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Abstract

In this paper, a new approach to design a robust discrete-time sliding mode con-

trol (DSMC) is proposed for uncertain discrete-time systems. To this end, an

LMI approach is used to develop a new framework to design the sliding function

which is linear to the state. Our proposed robust DSMC can be applied to un-

stable systems, and also there is no need to stabilize the underlying system first.

It has been argued in the literature that for the systems involving balanced ex-

ternal disturbances, using switching component is not needed. In this paper, it

is shown that with the assumption of smoothness of the external disturbances, a

different form of switching element in the controller can outperform the so-called

linear controller in terms of the thickness of the boundary layer around the sliding

function and the ultimate bound on the system state. Also, this paper extends the

idea of disturbance estimation to the uncertain discrete-time systems. The dis-

turbance estimator is exploited in the controller design and the boundedness of

the obtained closed-loop system is analyzed. Also, two novel forms of variable

structure DSMC are suggested in this paper.
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1. Introduction

In the continuous-time sliding mode control, to achieve ideal sliding mode, in

general the control signal must switch at infinite frequency [1]. However, since in

digital control strategies, the control signal is held constant during the sampling

period, it is normally not possible to achieve ideal sliding. Hence, in uncertain

discrete-time systems it is not possible to ensure that the system state remains cer-

tainly on a surface within the state space and consequently the DSMC problem is

fundamentally different to its continuous-time counterpart [1]. In terms of DSMC,

state trajectories would move within a vicinity of the predetermined sliding sur-

face referred to as quasi-sliding mode band [2].

Although the early works on the DSMC aimed at establishing a discrete-time

counterpart to the continuous-time reachability condition [2, 3, 4], it has been

shown that DSMC does not necessarily require the use of a variable structure

discontinuous control strategy (VSDCS) [5, 6, 7]. References [5, 6] have shown

that the DSMC without VSDCS can ensure that the state trajectories stay within a

neighbourhood of the sliding surface in the presence of bounded matched uncer-

tainty. The obtained control law is called linear control law. Moreover, according

to the results presented in [5, 6], the use of a switching function in the control law

may not necessarily improve the performance. Note that, obviously, the DSMC

problem using only linear control law can be regarded as a robust optimal control

problem and it will be equivalent to discrete-time Lyapunov min-max problems

[8] or discrete-time Riccati min-max problems [9]. Nevertheless, some papers in
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the literature have claimed a better performance thanks to the use of discontinuous

components [7]. Indeed, these papers assume that either the sampling rate of the

system is very high compared with the maximum frequency component of the ex-

ogenous disturbance or the exogenous disturbance is slow (smooth and bounded).

With either of these assumptions, the closed-loop system would behave more or

less as a continuous-time system [7] and hence, using a discontinuous component

in the controller may improve the performance. In this paper, two new form of

switching function is proposed which can be more efficient in terms of reduc-

ing the ultimate bound on the system state and reducing the chattering created

by traditional switching functions. This new switching function, basically, uses

a disturbance estimator which comes from the same idea presented in [10]. The

idea of using disturbance observer for the DSMC was firstly presented in [10] and

followed by e.g. [11, 12]. The main idea is, with the assumption of continuity of

the original continuous-time disturbance signal, to use the previous value of the

sampled disturbance for estimating the current one in the control law. However,

model uncertainty is not considered in [10]. In this paper, it is also discussed that

using the mentioned estimator directly in the controller will increase the order of

the system and, in addition, it results in a system involving time-delay. Stability

analysis and ultimate boundedness is then investigated for this kind of systems.

It is worth mentioning that a novel implicit Euler numerical scheme has re-

cently been proposed in [13, 14] that can avoid numerical chattering, by not using

explicit (forward) methods of discretization. However, chattering appears again

in the presence of disturbances. The basic idea is to implement the discontinuous

input of the DSMC in an implicit form, while keeping its causality (i.e. the con-

troller is non-anticipative). Then this input has to be computed at each sampling
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time as the solution to a generalized, set-valued equation, which takes the form of

a simple projection on an interval in the simplest cases.

Also, note that the problem of designing the DSMC is mainly considered for

the systems with matched uncertainty and/or external disturbance [1]. This pa-

per greatly reduces the conservatism of the current LMI-based methods presented

in the few existing works that consider the problem of applying DSMC to the

systems including unmatched uncertainties. Specifically, this note avoids using

inequalities to deal with the uncertain negative sign quadratic terms appeared in

the derived Riccati-like inequality, which is not easy to be directly arranged as

an LMI problem. Instead, a lossless technique is proposed to convert the men-

tioned inequality to a form that can be easily written as an LMI. This technique

can extremely widen the feasible region of the derived LMI condition obtained

for the design of robust sliding surface, and hence, the applicability region of our

DSMC compared to the existing literature for the DSMC, e.g. see [15, 16]. In

brief, the proposed DSMC is a unified framework for general discrete-time LTI

systems. This is significantly different from methods whose application is limited

to the stable systems, cf. [15], and also the methods which need to pre-stabilize

the system, cf. [17].

The rest of this paper is organized as follows: Section 2 describes the problem

formulation. In Section 3, the proposed method to design the sliding surface is

given. Section 4 explains a more practical DSMC for the systems including un-

certainty and disturbance. Different forms of DSMC are considered in Section 5.

Efficiency of the proposed DSMC is studied by numerical examples in Section 6.

