC Video Streaming Session

4.5.4. Network Streaming via VLC Media Player

When testing OpenFlow networks and flow forwarding, it is useful to be able to send
a number of multicast streams across the network. In this part, a VLC streaming
session is performed to demonstrate that the DAIM controller can manage traffic
through each switch in the network based on data and by setting up and removing
flows from the switch. VLC is an open source cross-platform multimedia player and
streamer. Streaming traffic from the server to client through OpenFlow is conducted
based on the ring network topology presented in Figure 4.14 on page 121. The
streaming is done via HTTP protocol on port 8080. This streaming method is used
with the MP4 encapsulation. For the output method, the IP address and TCP port
number on which to listen has been specified. To stream in HTTP:

• on the server (host 1) run:
1 vlc -vvv input_stream --sout '#standard{access=http,mux=ogg,dst

=10.0.0.1:8080}'

• on the client (host 4) run:
1 vlc http://10.0.0.1:8080/the_file.mpg

Figure 4.19 shows how it will be seen on the screen. VLC is used to stream a local
video file from host 1 to host 4. In this setup, the DAIM controller can add the

130

Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator

respective flows which allow the client to receive the video successfully. Thus, the
DAIM controller can provide efficient support for scalable video streaming over an
OpenFlow network. Also, the ping has an RTT average of 4-5 ms. due to the
dynamic routing capability using the shortest path. To verify that the flow entries
are being implemented correctly, dpctl dump-flows is executed to print OpenFlow
flow table entries of switch 3 below:
1 ***s3 ---

NXST_FLOW reply (xid=0x4): cookie=0x0,duration=36.53s,table=0,
n_packets=962,n_bytes=2097023,idle_timeout=60,priority=65535,tcp,
in_port=3,vlan_tci=0x0000,dl_src=ca:8e:3b:a2:f0:33,dl_dst=86:85:db:
ec:eb:0e,nw_src=10.0.0.1,nw_dst=10.0.0.4,nw_tos=0,tp_src=8080,
tp_dst=50368 actions=output:2

2 cookie=0x0,duration=36.539s,table=0,n_packets=612,n_bytes=40530,
idle_timeout=60,priority=65535,tcp,in_port=2,vlan_tci=0x0000,dl_src
=86:85:db:ec:eb:0e,dl_dst=ca:8e:3b:a2:f0:33,nw_src=10.0.0.4,nw_dst
=10.0.0.1,nw_tos=0,tp_src=50368,tp_dst=8080 actions=output:3

For switch 3, these flow entries show that TCP is used as the transmission protocol,
which VLC listens on all the network interfaces of the server on port 8080. In
addition, TCP guarantees delivery of data packets on port 50368 in the same order
in which they were sent. DAIM controller also instructs the switch how to forward
the packets using IP addresses and associated actions.

4.5.5. Run a Simple Web Server and Client

Ping is not the only command in Mininet that can run on a host. Virtual hosts
can run any command or program that is available to the underlying Linux system
(or VM) and its file system. Users can also enter any bash command, including job
control (e.g., jobs, kill, etc.)
This subsection creates a simple HTTP web server on host 1 and makes a request
from host 8 based on a tree network topology presented in Figure 4.15 on page 122.
This can verify that in an OpenFlow network with DAIM controllers, files from
the web server can be consistently transferred to the requested host. The following
command starts a web server on one host and makes an HTTP request from another:
1 mininet> h1 python -m SimpleHTTPServer 80 &
2 mininet> h8 wget -O - h1

Figure 4.20 illustrates how this will look on the screen. The Mininet CLI allow users
to control and manage the entire virtual network from a single console. After using
the dpctl dump-flows command built into the CLI, multiple flow entries can be seen
in switch 1, 2, 3, 4 and 7 of the forwarding path. However, nothing will print out
for switch 5 and 6 because they are not on the path and thus these switches have
no flows added. Some sample flow entries installed in switch 1 by DAIM controller
are as follows:

131

4.5 DAIM System Validation

Figure 4.20.: Screenshot of HTTP Web Server Session

1 ***s1
--
NXST_FLOW reply (xid=0x4): cookie=0x0,duration=11.892s,table=0,
n_packets=12,n_bytes=3381,idle_timeout=60,priority=65535,tcp,
in_port=1,vlan_tci=0x0000,dl_src=d6:6e:39:f2:fa:d4,dl_dst=a6:e2:5b:
a0:df:25,nw_src=10.0.0.1,nw_dst=10.0.0.8,nw_tos=0,tp_src=80,tp_dst
=41391 actions=output:2

2 cookie=0x0,duration=11.898s,table=0,n_packets=12,n_bytes=908,
idle_timeout=60,priority=65535,tcp,in_port=2,vlan_tci=0x0000,dl_src
=a6:e2:5b:a0:df:25,dl_dst=d6:6e:39:f2:fa:d4,nw_src=10.0.0.8,nw_dst
=10.0.0.1,nw_tos=0,tp_src=41391,tp_dst=80 actions=output:1

For switch 1, these installed flow entries can verify that the server host (IP 10.0.0.1)
can communicate with the requested host (IP 10.0.0.8) via TCP protocol port 80
and 41391. Incoming packets on port 1 are set with an action to forward out port
2, whereas packets on port 2 will be sent out port 1.

Lastly, shut down the web server after data transfer session with the following com-
mand:
1 mininet> h1 kill %python

132

5. DAIM Performance Results and
Evaluation

5.1. Introduction

This chapter explains the technical details and testing methodology of the experi-
mental evaluation. The performance analysis of the DAIM model is also conducted
based on OpenFlow Operations Per Second (OFLOPS) open benchmarking tool
[88]. In addition, a built-in utility called Cbench (controller benchmarker) is used
as a generic software framework that allows the development of tests for the DAIM
controller. It can measure the network capabilities and bottlenecks between the re-
mote control application and the forwarding engine of an OpenFlow switch. Cbench
is often considered as a standard evaluation tool for OpenFlow controller perform-
ance. It is a useful tool for evaluating current controller implementations that make
the following observations: (1) the performance of flow setup depends on applied
actions and firmware; (2) current OpenFlow implementations differ substantially in
flow updating rates as well as traffic monitoring capabilities; (3) accurate OpenFlow
command completion can be observed only in the data plane. These observations
are crucial for understanding the applicability of OpenFlow in the context of spe-
cific use-cases, which have requirements in terms of forwarding table consistency,
flow setup latency, flow space granularity, packet modification types, and traffic
monitoring abilities.

In order to quantify DAIM controller performance, the ping command is executed
to measure the average RTT values. Moreover, the Cbench tool is used to measure
the number of flow setups per second that the DAIM controller can handle in terms
of throughput and latency. At the same time, Iperf is served as a benchmarking tool
for testing the network’s maximum TCP bandwidth utilisation. The performance
results of DAIM are compared with other OpenFlow controllers including NOX,
POX and NOX-MT. The evaluations illustrate that the DAIM controller produces
comparable results to those existing ones. The physical OpenFlow test lab, as well
as other parameters that can affect the performance evaluation, are also described
in this chapter.

133

5.2 Test Bed Description

5.2. Test Bed Description

The main target of this chapter is to give a dumping ground for side by side compar-
isons between multiple OpenFlow controllers and the candidate DAIM controller.
In the SDN community, the focus has largely been on the control plane and has seen
a rise of numerous controllers in different languages (C, C++, Python, Java and
Ruby for example). Furthermore, while many times raw performance numbers are
published, currently there has been no central repository for performance compar-
isons using the same methodology. The performance comparisons only cover open
source controllers due to their primary usage in research and development; hence
they tend to be single instances. Based on the study of available materials on sixteen
SDN controllers, the following three controllers are tested:
NOX: A C++/Python controller used as a baseline and does not support multi-

threading. It can only be tested in the single CPU case.
POX: A general single-threaded, open source OpenFlow controller written in Py-

thon.
NOX-MT: A multi-threaded and highly optimised implementation of NOX written

in C++, which can be found in the destiny-fast branch on NOX repo.
For the evaluation of mean RTT, the default configuration for the traffic control
of links between nodes is 100 Mbps for bandwidth and 5 ms for propagation delay.
Each ping command is performed in Mininet with various packet sizes in order to
obtain accurate and reliable results. Mininet is also used to measure the maximum
TCP bandwidth utilisation of the network by running Iperf. Cbench is an evaluation
tool for the DAIM controller performance. For all experiments, TCMalloc is used
for better performance in C/C++, and test setups were run using as follows:

• Machine: Dell Optiplex 780
- CPU: 1 x Intel® Core(TM)2 Duo CPU E8400 @3.00 GHz 3.00 GHz
- RAM: 4.00 GB
- Network: Intel(R) 82567LM-3 Gigabit ports
- OS: Ubuntu 12.04.5 LTS x86_64 (VirtualBox image)
Kernel: 3.5.0-54-generic #81~precise1-Ubuntu SMP Tue Jul 15 04:05:58 UTC
2014 i686 i686 i386 GNU/Linux
Boost Library: Version 1.48.0.2 (libboost-all-dev)
malloc: Google’s Thread-Caching Malloc version 1.7-1ubuntu1
Java version: Sun Java 1.6.0_35

• Controller configuration:
NOX (destiny 0.9.1): must be configured with ”–enable-ndebug” passed to the
configure script.

134

DAIM Performance Results and Evaluation

NOXMT: must be configured with ”–enable-ndebug –with-python=no” passed
to the configure script. tcmalloc loaded before launch export
LD_PRELOAD=/usr/lib/libtcmalloc_minimal.so.0
POX: must be configured with git checkout dart, dart is the most recent release
branch (Until July 2014).

• Network application used: Layer 2 learning switch functionality. This switch
application is well representative of the controller flow processing performance
with tunable read and write ratio (e.g., number of unique MAC addresses).

• Running controllers: disable debugging and verbose output mode.
NOX:
1 ./nox_core -i ptcp:6633 switch

NOX MT
1 ./nox_core -i ptcp:6633 switch -t 1

POX:
1 ./pox.py forwarding.l2_learning

DAIM:
1 ./aniv21 -c -q -p 6633

For all experiments, each controller implements a normal L2 learning switch applic-
ation provided by the controller. For every switch on the chosen path, the switch
application performs MAC address learning. The packets get sent out of the last
port where the traffic from the destination MAC address has arrived. Packets with
an unspecific destination are flooded. Regarding the switches managed by NOX, the
mapping between the port number and the MAC switch tuple is stored in a hash
table. The switch application is mainly read-only workload. This means that only
requests with newly observed source MAC address trigger an update in the hash
table. In addition, the number of such events is proportional to the product of the
number of switches and the number of hosts in the network.

5.3. Experiment Setup and Methodology

Cbench is specifically used to quantify controller performance with respect to through-
put and latency by generating Packet-In events for new flows. It is an OpenFlow
testing platform that primarily focuses on providing a set of basic measurement tests
for developers to examine the capabilities of OpenFlow-enabled devices as well as
detect any possible bottleneck. Cbench emulates any number of OpenFlow switches

135

5.3 Experiment Setup and Methodology

that connect to a controller, send Packet_In messages, and watch for Flow_Mods
to get pushed down. Cbench gives the ability to measure various performance as-
pects of the OpenFlow controller such as minimum and maximum response time,
maximum throughput, and the latency and throughput of the controller with a
bounded number of packets. Using Cbench, the flow setup throughput and latency
are evaluated according to three publicly available OpenFlow controllers including
NOX, POX and NOX-MT. The latest available version of each controller is used for
the evaluation as of May 2015.

The Cbench operation is very simple, pretending to be N switches that create N
OpenFlow sessions to the controller. Cbench can run in two modes: throughput and
latency mode. In latency mode, each emulated switch maintains exactly one out-
standing new flow request, waiting for a response before soliciting the next request.
Latency mode measures the OpenFlow controller’s request processing time under
low-load conditions. In contrast, the throughput mode has each switch maintaining
as many outstanding requests as buffering will allow until the local TCP send buffer
blocks. Therefore, throughput mode measures the maximum flow setup rate that
a controller can maintain. Cbench also supports a hybrid mode with n-new flow
requests outstanding, to explore between these two extremes. A simple algorithm
that Cbench used to measure the throughput and latency is shown below:

1 Algorithm :
2 pretend to be an OpenFlow switch that can
3 c r e a t e number o f unique source MAC addre s s e s to the c o n t r o l l e r
4 i f l a t ency mode (d e f a u l t) :
5 f o r each s e s s i o n :
6 1) send up a Packet_In
7 2) wait f o r a matching Flow_Mod to come back
8 3) repeat
9 4) count how many times #1−3 happen per sec

10 e l s e in throughtput mode (with ’−t ’ opt ion) :
11 f o r each s e s s i o n :
12 whi le b u f f e r not f u l l :
13 queue Packet_Ins
14 count Flow_mods as they return back

Each Cbench run consists of 10 test loops of 10 seconds duration, each is run three
times and takes the average number as the result. The first loop (first 10 seconds) is
considered as controller warm-up, and hence the results are not counted. The total
responses received from each test are averaged to compute the responses per second
result. In addition, the last 8 tests results are averaged to compute the final result.
Because DAIM controller must be connected to only one switch, a fixed number of
one emulated switch is tested to avoid a large number of traffic to be stressing the
network simultaneously. 82 byte sized OpenFlow Packet_In messages are used to
ensure that the bandwidth is not the bottleneck as well as to maximise the stress
on the controller end. The latency is also measured with one switch, which sends
requests that have to wait for a reply from the controller before sending the next

136

DAIM Performance Results and Evaluation

request.
Furthermore, Iperf is a benchmark tool used for active measurements of the max-
imum achievable TCP bandwidth on IP networks, allowing the tuning of various
parameters and UDP characteristics. For each test, Iperf can report the bandwidth,
delay jitter, loss and other parameters. However, Iperf tool in this context is merely
used to measure maximum TCP bandwidth utilisation.
To measure throughput and latency, the Cbench tool is used to test and compare the
performance of a system or subsystem, different computer architecture and different
software. The benchmark test consists of executing a computer program or a set of
programs with the aim of evaluating the performance of a system. It is necessary
to define and explain the network performance parameters, definitions needed for a
correct evaluation and to successfully perform the evaluations.

5.3.1. Network Performance Metrics

Performance evaluation of an OpenFlow controller is defined by four characteristics:
round-trip-time, throughput, latency and bandwidth. The aim is to obtain the
lowest average RTT, maximum throughput (number of outstanding packets, flows
per second), minimum latency (response time, ms), and maximum TCP bandwidth
(the rate of data transfer) for each controller. These main four parameters are more
important and determinants for the performance of any application. The results
show that DAIM performance tests are comparable to the results of the current
OpenFlow controllers and that it is possible to run DAIM on conventional hardware.

5.3.1.1. Mean Round Trip Time

The first performance metric for the evaluation is the mean RTT for the hosts in
the investigated network. The average RTT is measured from the received echo
reply messages. The experimental results will need the recording of a large number
of samples. To describe the measurement of the numbers, the standard deviation
and mean value of RTT are computed. The mean of the RTT is assumed to be
the average value and the standard deviation is approximated using the following
equation [17]:

T = N/R (5.1)

Where T is the packet transmission time between segments sent and receives an
acknowledgement arrival measured in millisecond (round trip transmission), N is
the packet size (bits), and R is the data rate bandwidth (bit/second).

137

5.3 Experiment Setup and Methodology

Then we need to calculate the round trip time RTT by the following equation:

4 = α× 4̃+ (1− α)× T (5.2)

Where 4 is the round trip time RTT (ms), α is the smoothing factor, 4̃ is the old
round trip time RTT, and T is the packet’s new round trip transmission time.

Test methodology: The mean RTT values are measured from the ping tool by
α (value between 0 and 1) which is equal to the value 0.875 multiplying with the
old RTT as the top equation, and then multiplying with T which is the new RTT
between the segments sent and the acknowledgement arrival found from equation
(5.1). Finally, the mean RTT values are calculated from equation (5.2). Each
run is repeated 6 times with different random number seeds to exclude simulation
artefacts. Each ping command is executed with increasing packet sizes of 56, 4000,
8000, 16000, 32000 and 65000 bytes.

5.3.1.2. Flow Setup Throughput

Each controller throughput is a significant factor in deciding the overall number of
controllers required to handle the network control load. The goal of this perform-
ance parameter is to determine the maximum throughput of the system in various
settings. Flow setup throughput is the number of flow transactions per second that
an OpenFlow controller can handle. Measuring this parameter can come in two
distinct forms, one would be using bits per second (bit/s or bps), and the other
would be through data packets per second (p/s or pps) to measure the throughput
performance. However, throughput in this content is measured in responses per
second (rps) for which a larger value is better.

Test methodology: All experiments are performed with Cbench in order to take
the maximum throughput measurements. The changes in the parameter when
adding more hosts to the network where the controller runs show the scalability
of the controller. The performance analysis is based on the correlation between con-
troller’s throughput and the number of unique hosts (103, 104, 105, 106, 107), having
a fixed number of one simulated OpenFlow switch. For each session, the switch con-
stantly forwards as many Packet_In messages as possible to the controller assuring
that the controller always has messages to process, and then counts the Flow_Mod
messages reply.

Running the benchmarker:
1 cbench -c $ctrladdr -p $port -s $nswitch -m $duration -l $loop -M

$maddr -t

138

DAIM Performance Results and Evaluation

where $ctrladdr and $port are controller IP address and port number respectively,
$nswitch is the number of emulated switches, $duration is the duration of the test,
$loop is the number of times to repeat the test, and $maddr is the number of unique
source MAC addresses. The -t option is for running the throughput test, omit it for
the latency test.

5.3.1.3. Flow Setup Latency

Flow setup latency is a significant metric in OpenFlow network operation, particu-
larly for transiting data from applications to delay. In regards to flow-based network,
latency is the time delay to respond to flow requests. The delay can be caused by
the physical environment or devices forming the network (switches and controller).
For example, the first packet sent to the controller may increase the latency by at
least the round trip to the controller. There are two ways to measure the latency:
the first is to measure the time it takes for a packet from source to destination
(One-Way) and the second is to measure the time it takes a packet to go and return
(Round-Trip). This last form of measuring the latency, Round-Trip, is the most
used because it allows a single device to measure the latency of a network.
For OpenFlow networks, 50 ms or less latency is required for a high-quality VoIP
connection. Slightly higher latency can lead to some drops of frames, which could
be admissible while maintaining a usable connection. In particular when streaming
videos, less than 5% of some loss is acceptable for most codecs. If the frames are
buffered, then 150 ms of average latency is adequate as well as a 5 seconds delay
might also be acceptable. However, interactive videos can have a higher requirement
to lost frames. Despite losses that are less than 1% are still acceptable, jitter on the
other hand can have much more impact.
Test Methodology: The latency test is measured as the average time the controller
takes to process each event in microseconds (s). Cbench is used to emulate one
switch, which each session sends a single packet to the controller, and waits for a
reply in a Flow_Mod. These two steps are repeated as quickly as possible and the
total number of responses received at the end of a session can be used to compute
the average time the controller took to process each event. Cbench is running via
loopback locally, which emulates an OpenFlow switch and sends Packet_In events
to the controller.
Running the benchmarker:
1 cbench -c localhost -p 6633 -m 10000 -l 10 -s 1 -M 100000

5.3.1.4. Maximum TCP Bandwidth Utilisation

While other network metrics are used to measure the performance of the DAIM
controller, Iperf is written in C as a modern alternative for measuring TCP and UDP

139

5.3 Experiment Setup and Methodology

bandwidth performance of IP networks. Iperf has a server and client functionality
that can measure the throughput between two nodes. The output of Iperf typically
contains the throughput measured and a time-stamped report of the amount of data
transferred.

