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Abstract: Cloud computing has been attracting considerable attention since the last
decade. This study considers a decision problem formulated from the use of computing
services over the Internet. An agent receives orders of computing tasks from his/her
clients and on the other hand he/she acquires computing resources from computing ser-
vice providers to fulfill the requirements of the clients. The processors are bundled as
packages according to their speeds and the business strategies of the providers. The pack-
ages are rated at a certain pricing scheme to provide flexible purchasing options to the
agent. The decision of the agent is to select the packages which can be acquired from
the service providers and then schedule the tasks of the clients onto the processors of
the acquired packages such that the total cost, including acquisition cost and schedul-
ing cost (total weighted tardiness), is minimized. In this study, we present an integer
programming model to formulate the problem and propose several solution methods to
produce acquisition and scheduling plans. Ten well-known heuristics of parallel-machine
scheduling are adapted to fit into the studied problem so as to provide initial solutions.
Tabu search and genetic algorithm are tailored to reflect the problem nature to improve
upon the initial solutions. We conduct a series of computational experiments to evaluate
the effectiveness and efficiency of all the proposed algorithms. The results of the numer-
ical experiments reveal that the proposed tabu search and genetic algorithm can attain
significant improvements.
keywords: Computing service; acquisition planning; scheduling; heuristics; tabu search;
genetic algorithm.

1 Introduction

In this recent decade, cloud computing has become a popular topic in many research and
application areas over the Internet. Armbrust et al. [2] gave a definition from an aca-
demic perspective: “Cloud computing refers to both the applications delivered as services
over the Internet and the hardware and systems software in the data centers that provide
those services.” It is an attractive solution for those companies that do not have the ability
and capital to build a large ad hoc computing and/or data center. Acquiring computing
resources from service providers instead of establishing private IT infrastructures saves
both time and cost in many aspects. As the provider is also responsible for maintenance,
the clients do not have to hire specialists to be in charge of the security or sustainability
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problem, thus reducing the personnel cost to a considerable extent. The convenience and
stability brought forth by cloud computing have stimulated the development of technolo-
gies and service models for this booming business opportunity. One of the service models is
called IaaS (Infrastructure as a Service), where the vendors sell their computing resources
often referred to as “virtual machines” to the clients. Amazon Elastic Compute Cloud
(http://aws.amazon.com/ec2/) and IBM SmartCloud (http://www.ibm.com/cloud/)
are some prominent examples of IaaS.

In contrast to a wide variety of service modes, there is an obvious lack of the pric-
ing schemes for adaptability. Nowadays the providers sell their computing resources in
similar ways, which are called pay-as-you-go or pay-per-use. This usage-based pricing
scheme stems from the utility service (e.g. electricity, natural gas and water) pricing con-
cept. Besides, a group of different prices is set for processors according to the computing
capacities, such as the CPU speeds or the memory sizes. There is no minimum fee or
discount on purchasing multiple instances, and only a slightly discount on purchasing an
instance for a long time, e.g. a 1-year or 3-year term. However, it is insufficient for the
consumers who have different and special requirements. Thus, new pricing schemes are
needed for attracting those consumers. Bakos and Brynjolfsson [5] studied the strategy of
bundling distinct information goods and selling them for a fixed price. Analyses revealed
that this strategy often yields higher profits than that from selling them separately. Sun-
dararajan [25] indicated that fixed-fee unlimited-usage pricing and usage-based pricing
schemes should be included in different stages of information markets. They suggested
that a fixed-fee pricing scheme should be included in both early-stage and mature mar-
kets. With these studies, we come up with a new scheme to bundle the processors with
different speeds together as packages and rate them at different prices according to their
computing capacities. A fixed-charge time interval is also given since the unlimited-usage
price may be too expensive for small and medium-size enterprises. Within this time inter-
val, consumers can fully utilize the resources in the purchased package without any extra
fee. After the fixed-charge time interval, the usage-based pricing scheme applies to accu-
mulate the expenses. This new pricing scheme is a win-win model to both parties. From
the viewpoint of cloud computing service providers, the flexibility of adjusting processors
makes them easily bundle processors for forming distinct packages. The providers can
bundle the oldest/slowest machines and the newest/fastest machines together so that the
performances could be balanced. The processors can be freely arranged to make multiple
packages and fully satisfy various kinds of consumers. Also, this model can attain a large
increase in profits as well as reduce the unnecessary waste of resources. From the stand-
point of clients, there are more choices of packages and pricing schemes. The clients can
hire packages according to their budgets and dispatch the jobs based on their urgency.

In this paper, we, from the perspective of a cloud service agent, develop a planning
and scheduling model by regarding the cloud computing environments of IaaS as parallel
machines. A cloud service agent acts as an intermediary between the cloud computing
service providers and the clients to negotiate the contracts, bargains, and also provides
additional services. As the interest in cloud computing grows, a brokerage service is
necessary for the clients. Like the real estate agents or stock agents, the cloud computing
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agents are the connections between service providers and clients. They help the clients to
select the services they need, and purchase the services from the providers. They may have
multiple jobs from various clients and also purchase computing resources from different
providers. Therefore, the arrangement of resource dispatching becomes an important
issue. The agents have to complete the jobs of consumers as soon as possible to earn
their trust and the opportunities for future cooperation. On the other hand, they have
to purchase sufficient resources to process the jobs and make their own profits. Thus,
as a third-party business, the management of the cloud computing agents is directly
related to both service providers and clients. For simplicity of description, we assume
that the resources in the purchased packages can be fully controlled and managed by the
agents, and allocation of jobs to processors and the job sequence on each processor are
determined by the agents as well. Since the agent aims to lower the cost of purchasing
computing resources and finish the jobs on time, we formulate the studied model as
a parallel-machine scheduling problem with resources acquisition planning. Since the
machine speeds are usually distinct in the environment of cloud computing, we are tackling
precisely a scheduling problem on uniform parallel machines. The objective function is
a linear combination of the total weighted tardiness (

∑
wjTj) and the total package

acquisition cost (
∑

Ψi(Li)). The acquisition cost of package i is calculated based on
the schedule makespan Li and the package pricing scheme proposed above. Using the
three-field notation [23], the studied problem can be denoted by Qm||α∑

wjTj + (1 −
α)

∑
Ψi(Li), where Qm represents the uniform parallel machines, and α is the weighting

parameter for normalizing the two types of costs.
The rest of this paper is organized as follows. A brief review of the related literature is

given in Section 2. In Section 3, problem definition and notation are provided along with
an illustrated example, and an integer programming model for the studied problem is
formulated. In Section 4, several heuristics are used to attain initial solutions. Details of
the meta-heuristics utilized for improving the initial solutions are described in Section 5.
In Section 6, computational results and related analyses are reported. Finally, Section 7
concludes this research and provides suggestions for further research.

2 Literature Review

Parallel-machine scheduling problems with different objectives and constraints have been
extensively studied in the open literature. As Cheng and Sin [9] noted in their state-of-the-
art review of major research results in parallel-machine scheduling problems, various job
characteristics, machine configurations and performance criteria are of theoretical interest
as well as practical significance. Minimizing the total tardiness with penalty weights is one
of the commonly considered objectives . When the penalty weights are arbitrary positive
numbers, the scheduling problem with identical parallel machines Pm||∑wjTj is NP-
hard in the strong sense [19, 23]. When the penalty weights of all jobs are the same,
the Pm||∑Tj problem is at least binary NP-hard [17]. Several studies examined the
properties that lie in the structures of an optimal schedule, and developed exact algorithms
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for Pm||∑Tj . Azizoglu and Kirca [3] presented some dominance properties for Pm||∑Tj

and proposed a branch-and-bound algorithm that can solve instances with up to 15 jobs
and 3 machines. They also extended some of the properties for Qm||∑Tj. Yalaoui and
Chu [29] developed more dominance properties and bounding rules, and showed that their
branch-and-bound algorithm could obtain optimal solutions in some cases with 30 jobs
and 2 machines. Shim and Kim [24] also provided dominance properties and lower bounds
to show that the suggested algorithm could find optimal solutions for problems with up
to 30 jobs and 5 machines in a reasonable time. As for the uniform parallel-machine
problems, Dessouky et al. [10] presented algorithms for different objectives under the
strong assumption that the jobs are identical, and proposed a dynamic programming
algorithm for minimizing the total completion time subject to release dates.