Finally, Section 7 concludes this paper.
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2. Problem Formulation

Consider the following uncertain linear discrete-time system,

x(k+1) = [A+ΔA(k)]x(k)+B[u(k)+ f (k)], (1)

where x(k) ∈ Rn and u(k) ∈ Rm. Without loss of generality, it is assumed that

B ∈ Rn×m and m ≤ n. Besides, rank(B) = m (matrix B has full column rank) and

it is assumed that the pair (A,B) is stabilizable. The uncertain matrix ΔA(k) has

the form of:

ΔA(k) = MR(k)N, (2)

where matrices M and N are known and R(k) is an unknown matrix satisfying

RT (k)R(k) ≤ I,∀k ≥ 0; f (k) denotes external disturbance with known bound,

‖ f (k)‖ ≤ f̄ , where f̄ > 0. In the following of this paper, for simplicity, ΔAk

and ΔAk−1 will be used instead of ΔA(k) and ΔA(k−1), respectively.

The following materials are useful in the sequel.

Definition 1. Considering the uncertainty set F = {F(k) : F(k)FT (k)≤ I, ∀k ≥
0}, the matrix Θ is said to commute with the uncertainty F(k) ∈ F if it belongs

to the commutant of the uncertainty set F as

ΘΘΘF = {Θ : Θ is invertible and F(k)Θ = ΘF(k), ∀F(k) ∈ F} .

Also, we define the positive commutant set

PPPΘF =
{

Θ̄ : Θ̄ = ΘΘT > 0, ∀Θ ∈ΘΘΘF

}
.

Lemma 1. Let E, F(k) and H be real matrices of appropriate dimensions with

F(k) ∈ F , then, for any matrix Γ̄ ∈PPPΘF , we have

EF(k)H +HT FT (k)ET ≤ EΓ̄ET +HT Γ̄−1H.
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PROOF. Note that Γ̄ = ΓΓT , Γ ∈ΘΘΘF . Then it can easily be proved by

[EF(k)Γ−HT (ΓT )−1][ΓT FT (k)ET −Γ−1H]≥ 0.

Note that a similar lemma is given in [18] which is a specific form of the above

Lemma with Γ̄ = εI, where ε > 0 is a scalar. In addition, Lemma 1 can be spec-

ified to the following particular form, which will be used in the sequel of this

paper.

Corollary 1. Let E =
[

E1 E2
]
, Δ(k) =

[F(k) 0
0 F(k−1)

]
and H =

[H1
H2

]
be real ma-

trices of appropriate dimensions with F(k) ∈ F , then, for any scalars εi > 0,

i = 1,2, we have

EΔ(k)H +HT ΔT (k)ET ≤ E

⎡
⎣ε1I 0

0 ε2I

⎤
⎦ET +HT

⎡
⎣ε−1

1 I 0

0 ε−1
2 I

⎤
⎦H.

Lemma 2. Consider the following inequality:

Γ(X1,X2, · · · ,Xn)−
n

∑
i=1

�
T
i (Xi)Λ−1

i (Xi)�i(Xi)< 0, (3)

where Xi, i = 1, · · · ,n are the matrix variables, Λi(Xi) > 0 and �i(Xi) are func-

tions of Xi, i = 1, · · · ,n. Then the inequality in (3) is feasible in Xi, i = 1, · · · ,n if

and only if the following inequality is feasible in Xi, Ji, i = 1, · · · ,n:

Γ(X1,X2, · · · ,Xn)+
n

∑
i=1

(JT
i Λi(Xi)Ji + JT

i �i(Xi)+�
T
i (Xi)Ji)< 0. (4)

PROOF. It can be shown that the feasibility in Xi, i = 1, · · · ,n of (3) is equivalent

to the feasibility in Xi, Ji, i = 1, · · · ,n of

Γ(X1,X2, · · · ,Xn)−
n

∑
i=1

�
T
i (Xi)Λ−1

i (Xi)�i(Xi)

+
n

∑
i=1

([Ji +Λ−1
i (Xi)�i(Xi)]

T Λi(Xi)[Ji +Λ−1
i (Xi)�i(Xi)])< 0,

(5)
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where Ji, i= 1, · · · ,n are introduced auxiliary variables [19]. Indeed, the inference

from (5) to (3) is obvious, and the inference from (3) to (5) follows by letting

Ji = −Λ−1
i (Xi)�i(Xi). Then, it is easy to show that (5) is equivalent to (4). This

completes the proof.

3. Design of the Discrete-time SMC

Consider the following linear discrete-time sliding function:

σx(k) = Sx(k), (6)

where S ∈ Rm×n will be designed later such that SB is nonsingular. During the

ideal sliding motion the sliding function satisfies:

σx(k+1) = σx(k) = 0, ∀k > ks, (7)

where ks > 0 denotes the time that sliding motion starts. Thus, one may obtain

from (1) and (6) that

σx(k+1) = S(A+ΔAk)x(k)+SB[u(k)+ f (k)]. (8)

