
ON EXPONENTIAL STABILITY OF LINEAR NON-AUTONOMOUS
FUNCTIONAL DIFFERENTIAL EQUATIONS OF NEUTRAL TYPE

Abstract. General linear non-autonomous functional differential equations of neutral

type are considered. A novel approach to exponential stability of neutral functional

differential equations is presented. Consequently, explicit criteria are derived for ex-

ponential stability of linear non-autonomous functional differential equations of neutral

type. A brief discussion to the obtained results and illustrative examples are given.

1. Introduction

Functional differential equations of neutral type have numerous applications in science

and engineering. They are used as models of lossless transmission lines, partial element

equivalent circuits [2], steam or water pipes, heat exchangers [15] and control of con-

strained manipulators with delay measurements in mechanical engineering [19].

Problems of stability of functional differential equations of neutral type have been

investigated intensively during the past decades, see e.g. [1]-[2], [4]-[10], [12]-[20] and

references therein. In this paper, we investigate exponential stability of general linear

neutral non-autonomous functional differential equations of the form

(1)
d

dt
D(t, xt) = L(t, xt), t ≥ σ,

where, for each t ∈ R, xt(·) ∈ C := C([−h, 0],Rn) is defined by xt(θ) := x(t+θ), θ ∈ [−h, 0]

with given h > 0, D(·, ·) : R × C → Rn and L(·, ·) : R × C → Rn are given continuous

functions such that D(t, ·) and L(t, ·) are bounded linear operators from C to Rn for each

t ∈ R.
In general, it is not easy to tackle the problem of stability analysis of time-varying

differential equations of neutral type. The traditional approaches to problems of stability

of time-varying differential equations of neutral type are based on the Lyapunov’s method

and its variants, see e.g. [4]-[10], [12]-[16], [18], [19]. Most existing results in the literature

are given in terms of matrix inequalities and not straightforward to use.

There have been many works dedicated to stability of differential equations of neutral

type, see [1]-[2], [4]-[10], [12]-[20]. However, problems of exponential stability of the linear

neutral functional differential equation (1) has not yet been studied adequately and to
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date there have been no explicit stability criteria for (1) in the literature. The main

purpose of this paper is to fill this gap.

In contrast to the traditional approaches, we present in this paper a novel approach

to exponential stability of the linear neutral functional differential equation (1). Our

approach is simple in that it relies only upon a system transformation, the comparison

principle and spectral properties of Metzler matrices. Consequently, we can obtain new

explicit criteria for exponential stability of (1). A discussion to the obtained results and

a numerial example are given for illustration.

The organization of the paper is as follows. In the next section, we give notation and

preliminary results to be used in our development. The main results are presented in

Section 3. We derive new explicit criteria for exponential stability of the linear neutral

functional differential equation (1). In Section 4, we make a comparison of the obtained

results with some existing ones in the literature and give an illustrative example. Finally,

a conclusion is drawn in Section 5.

2. Preliminaries

Let N be the set of all natural numbers. For given m ∈ N, let m := {1, 2, ...,m}.
For given integers l, q ≥ 1,Rl denotes the l-dimensional vector space over R and Rl×q

stands for the set of all l × q-matrices with entries in R. For A = (aij) ∈ Rl×q and

B = (bij) ∈ Rl×q, A ≥ B means that aij ≥ bij for i = 1, · · · , l, j = 1, · · · , q. In particular,

if aij > bij for i = 1, · · · , l, j = 1, · · · , q, then we write A� B instead of A ≥ B. Denote

by Rl×q+ the set of all nonnegative matrices. Similar notations are adopted for vectors.

For x ∈ Rn and P ∈ Rl×q we define |x| = (|xi|) and |P | = (|pij|). Then one has

|PQ| ≤ |P ||Q|, ∀P ∈ Rl×q, ∀Q ∈ Rq×r.

Let In be the identity matrix in Rn×n. For any matrix M ∈ Rn×n the spectral abscissa

(resp. the spectral radius) of M is defined by s(M) := max{<λ : λ ∈ σ(M)} (resp.