Considering the non-classical objective functions, such as the job processing costs,
several studies investigated bi-criteria scheduling problems. Leung et al. [20] addressed
the bi-criteria consisting of one classical and one non-classical objective functions with
two different bi-criteria structures in parallel machine scheduling. One is the hierarchical
bi-criteria, i.e. optimizing the secondary objective among the schedules that the primary
objective is minimized. The other is the linear combination of two objective functions,
which is exactly the bi-criteria structure used in this paper. The considered classical
objective is either the makespan or total completion time. Concerning a cost associated
with the processing of a specific job on a particular machine, the addressed non-classical
objective is the total machine assignment cost. They presented the complexity results for
the considered problems. Lee et al. [18] studied the same problem with the hierarchical bi-
criteria structure and developed approximation algorithms with worst -case performance
analyses. A different job processing cost, which is determined by the time slots used
by the job, is considered by Wan and Qi [27] for single-machine scheduling. The non-
classical objective function considered in this paper is different from the above ones with
respect to the following three characteristics: (i) The package acquisition cost function is
a piecewise linear function; (ii) The incurred cost is associated with packages rather than
jobs; (iii) The acquisition cost for each package is a function of the schedule makespan in
the package.

Since the proposed Qm||α∑
wjTj + (1 − α)

∑
Ψi(Li) model is an extension of the

strongly NP-hard problem Qm||∑wjTj, developing exact solution methods, such as
branch-and-bound algorithm, can only solve small or medium-size problem instances.
Considering the large-scale instances in practical application, designing heuristics to de-
rive near-optimal solutions in an acceptable time is necessary. In most heuristics, the
job dispatching order is determined by a certain priority rule which is calculated by dif-
ferent formulae. The top-priority job is selected to be processed by the first available
machine. Carroll [8] provided a rule called Cost over Time (COV) for sequencing single-
or multiple-component jobs. Montagne [21] introduced Montagne’s Ratio Rule (MRR)
for the minimum total weighted tardiness problem. For single-machine scheduling, Baker
and Bertrand [4] presented the Modified Due-Date rule (MDD) which is a combination of
the Earliest Due Date first rule (EDD) and the Shortest Processing Time first rule (SPT).
Morton et al. [22] designed the Apparent Urgency rule (AU) for the total weighted tardi-
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ness minimization on single and parallel machines. Ho and Chang [15] devised the Traffic
Priority Index Rule (TPI), which computes the priority indices by the traffic congestion
ratio (TCR), for minimizing the mean tardiness. Considering the minimization of total
weighted and unweighted tardiness on parallel machines, Alidaee and Rosa [1] extended
the MDD rule and compared it with other existing heuristics. Their experiment results
indicate its dominance in effectiveness over other heuristics. We will further elaborate on
the above heuristics in Section 4.

3 Problem Formulation and Integer Linear Program-

ming Model

In this section, we present a formal problem definition. Cloud computing service providers
offer computing packages, each of which contains multiple processors running at different
speeds. A agent receives orders of computing tasks from several clients and acquires
computing packages from service providers. The agent assigns the tasks of clients to the
acquired processors to reflect the performance criteria set by the clients. This paper adopts
the performance measure of total weighted tardiness to indicate the service quality. Other
criteria can be considered in a similar way. While maintaining service quality, the agent
simultaneously needs to reduce his/her acquisition cost. Therefore, the decisions include
the selection of computing packages to purchase and scheduling of the commissioned tasks
on the acquired processors so as to minimize a cost function that comprises acquisition
cost and total weighted tardiness. Formal statements of the problem are given as follows.

Consider n jobs J1, J2, . . . , Jn to be scheduled on h packages P1, P2, . . . , Ph. Package Pi

has μi parallel processors that may run at different processing speeds. The kth processor
in package Pi is denoted by pik and its speed is given by sik for all i = 1, . . . , h and
k = 1, . . . , μi. Package Pi is characterized by base time bi, fixed-charge cost fi, and unit
cost ci. The usage duration for each package Pi is denoted by Li, and defined as the
longest elapsed processing time among the processors in Pi. That is, Li is the makespan
of the actual schedule of the jobs on the processors of package Pi. The cost of acquiring
package Pi is given by a non-decreasing step function Ψi(Li):

Ψi(Li) =

⎧⎨
⎩

0, if Li = 0 (not acquired);
fi, if 0 < Li ≤ bi;
fi + ci(Li − bi), if bi < Li.

Job Jj is described by computing load �j, due date dj, and tardiness penalty weight wj.
Its actual processing time depends on the processor pik to be assigned to and is given by
tjik = ��j/sik�. All jobs are released or available for processing at the beginning of the time
horizon. The weighted tardiness penalty for job j is defined by wjTj = wj max{0, Cj−dj},
where Cj is the completion time of job j. The computing resource of the processors are
bundled and sold in packages, and the jobs can be assigned to only the processors of the
purchased packages. Migration of job processing among processors or packages is not
allowed. The objective is to determine an acquisition plan and a processing schedule to
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minimize the weighted sum of the package acquisition cost and the total weighted tardi-
ness. The following example illustrates the problem definition.

Example. Consider a set of eight jobs to be scheduled in two available packages, each of
which has two processors. The parameter values are shown in Table 1, and two example
schedules are presented in Figure 1.

Table 1: Example parameters.

job 1 2 3 4 5 6 7 8
�j 8 8 7 8 4 6 6 5
dj 4 7 3 6 7 7 6 6
wj 8 3 5 9 4 4 6 7

Package P1 P2

ci 25 15
fi 15 10
bi 10 15
sik 1.8, 1.9 1.2, 1.3

Figure 1: Example schedules.

As shown in Figure 1, the package elapsed times of schedule S1 are 8 for package P1 and
12 for package P2, both of which are within the base time. Thus, the acquisition cost of
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schedule S1 is 25, the sum of the fixed-charge costs. However, in schedule S2, the elapsed
time of P1 is 12, which exceeds the base time 10. Therefore, P1 incurs two extra time
units and results in an acquisition cost of 75 for S2. Schedule S1 assigns four jobs to each
package and has a total weighted tardiness of 91. The other schedule S2 dispatches five
jobs to package P1 and three jobs to package P2, and attains a total weighted tardiness of
109. The decisions involving the package acquisition planning as well as job dispatching
and sequencing exhibit the complex structure of the studied problem which demands
tailored solution approaches.

The following assumptions and constraints are incorporated in this paper:

1. All jobs are available for processing from time zero onward, i.e. no release date is
assumed;

2. Every job can be processed by any processor in the packages;

3. Any processor can process at most one job at a time;

4. The processing time of a job depends on the speed of the processor it is assigned to;

5. No migration is assumed, i.e. if a job is started on some processor, then it must be
processed on that processor until its completion;

6. Preemption is not allowed on any processor.

Under the first assumption, the performance of a single-thread execution mode is not
worse than that of a multi-thread execution mode. Therefore, we also make the fifth and
the sixth assumptions.

Before presenting the mathematical programming model for the studied problem, we
define two binary decision variables xjikl and yi as follows. If job Jj is sequenced in the
lth position, where l ∈ {1, . . . , n}, in processor pik, then xjikl = 1; otherwise, xjikl = 0. If
package Pi is purchased, then yi = 1; otherwise, yi = 0. A binary integer linear program
(ILP) can be formulated as follows.

Minimize Z = α
n∑

j=1

wjTj + (1− α)
h∑

i=1

Ψi(Li)
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h∑
i=1

μi∑
k=1

n∑
l=1

xjikl = 1, ∀j, (1)

n∑
j=1

xjikl ≤ 1, ∀i, k, l, (2)

Li = max
1≤k≤μi

{
n∑

l=1

n∑
j=1

xjikltjik}, ∀i, (3)

Tj ≥ Si,k,l + xjikltjik − (1− xjikl)M − dj, ∀j, i, k, l, (4)

Si,k,l+1 − Si,k,l = xjikltjik, ∀j, i, k, l, (5)

yi ≥ xjikl, ∀j, i, k, l, (6)

Ψi(Li) = yifi + cimax{0, (Li − bi)}, ∀i, (7)

Tj ≥ 0, ∀j, (8)

xjikl ∈ {0, 1}, ∀j, i, k, l, (9)

yi ∈ {0, 1}, ∀i. (10)

In the above formulation, the objective function is a weighted sum of two terms with
the weighting parameter α. The first term is the total weighted tardiness, and the second
term is the acquisition cost. Eq. (1) enforces that each job is to be processed in exactly one
position of a specific processor of its package. Eq. (2) ensures that a position of a specific
processor in its package can accommodate at most one job. Eq. (3) states the duration
time of each package, i.e. the longest completion time among processors in each package.
The tardiness can be expressed by Eq. (4) and (8), where Si,k,l is the starting time of the
job sequenced in the lth position in processor pik, and M is a sufficiently large positive
number. If job Jj is processed in the lth position in processor pik, then xjikl = 1. On
the other hand, when xjikl = 0, the inequality will be satisfied due to the large negative
value −M . Eq. (5) enforces that the jobs on the same processor do not overlap. Eq. (6)
specifies whether the package is purchased or not. If a job is assigned to any processor of
package Pi, the package has to be purchased (yi = 1). Eq. (7) is the pricing function of
package Pi. If Pi is not purchased, then yi = 0 and Li = 0. The cost is thus zero. Eq. (9)
and (10) are given for the the binary restriction on the decision variables.