Here we will provide the mean value and boundary layer thickness vectors for the

exogenous disturbance according to the upper and lower bounds of f (k). In doing

so, assume

f l
i ≤ fi(k)≤ f u

i , i = 1, · · · ,m, (9)

where f l
i and f u

i denote the lower and upper bound of the i-th entry of f (k). Define

f+i =
f u
i + f l

i
2

, f−i =
f u
i − f l

i
2

, i = 1, · · · ,m, (10)

and

F+ = col( f+1 , · · · , f+m ), F− = col( f−1 , · · · , f−m ), (11)
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where F+ and F− are the mean value and boundary layer thickness vectors of

f (k) respectively. Now, the following control law is proposed:

u(k) =−(SB)−1SAx(k)−ϑ(k), (12)

where ϑ(k) denotes the approximation of disturbance f (k) which may be used in

the controller to compensate the bad effect of disturbance on the ultimate bound

on the system state trajectories. ϑ(k) can also be regarded as the feedforward

control, in addition to the linear controller. It is assumed that the component ϑ(k)

is bounded, satisfying

‖ f (k)−ϑ(k)‖ ≤ τ
∥∥F−∥∥ , (13)

where τ is a predefined positive scalar depending on the choice of ϑ(k). More

discussions about the component ϑ(k) and τ are presented later in this paper.

Remark 1. In this note, the control law (12) uses only the information of the

upper and lower bounds on the matched exogenous disturbance. It can be seen

in the literature ([15, 20, 21]) that the term (SB)−1SΔAx(k) is usually assumed to

be bounded and its bound is exploited in the nonlinear part of SMC to ensure the

reachability of the designed switching function. Nevertheless, the reason that we

would not use the bound on this term is twofold. Firstly, as stated in e.g. [5, 6, 7], a

linear control law in discrete-time can enure a bounded motion around the sliding

surface in the presence of bounded matched uncertainty. Furthermore, it will be

assumed in this paper that with a proper choice of S and due to small unmatched

uncertainty ΔA, the magnitude of the term (SB)−1SΔAx(k) is negligible compared

to the exogenous disturbance.
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Figure 1: Signal fi(k)

3.1. Variable structure discontinuous control considerations

As discussed in section 2, in the literature, it is argued that the discontinuous

part of the sliding control input can be detrimental to performance [1]. However,

this claim is only true for the balanced uncertainties and/or disturbances whose

maximum frequency component is close to the sampling rate of the discrete-time

system. Specifically, with the smoothness and boundedness conditions of the ex-

ternal disturbance, a number of beneficial choices as discontinuous variable struc-

ture components can be utilized in the DSMC in order to improve its performance.

To explain, assume that fi(k) (the ith element in f (k)) has the waveform as in Fig-

ure 1. Now, for instance, to estimate the instantaneous amplitude of disturbance

at point P1, five choices are accessible: 1) zero, 2) f+i , 3) f+i + f−i , 4) f+i +
f−i
2 ,

5) fi(kP1 − 1). Similarly, for point P2, one may suggest to use 1) zero, 2) f+i , 3)

f+i − f−i , 4) f+i − f−i
2 , 5) fi(kP2 − 1). Here, fi(kPj − 1) means the value of fi at

the time instant of k = kPj −1, j = 1,2. Using the first choice (or indeed the lack

of any discontinuous component) in the controller leads to the well-known linear

controller. Exploiting the second choice, referred to as the mean value of the ex-

ogenous disturbance, in the DSMC has been proposed in [5]. It is presented in [5]

that the term f+i can be used in the ith element of the control law to compensate

the nonzero mean of unbalanced disturbances. It can easily be realized that in
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the case of using f+i the maximum estimation error is f−i . In the following of this

subsection, according to the third and fourth choices, we will discuss two different

form of VSDC for DSMC. The discussion about the last choice, which is referred

to as disturbance observer, will be the subject of the next section. In what follows,

we assume that the exogenous disturbance in system (1) is smooth and bounded.

Assumption 1. The exogenous disturbance f (k) in (1) satisfies the Lipschitz con-

tinuity condition and we have,

‖ f (k)− f (k−1)‖ ≤ L f Ts, (14)

where L f > 0 denotes Lipschitz constant and Ts is the sampling time.

Here, it will be assumed that L f has a small value. To this end, the sampling rate

of the discrete signal processing system is assumed to be big enough compared

to the maximum component frequency of exogenous disturbance f (k). Further in

what follows, we assume the known sliding surface matrix S and its design will

be derived in Section 3.2.

3.1.1. Using upper and lower bounds of disturbance in the controller: C1

Note that

f (k−1) = (SB)−1S[x(k)−Ax(k−1)−ΔAk−1x(k−1)−Bu(k−1)]. (15)

f (k−1) may be estimated by:

f̂ (k) = (SB)−1S[x(k)−Ax(k−1)−Bu(k−1)], (16)

which is equivalent to

f̂ (k) = (SB)−1SΔAk−1x(k−1)+ f (k−1).
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For zero-centered uncertainty ΔA, it is obvious that the term (SB)−1SΔAk−1x(k−
1) is also zero-centered and has no influence on the mean values of the vector f̂ (k).