ρ(M) := max{|λ| : λ ∈ σ(M)}) where σ(M) := {z ∈ C : det(zIn −M) = 0} is the

spectrum of M . A matrix M ∈ Rn×n is said to be Hurwitz stable (resp. Schur stable) if,

s(M) < 0 (resp. ρ(M) < 1). A norm ‖ · ‖ on Rn is said to be monotonic if ‖x‖ ≤ ‖y‖
whenever x, y ∈ Rn, |x| ≤ |y|. Every p-norm on Rn

‖x‖p = (|x1|p + |x2|p + ...+ |xn|p)
1
p , 1 ≤ p <∞; ‖x‖∞ = max

i=1,2,...,n
|xi|,

is monotonic. Throughout the paper, if otherwise not stated, the norm of vectors on Rn

is monotonic and the norm of a matrix P ∈ Rl×q is understood as its operator norm

associated with a given pair of monotonic vector norms on Rl and Rq, that is

‖P‖ = max{‖Py‖ : ‖y‖ = 1}.
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A matrix M ∈ Rn×n is called a Metzler matrix if all off-diagonal elements of M are

nonnegative. For given A := (aij) ∈ Rn×n, we associate the Metzler matrix M(A) := (âij)

where âij = |aij| if i 6= j, for i, j ∈ n and âii = aii, for i ∈ n.

Theorem 2.1. [3]

(i) Let A ∈ Rn×n+ . Then A is Schur stable if and only if Aq � q, for some q ∈ Rn+, q � 0.

(ii) Let A ∈ Rn×n be a Metzler matrix. Then A is Hurwitz stable if and only if Ap� 0,

for some p ∈ Rn+, p� 0.

The following lemma is used in what follows.

Lemma 2.2. Let A ∈ Rn×n be a Metzler matrix and B,C,D ∈ Rn×n+ . Then the following

statements are equivalent

(i) ρ(D) < 1 and s(A+B(In −D)−1C) < 0;

(ii) there exist p, q ∈ Rn+, p� 0, q � 0 such that

(2)

(
A B

C D

)(
p

q

)
�

(
0

q

)
.

(iii) s(A) < 0 and ρ(C(−A)−1B +D) < 1.

Proof. (i)⇒ (ii) Since D ∈ Rn×n+ and ρ(D) < 1, it follows that (In−D)−1 =
∑∞

k=0D
k ≥ 0.

Furthermore, we have Dq0 � q0, for some q0 ∈ Rn+, q0 � 0, by Theorem 2.1 (i). Thus,

B(In −D)−1C ∈ Rn×n+ and A + B(In −D)−1C is a Metzler matrix. Since s(A + B(In −
D)−1C) < 0, it follows that (A + B(In − D)−1C)p � 0 for some p ∈ Rn+, p � 0, by

Theorem 2.1 (ii). This implies (A+B(In −D)−1C)p+ εBq0 � 0, for sufficiently small ε.

Let q := (In−D)−1Cp+εq0 � 0. Note that Ap+Bq = Ap+(B(In−D)−1Cp+εBq0)� 0

and Cp+Dq = q + ε(Dq0 − q0)� q. Therefore, (i) holds.

(ii) ⇒ (i) Assume that Ap+Bq � 0 and Cp+Dq � q, with p, p ∈ Rn+, p, q � 0. Note

that Dq ≤ Cp + Dq � q, with q ∈ Rn+, q � 0. Thus, ρ(D) < 1, by Theorem 2.1 (i).

Furthermore, Cp � q − Dq. It follows that q = (In − D)−1(In − D)q ≥ (In − D)−1Cp.

Therefore, 0 � Ap + Bq ≥ Ap + B(In − D)−1Cp = (A + B(In − D)−1C)p. Thus,

s(A+B(In −D)−1C) < 0, by Theorem 2.1 (ii).

(ii) ⇒ (iii) Suppose Ap + Bq � 0 and Cp + Dq � q, with p, q ∈ Rn+, p, q � 0. From

B ∈ Rn×n+ and q ∈ Rn+, it follows that Bq ∈ Rn+. Thus, Ap ≤ Ap + Bq � 0. Therefore,

s(A) < 0, by Theorem 2.1 (ii). Since A is a Metzler matrix and s(A) < 0, one has

(−A)−1 ∈ Rn×n+ , see e.g. [3]. From Ap + Bq � 0, it follows that Bq � −Ap. This gives

(−A)−1Bq ≤ p and C(−A)−1Bq ≤ Cp. Thus, (C(−A)−1B + D)q ≤ Cp + Dq � q. By

Theorem 2.1 (i), ρ(C(−A)−1B +D) < 1.

(iii) ⇒ (ii) Assume that s(A) < 0 and ρ(C(−A)−1B +D) < 1. As mentioned above, it

follows from s(A) < 0 that (−A)−1 ∈ Rn×n+ . By Theorem 2.1, Ap0 � 0 and (C(−A)−1B+

D)q � q, for some p0, q ∈ Rn+, p0, q � 0. This implies, (C(−A)−1B + D)q + γCp0 � q,
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for sufficiently small γ > 0. Let p := (−A)−1Bq + γp0 � 0. Then, we have Cp + Dq =

(C(−A)−1B + D)q + γCp0 � q and Ap + Bq = A((−A)−1Bq + γp0) + Bq = γAp0 � 0.