Iperf features:

TCP: Iperf can be used to test TCP capacity, which measures the throughput of
the payload. It uses 1024 × 1024 for megabytes and 1000 × 1000 for megabits.

UDP: Iperf can be used to test UDP capacity, which allows the user to set the
datagram size and provides results for the datagram throughput and the packet
loss.

Test Methodology: Iperf [50] tool is used to create TCP data streams and meas-
ure the throughput of a network that is carrying them. Iperf offers the user to
specify different parameters that can be used for testing a network, or for optim-
ising and tuning purposes. In this experiment, Iperf is performed to measure only
the maximum TCP bandwidth utilisation. Each Iperf experiment is run 15 times
and the average number taken as the result. In addition, the link parameters are
customised to 10, 20, 50, 100, 200, 500 and 1000 Mbps respectively. The Iperf tool
is commonly utilised to optimise the network bandwidth, and the formula used for
the calculation is as follows [7]:

B = ((V + S + I + U)/V)×R (5.3)

B = Actual link bandwidth in bits/second

V = Value given to Iperf’s “-l” parameter

S = Size of Ethernet framing

I = IPv4 header size

U = UDP header size

R = Reported value in bits/second by Iperf.

Assumption: Run an Iperf server on host 1 and run an Iperf client on host 2 in
order to parse the bandwidth achieved. Much lower TCP bandwidth is reported
compared to Mininet’s default topology because of the defined link parameters.
The Iperf-reported TCP bandwidth with DAIM implementation running should be
similar to OpenVswitch switch type as well as the OpenFlow kernel module running
with NOX and POX, and possibly faster.

140

DAIM Performance Results and Evaluation

Figure 5.1.: Scenario Used to Evaluate Mean RTT and Maximum TCP Bandwidth

5.3.2. Scenarios

This section presents the experimental topology and scenarios used for the per-
formance evaluation. Comparing the performance of DAIM with current OpenFlow
controllers is considered as the primary goal. In terms of analysing the performance
results correctly, the parameters and configurations have been defined with respect
to links, bandwidth, delay and network size for the testing topologies.

5.3.2.1. Testing RTT and TCP Bandwidth

For both mean RTT and TCP bandwidth evaluation, a fully mesh network topology
is used as shown in Figure 5.1. Both scenarios are created based on OpenVswitch
in a virtualised network using Mininet. The configuration of the topology is built
and used a fixed traffic profile with four switches, two hosts and one controller for
simplicity, and to ensure that the controller calculates flow entries and installs them
along the path from source to destination. This setup only applies to the evaluation
of current centralised OpenFlow controllers. On the other hand, DAIM controllers
are distributed to manage their own connected switches (refer to Figure 4.16 on
page 122).

To analyse mean RTT values, host A performs a ping command to host B based on
a fixed link bandwidth of 100 Mbps and 5 ms delay for each link. Each ping test is
conducted with empty flow table to trigger the controller to insert new flow entries
in each OpenFlow switch. The average RTT is measured in milliseconds and the

141

5.3 Experiment Setup and Methodology

graph is plotted for different sizes of the ping packet. Similarly, Iperf is performed
to test the TCP bandwidth between host A and host B with a fixed link delay of
5 ms for each link. The bandwidth available measurements are plotted against the
actual link capacity of each test.
It is worth noting that flow table entries have an idle_timeout and a hard_timeout
associated with them. For idle_timeout while matching packets, the flow entry will
not be removed unless hard_timeout is reached, and then the flow entry will be
forced to be removed. In Mininet, the idle_timeout are set to 5 seconds by default,
whereas the hard_timeout is not set. To optimise the memory usage in the switches,
an idle_timeout (10 seconds) is configured in the experiments for removing the flow
entry in its flow table, forcing the path to rebuild when necessary. This strategy
provides the most efficient use of existing flow table memory.

5.3.2.2. Testing Throughput and Latency

The scenario used to evaluate the flow setup throughput and latency is composed of
an OpenFlow controller and merely one OpenFlow switch connected directly to the
controller. The switch can vary the number of connected hosts up to a million and
consequently these hosts are connected directly to the controller. The switch and
hosts have been emulated with the Cbench tool in a virtual network environment
(VirtualBox). The detail of the Cbench tool used to emulate the switch is depicted
in Figure 5.2.

Figure 5.2.: Scenario Used to Evaluate the Flow Setup Throughput and Latency

142

DAIM Performance Results and Evaluation

The test is performed on the same device, the learning switch application and the
Cbench evaluation tool to evaluate the throughput and latency. There have been
several types of simulations performed. For example, increasing the number of MAC
hosts available (”N” MACs ’1000 10000 100000 1000000 10000000’) and the number
of test loops, hence increasing the number of hosts connected to the controller.
Because the DAIM controller is responsible for only one dedicated switch, increasing
the number of connected hosts is required in order to test the maximum number of
Packet_In messages and evaluate the controller performance. Note that it is not
feasible to vary the number of switches (“N” switches) because each of them has to
be connected to at least one DAIM controller. As a result, Cbench tool can be used
to test DAIM performance with only one connected switch. For a fair comparison,
this test strategy is also used for the evaluation of NOX, POX and NOX-MT.

5.4. Results of Performance Evaluation

Mean RTT, throughput, latency and bandwidth are the main four parameters
that are more important or determinants for the performance of any application.
This section discusses the performance evaluation of DAIM communication channel
(subsection 4.2.1 on page 97) as well as the L2 learning switch application. This
application choice is based on the fact that it is relatively simple and basic switching
has been implemented in all the controllers tested. Moreover, it uses all of the in-
ternal mechanisms and shows the effectiveness of the chosen programming language
by developing single hash lookup. The learning switch application has been tested
with the following controllers: NOX, POX and NOX-MT. The performance results
of DAIM are compared to the existing OpenFlow controllers.

5.4.1. DAIM Communication Channel Results

Test 1: Determine the Mean RTT by Using the Ping Command

Description: This test shows a measurement of the length of time it takes for a
signal to be sent plus the length of time it takes for an acknowledgement of that
signal to be received. This time delay, therefore, consists of the propagation times
between the two points of a signal.

Controllers: NOX, POX and DAIM channel

Application: Learning switch, Spanning Tree

Benchmarking parameters: Packet size from 56, 4000, 8000, 16000, 32000, and 65000
bytes

Command:
1 h1$ ping 10.0.0.2 -c 370 -s $packetsize

143

5.4 Results of Performance Evaluation

Figure 5.3.: Mean RTT DAIM Channel and NOX

Results (lower is better):

Figure 5.3 illustrates the mean RTT for the increasing packet sizes from default size
of 56 up to 65,000 bytes. According to 1,850 measurements, the RTT values are
converted into milliseconds in order to show how well the end hosts are connected.
The table attached below shows the average RTT results in milliseconds. In the
beginning, the performance of DAIM takes slightly longer time to process the ping
than NOX. While the packet sizes are increasing, the RTT values with DAIM are
performing very similar to NOX as shown in packet sizes 4,000 up to 32,000 bytes.
However, it is obvious that DAIM produces longer RTT than NOX for 65,000 bytes
with 47.73 and 43.96 ms respectively. Overall, the mean RTT of each packet size is
nearly identical between both controllers with NOX performing slightly better.

Furthermore, the lines over the bar indicate the amount of variation from the mean
standard deviation (σ). A low σ reflects on smaller packet sizes, whereas a high σ
is shown as packet sizes increase due to RTT rate and are spread out over a large
range of values. For example, the σ of DAIM is higher than NOX for most of the
packet sizes. Overall, the σ for both DAIM and NOX are gradually increasing in
accordance with the packet sizes.

Figure 5.4 shows a side by side comparison of the mean RTT performed by DAIM
channel and the POX controller. From 1,850 measurements, the mean RTT for
both DAIM and POX are escalating dramatically from default size of 56 up to
65,000 bytes. For each packet size, it is evident that the performance of DAIM takes
significantly lower RTT to process the ping than POX. As packet sizes increases,

144

DAIM Performance Results and Evaluation

Figure 5.4.: Mean RTT DAIM Channel and POX

the mean RTT values with DAIM are performing quite steadily as shown in packet
sizes from 8,000 up to 32,000 bytes with 139.30, 148.78 and 144.59 ms respectively.
In contrast, the mean RTT values produced by POX are growing exponentially as
the packet gets larger. Overall, the mean RTT performance comparison shows that
the DAIM channel outperforms the original POX controller.
Test 2: Controller Throughput
Description: This test shows the measurements of the throughput of multiple con-
trollers and compares them to DAIM. The default Cbench configurations of test
loops and duration are used under this test. Also, the mappings of destination
MAC addresses are learned before the test.
Controllers: NOX, POX and DAIM channel
Application: Learning switch
Command:
1 $ cbench -c localhost -p 6633 -s 1 -M 100000 -t

Results (higher is better):
Figure 5.5 shows the Cbench throughput results of the extended OpenFlow con-
trollers with a single thread, in which an OpenFlow switch is contacting the con-
troller in response to a new Packet_In (new packet arrival) event. The number of
Flow_Mod responses per second for 16 tests are plotted in this figure. Each test
is run with 1,000 ms duration and 100,000 unique source MAC addresses. DAIM

145

5.4 Results of Performance Evaluation

Figure 5.5.: Number of Flow Requests Handled per Second

channel running with NOX is able to handle the highest throughput on average
23,196 Flow_Mod responses per second, followed by NOX with average 20,540 re-
sponses per second. In comparison, the Python-based controller runs significantly
slower. The throughput performance of DAIM channel running with POX can serve
on average 6,438 responses per second. POX is the outlier in this test achieving
only 5,952 responses per second on average. These results demonstrate that con-
necting the DAIM channel to any controller is more efficient and can perform higher
throughput than the original controller.
Test 3: Controller Latency
Description: This test shows the measurements of average latency introduced by
different controllers and compares them when running with the DAIM channel.
These values show just part of the picture since there are differences in the imple-
mentation of the learning switch in different controllers.
Controllers: NOX, POX and DAIM channel
Application: Learning switch
Command:
1 $ cbench -c localhost -p 6633 -m 10000 -l 10 -s 1 -M 100000

Results (lower is better):

146

DAIM Performance Results and Evaluation

Figure 5.6.: Delay to Respond to Flow Requests

DAIM+POX: min/max/avg/stdev = 646.99/689.93/666.75/11.18 responses/s
POX: min/max/avg/stdev = 446.00/665.98/558.56/73.54 responses/s
DAIM+NOX: min/max/avg/stdev = 1512.88/1920.73/1760.78/105.16 responses/s
NOX: min/max/avg/stdev = 1528.00/1912.40/1731.09/109.24 responses/s

Controller µs
DAIM+POX 149.981

POX 179.031
DAIM+NOX 56.793

NOX 57.767

The Cbench tool is used to perform latency test, in which an OpenFlow switch
forwards a packet to the controller and waits for a reply, then repeats this process
as quickly as possible. The total number of responses received can be used to
compute the average time the controller took to process each event. The latency
results are shown in Figure 5.6. DAIM channel running with NOX has the lowest
average latency at 56.79 µs, followed by NOX with the average latency at 57.76 µs.
Because Python-based controller runs much slower, this is clearly apparent in the
latency difference between NOX and POX implementations. The measurement of
average response time for DAIM channel running with POX is 149.98 µs. The POX
controller produces the greatest latency in this test taking 179.03 µs on average.

147

5.4 Results of Performance Evaluation

Figure 5.7.: TCP Bandwidth Utilisation Comparison

These results can confirm that the DAIM channel can provide the lowest average
latency compared to the original NOX and POX controllers.

Test 4: Iperf Reported TCP Bandwidth

Description: This test shows the measurements of the maximum achievable TCP
bandwidth on the network operated by different controllers and compares them to
DAIM. The client and server functionality of Iperf are used to measure the through-
put between the two ends.

Controllers: NOX, POX and DAIM channel

Application: Learning switch, Spanning Tree

Benchmarking parameters: Link capacity from 10, 20, 50, 100, 200, 500 and 1000
Mbps

Command:
1 h1$ iperf -s -p 5566 -i 1
2 h2$ iperf -c 10.0.0.1 -p 5566 -t 15

Results (higher is better):

The performance results with respect to TCP bandwidth utilisation are shown in
Figure 5.7. Iperf is used to run a server on one host and a client on the second host

148

DAIM Performance Results and Evaluation

and parsed the bandwidth achieved. The maximum bandwidth utilisation is tested
at different link variations from 10 Mbps to 1 Gbps. For 10 and 20 Mbps links, the
Iperf-reported TCP bandwidth for NOX and POX controllers are slightly higher
compared to that seen with the DAIM channel. However, as the link parameter
increases from 50 Mbps up to 1 Gbps, the network bandwidth obtained with the
DAIM channel is higher than its original controllers. For example, DAIM running
with NOX can achieve a maximum bandwidth of 91.56 Mbps from 100 Mbps link
capacity whereas NOX itself can only reach 90.83. For 500 Mbps link capacity,
the reported bandwidth for DAIM running with POX can gain up to 379.66 Mbps
compared to 373.66 by POX. Moreover, DAIM channel with POX shows surprisingly
high bandwidth utilisation of 667.3 Mbps for 1 Gbps link, followed by DAIM running
NOX with 657, NOX with 649.66 and POX with 639.66. These results show a clear
indication of effective bandwidth utilisation provided by the DAIM channel.
It is also apparent that under large bandwidth more packets traverse the network.
This can cause more overhead and computation time to process the flows. Thus, the
maximum bandwidth utilisation is affected as the link parameter increases because
increasing bandwidth does not influence computation speed.

5.4.2. Layer 2 Learning Switch Application Results

Test 5: Determine the Mean RTT by Using the Ping Command
Description: This test shows a measurement of the length of time it takes for a
signal to be sent plus the length of time it takes for an acknowledgement of that
signal to be received. Therefore, this time delay consists of the propagation times
between the two points of a signal.
Controllers: NOX, POX, NOX-MT and DAIM
Application: Learning switch, Spanning Tree
Benchmarking parameters: Packet size from 56, 4000, 8000, 16000, 32000, and 65000
bytes
Command:
1 h1$ ping 10.0.0.2 -c 370 -s $packetsize

Results (lower is better):
Each ping command generates 370 packets with the interval time of 1 second. The
ping tests are performed with increasing size of the packet’s payload 56B (8B header
= 64B), 4000B, 8000B, 16000B, 32000B and 65000B. The measurements of the
mean RTT values collected from each running controller are shown in Figure 5.8.
Although POX produces the lowest mean RTT for 56B packet size with 34.17 ms, it
takes significantly longer RTT to process a ping as the packet size increases. This can
clearly be seen from packet sizes 4000 to 65000 bytes where the highest RTT from

149

5.4 Results of Performance Evaluation

Figure 5.8.: Mean RTT Comparison

POX can reach 162.64 ms to complete a ping. On the other hand, NOX is able to
perform the lowest RTT for 4000B and 8000B with 35.27 and 37.07 ms respectively,
whereas the performance of DAIM and NOX-MT controllers take slightly longer
RTT to execute the ping command than NOX (< 1.75 ms). For packet sizes 16000B
up to 65000B, NOX-MT shows the best mean RTT values at 38.51, 42.92 and 52.17
ms, followed by DAIM at 39.89, 44.03 and 52.93 ms respectively. Despite DAIM
producing slightly longer RTT for smaller packets, it can outperform both NOX and
POX controllers when pinging with larger packets. In comparison, the average RTT
of each packet size between DAIM and NOX-MT is nearly identical with NOX-MT
performing slightly better.

Test 6: Controller Throughput

Description: This test shows the measured average maximum throughput of multiple
controllers and compares them to DAIM. For the switch control application, having
a large number of unique source MAC addresses may result in a write-intensive
workload.

Controllers: NOX, POX, NOX-MT and DAIM

Application: Learning switch

Benchmarking parameters: Number of unique MAC addresses (103, 104, 105, 106,
107)

150

DAIM Performance Results and Evaluation

Figure 5.9.: Average Maximum Throughput Achieved with Different Number of
MACs

Command:
1 $ cbench -c localhost -p 6633 -m 10000 -l 10 -s 1 -M $maddr -t

Results (higher is better):

Figure 5.9 demonstrates Cbench throughput mode results in correlation with the
number of connected hosts. Under this test, DAIM, NOX and POX are used to
process flows in a single threaded manner. In addition, these controllers and Cbench
are each bound to a distinct physical core on the same processor. Because NOX-MT
is a multi-threaded and highly optimised implementation of NOX, it shows the best
throughput at maximum 292,612 responses per second. DAIM can produce the
second highest throughput with 162,519 responses per second, followed by NOX with
22,357. The lowest throughput has been demonstrated by a typical Python-based
POX controller, which runs considerably slower serving 6,096 responses per second.
Although DAIM runs slower than NOX-MT, the performance of DAIM outperforms
NOX by more than 7 times.

Moreover, the number of connected hosts in the network has a significantly impact
on the performance of most controllers in this test. As shown in Figure 5.9, both
NOX-MT and DAIM are clearly affected by this workload. NOX-MT’s maximum
throughput reduces from 292K to 239K responses per second with 107 hosts. In con-

151

5.4 Results of Performance Evaluation

Controller Minimum response
time (10−6 ms/flow)

NOX 57,531
POX 145,443

NOX-MT 11,392
DAIM 18,113

Table 5.1.: The Minimum Response Time

trast, the performance of DAIM decreases dramatically when more than 105 hosts
are connected. The performance of NOX and POX slightly decreased to 19,200 and
5,800 flows per second respectively when the number of hosts increases to 107. All
of these are caused by specific details when implementing the learning switch ap-
plication, especially the implementation of its lookup table. In fact the performance
of the controller is uniformly divided among the hosts.