The commercial software CPLEX was deployed to solve the ILP model for the example
instance given in Table 1. Given α = 0.5, an optimal solution x1111 = x2112 = x3121 =
x4221 = x5123 = x6212 = x7211 = x8122 = 1, y1 = 1, y2 = 1 with L1 = 10, L2 = 10, T1 =
1, T2 = 3, T3 = 1, T4 = 1, T5 = 3, T6 = 3, T7 = 0, T8 = 1,Ψ1 = 15,Ψ2 = 10 is yielded.
The corresponding optimal schedule Sopt is shown in Figure 2. The derived schedule has
a total weighted tardiness of 62 and an acquisition cost of 25. Compared to the schedules
in Figure 1, the optimal schedule Sopt dispatches five jobs to the faster package P1 and
fully utilizes its base-time interval. Thus, the CPLEX solver reduces the total weighted
tardiness and leads to an optimal schedule with objective value of 43.5 under the condition
α = 0.5.
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Figure 2: Optimal solution with the objective value 43.5 (α = 0.5).

4 Heuristics

The proposed model is an extension of total tardiness minimization in parallel-machine
scheduling, which is NP-hard [19, 23], implying that developing exact solution methods,
such as branch-and-bound algorithm, to derive optimal solutions in polynomial time is
very unlikely. Our preliminary study suggests that deploying the commercial software
CPLEX can solve the proposed ILP for only small-size instances with n no greater than
eight. We thus circumvent to adopt heuristics to find approximate solutions and then
apply meta-heuristics to further improve upon the solutions. In this section, we adapt
all the heuristics introduced in literature review [1, 4, 8, 15, 21, 22] for parallel-machine
scheduling to solve the studied acquisition planning and scheduling problem. In the iden-
tical parallel-machine setting, job processing times can be simply given by job loads, i.e.
tjik = �j/1. For the uniform parallel-machine scheduling considered in this study, the
job processing time is determined by the speed of the processor, i.e. tjik = ��j/sik�. In
order to adapt the heuristics originally proposed for identical machines to the studied
problem, some adjustments on job processing times are necessary. Some of these heuris-
tics may use the processing times to identify the priority indices among the remaining
unscheduled jobs. Since the processing time is unknown until it has been allocated to a
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processor, we use the slowest speed among all the processors to reflect the priority indices.
The estimated maximum processing time for job j is denoted by t̄j = ��j/smin�, where
smin = mini,k{sik}. A challenge arising in managing the machines is due to the different
numbers of machines included in the packages.

In parallel-machine scheduling, the number of machines is usually denoted by m. In
the studied model, the total number of machines is the summation of processors in all the
packages, i.e, m =

∑h
i=1 μi. We explain the original heuristics in the following section,

while substituting some major components addressed here with different notation. These
heuristics can be classified into two groups, static and dynamic, according to the time
dependency.

4.1 Static Dispatching

Static dispatching consists of job dispatching rules and package selection rules that are
irrelevant to the completion time of the last job residing on each machine. A static rule
determines the job priority indices simply by the static data of the jobs and/or packages.
After the order has been determined, the package selection rule chooses a processor to
accommodate the job of the highest priority, until all jobs are dispatched.

(1)Job dispatching rules

• Earliest Due Date (EDD): The jobs are ordered in the non-decreasing order of dj.

• Weighted Minimum Load (WML): The jobs are ordered in the non-increasing order
of wj/�j. The rule is adapted from the Weighted Shortest Processing Time first
(WSPT) rule.

• Largest Load First (LLF): The jobs are ordered in the non-increasing order of �j.
The rule is adapted from the Longest Processing Time first (LPT) rule.

• Slack Time (SLK): The jobs are ordered in the non-decreasing order of dj − t̄j .

• Montagne’s Ratio Rule (MRR) [21]: The jobs are ordered in the non-decreasing
order of t̄j/(t − dj), where t is the sum of estimated maximum processing times
divided by the number of processors, i.e. t =

∑n
j=1 t̄j/m.

• Traffic Priority Index Rule (TPI) [15]: This rule is defined as follows. Set traf-
fic congestion ratio (TCR) = t̄n/d̄m, where t̄ and d̄ are the average of estimated
processing times and the average of due dates, respectively. Also, let

Md = max
1≤j≤n

{dj},

Mp = max
1≤j≤n

{t̄j},
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a constant factor K = 3 as suggested by Ho and Chang [15],

Wd = max{min{0.5 + K − TCR

TCR
, 1}, 0},

Wp = 1−Wd,

Rj = (dj × Wd

Md
) + (t̄j × Wp

Mp
), ∀j.

Then the jobs are ordered in the non-decreasing order of Rj .

(2) Package selection rules

• List Scheduling (LS): This rule selects the processor which has the shortest process-
ing time among all processors to process the top priority job.

• Ratio of Fixed, Base, Speed (FBS): We develop a heuristic, called FBS, to select
the worthiest processor by the ratio of the cost per unit time to the average speed.
We use (fi/bi)/sikavg as a factor to select package Pi, where sikavg is the average
speed of processors in package Pi. Then we purchase the highest ratio package and
assign the job to the fastest processors in this package. Before we purchase another
package, we seek to fill up the base time of processors of the purchased package
in order to minimize total cost. If the base time of all packages is filled, we again
use LS to schedule the remaining jobs for balancing the workload among processors.
The reason behind using LS instead of using (ci/sikavg) is to avoid selecting the same
(highest ratio) package, which will increase the tardiness rapidly. The flow chart of
FBS is shown in Figure 3.

• LS’: This rule selects the processor that can finish the top priority job at the earliest
time.

• FBS’: The selection rule is the same as FBS, except for using LS’ instead of LS for
scheduling the remaining jobs to balance the workload among processors.

4.2 Dynamic Dispatching Rules

In contrast to static dispatching rules, dynamic dispatching rules are time dependent,
which means that the procedures for determining the job sequence and package selection
are related to the completion time of the last job on each processor. Under these rules, the
jobs are scheduled to a processor one by one. Once a job is scheduled, the priority indices of
the remaining unscheduled jobs are recalculated. These rules select a processor according
to LS, except for MDD rules, then dispatch the top priority amongst the unscheduled jobs.
To facilitate the description of dispatching rules, we assume that LS selects processor pik
so that the processing time of job Jj is tjik and Cik is the completion time of the last job
on that processor.
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Figure 3: Flow chart of FBS.
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• Cost over Time (COV) [8]: This rule chooses the next job to be processed according
to the largest ratio of πj defined by

πj =

⎧⎨
⎩

wj/tjik, if dj ≤ tjik + Cik;
(wj/tjik)(t− dj)/(t− Cik − tjik), if Cik + tjik < di < t;
0, if t < dj ,

where t is the sum of processing times divided by the number of processors, i.e.
t =

∑n
j=1 tjik/m.

• Apparent Urgency (AU) [22]: This rule chooses the next job to be processed accord-
ing to the largest ratio of πj defined by

πj = (wj/tjik) exp(−(dj − Cik − tjik)
+/κt̄),

where (x)+ = max{0, x}, t̄ is the average of processing times, and κ is a look-ahead
parameter. We set κ = 2 in the computational experiment.

• Minimum Slack Time (MS): This rule chooses the next job for processing according
to the largest ratio of πj defined by

πj = max{dj − tjik − Cik, 0}.

• Modified Due Date (MDD) [4]: The MDD rule is a combination of the SPT rule and
the EDD rule, proposed by Baker and Bertrand [4], for the single-machine tardiness
problem. Alidaee and Rosa [1] extended this rule to parallel-machine tardiness
problem. This generalized rule can be described as follows.

Step 1 Calculate the completion time of the last job on each processor, i.e. C11, C12, . . . , Chμh
.

Step 2 For each processor pik, repeat the following steps as on a single machine
and derive the job Gik and the value δGik

.

Step 2-1 For the set of unscheduled jobs, u, partition them into u1 and u2

such that
u1 = {j ∈ u : Cj = Cik + tjik > dj}, and

u2 = u− u1 = {j ∈ u : Cj = Cik + tjik ≤ dj}.
Step 2-2 Find two sets, γ and λ, of the jobs such that

γ = {j ∈ u1 : wj/tjik = max
q∈u1

{wq/tqik}}, and

λ = {j ∈ u2 : dj = min
q∈u2

{dq}}.
Step 2-3 Find two jobs, a and b, such that

a = argmin
q∈γ

{wqCq}, and

b = argmin
q∈λ

{wqdq}.
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Step 2-4 Choose the next job, Gik ∈ {a, b}, for the schedule that satisfies

δGik
= min{waCa, wbdb}.