This completes the proof. �

To make a representation self contained and dynamic, we present here some basic facts

on vector-valued functions of bounded variation and related topics. A matrix function

η(·) : [α, β]→ Rm×n is called an increasing matrix function if

η(θ2) ≥ η(θ1) for α ≤ θ1 ≤ θ2 ≤ β.

A matrix-valued function η(·) : [α, β]→ Rm×n is said to be of bounded variation if

V ar[α,β]η(·) := sup
P [α,β]

∑
k

‖η(θk)− η(θk−1)‖ < +∞,

where the supremum is taken over the set of all finite partitions of the interval [α, β]. The

set BV ([α, β],Rm×n) of all matrix functions η(·) of bounded variation on [α, β] satisfying

η(α) = 0 is a Banach space endowed with the norm ‖η‖ = V ar[α,β]η(·). Since all matrix

norms on Rm×n are equivalent, it follows that the matrix function η(·) = (ηij(·)) ∈ Rm×n

is of bounded variation if and only if each ηij(·) is of bounded variation. Then η(·) ∈
BV ([α, β],Rm×n), if and only if

η(·) = η2(·)− η1(·),

where η1(·) and η2(·) are increasing matrix functions, see e.g. [11]. Therefore, limθ→θ−0
η(θ)

exists for any θ0 ∈ [α, β], if η(·) ∈ BV ([α, β],Rm×n).

Let us consider a subset of BV ([α, β],Rm×n):

NBV ([α, β],Rm×n) := {η ∈ BV ([α, β],Rm×n); η is continuous from left on (α, β)}.

Clearly, NBV ([α, β],Rm×n) is closed in BV ([α, β],Rm×n) and thus it is a Banach space

with the norm ‖η‖ = V ar[α,β]η(·). Given η(·) ∈ NBV ([α, β],Rm×n) then for any contin-

uous functions γ ∈ C([α, β],R) and ϕ ∈ C([α, β],Rn), the integrals∫ β

α

γ(θ)d[η(θ)] and

∫ β

α

d[η(θ)]ϕ(θ)

exist and are defined respectively as the limits of S1(P ) :=
∑p

k=1 γ(ζk)(η(θk) − η(θk−1))

and S2(P ) :=
∑p

k=1(η(θk) − η(θk−1))ϕ(ζk) when d(P ) := maxk |θk − θk−1| → 0, where

P = {θ1 = α ≤ θ2 ≤ · · · ≤ θp = β} is any finite partition of the interval [α, β] and

ζk ∈ [θk−1, θk]. It is immediate from the definition that

‖
∫ β
α
γ(θ)d[η(θ)]‖ ≤ maxθ∈[α,β] |γ(θ)| ‖η‖,

‖
∫ β
α
d[η(θ)]ϕ(θ)‖ ≤ maxθ∈[α,β] ‖ϕ(θ)‖ ‖η‖.
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Let Rm×n be endowed with the norm ‖ · ‖ and let J be an interval of R. Denote by

C(J,Rm×n), the vector space of all continuous functions on J with values in Rm×n. In

particular, C([α, β],Rm×n) is a Banach space endowed with the norm

‖ ϕ ‖:= max
θ∈[α,β]

‖ ϕ(θ) ‖ .

In the following, the Banach space C([−h, 0],Rn) is used frequently. For simplicity, we

write C instead of C([−h, 0],Rn).

3. Explicit criteria for exponential stability

Consider the linear neutral functional differential equation (1), where D(·, ·) : R×C →
Rn and L(·, ·) : R × C → Rn are given continuous functions such that D(t, ·) and L(t, ·)
are bounded linear operators from C to Rn for each t ∈ R.

Throughout, we assume that

(3) D(t, ϕ) := ϕ(0)−D0(t, ϕ), t ∈ R,

and D0(t, ·) is a bounded linear operator from C to Rn for each t ∈ R.
By the well-known Riesz representation theorem,

(4) L(t, ϕ) :=

∫ 0

−h
d[η(t, θ)]ϕ(θ), ϕ ∈ C, t ∈ R,

and

(5) D0(t, ϕ) :=

∫ 0

−h
d[µ(t, θ)]ϕ(θ), ϕ ∈ C, ∀t ∈ R,

where for each t ∈ R, η(t, θ) : R× [−h, 0]→ Rn×n and µ(t, θ) : R× [−h, 0]→ Rn×n are of

bounded variation in θ on [−h, 0] and normalized so that η(t, θ) and µ(t, θ) are continuous

from the left in θ on (−h, 0) and

η(t, θ) = 0, θ ≥ 0, η(t, θ) = η(t,−h), ∀θ ≤ −h,

µ(t, θ) = 0, θ ≥ 0, µ(t, θ) = µ(t,−h), ∀θ ≤ −h.