Test 7: Controller Latency

Description: This test shows the average latency introduced by different controllers
running a learning switch application and compares them to DAIM. These values
show just part of the picture since there are differences in the implementation of the
learning switch in different controllers.

Controllers: NOX, POX, NOX-MT and DAIM

Application: Learning switch

Command:
1 $ cbench -c localhost -p 6633 -m 10000 -l 10 -s 1 -M 100000

Results (lower is better):

The average response time of the controllers indicates insignificant correlation with
the number of connected hosts. To evaluate latency of tested controllers, the delay
of processing flow requests is calculated in regards to the average response time with
one connected switch and 105 hosts. The latency tests are measured in milliseconds
and the results are shown in Table 5.1 and Figure 5.10. The lowest average latency
has been demonstrated by NOX-MT and DAIM controllers at 0.011 ms and 0.018 ms
respectively. The average time it took the NOX controller to process each response
is 0.057 ms, while the largest latency in this test is typical of Python-based POX
controller taking 0.145 ms on average. If the network has a high latency, packets
need to wait longer and hence increasing the possibility of packet loss and reducing
the overall performance. As a result, POX is more suitable for fast prototyping
than for enterprise deployment. According to Test 6 and Test 7, the performance
results show the DAIM controller can handle a high throughput while keeping the
flow setup latency minimal.

152

DAIM Performance Results and Evaluation

Figure 5.10.: Flow Setup Latency Comparison

Test 8: Iperf Reported TCP Bandwidth

Description: This test shows the measurements of the maximum achievable TCP
bandwidth on the network operated by different controllers and compares them to
DAIM. The client and server functionality of Iperf are used to measure the through-
put between the two ends.

Controllers: NOX, POX, NOX-MT and DAIM

Application: Learning switch, Spanning Tree

Benchmarking parameters: Link capacity from 10, 20, 50, 100, 200, 500 and 1000
Mbps

Command:
1 mininet> iperf

Results (higher is better):

In this test, Iperf is used to benchmark the controllers by determining the speed
and the bandwidth available between two hosts. Once connected, these two hosts
send packets to each other and report the results. The performance results in terms
of TCP bandwidth utilisation are shown in Figure 5.11. The maximum bandwidth
available is measured at different bandwidth parameters from 10 Mbps up to 1 Gbps.

153

5.5 Build a Physical OpenFlow Test Lab Controlled by DAIM

Figure 5.11.: Network Bandwidth Comparison

For the links that have a bandwidth of 10, 20, 50 and 100 Mbps, the Iperf-reported
TCP bandwidths from all the controllers are performing at a nearly identical rate.
In particular, NOX-MT can achieve the highest bandwidth utilisation at 96.92 Mbps
for the link that has a bandwidth of 100 Mbps. While the link bandwidth increases,
NOX-MT also shows the best bandwidth utilisation in which it reaches a maximum
677.62 Mbps for the 1 Gbps link parameter. Even though DAIM produces the lowest
TCP bandwidth at 47.48 Mbps from 50 Mbps link capacity, DAIM can achieve
better performance from larger link bandwidth than NOX and POX controllers. For
example, DAIM can perform a maximum bandwidth of 664.25 Mbps from 1 Gbps
link, followed by POX at 633.5 and NOX at only 626 Mbps. For link bandwidth of
500 Mbps, the reported bandwidth available for DAIM can gain up to 380.5 Mbps
compared to 379.75 by NOX and 378.25 by POX. All of these results can show
evidence of an efficient bandwidth utilisation provided by the DAIM controller.

5.5. Build a Physical OpenFlow Test Lab Controlled
by DAIM

This section shows how to create a simple SDN/OpenFlow lab to launch research
tests with Raspberry Pi 2 (model B). The main goal is to demonstrate that DAIM

154

DAIM Performance Results and Evaluation

Figure 5.12.: Physical OpenFlow Test Lab Topology

can perform operational functions and can be deployed in real networks. A small-
size of OpenFlow network has already been set up physically in the lab with two
software switches controlled by DAIM and two hosts. An Ubuntu 14.10/Linaro
15.01 ”developer” image is the operating system used for the Raspberry Pi’s, which
comes with the LXDE desktop pre-installed. In addition, each Raspberry Pi runs an
OpenVswitch implementation and a DAIM controller on the same device, whereas
the hosts are just normal PCs. The OpenFlow software reference system is also
installed to add OpenFlow switching capability to the Raspberry Pi with multiple
NICs. Figure 5.12 shows a basic linear topology for OpenFlow experiment. The
setup installation and configuration as well as some useful tests are also demon-
strated in this section.

5.5.1. Configuration Summary

Software OpenFlow switches:

Switch IP address to
talk to the
controller

Controller
Ethernet Port

OpenFlow
Ethernet Ports

Switch 1
(Raspberry Pi)

loopback br0 (virtual) eth1 192.168.1.2
eth2 192.168.1.99

Switch 2
(Raspberry Pi)

loopback br0 (virtual) eth1 192.168.1.1
eth2 192.168.1.98

155

5.5 Build a Physical OpenFlow Test Lab Controlled by DAIM

DAIM Controllers:
IP address TCP port number
127.0.0.1 6633

5.5.2. Setup OpenFlow Switch and DAIM Controller on a
Raspberry Pi

In this setup, the DAIM controller is used to manage the data plane and turn the
Raspberry Pi into an intelligent learning switch.

Step1. Setup OpenVswitch

The simplest way to install OpenVswitch on Ubuntu is to run the following command
as root user:

1 $ apt-get install openvswitch -common openvswitch -switch

For more details, refer to Appendix B on page 191.

Then, create an OpenVswitch bridge br0 and add the physical interfaces to the
virtual bridge:

1 $ ovs-vsctl add-br br0
2 $ ovs-vsctl add-port br0 eth1
3 $ ovs-vsctl add-port br0 eth2

Step2. Run the DAIM controller and attach OpenVswitch

After the data plane on each Raspberry Pi is installed, start the DAIM controller
to effectively manage network flows:

1 $./aniv21 -p 6633

Then, connect the switch to the DAIM controller on a second terminal. Since
OpenVswitch and the DAIM controller are on the same machine, the command will
be:

1 $ sudo ovs-vsctl set-controller br0 tcp:127.0.0.1:6633

The DAIM controller uses OpenFlow default port 6633. The output in the DAIM
console (controller terminal) will appear as follows:

1 Info: creating ANI socket...
2 Info: established ANI server!
3 Info: waiting for the switch connection...
4 Info: connected to the switch!

156

DAIM Performance Results and Evaluation

5.5.3. Basic Test

On a new terminal of each Raspberry Pi, first verify that the switches are connected
to the DAIM controller by the following command:
1 $ sudo netstat -an | grep 6633

The output of ’netstat’ should display the network connections for TCP port 6633
as shown below:
1 tcp 0 0 0.0.0.0:6633 0.0.0.0:* LISTEN
2 tcp 0 0 127.0.0.1:6633 127.0.0.1:56533 ESTABLISHED
3 tcp 0 0 127.0.0.1:56533 127.0.0.1:6633 ESTABLISHED

Enter the command below to check the connection was made correctly:
1 $ sudo ovs-vsctl show

The output of ‘ovs-vsctl show’ which displays the bridge interfaces and the connec-
tion state should appear as follows:
1 31f45ffe -8526-48d1-8ad4-b61320838672
2 Bridge "br0"
3 Controller "tcp:127.0.0.1:6633"
4 is_connected: true
5 Port "eth1"
6 Interface "eth1"
7 Port "eth0"
8 Interface "eth0"
9 Port "br0"

10 Interface "br0"
11 type: internal
12 ovs_version: "2.1.3"

After assigning the IP addresses to host 1 and host 2 (on the same subnet as shown
in Figure 5.12), run ping to check they can communicate. On each switch, run the
following command to see the flow entries are actually installed in the flow table:
1 $ sudo ovs-ofctl dump-flows br0

The output of ‘dump-flows’ after a ping command should look like the following:
1 NXST_FLOW reply (xid=0x4):
2 cookie=0x0,duration=2.604s,table=0,n_packets=1,n_bytes=98,

idle_timeout=60,idle_age=2,priority=65535,icmp,in_port=2,vlan_tci=0
x0000,dl_src=00:14:22:41:ce:b7,dl_dst=00:13:72:8b:cc:c1,nw_src
=192.168.1.20,nw_dst=192.168.1.10,nw_tos=0,icmp_type=0,icmp_code=0
actions=output:1

3 cookie=0x0,duration=2.581s,table=0,n_packets=1,n_bytes=98,
idle_timeout=60,idle_age=2,priority=65535,icmp,in_port=1,vlan_tci=0
x0000,dl_src=00:13:72:8b:cc:c1,dl_dst=00:14:22:41:ce:b7,nw_src
=192.168.1.10,nw_dst=192.168.1.20,nw_tos=0,icmp_type=0,icmp_code=0
actions=output:2

157

5.5 Build a Physical OpenFlow Test Lab Controlled by DAIM

More sophisticated test procedures according to section 4.5 on page 123 have also
been tested on hardware. As a result, this OpenFlow test lab is ready to host
different novel research scenarios.

5.5.4. Preliminary Hardware Performance Results

This section briefly discusses the performance analysis of the DAIM controller run-
ning on a Raspberry Pi. The ping command is used to check network connectivity
and measure the mean RTT between two IP hosts. The flow setup throughput and
latency of the DAIM controller are measured by using Cbench. Iperf is the tool used
to measure the available bandwidth of the network.

Test 9: Determine the Mean RTT by Using the Ping Command

The ping tests are performed with increasing size of the packet’s payload from default
size of 56 up to 65,000 bytes. Each ping command generates 100 packets and waits
for one second between sending each packet. The mean RTT measurements collected
from the ping tests are displayed in milliseconds below.

Packet size (bytes) Mean RTT (ms)
56 10.55

4,000 30.41
8,000 46.59
16,000 80.94
32,000 148.06
65,000 289.76

The results show a clear indication that the performance with respect to mean RTT
is affected by the size of the packet. In addition, the mean RTT values are growing
significantly as the size of the packet increases. As a result, pinging or transferring a
file with larger packet size may lead to packet loss and poor performance. However,
the response time performance can improve in various ways. For example, using
wide pipes and high-quality cables (fiber) will help ensure low RTT in the case of
high traffic. Moreover, using other high-end networking devices can also reduce
the response time as the Raspberry Pi does not have enough available resources to
manage the packets quickly.

Test 10: DAIM Throughput

Cbench is used to emulate one OpenFlow switch connected to the DAIM controller
and measure the number of flow setups per second that DAIM can handle. Each
Cbench run consists of 16 test loops of default 1000 ms duration and a fixed 100000
unique source MAC addresses. The total responses received from each test are
averaged to compute the responses per second result. The raw throughput results
are shown below.

158

DAIM Performance Results and Evaluation

DAIM: min/max/avg/stdev = 24952.54/28823.65/27139.88/1070.14 responses/s

In this test, the DAIM controller running on a Raspberry Pi can only achieve an
average throughput of 27,139 responses per second. There are a few factors that
can affect this throughput performance. Firstly, insufficient CPU cycles and main
memory consumptions of the Raspberry Pi could significantly reflect on the res-
ults of this experiment. Although Raspberry Pi provides a low-cost way to reboot
computing in test labs, it imposes resource limits. Secondly, DAIM is designed and
implemented as a single-threaded instance and hence not optimised for performance
yet. Therefore, deploying more computing power and using optimisation techniques
such as I/O batching and multi-threaded processing can effectively improve DAIM’s
throughput performance.

Test 11: DAIM Latency

The fundamental design requirements of any controller are to fairly support requests
from different switches, achieve low flow setup latency and scale effectively on large
networks. In this test, the latency is measured as the average response time with
one switch, which sends requests to the DAIM controller, and each time waits for
a reply before sending the next flow request. The raw results from Cbench latency
mode can be seen below.

DAIM: min/max/avg/stdev = 346.97/391.33/362.17/15.47 responses/s

The average response time of DAIM with one simulated switch and 105 hosts is
0.276 ms. This delay to respond to flow requests is caused by the unavoidable
overhead of the socket read/write system calls. Moreover, overhead from warming
up the CPU caches and executing applications to process new flow requests can
also cause a small additional setup time. Therefore, reducing such unavoidable
overhead across a larger number of flow requests is required to improve the DAIM
controller performance. This can be achieved by decreasing the number of system
calls by reading/writing more bytes in every socket call, using a larger read buffer
(batching) and reducing the number of application executions. As a result, DAIM
can be optimised to restrain latency while keeping high throughput.

Test 12: Iperf Reported TCP Bandwidth

In this test, Host 2 (IP 192.168.1.20) is used as the Iperf server and Host 1 (IP
192.168.10) as the Iperf client. The available bandwidth is measured through TCP
tests. By default, the server connects to the client on the TCP port 5001. However,
using this port the kernel OpenVswitch daemon of the Raspberry Pi crashed and
was unable to complete the Iperf experiments. Thus, a new server communication
port is assigned to 6689 to facilitate the connection. The bandwidth displayed below
by Iperf is the measured bandwidth from host 1 to host 2.

Client side:
1 --
2 Client connecting to 192.168.1.20, TCP port 6689

159

5.6 Other Parameters That Can Affect the Performance Evaluation

3 TCP window size: 16.0 KByte (default)
4 --
5 [3] local 192.168.1.10 port 44047 connected with 192.168.1.20 port

6689
6 [ID] Interval Transfer Bandwidth
7 [3] 0.0-15.1 sec 9.25 MBytes 4.81 Mbits/sec

The test is performed with 15 seconds duration and 1 second interval between peri-
odic bandwidth reports. As can be seen, the test was run from client to server
displaying the transfer rate (MB) and bandwidth (Mb) performance taking the av-
erage number as the result. The test output shows the DAIM controller is able to
transfer 9.25 MBytes of data at a rate of 4.81 Mbits/sec from host 1 to host 2 using
the default window size. It is important to note that Iperf consumes all bandwidth
available between client/server via TCP, regardless of LAN, WAN, or VPN con-
nection. Moreover, increasing the TCP window size (e.g., -w2000) will give better
performance. For a small-size OpenFlow network running on limited resources, the
DAIM controller can provide fair performance in terms of bandwidth utilisation.

5.6. Other Parameters That Can Affect the
Performance Evaluation

Apart from the four tested parameters, the causes or reasons why performance can
be limited or affected are analysed in this section. There are various aspects that
may influence the performance of any application. These aspects can be listed as
follows:

The code: According to the controllers tested, the code that has the greatest
extension is the NOX controller, which is based on Python/C++ programming
language. Table 5.2 shows the code extension for the learning switch application
of different OpenFlow controllers. The number of lines of code to implement the
same application for NOX, POX and NOX-MT is 222 lines, 186 lines and 204 lines
respectively. In comparison, the DAIM code is more efficient and compact because
it takes only 109 lines to implement the same learning switch application.

Tested
controllers

Programming
language

Extension, number of
lines

NOX Python/C++ 222
POX Python 186

NOX-MT C++ 204
DAIM C++ 109

Table 5.2.: SDN/OpenFlow Controllers: Code Extension

160

DAIM Performance Results and Evaluation

The programming language: Amain distinction between the tested controllers is
the language they are written in. Comparing the implementation language amongst
them can also be enlightening. The programming language used to develop the
controller is a major aspect that can affect the performance of any application.
For example, the key limitation of Python is the speed, which can influence the
performance evaluation of NOX and POX controllers. Despite Python’s ability
to produce shorter code for the same application, in many cases it is generally
slower than equivalent code in C++. However, Python applications can offer faster
development time and the affordability of memory. In contrast, NOX-MT and DAIM
are developed using a natively compiled C++ language and hence resulting in better
overall performance in terms of throughput.

Threads: The thread of execution can be a significant factor that affects the per-
formance evaluation. Between the tested controllers, NOX, POX and DAIM are
not optimised for performance and designed to process events in a single-threaded
instance. They also do not support multi-threading and therefore show no scalab-
ility across CPU cores. In contrast, NOX-MT is a multi-threaded successor of
NOX that uses well-known optimisation techniques such as I/O batching and a
fast multiprocessor-aware malloc implementation to improve the baseline perform-
ance. As a result, NOX-MT can establish a new lower bound on the maximum
throughput.

The operating system on which various controllers are tested: More accur-
ate data and results can be obtained depending on the device where the perform-
ance tests are performed. For example, making use of the taskset tool provided by
Ubuntu may produce more accurate results. If an OpenFlow controller is evaluated
on a device that has a processor with 2 cores and each core has multiple threads
(e.g., between 2 and 8), the results of this evaluation may be more accurate and
reliable than a controller evaluated on a device with only a single core and a single
thread.

161

Part III.

Drawing Conclusions

163

6. Conclusion and Future Work

This chapter is a summary of the interpreted research outcomes that have been
achieved by this thesis. The conclusions are validated and stated with respect to
the propositions initially presented in the introduction chapter. Furthermore, some
of the limitations and weaknesses of this research as well as directions for the future
study are discussed.

The major goal of the research work elucidated in this thesis is to design, model and
develop a distributed active information model (DAIM) as a new approach to the
architecture and the control platform of a SDN network. Due to the fact that large
multi-service networks are becoming more complex and difficult to manage, the con-
ventional management paradigm is struggling to cope with network bottlenecks of
switch and routing based network deployments. SDN is an emerging management
framework that promises to overcome the bottlenecks of traditional data networks
by separating the network’s control logic from the underlying switches and routers,
promoting a logically centralised network control and introducing the ability of pro-
grammable networks. However, an OpenFlow-based SDN network, managed from
a central point, naturally leads to a single point of failure and lack of scalability.
Many research proposals have been made to avoid having this failure for the entire
network and allowing a scalable architecture, which are mostly based on a physically
distributed but logically centralised control plane. Although they offer a simplified
central view of the network and reduce the look-up overhead by allowing communic-
ation with local controllers, these solutions are not adapted to large-scale networks
with several autonomous systems and require extensive traffic between controllers
to maintain a global network view. Hence, a well-designed system with distribution
strategies will make the OpenFlow network more efficient, robust and reliable.

In particularly, a candidate DAIM system has been proposed to allow programmab-
ility of network elements and local decision-making processes that will essentially
contribute to complex distributed networks. The notion of programmable networks
has currently gained considerable attention due to the rise of the SDN paradigm,
which promises to greatly simplify network management through network program-
mability. The managed network elements are enabled to cope with the ever-changing
environments and are able to satisfy the requirements for service providers, vendors
and end-users. The robustness of the distributed network architecture as well as
the distributed management control has been presented. The design and the imple-
mentation of the overall system model validate the research propositions in Chapter
1, and contributions are further validated by the analysis of network performance

165

6.1 Research Propositions Validation

metrics from experiments in this thesis.