Step 3 Schedule the next job Gyz on the processor pik such that

δGyz = min
1≤i≤h,1≤k≤μi

{δGik
}.

Combining the above rules, we have 28 heuristics, as listed in Table 2, for producing
approximate solutions.

Table 2: List of proposed heuristics.

Job sequence PKG selection Total

Static

EDD

24

WML LS
LLF LS’
SLK FBS
MRR FBS’
TPI

Dynamic

COV

4
AU LS
MS

MDD

5 Meta-heuristics

In this section, two meta-heuristics, tabu search and genetic algorithm, are presented for
solution finding.

5.1 Tabu Search

Tabu search (TS) [11, 12] has been extensively used to solve many combinatorial opti-
mization problems [6, 7]. TS starts with an initial solution derived randomly or from
other heuristics, then moves iteratively to another solution, and stops when certain stop-
ping criteria are satisfied. During each iteration, TS picks one move from the neighbors
of the incumbent solution to perform. This move is the best one that is not tabu-active
or the next one that satisfies the aspiration criteria. Once the move is chosen, the reverse
direction of the chosen move is recorded in the tabu list. Any entry in tabu list is in-
accessible until the tabu status has been relaxed. By managing the tabu list, the search
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procedure can efficiently seek the solution space without revisiting the solutions already
encountered. The TS mechanism can guide the search space toward a promising area and
find a better solution. The remainder of this section describes the key components of TS.

5.1.1 Initial solutions

We use the solutions generated by heuristics in section 4 as the initial solution. Since
the heuristics differ from one another in their solution qualities, preliminary tests are
conducted to distinguish the ability of TS on improving different initial solutions.

5.1.2 Neighborhood structures

In each iteration, a set of neighbor solutions is derived from the incumbent solution. We
use two types of most frequently used moves to generate neighbors.

• Swap: The swap operations are achieved by exchanging the positions of two jobs
regardless of whether they reside in the same processor or not. The sequences of
all the other jobs on any processors remain the same. The size of the neighborhood
solutions of this type is n× (n− 1)/2.

• Insert: The insertion neighbors are accomplished by removing a job from its proces-
sor, and inserting it to a random position of a different processor. The neighborhood
size of this type is n(

∑m
i=1 μi − 1).

Instead of using a single type of neighbors, our neighborhood strategy is to hybridize
these two types into the iteration process at a specific ratio θ. For example, assume that
TS totally runs for 100 iterations, and the ratio of using the first type neighborhood is
30% (θ = 0.3). Then, we will have 30 iterations to generate neighbors with swap moves
and the remaining iterations with insertion moves.

5.1.3 Tabu list

Tabu list is designed as a first-in-first-out queue and is used to avoid cycling to solutions
that have been encountered in earlier iterations. Any move that is tabu-active is not
allowed to take, unless it satisfies the aspiration criteria. In each iteration, TS selects the
best but not tabu-active move to perform. If the best move is tabu-active and does not
satisfy the aspiration criteria, then TS selects the next move to examine. When a move
is made, its reverse move is entered into the tabu list. The oldest entry would be deleted
if the queue is full. The size of the tabu list, called the tabu tenure, is usually set to be
between five to twelve as suggested in [11].

Since there are two types of moves to generate neighbors, we can use a single tabu
list to record two types of moves. Thus, the type of moves that can improve the solution
quality is more frequently recorded. However, we can use double tabu lists to record the
prohibit moves separately. In the our experiments, different parameters of tabu list will
be examined, including single or double lists and tabu tenure.
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5.1.4 Perturbation

We apply perturbation to the processors for adjusting the sequences of jobs while keeping
the allocation of jobs to processors. Since the acquisition cost is determined by the
makespan of processors in each package, changing the job precedence in each processor
will not increase the total acquisition cost but may reduce the total weighted tardiness.
We adjust the job sequences by the following two rules:

• EDD: The jobs on each processor are rescheduled in non-decreasing order of dj.

• Apparent Tardiness Cost (ATC): Vepsalainen and Thomas [26] devised ATC that
merges the characteristics of WSPT and MS rules. The jobs on processor pik are
rescheduled according to the following index:

Ij(t) = (wj/tjik) exp(−(dj − Cik − tjik)
+/κt̄u),

where t̄u stands for the average processing time of the unscheduled jobs on that
processor, and the look-ahead parameter κ = 2.

An example using the parameter values in Table 1 is given in Figure 4. The acquisition
costs of three schedules are all 25. The original schedule S0 has a weighted tardiness of
91. After using EDD to reschedule each processor, the sequences of processors p11 and p21
are reversed, reducing the weighted tardiness to 84. In schedule SATC yielded by applying
ATC to S0, only the sequence of p11 is updated and the total weighted tardiness is reduced
to 82. The above example clearly indicates that applying perturbation could decrease the
total weighted tardiness without increasing the acquisition cost.

Figure 4: Example of perturbation results.
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5.1.5 Aspiration and stopping criterion

The aspiration criteria are used for TS to overrule the tabu-active restriction so as to
escape from local optima. The objective value is used to measure the aspiration level of
a neighborhood solution in our program. The stopping criterion for the search process
used in our experiment is that the number of iterations reaches 100.

5.2 Genetic Algorithm

Unlike TS that manipulates one solution with its neighbors in one iteration, Genetic
Algorithm (GA) [16] handles a population containing multiple possible solutions. The
members of a population, called individuals, are represented abstractly as chromosomes.
It starts with an initial population and generates successive populations through genetic
operators. The operators combine or mutate these chromosomes to generate new individ-
uals for the next iteration. This procedure iteratively works until the stopping criteria
are met, and each iteration is referred to as a generation. In each generation, the better
individuals are more likely to survive or to mate with others while the least fit individuals
tend to vanish. For each individual, we use the objective value to represent the fitness
value. In our computational experiments, the stopping criterion is that the number of
generations reaches 100, which is determined through extensive preliminary tests. The
major elements are elaborated in the following sections.

5.2.1 Encoding scheme

We use two chromosomes to represent one individual. The first chromosome, Seq, indi-
cates the job sequence on each of the m processors. Each bit in chromosome Seq, called
gene, represents an index of a job. The second chromosome, Num, shows the total num-
ber of jobs on each processor. For example, schedule S1 in Figure 1 is represented as
{8,1,4,5,7,3,6,2} for chromosome Seq, and {2,2,2,2} for chromosome Num. Schedule S2

is represented as {1,2,3,8,5,7,6,4} for chromosome Seq, and {2,3,2,1} for chromosome
Num. Using these two chromosomes can represent a unique individual and can easily
check the feasibility. The chromosome Seq is a permutation of consecutive integers from
one to n. If any repetitive number occurs in Seq, it is infeasible. The summation of every
gene in chromosome Num is equal to n. If the summation is not equal to n, it is infeasible.

5.2.2 Initial population

We use the solutions generated by the heuristics addressed in section 4 to construct the
initial population. In order to avoid the case that some individuals with high fitness values
are eliminated too early, we reproduce the initial solutions four times. Also, we set the
population size equaling 112 in the reproduction step.
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5.2.3 Selection

Many selection methods have been proposed in the literature, and the remainder stochas-
tic sampling without replacement [13] is used in our experiment settings of GA. Each
individual i is selected �ϕi/ϕ̄	 times to be included in the next generation, where ϕi is
the fitness value of individual i and ϕ̄ is the average fitness value of the population in the
current generation. The remainder of the offspring is chosen from the individuals with
the highest offspring counts (ϕi/ϕ̄). Once the individual is selected, its offspring count is
set to be zero. This process repeats until the next population is full.

5.2.4 Genetic operators

The genetic operators are analogous to biological behavior. They are applied to the
individuals after the selection procedure is completed. The next generation is then bred
by these operators. The most commonly used genetic operators in the new generation
formation are crossover and mutation.After these two operators complete their task, the
old individuals are eliminated and replaced by the new individuals for the next generation.
Thus, we can derive multiple new solutions in one iteration. The following subsections
give the details of these operators.
(1) Crossover
To vary the chromosomes for potential diversity in the next generation, crossover opera-
tors combine two individuals as parents to produce another two individuals as offspring.
Crossover in each generation is applied with a probability Probc, that is, some parents
may not breed any offspring. We use Probc ∈ {0.7, 0.8, 0.9} in the program. The new
individuals in the next generation are composed of the offspring and the parents that did
not breed. The crossover operators for Seq and Num are given as follows:

(i) Crossover operator of Seq :

• Partially matched crossover (PMX): Two randomly selected points are chosen,
and PMX is invoked by pairwise interchanges. The matching pair inside the two
crossover points exchange their values position by position and repair the repetitive
value to a proper one.