Additionally, in the case that system state is bounded, the vector (SB)−1SΔAk−1x(k−
1) remains also bounded. With the proper choice of S and for small uncertainty

ΔA, it can be claimed that the magnitude of (SB)−1SΔAk−1x(k− 1) will be very

small compared to f (k−1). Traditionally, sign function can be used to determine

the position of the instantaneous disturbance relative to the line f+i . Hence, one

may propose to set ϑ(k) in (12) as:

ϑ1(k) = F++diag(F−)sgn( f̂ (k)−F+), (17)

where diag(F−) := diag( f−1 , · · · , f−m ). Thus, the controller (12) can be defined

as:

u1(k) =−(SB)−1SAx(k)−F+−diag(F−)sgn( f̂ (k)−F+). (18)

Remark 2. With a quick glimpse into the literature, it can be found that a fre-

quently used candidate for the component ϑ(k) has the general form of:

ϑ(k) = ψ +νsgn(σx(k)), (19)

where ψ and ν are known parameters. For instance, in [15], with ignoring the

bounds of SΔAkx(k) (see Remark 1), ψ and ν are assumed to be some constants

involving the bounds of SB f (k), similar to F+ and F−. Regardless of different

approaches used to design the parameters of this nonlinear function, it should be

emphasized that the term sgn(σx(k)) is not an appropriate function to determine

the position of the disturbance relative to its mean value either in the physical

meaning or in the theoretical sense. Using the controller containing ϑ(k) as

in (19) will lead state trajectories to chatter around the switching surface with
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amplitude dependent on the lower bound of the term (19) and with the frequency

equal to the sampling rate; see [5]. Using the controller (18), while the chattering

still happens, in this case, the state trajectories chatter with the frequency equal

to the frequency of exogenous disturbance.

3.1.2. Using f+i ± f−i
2 : C2

As a new alternative, f+i ± f−i
2 can be used as an estimate of P1 or P2 in Figure 1.

The estimation error, in the worst-case scenario, will be 3
2 f−i . Hence, one may

propose to put the component ϑ(k) in (12) as:

ϑ2(k) = F++
1
2

diag(F−)sgn( f̂ (k)−F+). (20)

Thus, the controller (12) is chosen as:

u2(k) =−(SB)−1SAx(k)−F+− 1
2

diag(F−)sgn( f̂ (k)−F+), (21)

where f̂ (k) is defined in (16).

3.2. Design of the robust sliding surface

The sequel of this section aims to consider the stability of the system (1) using

the controller (12). As a result of applying the controller (12) to the system (1), it

is seen that

x(k+1) = (A+ΔAk − Â)x(k)+B fϑ (k), (22)

where fϑ (k) � f (k)−ϑ(k) and Â � B(SB)−1SA. Furthermore, it can be found

that

σx(k+1) = SΔAkx(k)+SB fϑ (k). (23)

The following lemmas are given to characterize the boundedness of the system

state (22).

12



Lemma 3 ([22]). Let V (ζ (k)) be a Lyapunov candidate function. In the case that

there exist real scalars ν ≥ 0, α > 0, β > 0 and 0 < ρ < 1 such that

α ‖ζ (k)‖2 ≤V (ζ (k))≤ β ‖ζ (k)‖2 ,

and

V (ζ (k+1))−V (ζ (k))≤ ν −ρV (ζ (k)),

then ζ (k) will satisfy

‖ζ (k)‖2 ≤ β
α
‖ζ (0)‖2 (1−ρ)k +

ν
αρ

.

Lemma 4. For any symmetric matrix P > 0 and any full column rank matrix B,

we have PB(BT PB)−1BT P ≤ P.

PROOF. It can easily be proved by

[I −B(BT PB)−1BT P]T P[I −B(BT PB)−1BT P]≥ 0.

It should also be noted that with applying DSMC to discrete-time systems involv-

ing exogenous disturbances, the closed-loop system should be analyzed in terms

of boundedness. Also, the DSMC can only ensure that the state trajectories may

be driven into a boundary layer around the ideal sliding surface σ(k) = 0. This

issue is indeed regarded as the quasi sliding mode (QSM) in the literature. On the

other hand, due to the presence of mismatched uncertainty in the system dynam-

ics, it is difficult to analyze the reachability of the QSM by means of a separate

sufficient condition. Alternatively, the following theorem considers a method to

analyze simultaneously the reachabiltiy of QSM and the stability of the system

states by means of a discrete-time Lyapunov stability method.
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Theorem 1. In the absence of disturbance f (k), the linear part of the control law

(12) can drive the system state onto the ideal sliding surface (6), and the system

state is stabilized, if there exist a symmetric matrix P̄ > 0, matrices X and Y , and

scalars ε > 0 and η̄ > 0 satisfying the following LMI:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P̄+Y T BT +BY � � � � �

0 −P̄+2εMMT � � � �

AP̄+BX
√

2εMMT −P̄+ εMMT � � �

BY 0 0 −P̄ � �

P̄ 0 0 0 −η̄I �

NP̄ 0 0 0 0 −εI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(24)

where M and N are known matrices in (2). Here S = BT P̄−1 and {�} denotes the

symmetric elements in a symmetric matrix.

PROOF. Define

V (ζ (k)) = xT (k)Px(k)+σT
x (k)(SB)−1σx(k), (25)

where P > 0 is a symmetric matrix and S = BT P. Thus, we can write

ΔV (ζ (k)) =V (ζ (k+1))−V (ζ (k))

=xT (k+1)Px(k+1)+σT
x (k+1)(SB)−1σx(k+1)

− xT (k)Px(k)−σT
x (k)(SB)−1σx(k).