Furthermore, suppose there exists a constant matrix D := (dij) ∈ Rn×n+ such that

(6) V ar[−h,0]µij(t, ·) ≤ dij, ∀t ∈ R, ∀ i, j ∈ n,

where µ(t, θ) := (µij(t, θ)) ∈ Rn×n for t ∈ R, θ ∈ [−h, 0] and µ is uniformly nonatomic at

zero, that is, for every ε > 0, there exists δ > 0 such that

(7) V ar[−δ,0]µ(t, ·) < ε, ∀t ∈ R.
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Remark 3.1. (i) Suppose µ(t, ·), t ∈ R has no singular part, that is

(8)

∫ 0

−h
d[µ(t, θ)]ϕ(θ) :=

m∑
i=1

Di(t)ϕ(−hi) +

∫ 0

−h
E(t, s)ϕ(θ)ds, ϕ ∈ C,

where 0 ≤ hi ≤ h, i ∈ m and Di(·) : R → Rn×n, i ∈ m, E(·, ·) : R × [−h, 0] → Rn×n,

are continuous functions. Furthermore, assume that there exists Di ∈ Rn×n+ , i ∈ m and a

continuous function E0(·) : [−h, 0]→ Rn×n+ such that

(9) |Di(t)| ≤ Di,∀t ∈ R,∀i ∈ m; |E(t, s)| ≤ E0(s), ∀t ∈ R,∀s ∈ [−h, 0].

Clearly, (6) holds and µ is uniformly nonatomic at zero.

(ii) Assume that µ(t, ·) ≡ µ(·), i.e., independent of t. Then µ(·) is uniformly nonatomic

at zero if V ar[−s,0]µ(·)→ 0 as s→ 0.

For given ϕ ∈ C, consider for (1) the initial condition

(10) x(θ + σ) = ϕ(θ), θ ∈ [−h, 0].

Definition 3.2. Let σ ∈ R and ϕ ∈ C be given. A continuous function x(·) : [−h +

σ,∞) → Rn, is said to be a solution of (1) with the initial value (σ, ϕ) (or simply, a

solution of (1) through (σ, ϕ)) if D(t, xt) is continuously differentiable on (σ,∞) with a

right hand derivative at σ and x(·) satisfies (1) on [σ,∞) and satisfies (10) on [−h, 0].

It is well-known that for fixed σ ∈ R and given ϕ ∈ C, there exists a unique solution of

(1) through (σ, ϕ), denoted by x(·;σ, ϕ), provided (6) holds and µ is uniformly nonatomic

at zero, see e.g. [9, Theorem 1.1, page 256]

Definition 3.3. The equation (1) is said to be exponentially stable if there exist K, β > 0

such that

‖x(t;σ, ϕ)‖ ≤ Ke−β(t−σ)‖ϕ‖, ∀t ≥ σ, ∀ϕ ∈ C.

Let η̂(t, θ) := η(t, θ), θ ∈ [−h, 0); η̂(t, 0) := limθ→0− η(t, θ) and let η̃(t, θ) := 0, θ ∈
[−h, 0); η̃(t, 0) := η(t, 0)− limθ→0− η(t, θ) = − limθ→0− η(t, θ) := A(t). Clearly,

η(t, θ) = η̂(t, θ) + η̃(t, θ), θ ∈ [−h, 0],

and η̂(t, ·) is continuous from the left on [−h, 0]. Therefore,

(11) L(t, ϕ) :=

∫ 0

−h
d[η(t, θ)]ϕ(θ) = A(t)ϕ(0) +

∫ 0

−h
d[η̂(t, θ)]ϕ(θ), t ∈ R, ϕ ∈ C,

and thus (1) is reduced to

(12)
d

dt

(
x(t)−

∫ 0

−h
d[µ(t, θ)]x(t+ θ)

)
= A(t)x(t) +

∫ 0

−h
d[η̂(t, θ)]x(t+ θ), t ≥ σ.

In addition, we always assume that A(·) : R → Rn×n and L1(·; ·) : R× C → Rn, (t, ϕ) 7→
L1(t;ϕ) :=

∫ 0

−h d[η̂(t, θ)]ϕ(θ), are continuous functions.