• Order crossover (OX): The portion between two randomly selected crossover points
is replaced by another parent. The rest is filled up by the remaining genes with its
original order.

(ii) Crossover operator of Num:

• Single point crossover: A randomly selected point is assigned to both parents. The
data in front of this point, is swapped between the two parents.

• Two point crossover: Swapping the data between two randomly chosen points.

• Uniform crossover: Preserving the even bits of the original parents for the offspring,
and swapping the odd bits.
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The crossover operator applied on Seq and Num are different due to the structures
of the parameter values. The operator of Num could generate some infeasible solutions,
i.e. the summation of every gene in Num is not equal to n. To fix them, we have some
repairing functions which will be introduced later. In addition, a hybrid operator is used
to perform crossover in the experiment, and each operator type has the same probability
to be selected. For instance, in the hybrid crossover operator of Seq, PMX and OX both
have a probability of 50% to be chosen.

(2) Mutation
To introduce new information into individuals, mutation may be applied after crossover.

In our experiment, mutation operates on a generation with a probability Probm ∈ {0.01, 0.1}.
Three simple mutation operators are adopted in the framework of GA.

• Swap: Randomly assign two genes in one offspring, and change the values of these
genes.

• Inverse: The sequence of data between two randomly selected points in a chromo-
some will be reversed to generate a new chromosome.

• Shift: Rotate as if the left and right ends of this chromosome were connected until
a randomly selected gene reaches the first gene position.

These operators simply change the sequence of genes within a chromosome. Thus,
infeasibility will not arise. Like the hybrid strategy of crossover, we also use the same
hybrid mechanism for mutation.

(3) Repairing function
While crossover operators could generate some infeasible solutions, a feasibility repair-

ing function is needed. There are obviously two cases of infeasible solutions: (i) Too large:
The summation of every gene in Num is larger than n; (ii) Too small: The summation of
every gene in Num is smaller than n. Both of these two cases can be easily repaired by
subtracting or adding random gene(s) until the summation is equal to n.

5.2.5 Perturbation

We use the same perturbation mechanism as in TS to reduce the total weighted tardiness
of each processor. However, applying perturbation to the individuals of a population
could reduce the diversity and lead to inferior improvements. Therefore, we only apply
perturbation to the solutions for predicting the fitness value that each individual can
reach under the condition that the allocation of jobs to processors remains unaltered.

6 Computational Experiments

This section is dedicated to the computational study conducted for examining the perfor-
mance of the heuristics and meta-heuristics. The platform of the experiments is a desktop
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computer with an Intel Core2 Quad 2.40GHz CPU and 2GB RAM. The operating system
is Microsoft Windows 7 and the programs are coded in Microsoft C# .NET Framework
4.0 environment. The data generation scheme of the experiments followed by the results
and the analyses are described in the following sections.

6.1 Data Generation Scheme

Since the studied problem is different from the traditional parallel-machine scheduling
problem, we do not adopt the existing benchmark instances but generate ad hoc test
instances. We use several probability distribution functions, as suggested in [14], to sample
the job data and a simple pricing scheme to describe the price of each package. We set
three problem sizes (n, h, μi) ∈ {(20, 2, 2), (30, 3, 2), (40, 4, 2)}, and apply the following
schemes to generate the instances.

6.1.1 Characteristics of job parameters

Three probability distributions, including uniform distribution, normal distribution and
beta distribution, with different parameters are used to generate job loads, as follows:

• Uniform, U [lb, ub]: The job loads are uniformly drawn over the interval [lb, ub].

• Normal, N(ν, σ): The job loads generated by the normal distribution with two
parameters ν and σ. The mean ν measures the location of the distribution, and the
standard deviation σ measures its spread.

• Beta, B(a1, a2, lb, ub): The job loads are approximately reflected by the beta distri-
bution with shape parameters a1 and a2 over the interval [lb, ub]. The shape of the
beta density function depends on the values of a1 and a2. When a1 > a2, the curve
skews toward upper bound ub, and the curve skews toward lower bound lb while
a1 < a2.

In addition, we separate the job loads into three groups by their upper bounds. This
classification is used to discriminate the abilities of the proposed methods in dealing with
different loads. The loads of the first group are less than or equal to 10, and those of
the second group are not greater than 50. The upper bound of the third group is 100.
The weights of jobs are generated by the distributions as mentioned above with the upper
bounds equal to 10. Another method to sample the weights is scaling proportionally the
loads to the interval [1, 10], namely, the jobs with larger loads are more important than
smaller ones.

The due dates of jobs are sampled according to job loads in order to give reasonable
ranges. The first method is to generate the estimate processing times, i.e. �j/smin, plus
the additional tolerant range produced by a uniform distribution with the upper bound
equal to 10 and a normal distribution with mean and standard deviation equal to 5 and
2, respectively. The second method is to use a function of processing times to compute

20



the upper and lower bounds of an uniform distribution. We use two functions to compute
the bounds as follows.

• Hest: The due dates are randomly drawn from U [β1Hest, β2Hest]. We let Hest =∑
j(�j/1.5) and (β1, β2) = (0.05, 0.2) in the experiment.

• Due factor: The due dates were randomly drawn from U [1, 2Hest/(mq)], where
q ∈ {2, 8} is a constant factor for controlling the tightness of the due-date range.

The above generation schemes are summarized in Table 3.

Table 3: Generation of job parameters.

Load

Group 1 U [1, 10] N(5, 2)
B(1,5,1,10)
B(5,1,1,10)

Group 2 U [1, 50]
N(25, 4) B(1,5,1,50)
N(25, 8) B(5,1,1,50)

Group 3 U [1, 100]
N(50, 8) B(1,5,1,100)
N(50, 16) B(5,1,1,100)

Weight ∝ �j U [1, 10] N(5, 2)
B(1,5,1,10)
B(5,1,1,10)

Due U [1, 10]+�j/1.5 N(5, 2)+�j/1.5 U [β1Hest, β2Hest]
Tight, q = 8
Loose, q = 2

6.1.2 Characteristics of package parameters

The speeds of processors are randomly drawn from the log-normal distribution with its
mean and standard deviation respectively equal to 0.5 and 0.2, which produces the values
within the interval [1, 2]. For the simplicity in method comparison, we set the price
according to the average speed of processors in the package. The average speeds for
all packages are categorized into four groups. The packages in the group with a lower
processing capacity are cheaper in unit cost ci and fixed cost fi, but has a longer base
time bi. On the other hand, the package price for the group with the fastest processors is
higher than others. The pricing scheme of the experiments is shown in Table 4.

Using these methods, we generate 10 independent sets for each problem size (n, h, μi) ∈
{(20, 2, 2), (30, 3, 2), (40, 4, 2)} and 45 instances in each set, thus a total of 1350 instances.
The instances and the complete instance generation schemes can be found in the website
(http://people.cs.nctu.edu.tw/~cnyang/data.php).

6.2 Experiment Results

In the experiments on the capability of heuristic, 28 heuristics were applied to all in-
stances with α = 0.5. The results are presented in Tables 5 and 6. The column entitled
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Table 4: Price characteristics of packages.

Average speed [1,1.25) [1.25,1.5) [1.5,1.75) [1.75,2]
Unit cost (ci) 2 4 6 8

Fixed-charge cost (fi) 25 36 45 48
Base time (bi) 25 18 15 12

“best%” records the percentage with which the heuristic achieved the minimal objective
value among all results. We can see from the results that the dynamic dispatching rules
outperform other heuristics, especially COV and AU. The results could be attributed to
the facts that the dynamic rules takes more factors into account for computing the priority
indices than the static rules, and that the dynamic rules incorporate the completion time
of the last job on each processor. The priority index of a job may increase or decrease
at different time points. Thus, dynamic rules could deal with the urgent jobs earlier. On
the contrary, static rules determine the job dispatching sequence at the beginning, and
cannot adjust the sequence according to the urgency of jobs.

The average objective values of COV and AU are lower than others, but EDD and
WML can also attain better values in comparison to LLF. The results of LLF are worst
under the condition α = 0.5. However, if we only consider the acquisition cost, i.e. α = 0,
LLF can contribute a better solution than others. Since LLF is modified from LPT rule
which is usually used to minimize makespan, the elapsed time of each package is shorter
than other heuristics. Note that the running times required by the heuristics are negligible
and not shown in the tables.

In the experiments on the performances of TS and GA, we conducted 100 independent
runs for each instance with each parameter setting. The independent runs were designed
to avoid the statistical error that might be produced by the randomness in the execution
course of TS and GA. We chose 45 instances (15 for each problem size (n, h, μi)) from
the instance pool, which were all generated by the uniform distribution. We use the
average improvement percentage (Avg impr%), the maximum improvement percentage
(Max impr%), the total execution time in seconds of 100 runs (Time), and the standard
deviation in run time of 100 runs (Std) to evaluate the results of different parameter
settings. The improvement of meta-heuristic X over the initial solution is computed by

ZInitial − ZX

ZInitial

× 100%,

where ZInitial and ZX are the objective value of the initial solutions and that yielded by
X, respectively.