This dissertation demonstrates that the DAIMmodel can be applied to the OpenFlow-
based SDN architecture and also perform operational functions. In addition, the
DAIM model is seamlessly integrated into the SDN structure at the level of switches
to process the flows from local information distributed across network elements.
DAIM is developed to avoid the problem of a single point of failure and address
the scalability issue of OpenFlow. The proposal moves the computational load to
the switches, and effectively the DAIM model creates a logically distributed control
plane. This distributed control plane paradigm offered by DAIM allows the switches
to manage flows locally instead of by a centralised OpenFlow controller, and enables
switches to adapt dynamically to the ever-changing circumstances. The perform-
ance of the DAIM model has been shown to possess efficiency, robustness, flexibility
and can improve the flow setup throughput and latency of an OpenFlow controller.
Most importantly, building a distributed computing environment offered by DAIM
can create the appropriate “hooks” that will enable the development of autonomic
management strategies.

6.1. Research Propositions Validation

The primary objectives of the thesis to develop a new distributed active information
model theory (Chapter 3), implement and validate a candidate DAIM system that
could support distribution services in an OpenFlow network (Chapter 4) have been
met. The performance of the DAIM model with respect to mean RTT, throughput,
latency, and bandwidth utilisation have been thoroughly evaluated and assessed
through a number of experiments and measurements (Chapter 5). The results ob-
tained from simulation tests and hardware implementation indicate that the DAIM
model with distributed computing capabilities is feasible for use in a suitable Open-
Flow environment.

The research propositions presented in the introduction chapter are re-examined
and verified here in regards to the research in Chapters 3, 4 and 5. These research
propositions are validated and summarised in the same order as they are initially
outlined and their contributions towards SDN-based applications and distributed
communication systems are stated.

Proposition 1: The DAIM model will be able to integrate seamlessly into the Open-
Flow architecture at the level of the switches to provide a logically distributed
control plane.

166

Conclusion and Future Work

Validation Highlights: An efficient DAIM model based on L2 forwarding is con-
structed and applied to the SDN architecture at the level of OpenFlow switches to
create a logically distributed control plane. The DAIM system is composed of three
core modules: a communication module, a local storage module and a controller
module. By applying these modules, managing an OpenFlow network with physic-
ally distributed controllers can become adaptable, scalable and robust. The DAIM
model can enhance the OpenFlow switches to make their own local decisions through
its active performance, and thus significantly reduce the workload of a centralised
SDN/OpenFlow controller.

The first deployments of OpenFlow typically use a single centralised controller. This
may cause the problems of having a single point of failure and performance issue
of the ability to support a large number of flow requests as the network size grows.
These limitations are overcome by use of the DAIM model, which is physically dis-
tributed, easy-to-maintain locally and dynamic. In order to successfully build the
DAIM model, a well-designed architecture is needed to organise massive information
of network elements under large-scale and unpredictable distributed network envir-
onments. This is described in Chapter 3, whereby the theoretical background based
on the O:MIB structure and O:XML technique are firstly presented to enhance the
information collection process. The fundamental principles of the DAIM model are
described and its practical feasibility to the SDN paradigm is also discussed in terms
of design, architecture and implementation. Furthermore, the reason why the DAIM
model is important and required is further explained, and hence the contribution of
DAIM is justified.

The contribution of the implemented DAIM model is discussed in the first part
of Chapter 4. The main contribution to knowledge of this chapter is developing
the DAIM model within OpenFlow switches as a logically distributed control plane
paradigm. The DAIM model is invented with the goal to address the limitations of
current OpenFlow approaches and future distributed network systems aiming at an
autonomic management strategy. DAIM model implementation has been described
in three phases including a basic carrier, semi-distributed and fully distributed func-
tionality. The details of the DAIM system are further discussed from a software
specification perspective. More specifically, three core modules that construct the
DAIM ecosystem are presented with some sample code reviews and flowchart dia-
grams of the implemented algorithms. These implemented modules are comprised
of the communication module, the local storage module and the controller module.
The most significant OpenFlow messages required for the communication between
the switch and the DAIM controller are also explained.

We have successfully applied an effective DAIM model into the SDN structure to
provide a logically distributed control platform for OpenFlow networks. As a con-
sequence, the Proposition 1 is validated and this objective has been achieved. The
DAIM structure is further used for the experimental validation and performance
analysis in this dissertation.

167

6.1 Research Propositions Validation

Proposition 2: This logically distributed control plane will allow the switches to
manage flows locally by having DAIM operate on packets instead of a central-
ised controller in an SDN environment.

Validation Highlights: Using Mininet, the deployment of the DAIM model in
OpenFlow networks can perform operational functions locally without support and
vetting from a centralised controller. The system validation results in satisfactory
performance in terms of efficiency and robustness. A small-size OpenFlow lab based
on Raspberry Pi’s has been set up physically to demonstrate that DAIM can be
deployed in real world networks.

The feasibility validation is mainly from a set of tasks performed to check the com-
pliance of the DAIM system with its purpose and functions. Examples of the tasks
are using the ping command between hosts, creating Linux command line chat
server, streaming video via VLC media player and running a simple web server-
client to verify network connectivity. These tasks and scenarios are demonstrated
in the second part of Chapter 4. The scenarios used to verify the functionalities
of the DAIM model are created in a virtualised network using Mininet emulator.
Using this tool to test the system’s functionality is considered as the primary goal.
Different types of network topologies are also used in such scenarios, which can be
categorised into the following basic types: linear, ring, tree, and fully mesh topology.
Moreover, a flow table buildup from ping traffic is explained to show that DAIM
operates exactly as it is designed to do in a consistent and functional manner, and to
demonstrate the underlying protocol in action through various network services and
applications. The objective of DAIM validation is to produce documented evidence,
which provides a high degree of assurance that all components of the system will
consistently work correctly when brought into use.
The feasibility of applying DAIM to real networks has been further illustrated in the
physical OpenFlow test lab. The hardware implementation of DAIM based on a set
of Raspberry Pi’s is described in Chapter 5. The main goal is to demonstrate that
DAIM can perform operational functions and can be deployed in real networks. A
small-size OpenFlow network has already been set up physically in the lab with two
software switches controlled by DAIM and two hosts. An Ubuntu 14.10 image is
the operating system used for the Raspberry Pi’s, which comes with the lightweight
LXDE desktop pre-installed. Each Raspberry Pi runs an OpenVswitch implementa-
tion and a DAIM controller on the same device, whereas the hosts are normal PCs.
The OpenFlow software reference system is also installed to add OpenFlow switch-
ing capability to the Raspberry Pi with multiple NICs. The setup installation and
configuration are documented and some useful tests are also conducted to verify the
functionality of the system.
Taking account of the outcomes of Mininet and Raspberry Pi, we can conclude
that by applying DAIM, an OpenFlow network can perform operational functions
in terms of forwarding packets and installing appropriate flows without the vetting
from a centralised controller. Therefore, after revisiting Proposition 2, the author is

168

Conclusion and Future Work

of the opinion that the DAIM model can also be applied to a more sophisticated ar-
chitecture or other distributed computing environments such as WSNs, peer-to-peer
applications, and cellular networks.
Proposition 3: The performance of the DAIM model can be proved to possess

efficiency, robustness/resilience, flexibility, and will improve the flow setup
throughput and latency of an OpenFlow controller.

Validation Highlights: The results from experimental tests show that the DAIM
controller has fair performance results in regard to mean RTT, flow setup through-
put, latency and TCP bandwidth utilisation. The performance comparisons between
DAIM and other controllers used primarily for research purposes show DAIM is a
promising and innovative distributed control plane in managing flows with a dis-
tributed nature. The experiments further prove the DAIM controller outperforms
both NOX and POX controllers.

In this thesis, the performance of an OpenFlow controller is defined by four charac-
teristics: mean RTT, throughput, latency and bandwidth. The aim is to obtain the
lowest mean RTT, maximum throughput (number of outstanding packets, flows per
second), minimum latency (response time, ms), and maximum TCP bandwidth (the
rate of data transfer) for each controller. To quantify the controller performance,
the ping command with different packet sizes is executed to measure the mean RTT
values. The Cbench tool is used to measure the number of flow setups per second
that the controller can handle in terms of throughput and latency. Whereas, Iperf is
served as a benchmarking tool for testing the network’s maximum TCP bandwidth
utilisation. The performance results of DAIM are compared with other OpenFlow
controllers including NOX, POX and NOX-MT. The outcomes of experimental eval-
uations are discussed in Chapter 5. For all experiments, each controller implements
a normal L2 learning switch application provided by the controller. NOX, POX
and DAIM are designed as a single-threaded instance, whereas NOX-MT is a multi-
threaded and highly optimised implementation of NOX.
Regarding mean RTT, the DAIM controller produced slightly longer RTT for smaller
packets (< 1.75 ms difference) but can outperform both NOX and POX controllers
when pinging with larger packets (e.g., 16000, 32000 and 65000 bytes). In compar-
ison, the average RTT of each packet size between DAIM and NOX-MT is nearly
identical with NOX-MT performing slightly better. Moreover, the experimental res-
ults from Cbench indicate that the throughput performance of DAIM outperforms
POX and NOX by a factor of 26 and 7 respectively on a server with two duo-core
3GHz processors. NOX-MT uses optimisation techniques such as I/O batching and
multi-threaded processing and thus shows the best average throughput. The per-
formance of the DAIM controller is further evaluated in terms of flow setup latency.
The comparison results show that DAIM has a better latency performance than
NOX and POX in the scenario with one connected switch and 105 hosts. Further-
more, Iperf is used to run a server on one host and a client on the second host, and
check the speed between them. The Iperf results show a clear indication of effective

169

6.2 Research Contributions and Findings

bandwidth utilisation provided by the DAIM controller.
The DAIM controller demonstrates a similar RTT and bandwidth performance with
NOX-MT, and DAIM has the better performance than NOX and POX in all network
metrics. The test results show the DAIM controller can handle a high throughput
while keeping the flow setup latency minimal. Thus, DAIM is proved to possess
efficiency, resilience and improves the throughput and latency of an SDN controller.
Proposition 4: Most importantly, in building the distributed computing environment

offered by DAIM, this can create the appropriate “hooks” that will allow the
development of autonomic management strategies.

Validation Highlights: After successfully implemented a distributed computing
environment offered by DAIM, this research outcome could be the first attempt
in enabling the autonomic service management for SDN. Additionally, the inven-
ted DAIM model can bring forward a new approach to autonomic communication
networks.

It is reasonable to deploy the decentralised management paradigm instead of cent-
ralised management paradigm in order to meet the requirements of future complex
distributed networks. Therefore, an innovative DAIM architecture is proposed to
cope with the scalability and central point of failure issues of SDN. This architec-
ture guides the system implementations, feasibility validations as well as experiments
through the thesis. The performance of the DAIM framework in terms of efficiency
and robustness is therefore tested and evaluated. The outcome of the implemented
DAIM model has a strong impact on future distributed systems and applications in
OpenFlow networks. DAIM is successfully developed to create a logically distributed
control plane and hence gives effect to autonomic behaviours.
Because decentralisation is a sine qua non, an essential condition, of autonomic
systems, building a distributed computing environment by DAIM can consequently
enable the development of autonomic management strategies. The experiment res-
ults demonstrate the DAIM structure can be one of the architectural approaches to
creating the autonomic service management for SDN. Moreover, DAIM can possibly
be implemented as a generic model with a multi-agent system to become a truly
autonomic communications network. The DAIM structure can be utilised to in-
vestigate the functionalities required by the autonomic networking within the ACNs
community. The DAIM model can be further applied to enable adaptability and
autonomy to other distributed networks such as WSNs, P2P networks and Ad-Hoc
sensor networks.

6.2. Research Contributions and Findings

The model, distributed architecture and system implementation discussed in this
thesis are considered as contributions and findings to current OpenFlow networks.

170

Conclusion and Future Work

In essence, an alternative solution to distribute control functions across OpenFlow
switches is proposed, implemented, validated and documented in the published pa-
pers. Apart from the original primary objectives of the thesis being satisfied, a num-
ber of additional contributions and findings to the original objectives were achieved.
The innovation and novelty of these contributions include the following:

1. Review of literature on network management for distributed systems in NGN
networks. This contribution provides the needs of distributed systems in NGN
networks. A Springer book chapter has been published as a contribution to
the knowledge [84]. (subsection 2.2.3 on page 29)

2. Review of literature on Software-Defined Networking (SDN) paradigm. This
contribution presents the state of the art in programmable networks based
on the standard OpenFlow protocol version 1.0. It also provides an in-depth
analysis of the ongoing research efforts and challenges of SDN. (section 2.4 on
page 37)

3. A comparative review of accurate OpenFlow simulation and emulation tools
is conducted. Mininet is used to implement the DAIM model due to its open
access for researchers which provides a realistic setting for SDN-based environ-
ment. A journal paper has been published as a contribution to the knowledge
[81]. (subsection 2.4.6 on page 56)

4. A new DAIM model is proposed as an alternative to the previous efforts on
object-oriented management information base (O:MIB) and hybrid O:XML
semantics [31]. It has been seamlessly integrated into the SDN architecture
at the level of the switches to provide a logically distributed control plane.
A journal paper and two conference papers based on this model have been
published as contributions to the knowledge [9], [83], [79]. (chapter 3 on page
73)

5. This DAIM model is implemented from scratch based on its theory and de-
signed architecture. A new message channel is created to facilitate the commu-
nications between the controller and OpenFlow switches, which is implemen-
ted using UNIX BSD socket programming API to process OpenFlow messages
without any modification. (subsection 4.2.1 on page 97)

6. An intelligent L2 switch application is developed in DAIM to control packet
flows in an OpenFlow switch. (subsection 4.2.2 on page 98)

7. Introduction to the cross-controller communication protocol based on the LLDP
mechanism. (subsection 4.2.3 on page 99)

8. Three core modules that construct the DAIM ecosystem are further implemen-
ted. Inside the communication module, there are various routines for creating
different types of OpenFlow messages. The storage module is built to store
information of network elements. The controller module is responsible for all
control functions. (section 4.3 on page 101)

171

6.3 Research Limitations

9. The feasibility of using DAIM in different OpenFlow scenarios has been tested,
discovered and documented. Additionally, experiments are carried out to
verify the functionality of DAIM and check the compliance of the overall sys-
tem with its purpose and functions. (section 4.5 on page 123)

10. Different performance metrics including mean RTT, throughput, latency and
bandwidth have been tested and discovered by the used of available and ap-
propriate benchmarking tools (Cbench and Iperf). (subsection 5.3.1 on page
137)

11. The experimental validation of DAIM communication channel is conducted
and shows a good performance in terms of flow setup speed. (subsection 5.4.1
on page 143)

12. The performance evaluation of the DAIM controller is carried out and shows a
better performance with respect to throughput and latency. The performance
of DAIM is compared with NOX, POX, and NOX-MT. (subsection 5.4.2 on
page 149)

13. A small-size OpenFlow network has already been set up physically in the lab
to illustrate that DAIM can perform operational functions and can be deployed
in real networks. Performance of DAIM on hardware has been tested, analysed
and documented. (section 5.5 on page 154)

14. There are different factors such as programming language and device resources
influencing the performance of an OpenFlow controller. The important para-
meters that can affect the performance evaluation have been analysed. (section 5.6
on page 160)

15. A reference implementation of the DAIM model is made available to help
further research, trials and validation of the performance of scalability and
robustness for other researcher’s use. It is accessible on the public domain
(GitHub), and is considered as a contribution to the SDN and the networking
research community. (Appendix A on page 185)

6.3. Research Limitations

Although the DAIM model is successfully implemented and the outcomes of the
research in this dissertation are properly justified, there are some limitations as
follows:

• The OpenFlow test lab is constructed on a limited network scale because of
the limited research resources, time and efforts. In the future with available
resources, a more sophisticated network architecture can be re-constructed in
the test lab to host novel research scenarios. The performance analysis of
the DAIM controller based on hardware (Raspberry Pi’s) is briefly discussed
in subsection 5.5.4 on page 158. It has been observed that deploying more

172

Conclusion and Future Work

computing power and using other high-end networking devices can significantly
improve DAIM’s performance. This is because the Raspberry Pi does not have
enough available resources to manage the flow entries quickly. For example, the
throughput of DAIM running on a server with two quad-core 3GHz processors
can achieve a maximum of 162,519 responses per second compared to 27,139
with DAIM running on a Raspberry Pi. Furthermore, more experiments from
real large-scale networks are required in order to obtain more practical results.

• In DAIM’s current implementation, there is no immediate link failover recov-
ery. If network environment changes such as a switch port is down, all active
flows associated with that port are not re-routed. These flows are not removed
from the flow table because as packets keep arriving the flow idle-timeout gets
reset. If the packet stream stops, then the flow times out. Another path to
the destination is reinstalled when the packet stream starts again. All of this
can possibly be resolved by using OpenFlow protocol version 1.1. However,
failover scenarios are not in the scope of this research and OpenFlow version
1.1 has not been developed for the test hardware.

• Because each DAIM controller is designed to manage only one dedicated
switch, it is not applicable to analyse the correlation between the DAIM’s
throughput and the number of switches (“N” switches) connected to the con-
troller. As a result, Cbench evaluation tool can be used to test the performance
of DAIM with only one connected switch. Increasing the number of connec-
ted hosts (“N” MACs) is required in order to test the maximum number of
Packet_In messages that the controller can handle. To provide more fine-
tuning of test parameters, the traditional Cbench code needs to be modified
as our own solution and benchmark for OpenFlow controllers testing.

6.4. On-going Work and Future Directions

This research work on a new information model that allows logical distribution of
the control plane for SDN opens several new avenues for research. Although the
DAIM model has been seamlessly integrated into the SDN architecture, DAIM is far
from perfect and can be optimised in various ways. Further investigative research
is suggested to aim at improvement in the following areas:

• The performance of the DAIM model can be optimised not only to maxim-
ise flow setup throughput but also to maintain low request-handling latency.
This can be achieved by using well-known optimisation techniques. Examples
of these are using a fast multiprocessor-aware malloc implementation that will
scale effectively in a multi-core machine, using a larger read buffer (batch-
ing) to minimise the overhead of I/O, decreasing the number of system calls
by reading/writing more bytes in every socket call and reducing the number
of application executions. DAIM can also be optimised to read and process

173

6.4 On-going Work and Future Directions

OpenFlow messages as a fully multi-threaded event loop in order to achieve
high performance.