(26)

Now, it can be shown that

ΔV (ζ (k)) =

⎡
⎣ x(k)

fϑ (k)

⎤
⎦

T ⎡
⎣Ω11 Ω12

ΩT
12 Ω22

⎤
⎦
⎡
⎣ x(k)

fϑ (k)

⎤
⎦ , (27)
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where

Ω11 :=(A+ΔAk)
T P(A+ΔAk)− (A+ΔAk)

T PB(BT PB)−1BT P(A+ΔAk)

−P−PB(BT PB)−1BT P+2ΔAT
k PB(BT PB)−1BT PΔAk,

Ω12 :=2ΔAT
k ST ,

Ω22 :=2SB,

In the absence of the disturbance f (k), that is f (k) = 0, thus ϑ(k) = 0 leading to

fϑ (k) = 0. Then the system is stabilized if

Ω11 <−ηI, (28)

where η > 0 is a scalar variable. Now, we consider the feasibility of (28). To

obtain (28), by utilizing Lemma 4 and the Schur complement, it suffices to have
⎡
⎣ Ω̂11

√
2ΔAT

k√
2ΔAk −P̄

⎤
⎦< 0, (29)

where P̄ = P−1, and

Ω̂11 =(A+ΔAk)
T P(A+ΔAk)− (A+ΔAk)

T PB(BT PB)−1BT P(A+ΔAk)

−P−PB(BT PB)−1BT P+ηI.

According to Lemma 2, the feasibility of the inequality in (29) is equivalent to

that of ⎡
⎣ Ω̃11

√
2ΔAT

k√
2ΔAk −P̄

⎤
⎦< 0, (30)

where

Ω̃11 =(A+ΔAk +BF)T P(A+ΔAk +BF)−P+ηI

+LT (BT PB)L+LT BT P+PBL.
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Here, F and L are two auxiliary variables [19]. Then, by left and right matrix

multiplication on both sides of the inequality in (30) with diag(P̄, I), we have
⎡
⎣ P̄Ω̃11P̄

√
2P̄ΔAT

k√
2ΔAkP̄ −P̄

⎤
⎦< 0. (31)

Using the Schur complement and Lemma 1, it can be demonstrated that the in-

equality in (31) can be implied by the LMI in (24), where X = FP̄, Y = LP̄ and

η̄ = η−1.

Remark 3. It is worth mentioning that as ζ = [xT σT ]T =
[ I

BT P

]
x and

[ I
BT P

]
is

a full rank matrix, ζ = 0 if and only if x = 0. In addition, a key feature in our

method to prove Theorem 1 (and Theorem 3 in the following of the paper), and

further design the sliding function matrix S, is to neglect the bounded inputs (e.g.,

the nonlinear control and exogenous disturbance), and directly prove the stability

of the unforced linear system. More precisely, from (27) (with fϑ (k) = 0) and (28)

we may write

ΔV (ζ ) := xT (k)Ω11x(k)

≤−ηxT (k)x(k)

≤− η
λmax(P+PB(BT PB)−1BT P)

xT (k)
{

P+PB(BT PB)−1BT P
}

x(k)

�−ρV (ζ ),

which ensures the asymptotic stability of the closed-loop system and thus ζ → 0,

σ → 0 and x → 0.

Remark 4. The proof of this theorem provides a less conservative sufficient con-

dition for the design of a robust sliding matrix for the system in (1) involving

mismatched uncertainties. Further based on this proof, the second objective of
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this paper, when the disturbance estimator is utilized in the controller directly,

will be derived in the proof of Theorem 3.

3.3. Characterizing the system state boundedness

While Theorem 1 presents a method to design the DSMC in order to stabilize

the system in (1), it does not present a bound on the system states. The following

theorem characterizes the boundedness of the obtained closed-loop system state

and corresponding sliding function.

Theorem 2. In the presence of disturbance f (k), if the LMI in (24) is feasible, for

the obtained P = P̄−1 and η = η̄−1, the controller (12) satisfying (13) will lead

to a bound on the augmented system state ζ (k) = [xT (k),σT
x (k)]

T as follows:

∀ς > 0, ∃k� > 0, s.t. ∀k > k�,

‖ζ (k)‖2 ≤ λmax(M)

η̂λmin(diag(P,(BT PB)−1))
γ + ς ,

(32)

where M = PB(BT PB)−1BT P+ P, and γ = τ2
∥∥�+2BT PB

∥∥‖F−‖2; here the

scalar variable η̂ > 0 and matrix variable � > 0 are obtained from solving the

following LMI:
⎡
⎢⎢⎢⎣
(η̂ −η)I +4ε̄NT N � �

0 −� �

0 MT PB −ε̄I

⎤
⎥⎥⎥⎦< 0, (33)

where M and N are known matrices in (2), and further, ε̄ > 0 is a scalar variable.

PROOF. According to Lemma 1 (by assuming F = I) it can be written that

2xT (k)Ω12 fϑ (k)≤ xT (k)Ω12�
−1ΩT

12x(k)+ f T
ϑ (k)� fϑ (k), (34)
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where �> 0. It follows from (27), (28) and (34) that

ΔV (ζ (k))≤− xT (k)
{

ηI −Ω12�
−1ΩT

12
}

x(k)

+ f T
ϑ (k)[�+Ω22] fϑ (k). (35)

If we choose �> 0 such that

η̂I < ηI −Ω12�
−1ΩT

12, (36)

where 0 < η̂ < η , which is always possible if η > 0 exists, then it follows from

(35) that

ΔV (ζ (k))≤−η̂xT (k)x(k)+ fϑ (k)T [�+Ω22] fϑ (k). (37)

Note also that

V (ζ (k)) =xT (k)[P+PB(BT PB)−1BT P]x(k)

�xT (k)Mx(k), (38)

hence,

λmin(M)‖x(k)‖2 ≤V (ζ (k))≤ λmax(M)‖x(k)‖2 . (39)

Furthermore, it can be shown that

λmin(diag(P,(BT PB)−1))‖ζ (k)‖2 ≤V (ζ (k))

≤ λmax(diag(P,(BT PB)−1))‖ζ (k)‖2 ,
(40)

Therefore, from (37) and (39) one can derive that

ΔV (ζ (k))≤− η̂
λmax(M)

V (ζ (k))+ γ, (41)

18



where, due to the continuity assumption mentioned in (14), γ = τ2
∥∥�+2BT PB

∥∥‖F−‖2.