6.2.1 GA

In the preliminary test, different types of crossover and mutation operators did not in-
troduce significant discrimination to the results in the aspects of Time, Std or impr%.
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Table 5: Results of static dispatching rules (α = 0.5).

α = 0.5
n=20 n=30 n=40 Average

Average Z best% Average Z best% Average Z best% Average Z best%
EDD + LS 1381.34 1.1% 2193.94 1.8% 3001.98 1.3% 2192.42 1.4%
EDD + FBS 1394.80 0.7% 2223.94 0.4% 3033.59 1.1% 2217.44 0.7%
EDD + LS’ 1362.76 2.9% 2169.13 6.7% 2961.87 4.9% 2164.59 4.8%
EDD + FBS’ 1379.50 0.7% 2200.95 0.9% 3019.71 0.9% 2200.05 0.8%
WML + LS 1170.15 5.6% 1855.37 5.1% 2515.54 3.3% 1847.02 4.7%
WML + FBS 1184.69 3.3% 1876.78 4.9% 2551.56 3.8% 1871.01 4.0%
WML + LS’ 1150.55 17.3% 1837.14 11.3% 2477.63 18.0% 1821.77 15.6%
WML + FBS’ 1168.58 5.1% 1866.39 5.1% 2529.17 5.1% 1854.71 5.1%
LLF + LS 2323.67 - 3690.70 - 5019.07 - 3677.82 -
LLF + FBS 2320.28 - 3684.37 - 5012.95 - 3672.53 -
LLF + LS’ 2320.87 - 3688.84 - 5009.43 - 3673.05 -
LLF + FBS’ 2318.49 - 3684.38 - 5005.88 - 3669.58 -
SLK + LS 1603.61 0.2% 2539.54 - 3276.33 - 2473.16 0.1%
SLK + FBS 1606.70 - 2548.08 - 3297.69 - 2484.16 -
SLK + LS’ 1583.96 - 2519.06 - 3236.58 - 2446.54 -
SLK + FBS’ 1597.46 - 2539.23 - 3281.65 - 2472.78 -
MRR + LS 1707.46 - 2814.04 - 3796.87 - 2772.79 -
MRR + FBS 1714.84 - 2830.39 - 3812.56 0.2% 2785.93 0.1%
MRR + LS’ 1686.24 - 2786.32 - 3739.34 - 2737.30 -
MRR + FBS’ 1698.45 - 2812.45 - 3774.77 - 2761.89 -
TPI + LS 1692.73 - 2813.46 - 3782.38 - 2762.86 -
TPI + FBS 1695.24 - 2831.36 - 3801.18 - 2775.93 -
TPI + LS’ 1682.83 - 2785.23 - 3723.56 - 2730.54 -
TPI + FBS’ 1690.07 - 2809.30 - 3757.01 - 2752.12 -
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Table 6: Results of dynamic dispatching rules (α = 0.5).

α = 0.5
n=20 n=30 n=40 Average

Average Z best% Average Z best% Average Z best% Average Z best%
COV 1148.67 20.7% 1811.25 21.6% 2450.93 22.7% 1803.62 21.6%
AU 1136.31 32.0% 1801.71 30.4% 2444.38 26.0% 1794.13 29.5%
MS 1627.30 1.3% 2522.95 4.2% 3412.23 2.2% 2520.82 2.6%
MDD 1189.51 9.1% 1885.59 7.6% 2555.00 10.4% 1876.70 9.0%

Therefore, we use hybrid operators of both crossover and mutation throughout the com-
putational experiments.

In the experiments, we compare the different combinations of Probc ,Probm and per-
turbation strategies in order to find an optimal parameter setting for GA in the studied
problem. The numerical results are given in Tables 7 to 8 and Figures 5 to 10. We use
AU as the initial solution to compute the impr% since AU has been included in the initial
population.

Table 7 lists the Avg impr% and Max impr% of all combinations. The charts shown in
Figures 5 to 7 are the average results of all the instances with different parameter settings
and different perturbation strategies. The results reveal that no single parameter setting
is dominant except the setting (Probc, P robm) = (0.7, 0.1), which performs slightly better
than others. However, applying perturbation can make positive contributions to impr%.
The charts shown in Figures 8 to 10 are the average results of all the parameter settings
for each group under different perturbation strategies. The impr% after perturbation
can increase 4% for group 1, and 1% for other groups in comparison with those without
perturbation. The causes for this may lie in the fact that the genetic operators involves
a certain level of randomness. As long as the points of crossover and mutation operators
are not properly randomized, the operators may lead to worse solutions. Also, GA can
barely keep the good solution structures. Through the genetic operators, more than half
of the jobs could be dispatched to another processor, thus breeding offspring that are
drastically different from their parent chromosomes. Consequently, the good schedules of
each processor can easily be ruined. Therefore, applying perturbation to every processor
may rearrange the solution structures to a better way, and attain more improvement.

The results of Time and Std are provided in Table 8. The relationship between prob-
abilities (Probc and Probm) and execution times can be clearly observed from the table.
The higher the probabilities are, the more time we need to finish 100 generations of evo-
lution. If the probabilities are higher, then the chances that individuals conduct crossover
and mutation are higher. Thus, the program consumes more time. Applying perturba-
tion strategies also costs more times due to we have to rearrange the sequence of each
processor.

The final concern of the discussion is about Std. From the computational results, Std
is higher when applying perturbation for the most of the settings. One explanation can
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Table 7: Results of genetic algorithm (impr%).

Group 1, init = 218.77 Group 2, init = 1526.93 Group 3, init = 3227.53
None EDD ATC None EDD ATC None EDD ATC

Probc Probm Avg impr%
0.7 0.01 3.99% 4.26% 8.80% 1.57% 1.57% 1.94% 2.07% 2.17% 2.70%
0.7 0.05 4.27% 4.73% 8.85% 1.63% 1.64% 1.99% 2.21% 2.32% 2.77%
0.7 0.1 4.65% 4.77% 8.99% 1.63% 1.63% 2.00% 2.21% 2.30% 2.78%
0.8 0.01 3.75% 4.00% 8.67% 1.51% 1.51% 1.88% 2.00% 2.13% 2.65%
0.8 0.05 3.98% 4.29% 8.78% 1.56% 1.57% 1.90% 2.09% 2.21% 2.69%
0.8 0.1 4.32% 4.45% 8.83% 1.57% 1.59% 1.95% 2.06% 2.24% 2.72%
0.9 0.01 3.43% 3.69% 8.40% 1.46% 1.44% 1.82% 1.89% 2.03% 2.56%
0.9 0.05 3.76% 4.02% 8.57% 1.51% 1.50% 1.84% 1.90% 2.09% 2.61%
0.9 0.1 3.88% 4.02% 8.67% 1.51% 1.53% 1.84% 1.94% 2.06% 2.60%

Max impr%
0.7 0.01 11.22% 11.64% 14.51% 2.55% 2.59% 3.29% 3.37% 3.44% 4.11%
0.7 0.05 11.43% 12.71% 15.00% 2.75% 2.80% 3.61% 3.73% 3.60% 4.20%
0.7 0.1 12.84% 12.43% 15.04% 2.79% 2.80% 3.61% 3.87% 3.79% 4.19%
0.8 0.01 9.81% 10.84% 13.82% 2.26% 2.38% 3.23% 3.50% 3.40% 4.06%
0.8 0.05 11.57% 12.29% 15.04% 2.69% 2.51% 3.46% 3.54% 3.44% 4.20%
0.8 0.1 12.59% 12.16% 14.89% 2.57% 2.76% 3.51% 3.50% 3.74% 4.22%
0.9 0.01 10.88% 11.89% 13.99% 2.37% 2.22% 3.11% 3.29% 3.30% 4.00%
0.9 0.05 11.89% 11.73% 14.23% 2.43% 2.50% 3.13% 3.25% 3.43% 3.96%
0.9 0.1 11.13% 11.47% 14.24% 2.42% 2.55% 3.24% 3.40% 3.37% 4.28%
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Figure 5: Average impr% of GA without perturbation strategy.

Figure 6: Average impr% of GA with EDD.

Figure 7: Average impr% of GA with ATC.
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Figure 8: Average impr% of GA with different perturbation strategies (group 1).

Figure 9: Average impr% of GA with different perturbation strategies (group 2).

Figure 10: Average impr% of GA with different perturbation strategies (group 3).