• A multi-agent based system essentially has the properties of intelligence and
autonomics. JADE and its extension JadeX are Java agent development plat-
forms that aim to standardise the multi-agent technology for various users.
Both of them are also FIPA compliance agent systems. Developing the in-
telligent DAIM agents based on these platforms will be carried out in the
next stage work. The main goal is to create the DAIM agents with more
advanced and autonomous functionalities such as collecting local link inform-
ation to construct the entire network graph and computing the best path to
the designated destination. Furthermore, it is very important for each DAIM
controller to communicate with one another. Therefore, developing an efficient
controller-to-controller communication and protocol will be highly beneficial
for large-scale networks where the controller instances share massively dis-
persed information to ensure fine-grained network wide consistency.

• Regarding the functionalities of DAIM that have been developed so far, at-
tention must be paid to the fact that more test scenarios such as failover and
recovery can be conducted to increase fault tolerance. Currently, DAIM is not
developed to support immediate link failover recovery. One promising solu-
tion to solve this issue in the current version is to maintain a local cache of all
installed flow entries. When the controller receives information on a broken
link, all affected flow entries are removed from those active switches. After the
removal, no flow is available for subsequent flows and hence a re-calculation
is triggered to produce a new active path. OpenFlow specification version 1.1
has introduced the concepts of failover groups in which the switch takes a
failover decision to another interface without having to wait for the controller.
Unfortunately, the author has discovered this at the end of the research. Thus,
adopting later versions of the OpenFlow protocol will be absolutely useful and
highly valuable for DAIM.

• Finally, outcomes of the DAIM model that have been designed and implemen-
ted through this dissertation can also be used by other related research, such
as the current distributed systems research. The reference design of DAIM im-
plementation including a number of open source components can be utilised in
further experiments relating to distributed networking as well as cloud-based
networking. This will facilitate other researchers in conducting further re-
search on the model, network architecture, protocols and theory described in
this work.

174

Bibliography
[1] The IETF policy framework working group: Charter. available at

http://www.ietf.org/html.charters/policy-charter.html technical report.
[2] International organization for standardization. http://www.iso.org. Technical

Report.
[3] CIM concepts whitepaper, CIM version 2.4+. available at http://www.dmtf.or-

g/standards/cim. technical report, DMTF, 2003.
[4] R.; Al-Obasiat Y.; Braun. A Multi-Agent Flexible Architecture for Auto-

nomic Services and Network Management; Computer Systems and Applica-
tions. Computer Systems and Applications, 2007. AICCSA ’07. IEEE/ACS
International Conference on;, pages 124–131, 2007.

[5] Abdallah Al Sabbagh, Pakawat Pupatwibul, Ameen Banjar, and Robin Braun.
Optimization of the openflow controller in wireless environments for enhancing
mobility. In Local Computer Networks Workshops (LCN Workshops), 2013
IEEE 38th Conference on, pages 930–935. IEEE, 2013.

[6] Siamak Azodolmolky. Software Defined Networking with OpenFlow. Packt
Publishing Ltd, 2013.

[7] Abhishek Bagewadi and KN Rama Mohan Babu. Towards an ethernet learning
switch and bandwidth optimization using pox controller.

[8] Ameen Banjar, Pakawat Pupatwibul, Abdallah AL Sabbagh, and Robin
Braun. Using an icn approach to support multiple controllers in openflow.
International Journal of Electrical & Computer Sciences, 14(2), 2014.

[9] Ameen Banjar, Pakawat Pupatwibul, and Robin Braun. DAIM: a mechanism
to distribute control functions within openflow switches. Journal of Networks,
9(01):1–9, 2014.

[10] Ameen Banjar, Pakawat Pupatwibul, and Robin Braun. Comparison of
TCP/IP routing versus openflow table and implementation of intelligent com-
putational model to provide autonomous behavior. In Computational Intelli-
gence and Efficiency in Engineering Systems, pages 121–142. Springer, 2015.

[11] Ameen Banjar, Pakawat Pupatwibul, Robin Braun, and Bruce Moulton. Ana-
lysing the performance of the openflow standard for software-defined network-
ing using the omnet++ network simulator. In Computer Aided System En-
gineering (APCASE), 2014 Asia-Pacific Conference on, pages 31–37. IEEE,
2014.

175

Bibliography

[12] Paul Baran. On distributed communications networks. Communications Sys-
tems, IEEE Transactions on, 12(1):1–9, 1964.

[13] Jaxon:java based openflow controller. http://jaxon.onuos.org/.
[14] Leonardo Richter Bays and Daniel Stefani Marcon. Flow based load balancing:

Optimizing web servers resource utilization. Journal of Applied Computing
Research, 1(2):76–83, 2011.

[15] Beacon. https://openflow.stanford.edu/display/beacon/home.
[16] Fouad Benamrane, Redouane Benaini, et al. Performances of openflow-based

software-defined networks: An overview. Journal of Networks, 10(6):329–337,
2015.

[17] A. Bianco, R. Birke, L. Giraudo, and M. Palacin. Openflow switching: Data
plane performance. pages 1–5. IEEE.

[18] Kenneth P Birman. Reliable distributed systems: technologies, web services,
and applications. Springer Science & Business Media, 2005.

[19] Raouf Boutaba and Andreas Polyrakis. Projecting fcaps to active networks.
In Enterprise Networking, Applications and Services Conference Proceedings,
pages 97–104. IEEE, 2001.

[20] R. Braun and F. Chiang. A distributed active information model enabling
distributed autonomics in complex electronic enviornments. In Broadband
Communications, Information Technology & Biomedical Applications, 2008
Third International Conference on, pages 473–479.

[21] Helios by NEC. http://www.nec.com/.
[22] Z. Cai, AL Cox, and TSE Ng. Maestro: A system for scalable openflow control.

Report, Technical Report TR10-08, Rice University, December 2010.
[23] Marco Canini, Daniele Venzano, and D Kostic. A Nice Way to Test OpenFlow

Applications. NSDI, Apr, 2012.
[24] Jeffrey D Case, Mark Fedor, Martin L Schoffstall, and James Davin. Simple

network management protocol (SNMP). Technical report, 1990.
[25] Yanan Chang, Debao Xiao, Hui Xu, and Limiao Chen. Design and imple-

mentation of netconf-based network management system. In Future Genera-
tion Communication and Networking, 2008. FGCN’08. Second International
Conference on, volume 1, pages 256–259. IEEE, 2008.

[26] F. Chiang and R. Braun. Self-adaptability and vulnerability assessment of
secure autonomic communication networks. Managing Next Generation Net-
works and Services, pages 112–122, 2007.

[27] F. Chiang and R. Braun. Towards a management paradigm with a constrained
benchmark for autonomic communications. Computational Intelligence and
Security, pages 250–258, 2007.

176

Bibliography

[28] F. Chiang, R. Braun, and J. Hughes. A biologically-inspired multi-agent frame-
work for autonomic service management. International Journal of Pervasive
Computing and Communications, 2(3):261–276, 2007.

[29] F. Chiang, H. Fernandez, R. Braun, and J. Agbinya. Integrating object-
oriented O:XML semantics into autonomic decentralised functionalities. In
7th International Symposium on Communications and Information Technolo-
gies, pages 768–773. IEEE.

[30] F. Chiang and V. Mahadevan. Towards the distributed autonomy in complex
environments. In Information and Multimedia Technology, 2009. ICIMT’09.
International Conference on, pages 169–172. IEEE.

[31] Frank Chiang. Self-adaptability, resilience and vulnerability on autonomic
communications with biology-inspired strategies. PhD thesis University of
Technology Sydney, Australia, 2008.

[32] Frank Chiang, Johnson Agbinya, and Robin Braun. Risk and vulnerability
assessment of secure autonomic communication networks. In Wireless Broad-
band and Ultra Wideband Communications, 2007. AusWireless 2007. The 2nd
International Conference on, pages 40–40. IEEE, 2007.

[33] OpenFlow Switch Consortium. Openflow switch specification version 1.1. 0.
Report, Tech. Rep., February, 2011.

[34] A.R. Curtis, J.C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee. Devoflow: Scaling flow management for high-performance net-
works. SIGCOMM-Computer Communication Review, 41(4):254, 2011.

[35] S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli. A survey of autonomic
communications. Acm Transactions on Autonomous and Adaptive Systems,
1(2):223–259, 2006. V03zn Times Cited:112 Cited References Count:165.

[36] David Erickson. The beacon openflow controller. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking, pages
13–18. ACM, 2013.

[37] ZhengCai AlanL Cox TS EugeneNg. Maestro: Balancing fairness, latency and
throughput in the openflow control plane.

[38] T. Feng, J. Bi, H. Hu, and H. Cao. Networking as a service: a cloud-based
network architecture. Journal of Networks, 6(7):1084–1090, 2011.

[39] Marcial Fernandez. Evaluating openflow controller paradigms. In ICN, pages
151–15, 2013.

[40] Rodriguez H. Fernandez. Active MIB, an object oriented solution for network
management. Master thesis, Chalmers University of Technology, 2007.

[41] Floodlight. an open SDN controller. http://floodlight.openflowhub.org/.

177

Bibliography

[42] Pantou: Openflow 1.0 for openwrt. http://www.openflow.org/wk/index.php/
open-flow 1.0 for openwrt.

[43] N. Foster, M.J. Freedman, R. Harrison, J. Rexford, M.L. Meola, and
D. Walker. Frenetic: a high-level language for openflow networks. In Pro-
ceedings of the Workshop on Programmable Routers for Extensible Services of
Tomorrow, page 6. ACM.

[44] Open Networking Foundation. Software-defined networking: The new norm
for networks. ONF WHITE PAPER, April 2012.

[45] Chen Gang, Yang Baofei, Zhou Wenan, and Song Junde. Research on service
management data modeling based on sid. In Vehicular Technology Conference,
2007. VTC-2007 Fall. 2007 IEEE 66th, pages 1995–1999.

[46] Paul Goransson and Chuck Black. Software Defined Networks: A Compre-
hensive Approach. Elsevier, 2014.

[47] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. Nox: towards an operating system for networks. ACM SIGCOMM
Computer Communication Review, 38(3):105–110, 2008.

[48] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: a framework for efficient
and scalable offloading of control applications. In Proceedings of the first
workshop on Hot topics in software defined networks, pages 19–24. ACM,
2012.

[49] IBM. TXSeries for Multiplatforms: Concepts and Planning, 5th edn. In-
ternational Business Machines Corporation, first edition edition, November
2005.

[50] Iperf:. http://iwl.com/white-papers/iperf.

[51] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia.
Modeling and performance evaluation of an openflow architecture. In Pro-
ceedings of the 23rd International Teletraffic Congress, pages 1–7. ITCP.

[52] Michael Jarschel, Frank Lehrieder, Zsolt Magyari, and Rastin Pries. A flexible
openflow-controller benchmark. In Software Defined Networking (EWSDN),
2012 European Workshop on, pages 48–53. IEEE, 2012.

[53] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

[54] Dominik Klein and Michael Jarschel. An openflow extension for the omnet++
inet framework. 2013.

[55] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, and T. Hama. Onix: A distributed
control platform for large-scale production networks. OSDI, Oct, 2010.

178

Bibliography

[56] Diego Kreutz, Fernando MV Ramos, PE Verissimo, C Esteve Rothenberg,
Siamak Azodolmolky, and Steve Uhlig. Software-defined networking: A com-
prehensive survey. proceedings of the IEEE, 103(1):14–76, 2015.

[57] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop:
rapid prototyping for software-defined networks. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, page 19. ACM.

[58] Dan Levin, Andreas Wundsam, Brandon Heller, Nikhil Handigol, and Anja
Feldmann. Logically centralized?: state distribution trade-offs in software
defined networks. In Proceedings of the first workshop on Hot topics in software
defined networks, pages 1–6. ACM, 2012.

[59] KAManjula and P Karthikeyan. Distributed computing approaches for scalab-
ility and high performance. International Journal of Engineering Science and
Technology, 2(6):2328–2336, 2010.

[60] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner. Openflow: enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review, 38(2):69–74,
2008.

[61] Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray. Opendaylight:
Towards a model-driven SDN controller architecture. In 2014 IEEE 15th
International Symposium on, pages 1–6. IEEE, 2014.

[62] Kraig Meyer, Mike Erlinger, Joe Betser, Carl Sunshine, Germán Goldszmidt,
and Yechiam Yemini. Decentralizing control and intelligence in network man-
agement. In Integrated Network Management IV, pages 4–16. Springer, 1995.

[63] Jeffrey C Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet Sharma, An-
drew R Curtis, and Sujata Banerjee. Devoflow: Cost-effective flow manage-
ment for high performance enterprise networks. In Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks, page 1. ACM.

[64] Tatsuya Mori, Masato Uchida, Ryoichi Kawahara, Jianping Pan, and Shigeki
Goto. Identifying elephant flows through periodically sampled packets. In
Proceedings of the 4th ACM SIGCOMM conference on Internet measurement,
pages 115–120. ACM, 2004.

[65] Tore Mørkved. Peer-to-peer programming with wireless devices. 2005.

[66] M. Muck, S. Gault, V. Merat, E. Patouni, Z. Boufidis, A. Lilis, N. Alonistioti,
B. Steinke, R. Feuillette, P. Martigne, E. Alexandri, O. Holland, G. Bar-
tolomeo, P. Demestichas, G. Dimitrakopoulos, K. Tsagkaris, V. Stavroul-
aki, F. Zhiyong, and H. Sharma. Autonomic communications for heterogen-
eous wireless communication systems technical report. https:// ict-e3.eu/
project/ white_papers/ e2r/ 6.E2RII_Autonomics_White_Paper.pdf.

[67] Mul. http://sourceforge.net/p/mul/wiki/home/.

179

https://ict-e3.eu/project/white_papers/e2r/6.E2RII_Autonomics_White_Paper.pdf
https://ict-e3.eu/project/white_papers/e2r/6.E2RII_Autonomics_White_Paper.pdf

Bibliography

[68] Thomas D Nadeau and Ken Gray. SDN: Software Defined Networks. ” O’Reilly
Media, Inc.”, 2013.

[69] J. Naous, D. Erickson, G.A. Covington, G. Appenzeller, and N. McKeown.
Implementing an openflow switch on the netfpga platform. pages 1–9. ACM.

[70] Marcelo R Nascimento, Christian E Rothenberg, Marcos R Salvador, Car-
los NA Corrêa, Sidney C de Lucena, and Maurício F Magalhães. Virtual
routers as a service: the routeflow approach leveraging software-defined net-
works. In Proceedings of the 6th International Conference on Future Internet
Technologies, pages 34–37. ACM, 2011.

[71] P. NathRK. Internet technology with client server architecture
(2010). http:// www.data-e-education.com/E079_Centralized_Network_
Architecture.html/ , 2010. [Online; accessed April 17, 2012].

[72] The nodeflow openflow controller. http://garyberger.net/?p=537.
[73] Node.js. http://nodejs.org/.
[74] B Nunes, Marc Mendonca, X Nguyen, Katia Obraczka, and Thierry Turletti.

A survey of software-defined networking: Past, present, and future of pro-
grammable networks. 2014.

[75] ofsoftswitch13 cpqd. https://github.com/cpqd/ofsoftswitch13.
[76] Trema openflow controller framework. https://github.com/trema/trema.
[77] B. Otero, S. Sahuquillo, P. Barlet-Ros, S. Spadaro, and J. Solé-Pareta. Self-*

algorithms and autonomic communication systems. Internal publication of
Technical university of Catalonia.

[78] POX. http://www.noxrepo.org/pox/about-pox/.
[79] P. Pupatwibul, B. Jozi, and R. Braun. Investigating O:MIB-based distributed

active information model (DAIM) for autonomics. In International Confer-
ence on Information and Communication Technologies and Applications, pages
7–12. IIIS.

[80] Pakawat Pupatwibul, Ameen Banjar, Abdallah Al Sabbagh, and Robin Braun.
Developing an application based on openflow to enhance mobile IP networks.
In Local Computer Networks Workshops (LCN Workshops), 2013 IEEE 38th
Conference on, pages 936–940. IEEE.

[81] Pakawat Pupatwibul, Ameen Banjar, Abdallah AL Sabbagh, and Robin
Braun. A comparative review: Accurate openflow simulation tools for pro-
totyping. Journal of Networks, 10(5):322–327, 2015.

[82] Pakawat Pupatwibul, Ameen Banjar, and Robin Braun. Performance evalu-
ation of TCP/IP vs. openflow in inet framework using omnet++, and imple-
mentation of intelligent computational model to provide autonomous beha-
viour. In The Asian Conference on Technology, Information & Society 2014,
pages 43–56. The International Academic Forum (IAFOR).

180

http://www.data-e-education.com/E079_Centralized_Network_Architecture.html/
http://www.data-e-education.com/E079_Centralized_Network_Architecture.html/

Bibliography

[83] Pakawat Pupatwibul, Ameen Banjar, and Robin Braun. Using DAIM as a
reactive interpreter for openflow networks to enable autonomic functionality.
In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, pages
523–524. ACM.

[84] Pakawat Pupatwibul, Ameen Banjar, Abdallah AL Sabbagh, and Robin
Braun. An Intelligent Model for Distributed Systems in Next Generation Net-
works, pages 315–334. Springer, 2014.

[85] Pakawat Pupatwibul, Abdallah AL Sabbagh, Ameen Banjar, and Robin
Braun. Distributed systems in next generation networks. In 1st Australian
Conference on the Applications of Systems Engineering ACASE’12, page 32,
2012.

[86] Umesh Hodeghatta Rao and Sanjay Mohapatra. Deploying network man-
agement solutions in enterprises. In Networked Computing (INC), 2010 6th
International Conference on, pages 1–6. IEEE, 2010.

[87] Jordi Perez Romero, Oriol Sallent, Ramon Agusti, and Miguel Angel Diaz-
Guerra. Radio resource management strategies in UMTS. John Wiley & Sons,
2005.

[88] Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood, and AndrewW
Moore. OFLOPS: An open framework for openflow switch evaluation. In
Passive and Active Measurement, pages 85–95. Springer, 2012.

[89] Ryu. http://osrg.github.com/ryu/.
[90] AA Sabbagh, Robin Braun, and Mehran Abolhasan. A comprehensive survey

on rat selection algorithms for heterogeneous networks. 2011.
[91] Robert R Schaller. Moore’s law: past, present and future. Spectrum, IEEE,

34(6):52–59, 1997.
[92] Alexander Shalimov, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov, and

Ruslan Smeliansky. Advanced study of sdn/openflow controllers. In Proceed-
ings of the 9th Central & Eastern European Software Engineering Conference
in Russia, page 1. ACM, 2013.

[93] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. McKeown,
and G. Parulkar. Flowvisor: A network virtualization layer. OpenFlow Switch
Consortium, Tech. Rep, 2009.