Note that from (27) it can simply be written that

xT (k)Ω11x(k) =V (ζ (k+1))
∣∣

fϑ (k)=0 −V (ζ (k))<−ηxT (k)x(k). (42)

It is known that V (ζ (k+1))
∣∣

fϑ (k)=0 ≥ 0, and thus, from (42) and (39), it can be

claimed that λmax(M)> η . Therefore

η̂
λmax(M)

< 1.

Thus, from Lemma 3, (40) and (41), the bound in (32) can be obtained.

Now let us consider how to solve the inequality (36). By the aid of Lemma 1

and the Schur complement, it can be shown that for the given P > 0 and η > 0,

this inequality can be implied by the LMI in (33).

To be more specific, if one utilizes the controller in (18) (C1), τ1 = 2 in (13) and

γ1 = 4‖�+2SB‖‖F−‖2 in (32). Note that this bound results from the worst case

scenario. However, if the sign function sgn( f̂ (k)−F+) can predict perfectly the

location of f (k), which is assumed to be the most cases for slow disturbances, this

bound can be reduced to τ�1 = 1 and γ�1 = ‖�+2SB‖‖F−‖2.

On the other hand, utilizing the controller in (21)(C2), we have τ2 = 1.5 and γ2 =

2.25‖�+2SB‖‖F−‖2. It should be noted that this bound is also the worst case

scenario bound. Since it is assumed that disturbance in the system (1) is slow,

this bound, with perfect position estimation, can be reduced to τ�2 = 0.5 and γ�2 =

0.25‖�+2SB‖‖F−‖2.

4. Exploiting Disturbance Estimate in the Control Law: C3

According to the paper [10], for smooth disturbances, f (k− 1) is a good ap-

proximation to f (k) so as to reduce the ultimate bound on the system state. But,
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unlike [10] in which the system is not uncertain and just involves exogenous dis-

turbance, in this paper we consider a discrete-time system involving uncertainty

and exogenous disturbance. Due to the presence of system uncertainty, as seen

in (15), we do not have direct access to f (k− 1), thus f̂ (k) in (16) is used here

instead. Furthermore, using the term f̂ (k) in the controller directly, rather than us-

ing the ones proposed previously seems to have much better performance. Now,

by substituting

ϑ3(k) = f̂ (k) (43)

in (12), the following controller is achieved

u3(k) =−(SB)−1SAx(k)− f̂ (k). (44)

Similar idea can also be found in e.g. [10]. Note that, referring to (16), ϑ(k) in

(43) includes system uncertainty, and thus the condition in (13) does not apply.

Therefore, the stability of the closed-loop system should be analyzed again. In the

following, we consider the stability of the system (1) using the controller (44).

By applying the controller (44) to the system (1), we have

x(k+1) = (A+ΔAk − Â)x(k)−B(SB)−1SΔAk−1x(k−1)+B fd(k), (45)

where fd(k) � f (k)− f (k − 1) and Â � B(SB)−1SA. As seen, the closed-loop

system (45) involves time-delay. Furthermore, it can be found that

σx(k+1) = SΔAkx(k)−SΔAk−1x(k−1)+SB fd(k). (46)

Theorem 3. In the absence of disturbance f (k), the control law (44), (16) can

drive the system state onto the ideal sliding surface (6) and the system state is

stabilized, if there exist symmetric matrices P̄ > 0 and Q̄ > 0, matrices X and Y
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and also scalars ε1 > 0, ε2 > 0 and η1 > 0 satisfying the following LMI:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M̂11 � � � � � � �

0 −Q̄ � � � � � �

0 0 M̂22 � � � � �

AP̄+BX 0
√

2ε1MMT −P̄+ ε1MMT � � � �

BY 0 0 0 −P̄ � � �

P̄ 0 0 0 0 −η̄1I � �

NP̄ 0 0 0 0 0 −ε1I �

0 NP̄ 0 0 0 0 0 −ε2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(47)

where M̂11 =−P̄+ Q̄+Y T BT +BY , M̂22 =−P̄+2(ε1 + ε2)MMT . Here M and

N are known matrices in (2), and S = BT P̄−1.

PROOF. Refer to Appendix section.

It should be pointed out that the above theorem provides a method to design the

disturbance observer based DSMC in order to stabilize the system in (1). How-

ever, it does not give a bound on the system states. The following theorem char-

acterizes the boundedness of the obtained closed-loop system state and associated

sliding function.