27



be derived from observing some specific instances. One of the instance results is shown
in Table 9. From the table, we can see that GA cannot yield any improvement without
perturbation, and Std is lower since all the objective values of 100 trials were almost the
same. However, applying perturbation may let GA gain improvement through reducing
the total weighted tardiness. Thus, the objective values varied and increased the Std.
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Table 8: Results of genetic algorithm (Time and Std).

Group 1 Group 2 Group 3
None EDD ATC None EDD ATC None EDD ATC

Probc Probm Time (sec.)
0.7 0.01 49.87 129.14 171.13 49.76 129.23 172.31 50.65 132.08 174.98
0.7 0.05 148.90 222.41 264.44 150.15 225.83 267.18 152.41 227.90 270.22
0.7 0.1 243.46 319.48 359.94 246.40 320.33 361.71 248.84 325.01 366.48
0.8 0.01 338.20 413.19 455.59 341.42 416.33 457.66 346.16 422.88 464.43
0.8 0.05 433.63 508.91 550.19 436.47 510.80 552.00 441.82 518.01 559.25
0.8 0.1 528.46 602.10 643.19 530.38 604.91 646.68 537.62 613.44 655.33
0.9 0.01 623.26 694.73 735.42 625.71 701.72 742.17 633.23 709.40 751.35
0.9 0.05 713.43 787.42 828.23 720.97 795.67 836.88 729.36 806.03 846.83
0.9 0.1 806.33 881.09 921.74 815.24 888.91 929.98 824.71 901.51 942.51

Std (sec.)
0.7 0.01 4.08 4.30 3.69 2.97 3.06 4.82 5.86 6.17 8.64
0.7 0.05 4.34 4.89 3.86 3.49 3.76 5.78 7.46 7.56 9.96
0.7 0.1 5.06 4.80 4.08 3.74 3.84 6.16 8.37 7.32 10.36
0.8 0.01 3.82 3.83 3.50 2.42 2.53 4.86 6.28 5.77 8.50
0.8 0.05 4.22 4.32 3.79 3.19 2.97 5.19 6.93 6.33 9.17
0.8 0.1 1.80 4.56 3.84 3.93 3.51 5.69 7.16 7.64 10.02
0.9 0.01 3.69 3.73 3.31 2.26 1.85 3.99 5.48 5.05 7.73
0.9 0.05 4.18 3.91 3.35 2.55 2.58 4.10 5.91 5.75 7.56
0.9 0.1 3.98 3.89 3.42 2.43 2.67 4.36 5.83 5.41 9.29
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Table 9: One instance result of n = 30.

None EDD ATC None EDD ATC
Probc Probm Avg impr% Max impr%
0.7 0.01 - - 0.04% - - 2.23%
0.7 0.05 - - 0.07% - - 2.05%
0.7 0.1 - 0.01% 0.01% - 0.90% 0.62%
0.8 0.01 - - 0.04% - 0.23% 1.13%
0.8 0.05 - - 0.02% - - 0.98%
0.8 0.1 - 0.02% 0.04% - 1.55% 0.76%
0.9 0.01 - - 0.03% - - 1.55%
0.9 0.05 - - 0.02% - - 0.93%
0.9 0.1 - - 0.02% - - 0.99%

6.2.2 Preliminary tests of TS

The preliminary tests were carried out to evaluate the impacts of tabu list and initial
solutions. We chose 27 instances (9 for each problem size (n, h, μi)) from the instance
set, which was generated by uniform distribution, to run the preliminary experiments
with θ = 0.5 and no perturbation strategy applied. Different settings of tabu list were
examined, including the sizes and the usage of single or double list. We use the difference
percentage of two lists (Diff%) and the absolute difference of objective values over the
initial solution, which is computed by

|ZList1 − ZList2 |
ZInitial

× 100%,

to evaluate the results.
Table 10 shows the comparisons between different types of tabu lists with the same

size, same type of tabu lists with different size, and tabu lists with similar sizes. The
differences between all the results were within 0.5%, indicating that the influence of tabu
list can be neglected. Therefore, we use the single tabu list with size equal to seven in
the following experiments.

Figure 11 sketches out the convergence behavior of different initial solutions. We had
two initial solutions, LLF and AU. The objective value of LLF is 7070, whereas that of
AU is 3505.5. Both of them got the results around 3400 to 3500 in 50 iterations of TS.
The results indicated that the qualities of initial solutions had no significant effect on the
final results. Thus, we used AU as the initial solution in the following experiments.

6.2.3 TS

In the experiments on the performance of TS, the impact of different values of θ and
perturbation strategies were analysed. The computational results are summarized in
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Figure 11: Convergence behaviors.
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Table 11 and Figures 12 to 17. The column entitled “None” contains the results of
TS without a perturbation strategy. We first examine the improvement in percentages
from Figures 12 to 14 which are the average results of all the instances with different
parameter settings and different perturbation strategies. When θ = 0 and θ = 1, the
impr% are worse than those with other θ-values. The two trends could be attributed to
the neighborhood structure. Weakness of TS emerged when only a single type of moves is
used to generate neighbors. Swap moves can only exchange the positions of two jobs, but
the number of jobs on each processor remains the same as in the initial solution. Thus,
the variation of the solution structure is minor. Insert moves can adjust the allocation
of jobs to processors, but the ability to reduce the objective value is weaker than swap
moves. Swap move can be viewed as a combination of two insert moves, and insert move
may increase the objective value at its first step. Thus, insert moves could be terminated
and combining the two moves can diminish the disadvantages. As for the ratio θ, there is
no clear dominance among {0.7, 0.5, 0.3} even though the setting θ = 0.7 exhibits slight
advantage than others.

The charts shown in Figures 15 to 17 are the average results of all the hybrid neigh-
borhood settings for each group with different perturbation strategies. The impr% after
applying perturbation showed a different outcome when compared to GA. In the results
of GA, applying all types of perturbation strategies could achieve more improvement. In
TS, however, applying EDD as perturbation could even lead to worse results. Because
the moves in TS are smaller than GA, only one or two jobs could be moved to another
processor. Since the moves in TS can preserve the solution structures well, we had to
apply a better perturbation strategy to adjust the sequence on each processor in order
to make significant improvements. ATC is a promising heuristic in the single-machine
weighted tardiness problem, and is also a better perturbation strategy for the studied
problem.

Second observation is made on the execution time, and the relationship is also clearly
showed. The execution times grew when we use more swap moves. The reason may be
that a swap move is a combination of two insert moves. The time required to execute a
swap move is therefore longer than an insert move. Applying perturbation also takes more
times and ATC is much more time-consuming than EDD since the time complexity of ATC
is O(n2) and EDD is O(n logn). However, comparing the execution times of TS with GA,
it is obvious that TS cost less time to satisfy the stopping criterion even though TS may
have to check more solutions within an iteration (generation). The main reason would be
the genetic operators in GA which have to applied to all individuals when the probability
criteria are met. The second reason is due to the perturbation when it is activated. In
GA, the perturbation was applied to every solution of every generation to predict whether
it is better than the best solution observed so far. However, TS only used perturbation
when the move is performed to change the incumbent solution to its best neighbor, and
then applied it to the best neighbor. In other words, perturbation performed 112 × 100
times in GA; but in TS, only 100 times perturbation were performed. This is the reason
why TS works more efficiency than GA.

Finally, the last part of the computational study on TS indicates the importance of
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deploying perturbation strategies. The resulting Std without perturbation were larger
than those with perturbation, especially for ATC and group 3. The fact that Std is
smaller suggests that the objective values obtained by TS with perturbation are more
consistent and less affected by the random factors.

Summarizing the above discussions, we suggest that using the setting θ = 0.3 and
adopting ATC as perturbation could be the best scenario setting for TS while taking
both impr% and Time into consideration.

Figure 12: Average impr% of TS without pertubation strategy.

Figure 13: Average impr% of TS with EDD.

6.2.4 Comparisons between GA & TS

In the above experiments, there exist large differences in impr% among the groups. The
cause may lie in the data generation scheme. The due-date range (U [1, 10]+�j/1.5) is too
small for group 2 and group 3. The lack of flexibility in the sequence of each processor
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Figure 14: Average impr% of TS with ATC.

Figure 15: Average impr% of TS with different perturbation strategies (group 1).

Figure 16: Average impr% of TS with different perturbation strategies (group 2).
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Figure 17: Average impr% of TS with different perturbation strategies (group 3).

makes impr% smaller than group 1. Therefore, we used U [1, �j/2]+�j/1.5 to compute new
due-date range and produce another 18 instances, and also conducted further experiments
to test the impr% for all groups. The experiments were also used for the comparison of
TS and GA. In this experiment, the focus is not on the parameter settings. Hence, we
only adopt θ = 0.3 with ATC to run TS and {Probc, P robm} = {0.7, 0.1} with ATC for
GA. The results are presented in Tables 12 and 13.