[94] Rob Sherwood, Michael Chan, Adam Covington, Glen Gibb, Mario Flajslik,
Nikhil Handigol, Te-Yuan Huang, Peyman Kazemian, Masayoshi Kobayashi,
Jad Naous, et al. Carving research slices out of your production networks with
openflow. ACM SIGCOMM Computer Communication Review, 40(1):129–130,
2010.

[95] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Cas-
ado, Nick McKeown, and Guru M Parulkar. Can the production network be
the testbed? In OSDI, volume 10, pages 1–6, 2010.

181

Bibliography

[96] Rob Sherwood and YAP KOK-KIONG. Cbench: an open-flow controller
benchmarker. 2013-05-13]. http://www, openflow, org/wk/index, php/Oflops,
2010.

[97] Vishal Shukla. Introduction to Software Defined Networking - Openflow &
Vxlan (Paperback). CreateSpace Independent Publishing Platform, North
Charleston, SC, 2013.

[98] Simple Network Access Control (SNAC). http://www.openflow.or-
g/wp/snac/.

[99] Joris Soeurt and Iwan Hoogendoorn. Shortest path forwarding using openflow.
University of Amsterdam, February, 13:2011–2012, 2012.

[100] Indigo: Open source openflow switches. http://www.openflowhub.org/dis-
play/indigo/.

[101] R. Sterritt and D.F. Bantz. Personal autonomic computing reflex reactions
and self-healing. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 36(3):304–314, 2006.

[102] R. Sterritt and D. Bustard. Towards an autonomic computing environment.
In 14th International Workshop on Database and Expert Systems Applications,
pages 694–698. IEEE.

[103] John Strassner, Sven van der Meer, and James Won-Ki Hong. The applic-
ability of self-awareness for network management operations. In Modelling
Autonomic Communications Environments, pages 15–28. Springer, 2009.

[104] John C Strassner and Yacine M Ghamri-Doudane. Modelling Autonomic Com-
munications Environments. Springer, 2009.

[105] Lalith Suresh, Julius Schulz-Zander, Ruben Merz, Anja Feldmann, and Teresa
Vazao. Towards programmable enterprise wlans with odin. In Proceedings of
the first workshop on Hot topics in software defined networks, pages 115–120.
ACM, 2012.

[106] Amin Tootoonchian and Yashar Ganjali. Hyperflow: A distributed control
plane for openflow. In Proceedings of the 2010 internet network management
conference on Research on enterprise networking, pages 3–3. USENIX Asso-
ciation.

[107] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and
Rob Sherwood. On controller performance in software-defined networks. In
USENIX Workshop on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services (Hot-ICE), volume 54, 2012.

[108] Google Code University. Introduction to distributed system design. http://-
code.google.com/edu/parallel/dsd-tutorial.html. [Online; accessed July 22,
2011].

182

Bibliography

[109] A. Varga. Inet framework for the omnet++ discrete event simulator. http://-
github. com/inetframework/inet, 2012.

[110] András Varga. The omnet++ discrete event simulation system. In Proceedings
of the European Simulation Multiconference (ESM’2001), volume 9, page 185.
sn.

[111] András Varga and Rudolf Hornig. An overview of the omnet++ simulation
environment. In Proceedings of the 1st international conference on Simulation
tools and techniques for communications, networks and systems & workshops,
page 60. ICST (Institute for Computer Sciences, Social-Informatics and Tele-
communications Engineering).

[112] Dinesh C Verma. Simplifying network administration using policy-based man-
agement. Network, IEEE, 16(2):20–26, 2002.

[113] NS-3 version 3.16. OpenFlow switch support. http://www.nsnam.org/doc-
s/release/3.16/models/html/openflow-switch.html. December 2012.

[114] Open vswitch and ovs controller. http://openvswitch.org/.

[115] Shie-Yuan Wang, Chih-Liang Chou, and Chun-Ming Yang. Estinet open-
flow network simulator and emulator. Communications Magazine, IEEE,
51(9):110–117, 2013.

[116] Julius Werner. Description of Network Research Enablers on the Example of
OpenFlow New Network Architectures, volume 297 of Studies in Computational
Intelligence, pages 167–177. Springer Berlin / Heidelberg, 2010.

[117] Baozhen Wu and Yanan Chang. Integrating SNMP agents and CLI with
NETCONF-based network management systems. In Computer Science and
Information Technology (ICCSIT), 2010 3rd IEEE International Conference
on, volume 1, pages 81–84. IEEE, 2010.

[118] K. K. Yap. Openflowvms simulating openflow networks. http://www. open-
flow. org/wk/index.php/OpenFlowVMS., March 2011.

[119] James Yu and Imad Al Ajarmeh. An empirical study of the netconf protocol.
In Networking and Services (ICNS), 2010 Sixth International Conference on,
pages 253–258. IEEE, 2010.

[120] Minlan Yu, Jennifer Rexford, Michael J Freedman, and Jia Wang. Scalable
flow-based networking with difane. ACM SIGCOMM Computer Communica-
tion Review, 41(4):351–362, 2011.

183

A. DAIM Source Code for Data
Analysis

The reference implementation of the DAIM controller can be downloaded from Git-
Hub link below:

https://github.com/ndomon/DAIM.git

To start the DAIM controller running with Mininet follow these steps:

Step 1: download the DAIM controller distribution and compile with the following
commands:
1 ~$ gcc -c ani.cpp com.cpp con.cpp linked.cpp

1 ~$ gcc ani.o com.o con.o linked.o -o aniv21 -lstdc++ -lpthread

Step 2: change directory to the executable file and enter ./aniv21 -h to see the
documented arguments.
1 ~$ cd ANIv21/dist/Debug/GNU-Linux-x86/

1 ~/ANIv21/dist/Debug/GNU-Linux-x86$./aniv21 -help
2 Usage:
3 -p, --port controller port e.g. -p 2000
4 -q, --quite turn off verbose mode
5 -c, --cbench Cbench benchmarking mode
6 -v, --version show ANI version
7 -h, --help show this help

Step 3: start a default Mininet topology with one switch and two hosts to talk to
the DAIM controller:
1 ~$ sudo mn --controller remote

This command will create a network with a connection to the remote controller at
127.0.0.1:6633

Step 4: run a simple learning switch using a DAIM controller framework:
1 ~/ANIv21/dist/Debug/GNU-Linux-x86$./aniv21 -p 6633

185

https://github.com/ndomon/DAIM.git

DAIM Source Code for Data Analysis

Note that every OpenFlow switch in the network must be connected and managed
by at least one DAIM controller.

After a while, the OpenVswitch in Mininet will get connected to the DAIM control-
ler. The output from this controller after a pingall command should look like the
following:

1 Info: creating ANI socket...
2 Info: established ANI server!
3 Info: waiting for the switch connection...
4 Info: connected to the switch!
5 Total host entries freed: -1
6 Total port entries freed: -1
7 Info: sent hello to the switch
8 Info: features request sent to the switch
9 Info: received packet from the switch

10 Info: OpenFlow packet detected
11 Info: echo reply sent to the switch
12 Info: received packet from the switch
13 Info: OpenFlow packet detected
14 Host MAC: FA:3A:FD:D8:1C:16 Ingress Port: 1 Datapath: 0
15 Info: ARP broadcast
16 Info: received packet from the switch
17 Info: OpenFlow packet detected
18 Host MAC: FA:3A:FD:D8:1C:16 Ingress Port: 1 Datapath: 0
19 Host MAC: 66:2C:4D:DF:97:89 Ingress Port: 2 Datapath: 0
20 Info: host found in the table
21 Info: ARP flow mod
22 Info: received packet from the switch
23 Info: OpenFlow packet detected
24 Info: host found in the table
25 Info: ICMP flow mod
26 Info: received packet from the switch
27 Info: OpenFlow packet detected
28 Info: echo reply sent to the switch
29 Info: host already in the table
30 Info: host found in the table
31 Info: ARP flow mod
32 Info: received packet from the switch
33 Info: OpenFlow packet detected
34 Info: echo reply sent to the switch
35 ^C
36 Info: caught signal, Ctrl + C: 2
37 Total host entries freed: 2
38 Total port entries freed: -1

186

DAIM Source Code for Data Analysis

A.1. Cross-controller Communications

The following C++ code is emphasised to show how the DAIM controllers com-
municate and share their information. Inside the controller, this functionality is
implemented using a separate thread to send messages independently. The follow-
ing code fraction shows the body of the separate thread function:
1 void *node_share_func (void *message)
2 {
3 bool threadl = false;
4 int ports_count = -1;
5 uint64_t datap;
6 ports_count = ((struct switch_info *)message)->no_of_ports;
7 datap = ((struct switch_info *)message)->datapath_id;
8 send_anim:
9 sleep (10);

10 for (int portno = 1; portno < (ports_count + 1); portno++)
11 {
12 struct ofp_packet_out *n_packet_out = NULL;
13 struct ofp_action_output *n_action_output = NULL;
14 struct of_ethernet *n_packet_out_eth = NULL;
15 char eth_buffer[1024];
16 char n_buffer[10240];
17 char message[1024];
18 long sw_write_len = -1;
19 memset(n_buffer , '\0', sizeof (n_buffer));
20 memset(eth_buffer , '\0', sizeof (eth_buffer));
21 n_packet_out_eth = (struct of_ethernet *) eth_buffer;
22 n_packet_out_eth ->src[0] = 0;
23 n_packet_out_eth ->src[1] = 0;
24 n_packet_out_eth ->src[2] = 0;
25 n_packet_out_eth ->src[3] = 0;
26 n_packet_out_eth ->src[4] = 0;
27 n_packet_out_eth ->src[5] = 1;
28 n_packet_out_eth ->dst[0] = 1;
29 n_packet_out_eth ->dst[1] = 1 << 5 | 1 << 1 | 1;
30 n_packet_out_eth ->dst[2] = 1 << 5;
31 n_packet_out_eth ->dst[3] = 0;
32 n_packet_out_eth ->dst[4] = 0;
33 n_packet_out_eth ->dst[5] = 1;
34 n_packet_out_eth ->type = htons(LLDP_DATA);
35 n_packet_out = (struct ofp_packet_out *) n_buffer;
36 n_packet_out ->header.version = OFP_VERSION;
37 n_packet_out ->header.type = OFPT_PACKET_OUT;
38 n_packet_out ->header.xid = htonl (0);
39 n_packet_out ->buffer_id = htonl (0xffffffff);
40 n_packet_out ->in_port = htons (OFPP_CONTROLLER);
41 n_packet_out ->actions_len = htons (sizeof (struct

ofp_action_output));
42 n_action_output = (struct ofp_action_output *) n_packet_out ->

actions;
43 n_action_output ->type = htons (OFPAT_OUTPUT);

187

A.1 Cross-controller Communications

44 n_action_output ->max_len = htons (0);
45 n_action_output ->len = htons (8);
46 n_action_output ->port = htons (portno);
47 memcpy (n_buffer + sizeof (struct ofp_packet_out) + sizeof (

struct ofp_action_output), eth_buffer , sizeof (struct
of_ethernet));

48 memset (message, '\0', sizeof(message));
49 sprintf(message, "%s %u", "Hello, I am controller from datapath

", datap);
50 memcpy (n_buffer + sizeof (struct ofp_packet_out) + sizeof (

struct ofp_action_output) + sizeof (struct of_ethernet),
message, sizeof(message));

51 n_packet_out ->header.length = htons (sizeof (struct
ofp_packet_out) + sizeof (struct ofp_action_output) + sizeof (
struct of_ethernet) + sizeof(message));

52 sw_write_len = send(sw_sockfd , n_buffer , ntohs (n_packet_out ->
header.length), 0);

53 if (sw_write_len < 1) cerr << "Error: can not send controller
message to port " << portno << ", " << strerror(errno) << endl;

54 else cout << "Info: controller message send to port " << portno
<< endl;

55 sleep (1);
56 }
57 goto send_anim;
58 }

Therefore, each controller sends a message containing its datapath ID to every
available port on the switch. The controllers that are connected to these ports
will receive these messages. To facilitate how OpenFlow packets flow through the
network and better explanation, someWireshark captures are taken and labeled with
related information. For example, in a simple linear topology with two switches and
two hosts, Figure A.1 shows how messages from DAIM 1 sent to DAIM 2 will be
seen on the wire.

Similarly from the other direction, messages from DAIM 2 sent to DAIM 1 can be
seen on the wire in Figure A.2.

188

DAIM Source Code for Data Analysis

Figure A.1.: Controller Message from DAIM 1 to DAIM 2

Figure A.2.: Controller Message from DAIM 2 to DAIM 1

189

B. Create OpenFlow Network with
Multiple PCs

This section describes how to set up a small Linux-based OpenFlow network con-
trolled by NOX with a set of PCs in half day. We created a minimal OpenFlow
network setup of five PCs with two OpenFlow switches controlled by an NOX 0.9.0
controller, and two hosts (see Figure B.1). These two OpenFlow switches are PC
based software OpenFlow switches (OpenVswitch implementation). We run Open-
Flow reference design on those PCs. Any PC running Linux 2.6 kernel would work,
but there are some dependencies on the Linux distribution.

B.1. Configuration Summary

Figure B.1.: OpenFlow-Based SDN Lab Using OpenVswitch and Controlled by
NOX via OpenFlow Protocol

191

B.2 Assigning Static IP Address for Network Interfaces

OpenFlow Switches
OpenVswitch IP address to

talk to the
controller

Controller
Ethernet
Port

OpenFlow
Ethernet
Ports

Host
Ethernet
Port

OpenVswitch1 192.168.100.3
/255.255.255.0

eth 2 eth 6 eth 4

OpenVswitch2 192.168.100.6
/255.255.255.0

eth 7 eth 9 eth 8

OpenFlow Controller (NOX 0.9.0)

Bridge IP Address TCP Port Number
192.168.100.1/255.255.255.0 6633

B.2. Assigning Static IP Address for Network
Interfaces

Edit the network interface file by entering the following command into the terminal:
1 $sudo gedit /etc/network/interfaces

When the text editor opens, enter the address of each interface according to the
topology as follows:
1 auto lo ethX
2 iface lo inet loopback
3 iface ethX inet static
4 address xxx.xxx.xxx.xxx(enter IP)
5 netmask xxx.xxx.xxx.xxx
6 gateway xxx.xxx.xxx.xxx(enter gateway IP here)

Ensure to save any changes in the text editor.

Restart the network interface by the new settings:
1 $sudo /etc/init.d/networking restart

B.3. Set Bridge IP Address for NOX Controller

Install the bridge utilities by the following command in terminal:
1 $sudo apt-get install bridge-utils

Edit the network interface file by entering the following command into the terminal:

192

Create OpenFlow Network with Multiple PCs

1 $sudo gedit /etc/network/interfaces

When the text editor opens, enter the bridge IP address according to the topology
as follows:
1 auto lo
2 iface lo inet loopback
3 # Bridge between eth0 and eth1
4 iface br0 inet static
5 address 192.168.100.1
6 netmask xxx.xxx.xxx.xxx
7 gateway xxx.xxx.xxx.xxx(enter gateway IP here)
8 pre-up ip link set eth0 down
9 pre-up ip link set eth1 down

10 pre-up brctl add-br br0
11 pre-up brctl add-if br0 eth0 eth1
12 pre-up ip addr flush dev eth0
13 pre-up ip addr flush dev eth1

Ensure to save any changes in the text editor.

Restart the network interface by the new settings:
1 $sudo /etc/init.d/networking restart

B.4. NOX Controller Setup

Prerequisite packages depend on the Linux distribution on the controller PC. In
the case of new instructions by Kostas Choumas, you have to install the following
required dependencies:
1 cd /etc/apt/sources.list.d/
2 sudo wget http://openflowswitch.org/downloads/debian/nox.list
3 sudo apt-get update
4 sudo apt-get install nox-dependencies
5 sudo apt-get install libtbb-dev
6 sudo apt-get install libboost -serialization -dev libboost -all-dev

Then, change to the directory that the NOX’s source code should be placed, and
download the latest version from the git repository and switch to the downloaded
folder:
1 git clone git://github.com/noxrepo/nox
2 cd nox

To compile and install NOX:

193

B.5 Installing OpenVswitch on a Node

1 ./boot.sh
2 mkdir build/
3 cd build/
4 ../configure
5 make -j 5
6 make install

The ../configure command checks for the required dependencies, and ’make -j 5’
should work on a system with 1 GB of RAM; ’make -j’ may work on systems with
more RAM.

Start NOX with the command:
1 cd src
2 ./nox_core -v -i ptcp:6633 switch

The command will start the controller and establish a connection with the Open-
Flow switch. The -v is for verbose. -h for both will give you the help files for the
controllers. The ptcp:6633 is a passive connection to the default OpenFlow 6633
port (TCP), whereas ’switch’ is a core application of the NOX performing L2_for-
warding functions. An active connection method using standard TCP exists but
this does not work on this setup. In the OpenFlow reference system, a log of the
verbose output can be saved by appending –log-file [filename].

B.5. Installing OpenVswitch on a Node

Install packages for OpenVswitch:
1 $sudo apt-get install pkg-config autoconf automake linux-libc-dev

Download and untar OpenVswitch (do not do anything yet):
1 cd ~/
2 wget http://openvswitch.org/releases/openvswitch -1.1.1.tar.gz
3 tar zxvf openvswitch -1.1.1.tar.gz

Installation:

If using Debian and its variants, OpenVswitch must be built as a kernel module. If
everything is sound, installing OpenVswitch should be little more than following the
steps in INSTALL.Linux found under the untarred OpenVswitch root directory.
1 cd ~/openvswitch -1.1.1
2 ./boot.sh
3 ./configure --with-l26=/lib/modules/`uname -r`/build
4 make
5 make install

194

Create OpenFlow Network with Multiple PCs

Then, instantiate the kernel module:
1 $ su -
2 # /sbin/insmod ./datapath/linux -2.6/openvswitch_mod.ko
3 # /sbin/insmod ./datapath/linux -2.6/brcompat_mod.ko

Create the database for each OpenVswitch:
1 # mkdir -p /usr/local/etc/openvswitch
2 # ovsdb-tool create /usr/local/etc/openvswitch/conf.db vswitchd/

vswitch.ovsschema

Start the OVS database server:
1 # ovsdb-server /usr/local/etc/openvswitch/conf.db\
2 --remote=punix:/usr/local/var/run/openvswitch/db.sock\
3 --remote=db:Open_vSwitch ,manager_options\
4 --private-key=db:SSL,private_key\
5 --certificate=db:SSL,certificate\
6 --bootstrap -ca-cert=db:SSL,ca_cert --pidfile --detach

Database sanity check:
1 # ps -ef | grep ovsdb-server

Initialise database for the first time:
1 # ovs-vsctl --no-wait init

Start database:
1 # ovs-vswitchd unix:/usr/local/var/run/openvswitch/db.sock --pidfile

--detach

Create OpenFlow switch data path:
1 # ./utilities/ovs-dpctl add dp dp0

Then, add the interfaces to the data path:
Interfaces names for OpenVswitch 1 (eth4, eth6)
1 # ./utilities/ovs-dpctl add-if dp0 eth4
2 # ./utilities/ovs-dpctl add-if dp0 eth6

Interfaces names for OpenVswitch 2 (eth8, eth9)
1 # ./utilities/ovs-dpctl add-if dp0 eth8
2 # ./utilities/ovs-dpctl add-if dp0 eth9

Configure the OpenFlow Switch to communicate with the controller.
Then let OpenFlow protocol module talk to the controller. Let’s assume we’ll use
datapath-id 0x004E46324304 for this OpenFlow switch and the controller is running
on 192.168.0.100 port 6633.