Theorem 4. In the presence of disturbance f (k) satisfying (14), if the LMI in (47)

is feasible, for the obtained P = P̄−1, Q = PQ̄P, η1 = η̄−1
1 , the control law (44),

(16) will lead to a bound on the augmented system state ζ (k) = [xT (k),xT (k −
1),σT

x (k)]
T as follows:

∀υ > 0, ∃k� > 0, s.t. ∀k > k�,

‖ζ (k)‖2 ≤ λmax(diag(M,Q))

η̂1λmin(diag(P,Q,(BT PB)−1))
γ̂ +υ ,

(48)
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where M = PB(BT PB)−1BT P+P, and γ̂ =
∥∥�̂+2BT PB

∥∥L2
f T 2

s ; here the scalar

variable η̂1 > 0 and matrix variable �̂> 0 are obtained from solving the following

LMI: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(η̂1 −η1)I +4ε̂1NT N � � � �

0 (η̂1 −η1)I +4ε̂2NT N � � �

0 0 −�̂ � �

0 0 MT PB −ε̂1I �

0 0 MT PB 0 −ε̂2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (49)

where M and N are known matrices in (2), ε̂1 > 0 and ε̂2 > 0 are scalar variables.

PROOF. The proof of this theorem is an application of the proof of Theorem 2

and thus is omitted here for the brevity purposes.

Remark 5. As seen, applying the controller C3 to the system (1) results in γ̂3 =∥∥�̂+2BT PB
∥∥L2

f T 2
s in (48). Obviously, due to the much smaller L2

f T 2
s in γ̂3, which

is of O(T 2
s ), the thickness of the boundary layer is reduced, compared to its pre-

vious counterparts which are of O(Ts), for the smooth disturbance f (k) satisfying

(14).

5. Simulation Results

In order to study the performance of the proposed control law, an un-interruptible

power system (UPS) is considered here [23]. The aim is to control the PWM in-

verter in order to keep the output AC voltage at the desired setting robustly. The

UPS’s capacity is 1 KVA. The discrete-time model is obtained with the sampling

time 0.01 s at the half-load operating point, which is as follows

A =

⎡
⎢⎢⎢⎣

0.9226 −0.6330 0

1.0 0 0

0 1.0 0

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

1

0

0

⎤
⎥⎥⎥⎦ .
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We assume that all the system states are accessible. We also consider the following

uncertainty parameters and disturbance in the system

M =
[
0.05 0.15 0.08

]T
, N =

[
−0.05 0.06 0.10

]
,

R(k) = 0.3sin(k).

Note that the open-loop system is unstable. Notice also that the given DSMC in

[15] is not applicable to this system, since the designing LMIs are not feasible.

Suppose

d(k) = 0.1
(

2− sin
(

k
5

))
.

Solving the LMI (24) gives the following results:

P̄ =

⎡
⎢⎢⎢⎣

51.5428 0.0164 0.2975

0.0164 54.4440 0.3715

0.2975 0.3715 105.8332

⎤
⎥⎥⎥⎦ , η̄ = 175.5974, ε = 96.6945,

S =
[
0.0194 −0.0000 −0.0001

]
.

Hence, using P = P̄−1, F+ = 0.2 and F− = 0.1, the control laws C1 and C2

given in (18) and (21), respectively, are obtained. The results by applying these

controllers, in addition to the linear controller and the DSMC utilizing only the

mean value of the disturbance, to the system (1) are shown in Figs. 2-5. Here, the

initial state is assumed to be x(0) =
[
1 0 0

]T
. It can be seen that the system

state is bounded and also during the sliding motion the state trajectories are within

a boundary layer around the sliding surface σx(k) = 0.

As seen, for the slow disturbance f (k), in terms of ultimate bound on the system

state and also thickness of the boundary layer around the ideal sliding surface,

among these four controllers, the controller C2 has the best performance.

As mentioned in Remark 2, in [15] the following control law is proposed:

23



10 20 30 40 50 60 70

0

0.5

1

time (sec)

Tr
aj

ec
to

rie
s 

of
 s

ta
te

x1

x2

x3

10 20 30 40 50 60 70
−0.01

0

0.01

0.02

time (sec)

Sl
id

in
g 

fu
nc

tio
n

σ

14 16 18 20

0.2
0.4

Figure 2: Evolution of the system state and sliding function using linear controller
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Figure 3: Evolution of the system state and sliding function using mean value of disturbance in

DSMC

24



10 20 30 40 50 60 70

0

0.5

1

time (sec)

Tr
aj

ec
to

rie
s 

of
 s

ta
te

x1

x2

x3

10 20 30 40 50 60 70
−0.01

0

0.01

0.02

time (sec)

Sl
id

in
g 

fu
nc

tio
n

σ

14 16 18 20
−0.1

0
0.1
0.2

Figure 4: Evolution of the system state and sliding function using C1
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Figure 5: Evolution of the system state and sliding function using C2
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Figure 6: Evolution of the system state and sliding function using the controller in [15]

u(k) =−(SB)−1SAx(k)−F+−diag(F−)sgn(σx(k)). (50)

Figure 6 shows the results by applying this controller to the system (1). Note that

as the LMI condition in [15] is not feasible, the controller (50) is constructed by

the choice of S achieved through solving the LMI in (24). This indeed shows the

superiority of our approaches compared to the existing literature. As it is em-

phasized in [5], using this controller leads state trajectories to chatter around the

switching surface with amplitude dependent on the lower bound of the component

in (19) and with the frequency equal to the sampling rate. As it was mentioned in

Remark 2, using the controllers C1 and C2, while the chattering still happens, in

this case, the state trajectories chatter with the frequency equal to the frequency

of exogenous disturbance.