The computational results shown in Table 12 are the average objective values, Std
and Time of the six instances for each problem size. In Table 13, the results are the
average and maximum impr% of the six instances for each group. From the tables, the
superiority of TS over GA is clear. TS can obtain better solutions within a much shorter
time. Moreover, the variance of the TS solutions over multiple trials is also much smaller.
As for the aspect of different groups, the differences in impr% are smaller compared to the
previous instances. Therefore, as long as the due-date range is reasonable, the proposed
methods were able to provide the same improvement.

7 Conclusions

This paper proposed and formulated a new model of parallel-machine scheduling asso-
ciated with computing resource acquisition decisions. In the model, computing service
providers sell computing capacity in packages, each of which bundles several machines
together, and charge the customers at different prices according to a new pricing scheme.
To a client who needs cloud computing as a tool, reducing the acquisition cost and the
tardiness penalty are equally important. Therefore, the objective function is a linear
combination of the acquisition cost and the total weighted tardiness.

We provided an integer programming formulation of the studied problem. As enumer-
ating all the solutions is exceedingly time-consuming, we adopted approximation methods
to derive near-optimal solutions. Heuristics and meta-heuristics were adopted to tackle
the computationally challenging problem. The heuristics used several scheduling rules
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for computing the priority indices of the jobs and allocating the selected jobs to suitable
processors. The computational results indicated that dynamic dispatching rules can ex-
hibit a better solution quality than the static ones. The obtained solutions were then
further improved by meta-heuristics (GA and TS). In the meta-heuristics, we used two
problem-specific perturbation strategies (EDD and ATC) to rearrange the sequence on
each processor for reducing the total weighted tardiness without sacrificing the acquisition
cost. With further improvement by meta-heuristics, we were able to get better solutions
within a short time.

Future research could be focused on development of exact algorithms, like dynamic
programming or branch-and-bound algorithms, to attain optimal solutions. Developing
other pricing schemes of the studied model is also an interesting subject to investigate. As
indicated by Sundararajan [25], unlimited-usage and usage-based pricing schemes should
be mixed and provided. Another area which is worth considering is about the profits
of both clients and providers. The clients who want to adopt cloud computing to serve
as their platform need to estimate their budgets before purchasing computing resources.
Therefore, how to compute the lower bound or upper bound of costs is an important
issue of acquisition planning. From the viewpoint of cloud computing service providers,
they aim to maximize profits. Consequently, the strategy for bundling the processors
with different speeds as a package is another topic to be explore. Examining the profit
brought by different pricing schemes, such as non-linear pricing, logarithmic-curve pricing
or dynamic pricing schemes, is helpful to the providers. Customized bundle strategies,
as suggested by Wu et al. [28], for clients or customers of different groups with large
orders is absolutely necessary for attracting more clients. A further research direction is
to consider other managerial measures in the same problem setting. For example, in the
application context of information retrieval, the quality of service is commonly addressed
by the total weighted waiting (or, response) time.

Acknowledgements

The authors are grateful to the anonymous referees for their constrictive comments that
have improved the presentation of the paper. This paper was partially supported by the
Ministry of Science and Technology of Taiwan under grants NSC100-2410-H-009-015-MY2
and MOST102-2410-H-009-048-MY2.

References

[1] B. Alidaee and D. Rosa (1997), Scheduling parallel machines to minimize total
weighted and unweighted tardiness, Computers & Operations Research, Vol. 24, No.
8, pp. 775-788.

36



[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, I. Stoica and M. Zaharia (2010), A view of cloud computing,
Communications of the ACM , Vol. 53, No. 4, pp. 50-58.

[3] M. Azizoglu and O. Kirca (1998), Tardiness minimization on parallel machines, In-
ternational Journal of Production Economics, Vol. 55, No. 2, pp. 163-168.

[4] K.R. Baker and J.M.W. Bertrand (1982), A dynamic priority rule for scheduling
against due-dates, Journal of Operations Management, Vol. 3, No. 1, pp. 37-42.

[5] Y. Bakos and E. Brynjolfsson (1999), Bundling information goods: Pricing, profits,
and efficiency, Management Science, Vol. 45, No. 12, pp. 1613-1630.
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Table 10: Preliminary tests on tabu list.

Comparing type List1 − List2 Avg Diff% Max Diff%

Same size
(single,5) - (double,5) 0.13% 0.37%
(single,7) - (double,7) 0.14% 0.30%
(single,12) - (double,12) 0.20% 0.27%

Single with different size
(single,5) - (single,7) 0.10% 0.21%
(single,5) - (single,12) 0.14% 0.34%
(single,7) - (single,12) 0.09% 0.30%

Double with different size
(double,5) - (double,7) 0.11% 0.34%
(double,5) - (double,12) 0.21% 0.33%
(double,7) - (double,12) 0.19% 0.29%

Similar size
(single,7) - (double,5) 0.09% 0.25%
(double,5) - (single,7) 0.07% 0.24%
(single,12) - (double,7) 0.09% 0.38%
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Table 11: Results of tabu search.

Group 1, init = 218.77 Group 2, init = 1526.93 Group 3, init = 3227.53
None EDD ATC None EDD ATC None EDD ATC

θ Avg impr%
1 23.13% 14.32% 21.45% 4.82% 3.94% 5.03% 4.18% 3.45% 4.53%
0.7 25.87% 18.56% 25.18% 5.57% 3.50% 6.06% 4.77% 2.75% 5.20%
0.5 24.70% 18.64% 25.13% 5.40% 3.63% 6.10% 4.57% 2.73% 5.21%
0.3 22.31% 18.00% 24.45% 4.79% 3.29% 5.94% 4.01% 2.32% 5.09%
0 8.68% 8.14% 13.84% 1.85% 1.65% 3.25% 1.94% 1.76% 2.82%

Max impr%
1 23.13% 14.32% 21.45% 4.82% 3.94% 5.03% 4.18% 3.45% 4.53%
0.7 30.02% 22.86% 28.16% 6.82% 5.54% 7.19% 5.84% 4.37% 6.04%
0.5 29.32% 22.98% 28.19% 6.93% 5.19% 7.26% 5.72% 4.33% 6.12%
0.3 27.88% 22.61% 27.79% 6.57% 4.70% 7.19% 5.41% 3.83% 6.00%
0 17.09% 8.14% 13.84% 4.18% 1.65% 3.25% 3.88% 1.76% 2.82%

Time (sec.)
1 135.64 173.61 269.98 135.76 172.89 266.35 138.71 176.67 268.82
0.7 102.69 131.21 203.90 102.79 131.02 201.45 105.36 134.28 203.93
0.5 80.79 102.90 160.07 80.94 103.13 158.17 83.51 105.86 161.07
0.3 58.95 75.30 116.50 58.75 75.03 114.56 61.37 77.63 117.59
0 26.01 32.92 50.36 25.97 32.81 49.93 27.97 35.24 52.81

Std
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.7 4.33 4.63 3.38 8.55 14.49 7.43 15.89 17.92 11.74
0.5 4.66 4.55 3.20 10.23 9.64 7.85 17.56 20.11 12.36
0.3 5.57 4.84 3.46 12.76 8.47 8.08 24.54 17.76 13.05
0 6.95 0.0 0.0 13.27 0.0 0.0 26.28 0.0 0.0
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Table 12: Comparison results of GA and TS.

n = 20, m = 2, μi = 2
Initial =850.33 Min Avg Std Time (sec.)

TS, θ = 0.3, ATC 784.58 796.33 6.52 22.87
GA, 0.7, 0.1, ATC 802.58 824.28 9.52 246.04

n = 30, m = 3, μi = 2
Initial =1686.50 Min Avg Std Time (sec.)
TS, θ = 0.3, ATC 1519.83 1535.21 6.91 91.10
GA, 0.7, 0.1, ATC 1614.58 1645.08 7.82 360.01

n = 40, m = 4, μi = 2
Initial =1392.92 Min Avg Std Time (sec.)
TS, θ = 0.3, ATC 1191.17 1213.50 8.27 236.01
GA, 0.7, 0.1, ATC 1310.33 1350.94 11.33 479.17

Total average
Initial =1309.92 Min Avg Std Time (sec.)
TS, θ = 0.3, ATC 1165.19 1181.68 1.23 116.66
GA, 0.7, 0.1, ATC 1242.50 1273.44 9.56 361.74

Table 13: Comparison results (by group).

Average Group 1, init = 281.83 Group 2, init = 1258.17 Group 3, init = 2389.75
Min Avg Min Avg Min Avg

TS, θ = 0.3, ATC 14.87% 13.36% 11.00% 9.50% 10.62% 9.52%
GA, 0.7, 0.1, ATC 6.68% 3.05% 5.27% 3.33% 4.90% 2.47%
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