195

B.6 Installing OpenFlow Switching Reference System

1 # ./utilities/ovs-openflowd dp0 --datapath-id=0000004E46324304 tcp
:192.168.0.100

2 port 6633 --out-of-band

B.6. Installing OpenFlow Switching Reference System

Download software and required packages.
If using git:
1 sudo apt-get install git-core automake m4 pkg-config libtool
2 git clone http://openflowswitch.org/openflow
3 cd openflow
4 ./boot.sh

If installing from tarball as root user:
1 mkdir openflow
2 cd openflow
3 wget http://openflowswitch.org/downloads/openflow -1.0.0.tar.gz
4 tar xzf openflow -1.0.0.tar.gz
5 cd openflow -1.0.0
6 sudo apt-get install gcc linux-headers-`uname -r`

Make and install:
1 ./configure --with-l26=/lib/modules/`uname -r`/build
2 make
3 make install

B.7. NOX Controller Graphical User Interface (GUI)

NOX can provide a front-end GUI for supporting network visualization and monit-
oring. It also serves as an interface for the user and developer to communicate with
NOX in run time. NOX GUI can be extended with custom views order to visualize
custom characteristics for research or demo purposes, or with custom input in order
to trigger NOX component functions.
This GUI is developed in Python and uses the QT library. It communicates with
NOX by way of JSON messages exchanged with the messenger component (simple
json should be already installed if you are running NOX).
Install required dependencies for Ubuntu:
1 $ sudo apt-get install pyqt4-dev-tools python-qt4 python-simplejson

python-qt4-sq

196

Create OpenFlow Network with Multiple PCs

Start the NOX controller and follow by minimum ‘monitoring’ and ’trackhost_pktin’
argument.

1 ~/nox/build/src# sudo ./nox_core -v -v -i ptcp:6633 monitoring
trackhost_pktin

Running the GUI:

1 /nox/src# ./nox-gui.py

B.8. Installing OpenFlow Wireshark Dissector

The OpenFlow reference system comes with an OpenFlow Wireshark dissector.
Users must be root in order to use Wireshark, and thus must be installed on a
node.

To Install Wireshark and prerequisites, glib is required for the plug-in to work:

1 $sudo apt-get install wireshark libgtk2.0-dev

Then locate the patch under the utilities directory:

1 cd utilities/wireshark_dissectors/openflow
2 make
3 sudo make install

Usage:

In order use Wireshark, X11 tunnelling needs to be enabled. To do this, add the -X
option when using SSH to access the console and the nodes.

Also, tcpdump pcap files can be opened using Wireshark. Once the plug-in has
been installed, OpenFlow packets can be interpreted from these files as well (see
Figure B.2).

197

B.8 Installing OpenFlow Wireshark Dissector

Figure B.2.: OpenFlow Dissector in Wireshark

198

C. OpenFlow Laboratory with
Mininet

C.1. Setting up Mininet Environment

This OpenFlow laboratory consists of four key components: (1) a virtualisation
software using VirtualBox; (2) a terminal program supporting SSH (PuTTY); (3)
an X server for X11 forwarding (e.g. Xming); (4) the Mininet VM image. The setup
in this chapter is based on Mininet version 2.0 using a pre-packaged VM image that
runs over Ubuntu. The latest version can be downloaded at www.mininet.org/-
download. This VM image comes with all OpenFlow binaries, pre-installed tools
to support larger emulated networks, and Mininet itself. VirtualBox (free, GPL) is
the virtualisation program used to import and run the Mininet VM image (800MB -
1GB compressed). The Mininet image file can be imported to VirtualBox by double-
clicking on the VM image (.ovf) or go to File and select Import Appliance, then
go to Settings and add an additional host-only network adapter to log in to the VM
image. The VM should be configured with two interfaces. For example, the NAT
interface to access the Internet having a 10.x IP address, and host-only interface to
enable the communication with the host machine could be eth1 having 192.168.x IP
address.
Follow these steps for running Mininet from VM:

• Download the Mininet VM image.
• Download and install a virtualisation system. It is recommended to use Vir-

tualBox (free, GPL) because it is free and works on OS X, Windows, and
Linux.

• Import and start the VM in VirtualBox.
• Log in to Mininet VM, using the following default name and password:

1 mininet-vm login: mininet
2 Password: mininet

The root account is not enabled for login and hence must use sudo to run a command
with superuser privileges.

• Establish an SSH connection into VM after having set up a host-only network
on eth1:

199

C.1 Setting up Mininet Environment

Figure C.1.: Enabling X11 Forwarding in PuTTY

1 sudo dhclient eth1 # make sure that eth1 has an IP address
2 ifconfig eth1 # note the IP address of eth1 probably 192.168.

x.x

• Next, use the PuTTY SSH client to log into the Mininet VM:

1 $ ssh -X mininet@[eth1's IP address]

Under Windows, the X-server (Xming server) must be running in order to use the
X11 applications such as xterm and Wireshark. Start the Xming and make an
SSH connection with X11 forwarding option enabled. If using PuTTY (SSH ter-
minal), connect to Mininet by entering the VM’s IP address (eth1) and enabling
X11 forwarding. Use the PuTTY’s GUI to enable X11 forwarding by selecting
PuTTYConnection | SSH | X11, then click on Enable X11 forwarding (see
Figure C.1).

• Figure C.2 shows a screen shot of the experimental environment based on Vir-
tualBox, Mininet, Xming (X-server), and PuTTY (SSH client). Mininet VM
has been logged into by using PuTTY SSH terminal. Since the X11 forward-
ing is also enabled, the Wireshark GUI will appear as a separate window and
running in a background process. Start the Wireshark to capture OpenFlow
packets by entering the following command in PuTTY terminal:

1 mininet@mininet -vm:~$ sudo wireshark &

• Before running Mininet, it is important to select the Capture device in Wire-
shark as ’lo’ or loopback interface and start capturing the packets. Enter

200

OpenFlow Laboratory with Mininet

Figure C.2.: OpenFlow Laboratory Using Mininet

“of” (OpenFlow) in the filtering box of Wireshark in order to display only the
OpenFlow related packets, and apply it to the capturing traffic. Because the
Mininet emulator has not started yet, no OpenFlow packets should be shown
in the main window of Wireshark. Next subsection will demonstrate a sample
experiment using Mininet.

C.2. Experimenting with Mininet

This sample experiment uses the default topology of Mininet (by running $sudo mn).
This default topology consists of two hosts connected to one OpenFlow switch, and
plus the reference OpenFlow controller. In order to display the links, nodes, and
dump information regarding all nodes in the setup, run the following commands
respectively:
1 mininet> net
2 mininet> nodes
3 mininet> dump

If the first string entered into the Mininet CLI (mininet>) is a host, switch or con-
troller name, the command is executed on that node. For example, run a command
on a host process to see the Ethernet and loopback interface of Host 1 (h1):

201

C.2 Experimenting with Mininet

1 mininet> h1 ifconfig -a

To test the connectivity of each host and verify ping from h1 to h2, run a simple
ping command:
1 mininet> h1 ping -c 1 h2

Use the Wireshark capturing window to see OpenFlow control traffic. Host 1 (h1)
sends ARPs for the MAC address of Host 2 (h2), which causes a packet_in message
to the OpenFlow controller. Then, the controller sends a packet_out message to
broadcast the packet and flood it to other ports on the switch, for this example the
only other data port. Host 2 sees the ARP request and sends a broadcast reply.
This reply goes to the controller, which sends it to Host 1 and also installs a flow
entry in s1 (OpenFlow switch) flow table.
Host 1 can now send its ping through an ICMP Echo Request because it already
knows the MAC address of Host 2. This request and its corresponding reply from
Host 2 both go to the controller with an action to push down a flow entry. The actual
packets are getting sent out a specific port too. If the same ping is repeated, the ping
time from the second ping command should be a much lower ping time (<100 µs).
This is because a flow entry containing ICMP ping traffic was installed previously
in the switch. Hence, no control traffic was generated, and the packets immediately
pass through the switch. Using the Mininet CLI built-in pingall command is the
easiest way to run this test, which does an all-pairs ping.
Another useful test of Mininet is a self-contained regression test, which do not need
to drop into the CLI.
1 $ sudo mn --test pingpair

This command creates a minimal Mininet topology, starting up the OpenFlow ref-
erence controller, run an all-pairs ping test, and tore down both the topology and
the controller.
iperf is another useful test for performance evaluation.
1 $ sudo mn --test iperf

This command may take a few seconds to complete. It creates the same Mininet
topology that runs an Iperf server on one host, an Iperf client on the second host,
and reports the bandwidth achieved between these two hosts.
Mininet also permits to set link parameters, which can be set automatically from
the following command line:
1 $ sudo mn --link tc,bw=10,delay=10ms
2 mininet> iperf
3 ...
4 mininet> h1 ping -c10 h2

202

OpenFlow Laboratory with Mininet

The above sample command sets the delay for each link to 10 ms. The round trip
time (RTT) should be around 40 ms because the ICMP request traverses two links
(one to the destination, one to the switch), and the ICMP reply traverses two links
coming back.

Mininet uses a simple Python API to define custom topologies for experiments,
and an example is provided in ~mininet/custom/topo-2sw-2host.py. This example
connects two switches directly with one host connected to each switch:

1 """Custom topology example
2 Two directly connected switches plus a host for each switch:
3 host --- switch --- switch --- host
4 h1 <-> s3 <-> s4 <-> h2
5 Adding the 'topos' dict with a key/value pair to generate our newly

defined
6 topology enables one to pass in '--topo=mytopo' from the command

line.
7 """
8 from mininet.topo import Topo
9 class MyTopo(Topo):

10 "Simple topology example."
11 def __init__(self):
12 "Create custom topo."
13 # Initialize topology
14 Topo.__init__(self)
15 # Add hosts and switches
16 leftHost = self.addHost('h1')
17 rightHost = self.addHost('h2')
18 leftSwitch = self.addSwitch('s3')
19 rightSwitch = self.addSwitch('s4')
20 # Add links
21 self.addLink(leftHost , leftSwitch)
22 self.addLink(leftSwitch , rightSwitch)
23 self.addLink(rightSwitch , rightHost)
24 topos = { 'mytopo': (lambda: MyTopo()) }

This custom Python script can be passed as a command line parameter to Mininet.
When a custom Mininet file is provided, it can add new topologies, switch types,
and tests to the command-line. For example:

1 $ sudo mn --custom ~/mininet/custom/topo-2sw-2host.py --topo mytopo
--test pingall

Moreover, there is a complex way of debugging and accessing to the console of
hosts, switches, and controllers by starting Mininet with -x in the command line
parameter (sudo mn -x). The command will allow xterm to pop up for running
useful interactive commands. For example, in the xterm of switch: s1 (root) can
run the following command to dump the flow table of s1:

1 # dpctl dump-flows tcp:127.0.0.1:6634

203

C.2 Experimenting with Mininet

Because the flow table of the switch s1 is empty, nothing will print out. However,
after running a normal ping command (#ping 10.0.0.2) from the host (h1) and
return back to xterm of switch s1 and dump the flow table, there should be multiple
flow entries installed in the table. For example:
1 root@mininet -vm:~# dpctl dump-flows tcp:127.0.0.1:6634
2 stats_reply (xid=0x525af393): flags=none type=1(flow) cookie=0,

duration_sec=5s,duration_nsec=19000000s, table_id=0,priority=65535,
n_packets=1,n_bytes=98,idle_timeout=60,hard_timeout=0,icmp,in_port
=2,dl_vlan=0xffff,dl_vlan_pcp=0x00,dl_src=ce:a9:b7:c9:54:d5,dl_dst
=12:b7:d3:00:f8:c9,nw_src=10.0.0.2,nw_dst=10.0.0.1,nw_tos=0x00,
icmp_type=0,icmp_code=0,actions=output:1

3 cookie=0,duration_sec=5s,duration_nsec=20000000s,table_id=0,priority
=65535,n_packets=1,n_bytes=98,idle_timeout=60,hard_timeout=0,icmp,
in_port=1,dl_vlan=0xffff,dl_vlan_pcp=0x00,dl_src=12:b7:d3:00:f8:c9,
dl_dst=ce:a9:b7:c9:54:d5,nw_src=10.0.0.1,nw_dst=10.0.0.2,nw_tos=0
x00,icmp_type=8,icmp_code=0,actions=output:2

It is also useful to use the dpctl built-in command in Mininet to manually install
the necessary flows. For example in your SSH terminal:
1 $ dpctl add-flow tcp:127.0.0.1:6634 in_port=1,actions=output:2
2 $ dpctl add-flow tcp:127.0.0.1:6634 in_port=2,actions=output:1

It will direct packets coming at port 1 to port 2 and the other way around. This
can be verified by dumping the flow table.
Mininet runs OpenVswitch in OpenFlow mode and requires an OpenFlow controller
by default. Mininet has several built-in controller classes including the OpenFlow
reference controller, OpenVswitch’s ovs-controller, and the NOX-Classic controller
(deprecated). Users can simply choose which controller they want from the following
command:
1 $ sudo mn --controller ref
2 $ sudo mn --controller ovsc
3 $ sudo mn --controller NOX,pyswitch

All of these examples uses a controller to turn the OpenVswitch into an Ethernet
learning switch.
It can be helpful to bring links up and down for fault tolerance testing. To disable
both halves of a virtual Ethernet pair:
1 mininet> link s1 h1 down

There should be an OpenFlow Port Status change notification gets generated. To
bring the link back up:
1 mininet> link s1 h1 up

To display an xterm for h1 and h2:

204

OpenFlow Laboratory with Mininet

1 mininet> xterm h1 h2

C.3. Running External Controllers

When an OpenFlow environment is started in Mininet, each switch can be connected
to a remote controller. The remote controller could be in the Mininet VM, on the
local machine, or running outside of the VM such as on the VM host or a different
physical PC. This setup may be more convenient if a custom version of a controller
framework and development tools like Eclipse are already installed on the local
machine, or user needs to test a controller running on another physical machine. In
order to run this, ensure that the controller is reachable from Mininet VM and enter
in the host IP and the listening port (optionally):
1 $ sudo mn --controller=remote,ip=[controller IP],port=[controller

listening port]

For example, the following command starts up a simple learning switch using a POX
controller framework:
1 $ cd ~/pox
2 $./pox.py forwarding.l2_learning

In one terminal, and in another terminal, start up Mininet to connect to the remote
controller, which is actually running locally but outside of Mininet’s control:
1 $ sudo mn --controller=remote,ip=127.0.0.1,port=6633

Note that these are actually the default IP address and port values. If there are
some traffic generated (mininet> h1 ping h2), there should be some output in the
POX window showing that the switch has connected and that some flow entries have
been installed in the flow table.

After a while, the OpenVswitch in Mininet will get connected to the POX controller.
The output from this controller should look like the following:
1 POX 0.0.0 / Copyright 2011 James McCauley
2 DEBUG:core:POX 0.0.0 going up...
3 DEBUG:core:Running on CPython (2.7.3/Sep 26 2012 21:51:14)
4 INFO:core:POX 0.0.0 is up.
5 This program comes with ABSOLUTELY NO WARRANTY. This program is free

software , and you are welcome to redistribute it under certain
conditions.

6 Type 'help(pox.license)' for details.
7 DEBUG:openflow.of_01:Listening for connections on 0.0.0.0:6633
8 INFO:openflow.of_01:[Con 1/1] Connected to 00-00-00-00-00-01
9 DEBUG:forwarding.l2_learning:Connection [Con 1/1]

205

C.3 Running External Controllers

10 Ready.
11 POX>

The debug messages in the POX terminal show that the OpenVswitch is connected
to POX controller and behaves as an L2 learning switch.

There are several OpenFlow controller frameworks readily available and should work
readily with Mininet as long as they are started up and specified in the remote
controller option with the correct IP address of the machine, where the controller is
running and the correct port that it is listening on.

206

D. OpenFlow Setup in OMNeT++
INET Framework

The OMNeT++ INET Framework 2.0 network simulator is a C++ discrete event
simulator. The main advantage of this simulator is that it simplifies the integration
of new modules, and allows existing modules to be customised. The INET Frame-
work is a network simulation package that contains models for wired and wireless
networking protocols including UDP, TCP, SCTP, IP, IPv6, and Ethernet. The
INET Framework has recently implemented an extension to enable OpenFlow to be
modelled. The OpenFlow extension is still in early development and is currently
based on OpenFlow switch specification version 1.2.

D.1. Installing OMNeT++ 4.2

Based on Windows versions, the supported Windows versions are the Intel 32-bit
versions of Windows XP and later versions such as Windows 7 and 8.
Note that 64-bit Windows versions are also supported, but be aware that binaries
bundled with OMNeT++ are 32-bit ones, and simulations will also be compiled in
32-bit mode.

Download the OMNeT++ source code from http://omnetpp.org. Make sure you
select the Windows-specific archive, named omnetpp-4.2-src-windows.zip.
This package is mostly self-contained: in addition to OMNeT++ files it includes a
C++ compiler, a command-line build environment, and all libraries and programs
required by OMNeT++.
Copy the OMNeT++ archive to the directory where you want to install it. Choose
a directory whose full path does not contain any space; for example, do not put
OMNeT++ under Program Files.
Extract the zip file. To do so, right-click the zip file in Windows Explorer, and select
Extract All from the menu. You can also use external programs like Winzip or 7zip.
Rename the resulting directory to omnetpp-4.2.
When you look into the new omnetpp-4.2 directory, should see directories named
doc, images, include, tools, etc., and files named mingwenv.cmd, configure, Makefile,
and others.