Now, solving the LMI in (47), the following results are obtained:
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Figure 7: Evolution of the system state and sliding function using C3

P̄ =

⎡
⎢⎢⎢⎣

65.3131 −0.2883 0.5724

−0.2883 71.5406 0.1175

0.5724 0.1175 152.0610

⎤
⎥⎥⎥⎦ , Q̄ =

⎡
⎢⎢⎢⎣

38.6665 −0.3757 0.0127

−0.3757 19.9712 −0.0472

0.0127 −0.0472 76.8444

⎤
⎥⎥⎥⎦ ,

η̄1 = 414.0327, ε1 = 150.6769, ε2 = 171.9258,

S =
[
0.0153 0.0001 −0.0001

]
.

Figure 7 shows the results of applying the control law C3 in (44) to the system (1).

As mentioned, this controller uses disturbance estimate. It is crystal clear that this

controller has the best performance compared to the previous controllers, in terms

of ultimate bound on system state, for the systems involving smooth disturbances.

Notice that as the choice of sliding matrix in the last controller C3 is not the same

as the one used in the previous controllers, it is hard to compare the current re-

sults in terms of the bounds on the systems states and, in addition, the thickness

of the obtained boundary layer around the ideal sliding function. To have a fair
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comparison, we need to use the same S in all the controllers. It is also not hard to

show that if the LMI in (47) is feasible then the LMI in (24) will necessarily be

feasible, and hence, we can use the the sliding matrix obtained from the LMI in

(47) to construct the aforementioned controllers. Table 1 illustrates the obtained

results. As seen in Table 1, C3, with the assumption of having a system involving

Table 1: Comparison of the controllers
Controller bound on the system state (‖x(k)‖) boundary layer thickness (‖σx(k)‖)

Linear controller 0.5152 0.0046

Controller utilizing the mean value of disturbance 0.1719 0.0019

C1 0.1709 0.0018

C2 0.0868 0.0010

Controller in (50) 0.2821 0.0031

C3 0.0342 0.00003

slow disturbances, perfectly outperforms the other two controllers, however, as it

was mentioned earlier, at the expense of dealing with higher order systems and

implementing more intensive computations. Moreover, it can be seen from Fig-

ure 4 and 5 that C2 has resulted in slightly smoother state trajectories. Clearly, the

performances of the controllers C1, C2, C3 and even the controller utilizing the

mean value of disturbance outperform that of the controller in (50), and the rate

of chattering occurred with (50) is much higher.

6. Conclusions

In this paper, a new LMI based robust DSMC for the systems involving un-

matched uncertainty and matched disturbance has been developed. The proposed

LMI method is applicable to general systems including unstable systems. Fur-

thermore, some notes on the use of the discontinuous term in the discrete-time
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sliding mode controller have been given and two new switching function has been

developed. Inspired by the idea of disturbance observer, a new controller for the

underlying uncertain systems has been proposed in this paper. The controller

with disturbance estimator outperforms the other kind of DSMCs, including lin-

ear controller and DSMCs using discontinuous components, while the underlying

systems involves slow exogenous disturbances. Nevertheless, the downside is

that, since the order of the closed-loop system increases, the scheme using DSMC

with disturbance estimator is more computationally intensive.

Appendix A. Proof of Theorem 3

Define

V (ζ (k)) = xT (k)Px(k)+ xT (k−1)Qx(k−1)+σT
x (k)(SB)−1σx(k),

where ζ (k) =
[
xT (k) xT (k−1) σT

x (k)
]T

, P > 0 and Q > 0 are symmetric ma-

trices and S = BT P. Thus, we can write

ΔV (ζ (k)) =V (ζ (k+1))−V (ζ (k))

=xT (k+1)Px(k+1)+ xT (k)Qx(k)+σT
x (k+1)(SB)−1σx(k+1)− xT (k)Px(k)

− xT (k−1)Qx(k−1)−σT
x (k)(SB)−1σx(k). (A.1)

Now, it can be shown that

ΔV (ζ (k)) =

⎡
⎢⎢⎢⎣

x(k)

x(k−1)

fd(k)

⎤
⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎣

Σ11 Σ12 Σ13

ΣT
12 Σ22 Σ23

ΣT
13 ΣT

23 Σ33

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x(k)

x(k−1)

fd(k)

⎤
⎥⎥⎥⎦ , (A.2)
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where

Σ11 :=(A+ΔAk)
T P(A+ΔAk)− (A+ΔAk)

T PB(BT PB)−1BT P(A+ΔAk)

−P+Q−PB(BT PB)−1BT P+2ΔAT
k PB(BT PB)−1BT PΔAk,

Σ12 :=−2ΔAT
k ST (SB)−1SΔAk−1,

Σ22 :=2ΔAT
k−1PB(BT PB)−1BT PΔAk−1 −Q,

and Σ13 = 2ΔAT
k ST , Σ23 = −2ΔAT

k−1ST and Σ33 = 2SB. In the absence of the

disturbance f (k), fd(k) = 0. Then the system is stabilized if

ϒ :=

⎡
⎣Σ11 Σ12

ΣT
12 Σ22

⎤
⎦<−η1I, (A.3)

where η1 > 0 is a scalar variable. Following a similar approach given in the proof

of Theorem 1, and by using the Schur complement, Corollary 1, Lemma 2 and

Lemma 4, it can be demonstrated that the inequality in (A.3) can be implied by

the LMI in (47), where Q̄ = P̄QP̄, X = FP̄, Y = LP̄ (F and L are two auxiliary

variables), and η̄1 = η−1
1 .
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