207

D.2 Configuring and Building OMNeT++

D.2. Configuring and Building OMNeT++

Start mingwenv.cmd in the omnetpp-4.2 directory by double-clicking it in Windows
Explorer. It will bring up a console with the MSYS bash shell, where the path is
already set to include the omnetpp-4.2/bin directory.

If you want to start simulations from outside the shell as well (for example from
Explorer), you need to add OMNeT++’s bin directory to the path; instructions are
provided later.

First, check the contents of the configure.user file to make sure it contains the
settings you need. In most cases, you do not need to change anything.
notepad configure.user
Then enter the following commands:
1 $./configure
2 $ make

The build process will create both debug and release binaries.

D.3. Verifying the Installation

You should now test all samples and check they run correctly. As an example, the
dyna example is started by entering the following commands:
1 $ cd samples/dyna
2 $./dyna

By default, the samples will run using the graphical Tkenv environment. You should
see GUI windows and dialogs.

D.4. Starting the IDE

OMNeT++ comes with an Eclipse-based Simulation IDE. You should be able to
start the IDE by typing:
1 $ omnetpp

We recommend that you create a shortcut for starting the IDE. To do so, locate
the omnetpp.exe program in the omnetpp-4.2/ide directory in Windows Explorer,
right-click it and choose Send To > Desktop (create shortcut) from the menu. On
Windows 7, you can right-click the taskbar icon while the IDE is running, and select
Pin this program to taskbar from the context menu.

208

OpenFlow Setup in OMNeT++ INET Framework

When you try to build a project in the IDE, you may get the following warning
message:

Toolchain ”…” is not supported on this platform or installation. Please go to the
Project menu, and activate a different build configuration. (You may need to switch
to the C/C++ perspective first so that the required menu items appear in the
Project menu.)

If you encounter this message, choose Project > Properties > C/C++ Build > Tool
Chain Editor > Current toolchain > GCC for OMNeT++.

D.5. Installing INET Framework 2.0

This is a manual installation of the downloaded INET version 2.0 or assume that
the INET git repository is cloned to the local file system. The only tricky part is
how to import the project into the workspace.

1. Download the INET version 2.0 sources

2. Unzip it into the directory of your preference, for example, tar xvfz inet-2.0.tgz

3. Run the OMNeT++ IDE, and import the project through File -> Import ->
Existing Projects to the Workspace. A project named “INET” should appear.

4. Build with Project -> Build, or hit Ctrl+B

5. Now you should be able to launch example simulations.

Please also read the INSTALLATION file in the INET sources, as it may contain
additional information.
INET 2.0 can be compiled with the latest OMNeT++ version; you just need to
replace getFieldArraySize -> getArraySize in two files where the compiler complains.
If you are not using MANET routing protocols it does not matter. In fact, if you
turn off the MANET routing in the Project Features dialog, you even do not have
to modify the code in those two files.

D.6. Installing OpenFlow Extension for the
OMNeT++

This is the implementation of the OpenFlow system for INET-2.0 and OMNeT++
4.2 based on the OpenFlow switch specification 1.0.

1. Download the OMNeT++ source code from the URL below or clone the ofomnet
git repository to the local file system.

209

D.7 Example of Simple OpenFlow testing in OMNeT++

https://github.com/lsinfo3/ofomnet/archive/master.zip
2. Unzip it into the directory of your choice; tar xvfz ofomnet-master.tgz
3. Run the OMNeT++ IDE, and import the project via File -> Import -> Existing
Projects to the Workspace. A project named “openflow” should appear.
4. Make INET project as a reference project in the workspace by right click at
openflow -> Properties -> Project References and select INET project.
5. Build with Project -> Build, or hit Ctrl+B
6. Now you should be able to launch OpenFlow example simulations.
Required changes to the INET Framework 2.0
The following changes are required for FlatNetworkConfigurator to ignore the data
plane interfaces for OpenFlow switches.
The EtherMACBase::registerInterface method in src/linklayer/ethernet/EtherMAC-
Base is changed so that the data plane interfaces of OpenFlow switches are not added
to the InterfaceTable module, and thus are ignored by the FlatNetworkConfigurator.
Modify file src/linklayer/ethernet/EtherMACBase and Change method EtherMAC-
Base::registerInterface
FROM
1 if (ift)
2 ift->addInterface(interfaceEntry);

TO
1 if (ift && par("doRegisterAtIft").boolValue())
2 ift->addInterface(interfaceEntry);

ADD new parameter
1 bool doRegisterAtIft = default(true);

In the following modules:
• EtherMAC.ned
• EtherMACFullDuplex.ned

D.7. Example of Simple OpenFlow testing in
OMNeT++

Figure D.1 demonstrates a simple OpenFlow network topology in OMNeT++. The
OMNeT++ tool can be used to create different network scenarios, topologies, be-
haviours, and environments or other application fields for different purposes. Using

210

OpenFlow Setup in OMNeT++ INET Framework

Figure D.1.: OpenFlow Mesh Topology with Spanning Tree Protocol

OMNeT++, it is easy to simulate geographic distance and help predict how that
would affect the behaviours of this new infrastructure when considering different
technologies or products running on different software.

The corresponding Network Description (NED) source file would look like this:
1 package openflow.scenarios;
2 import inet.nodes.ethernet.EtherLink;
3 import inet.nodes.ethernet.EtherSwitch;
4 import inet.nodes.inet.Router;
5 import inet.nodes.inet.StandardHost;
6 import inet.networklayer.autorouting.ipv4.FlatNetworkConfigurator;
7 import inet.util.ThruputMeter;
8 import inet.util.ThruputMeteringChannel;
9 import openflow.nodes.*;

10 import openflow.utility.SpanningTree;
11 network OpenFlow Mesh Topology
12 {
13 types:
14 channel ethernetline extends ThruputMeteringChannel
15 {
16 delay = 5ms;
17 datarate = 100Mbps;
18 thruputDisplayFormat = "ms";
19 }
20 submodules:
21 controller: Open_Flow_Controller {}
22 open_Flow_Switch1: Open_Flow_Switch {}
23 open_Flow_Switch2: Open_Flow_Switch {}
24 open_Flow_Switch3: Open_Flow_Switch {}
25 open_Flow_Switch4: Open_Flow_Switch {}
26 Host1: StandardHost {}
27 Host2: StandardHost {}
28 flatNetworkConfigurator: FlatNetworkConfigurator {}

211

D.7 Example of Simple OpenFlow testing in OMNeT++

29 spanningTree: SpanningTree {}
30 connections allowunconnected:
31 Host1.ethg++ <--> ethernetline <--> open_Flow_Switch1.ethg

++;
32 open_Flow_Switch1.ethg++ <--> ethernetline <-->

open_Flow_Switch2.ethg++;
33 open_Flow_Switch2.ethg++ <--> ethernetline <-->

open_Flow_Switch3.ethg++;
34 open_Flow_Switch3.ethg++ <--> ethernetline <-->

open_Flow_Switch4.ethg++;
35 open_Flow_Switch4.ethg++ <--> ethernetline <-->

open_Flow_Switch1.ethg++;
36 open_Flow_Switch4.ethg++ <--> ethernetline <-->

open_Flow_Switch2.ethg++;
37 open_Flow_Switch2.gate_controller++ <--> ethernetline <-->

controller.ethg++;
38 open_Flow_Switch3.gate_controller++ <--> ethernetline <-->

controller.ethg++;
39 open_Flow_Switch1.gate_controller++ <--> ethernetline <-->

controller.ethg++;
40 open_Flow_Switch4.gate_controller++ <--> ethernetline <-->

controller.ethg++;
41 open_Flow_Switch1.ethg++ <--> ethernetline <-->

open_Flow_Switch3.ethg++;
42 open_Flow_Switch3.ethg++ <--> ethernetline <--> Host2.ethg

++;
43 }

When a program is started, it first reads all NED files containing the model topology,
and then it reads a configuration file (usually called omnetpp.ini). The example of
a Ping application initialisation file (ini) can be seen below:

1 [General]
2 network = OpenFlow Mesh Topology
3 output-vector-file = ${resultdir}/${inifile}/${inifile}-${runnumber

}.vec
4 output-scalar-file = ${resultdir}/${inifile}/${inifile}-${runnumber

}.sca
5 sim-time-limit = 300s
6 debug-on-errors = false
7

8 #openflow
9 **.controller.ofa_controller.port = 6633

10 **.open_Flow_Switch*.sendCompletePacket = false
11 **.controller.behavior = "Forwarding"
12 **.ofa_switch.connectPort = 6633
13 **.ofa_switch.connectAddress = "controller"
14 **.buffer.capacity = 10
15 **.ofa_switch.flow_timeout = 5s
16 **.open_Flow_Switch*.etherMAC[*].promiscuous = true
17 **.open_Flow_Switch*.serviceTime = 0.0000098s
18 **.controller.serviceTime = 0.00024s

212

OpenFlow Setup in OMNeT++ INET Framework

19

20 # NIC configuration
21 **.ppp[*].queueType = "DropTailQueue" # in routers
22 **.ppp[*].queue.frameCapacity = 10 # in routers
23 **.configurator.networkAddress = "192.168.1.0"
24 **.open_Flow_Switch*.sendCompletePacket = false
25 **.open_Flow_Switch*.tcp.mss = 800
26 **.controller.tcp.mss = 800
27

28 [Config one]
29 description = "RTT Ping"
30 #ping App
31 **.Host1.numPingApps = 1
32 **.Host1.pingApp[*].typename = "PingApp"
33 **.Host1.pingApp[*].count = 370
34 **.Host1.pingApp[*].destAddr = "Host2"
35 **.Host1.pingApp[*].packetSize = 56B
36 **.Host1.pingApp[*].sendInterval = 1s
37 **.Host1.pingApp[*].startTime = default
38 **.Host1.pcapRecorder[*].pcapFile = "Host1Log.pcap"
39 **.Host2.pcapRecorder[*].pcapFile = "Host1Log.pcap"
40 **.rtt.result-recording -modes = "stats,vector"
41 **.pingApp[*].rtt*.vector-recording = true
42 **.vector-recording = false
43 **.pingApp[*].rtt*.scalar-recording = true
44 **.scalar-recording = false

Figure D.2.: Measured RTT of TCP/IP vs. OpenFlow

This study compares the performance of TCP/IP with the newly emerging Open-
Flow standard for SDN. The performance comparison simulates OpenFlow and
TCP/IP networks using the OMNeT++ INET Framework discrete events network

213

D.7 Example of Simple OpenFlow testing in OMNeT++

simulator. By analysing the key network metric of round-trip-time (RTT), the res-
ults indicate that OpenFlow performed slightly better than TCP/IP in this analysis.

Figure D.2 shows RTT for OpenFlow and TCP/IP, where each client has generated
the pings and logged the results. It can be clearly seen that TCP/IP has longer
round trip times than OpenFlow. The results indicate that OpenFlow outperforms
TCP/IP and suggests that OpenFlow’s performance benefits from the packet trans-
mission methods operating at Layer 2, 3, and 4. It is also evident that OpenFlow
produces several sudden spikes that are caused by the expired Idle-timeout (120
seconds). Hence, the packet will be forwarded to the controller for computing a
path again.

214

E. Hardware for OpenFlow Test Lab

A small Linux based OpenFlow network has already been set up physically in the
lab with the following hardware by the author:

• Raspberry Pi 2 Model B

CPU: 900 MHz quad-core ARM Cortex A7 (ARMv7 instruction set)

SoC: Broadcom® BCM2836 (CPU, GPU, DSP, SDRAM, and single USB port)

GPU: Broadcom VideoCore IV @ 250 MHz, OpenGL ES 2.0 (24 GFLOPS),
1080p30 MPEG-2 and VC-1 decoder (with license), 1080p30 h.264/MPEG-4
AVC high-profile decoder and encoder

Memory: 1 GB (shared with GPU)

• Dell OptiPlex GX620

CPU Intel Pentium 4 531 / 3 GHz

Memory: 4 GB

• Ethernet cable Category 5e

• USB 2.0 to Fast Ethernet Adapter Model No:KY-RD9700

• SanDisk - SDSDQ-008G-A11M - 8GB Memory card Type: microSDHC

Figure E.1 shows a logical setup of the OpenFlow test lab consisting of two software
switches controlled by DAIM and two hosts. Ubuntu 14.10 image is used as the
operating system for the Raspberry Pi’s, which comes with a lightweight LXDE
desktop pre-installed. Each Raspberry Pi runs an OpenVswitch implementation
and the DAIM controller on the same device, whereas the hosts are normal PCs.
The OpenFlow software reference system is also installed to add OpenFlow switching
capability to the Raspberry Pi with multiple NICs. This physical network is already
running as a test-bed for the future trend work in this dissertation.

215

Hardware for OpenFlow Test Lab

Figure E.1.: A Small-Size OpenFlow Network

Figure E.2.: Raspberry Pi 2 Model B 1GB

216

	Title Page
	Certificate of Original Authorship
	Abstract
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Acknowledgments
	Related Publications
	I Elaborating on the ``Propositions''
	1 Introduction
	1.1 Introduction
	1.2 Background of Network Management Complexity
	1.3 Research Motivations
	1.3.1 Motivation from Management of Distributed Complex Networks
	1.3.2 Motivation from Self-Management Strategies
	1.3.3 Motivation from OpenFlow-Based SDN

	1.4 Research Objectives and Scope
	1.4.1 Research Objectives
	1.4.2 Research Scope

	1.5 Problem Statement
	1.5.1 Research Questions
	1.5.2 Propositions Derived from the Research Questions

	1.6 Approach and Methodology
	1.6.1 Reviewing the Scholarly Literature
	1.6.2 Designing a Candidate System
	1.6.3 Emulating the Candidate System Using Mininet
	1.6.4 Implementing the Candidate System
	1.6.5 Validating the Candidate System
	1.6.6 Concluding Observations

	1.7 Outline of the Thesis
	1.8 Statement of Contributions

	2 Background and Literature Review
	2.1 Introduction
	2.2 Network Management Background
	2.2.1 Five ISO Functional Areas in Network Management
	2.2.2 Network Management Protocols
	2.2.3 Centralised Management Paradigm
	2.2.4 The Needs of Distributed Systems

	2.3 Standard Sets of Information Model
	2.3.1 Common Information Model (CIM)
	2.3.2 Shared Information and Data model (SID)
	2.3.3 Limitations of CIM and SID
	2.3.4 Current Information Models vs. Proposed DAIM Model

	2.4 Software Defined Networking (SDN)
	2.4.1 Overview of OpenFlow-Based SDN
	2.4.2 Packet Processing in OpenFlow
	2.4.3. OpenFlow Switch
	2.4.4. OpenFlow Controller
	2.4.5. OpenFlow Channel and Protocol
	2.4.6 SDN Development Tools

	2.5 SDN Scalability Issues
	2.6 Related Work to Solve OpenFlow Scalability Issues
	2.6.1 Optimisation Techniques
	2.6.2 Devolving Some Control Functions Back to the Switches
	2.6.3 Designing a Distributed Control Platform

	2.7 Autonomic Communications
	2.7.1 Background of Autonomic Communications
	2.7.2 Overview of Self-X Properties

	3 Distributed Active Information Model Theory
	3.1 Introduction
	3.2 Theoretical Framework
	3.2.1 O:MIB Theory
	3.2.2 Use of O:XML
	3.2.3 Using DAIM as a Logically Distributed Control Plane

	3.3 DAIM Model Paradigm
	3.3.1 Objectives of Designing DAIM
	3.3.2 DAIM Model Architecture
	3.3.3 DAIM Agents Implementation
	3.3.4 Uniqueness of DAIM Model

	3.4 Packet Processing Within DAIM
	3.5 Risk Scenarios of the DAIM Model

	II Proving the ``Propositions''
	4 Integrating DAIM to OpenFlow-Based SDN Using Mininet Emulator
	4.1 Introduction
	4.2 DAIM Model Implementation
	4.2.1 Phase 1: Basic Carrier Functionality
	4.2.2 Phase 2: Semi-Distributed Functionality
	4.2.3 Phase 3: Fully Distributed Functionality

	4.3 DAIM Software Specification
	4.3.1 Overview of Model
	4.3.2 The Communication Module
	4.3.3 The Local Storage Module
	4.3.4 The Controller Module

	4.4 Setup Requirements for Testing DAIM
	4.4.1 Scenarios for Testing DAIM

	4.5 DAIM System Validation
	4.5.1 Communication Example
	4.5.2 Flow Table Buildup with Example of Ping Traffic
	4.5.3 Creating a Linux Command Line Chat Server
	4.5.4 Network Streaming via VLC Media Player
	4.5.5 Run a Simple Web Server and Client

	5 DAIM Performance Results and Evaluation
	5.1 Introduction
	5.2 Test Bed Description
	5.3 Experiment Setup and Methodology
	5.3.1 Network Performance Metrics
	5.3.2. Scenarios

	5.4 Results of Performance Evaluation
	5.4.1 DAIM Communication Channel Results
	5.4.2 Layer 2 Learning Switch Application Results

	5.5 Build a Physical OpenFlow Test Lab Controlled by DAIM
	5.5.1 Configuration Summary
	5.5.2 Setup OpenFlow Switch and DAIM Controller on a Raspberry Pi
	5.5.3 Basic Test
	5.5.4 Preliminary Hardware Performance Results

	5.6 Other Parameters That Can Affect the Performance Evaluation

	III Drawing Conclusions
	6 Conclusion and Future Work
	6.1 Research Propositions Validation
	6.2 Research Contributions and Findings
	6.3 Research Limitations
	6.4 On-going Work and Future Directions

	Bibliography
	Appendices
	A DAIM Source Code for Data Analysis
	A.1 Cross-controller Communications

	B Create OpenFlow Network with Multiple PCs
	B.1 Configuration Summary
	B.2 Assigning Static IP Address for Network Interfaces
	B.3 Set Bridge IP Address for NOX Controller
	B.4 NOX Controller Setup
	B.5 Installing OpenVswitch on a Node
	B.6 Installing OpenFlow Switching Reference System
	B.7 NOX Controller Graphical User Interface (GUI)
	B.8 Installing OpenFlow Wireshark Dissector

	C OpenFlow Laboratory with Mininet
	C.1 Setting up Mininet Environment
	C.2 Experimenting with Mininet
	C.3 Running External Controllers

	D OpenFlow Setup in OMNeT++ INET Framework
	D.1 Installing OMNeT++ 4.2
	D.2 Configuring and Building OMNeT++
	D.3 Verifying the Installation
	D.4 Starting the IDE
	D.5 Installing INET Framework 2.0
	D.6 Installing OpenFlow Extension for the OMNeT++
	D.7 Example of Simple OpenFlow testing in OMNeT++

	E Hardware for OpenFlow Test Lab