We are now in the position to state the main result of this paper.
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Theorem 3.4. Let

(13) µ̄(t, θ) := A(t)µ(t, θ), t ∈ R, θ ∈ [−h, 0].

Suppose there exist β > 0 and p := (p1, p2, ..., pn)T , q := (q1, q2, ..., qn)T ∈ Rn+, p, q � 0

such that

(14)
(
aii(t)pi +

n∑
j=1,j 6=i

|aij(t)|pj
)

+
n∑
j=1

(
V ar[−h,0]µ̄ij(t, ·) +V ar[−h,0]η̂ij(t, ·)

)
eβhqj < −βpi,

(15) pi +
n∑
j=1

V ar[−h,0]µij(t, ·)eβhqj < qi,

for any t ∈ R and for any i ∈ n. Then (1) is exponentially stable.

Proof. Let x(·) := x(·;σ, ϕ), be the unique solution of (1) through (σ, ϕ). Define

y(t) := D(t, xt) = x(t)−
∫ 0

−h
d[µ(t, θ)]x(t+ θ) t ≥ σ.

Then x(·) and y(·) satisfy the following system

(16)
dy(t)

dt
= A(t)y(t) +

∫ 0

−h
d[µ̄(t, θ)]x(t+ θ) +

∫ 0

−h
d[η̂(t, θ)]x(t+ θ), t ≥ σ,

(17) x(t) = y(t) +

∫ 0

−h
d[µ(t, θ)]x(t+ θ), t ≥ σ.

Choose K > 0 such that |ϕ(t)| � Kq and |ϕ(0)| + D|ϕ(t)| � Kp, for any t ∈ [−h, 0]

and for any ϕ ∈ C, ‖ϕ‖ ≤ 1. Define u(t) := Ke−β(t−σ)q, t ∈ [σ − h,∞) and v(t) :=

Ke−β(t−σ)p, t ∈ [σ,∞). It follows that |x(t)| � u(t),∀t ∈ [σ − h, σ] and |y(σ)| � v(σ).

We claim that |x(t)| ≤ u(t),∀t ≥ σ and |y(t)| ≤ v(t),∀t ≥ σ.

Assume on the contrary that there exists t0 > σ such that either |x(t0)| � u(t0) or

|y(t0)| � v(t0). Set t1 := inf{t ∈ (σ,∞) : (|x(t)|, |y(t)|) � (u(t), v(t))}. By continuity,

t1 > σ and one of the following statements holds:

(i) |x(t)| ≤ u(t), t ∈ [σ, t1] and there is i0 ∈ n such that

(18) |y(t)| ≤ v(t),∀t ∈ [σ, t1); |yi0(t1)| = vi0(t1), |yi0(τk)| > vi0(τk),

for some τk ∈ (t1, t1 + 1
k
), k ∈ N.

(ii) |y(t)| ≤ v(t), t ∈ [σ, t1] and there is k0 ∈ n such that

(19) |x(t)| ≤ u(t),∀t ∈ [σ, t1); |xk0(t1)| = uk0(t1), |xk0(ξk)| > uk0(ξk),

for some ξk ∈ (t1, t1 + 1
k
), k ∈ N.
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Suppose (i) holds. Let A(t) := (aij(t)); µ̄(t, θ) := (µ̄ij(t, θ)); η̂(t, θ) = (η̂ij(t, θ)), t ∈
R, θ ∈ [−h, 0]. It follows from (16) that

d

dt
|yi(t)| = sgn(yi(t))ẏi(t) ≤ aii(t)|yi(t)|+

n∑
j=1,j 6=i

|aij(t)||yj(t)|+

∣∣ n∑
j=1

∫ 0

−h
d[µ̄ij(t, θ)]xj(t+ θ)

∣∣+
∣∣ n∑
j=1

∫ 0

−h
d[η̂ij(t, θ)]xj(t+ θ)

∣∣,
for almost any t ∈ [σ,+∞) and any i ∈ n. It follows that for any t ∈ [σ,+∞)

D+|yi(t)| := lim sup
h→0+

|yi(t+ h)| − |yi(t)|
h

= lim sup
h→0+

1

h

t+h∫
t

d

dζ
|yi(ζ)|dζ

≤ aii(t)|yi(t)|+
n∑

j=1,j 6=i

|aij(t)||yj(t)|+

n∑
j=1

∣∣ ∫ 0

−h
d[µ̄ij(t, θ)]xj(t+ θ)

∣∣+
n∑
j=1

∣∣ ∫ 0

−h
d[η̂ij(t, θ)]xj(t+ θ)

∣∣,
where D+ denotes the Dini upper-right derivative. In particular, it follows from (i) that

D+|yi0(t1)| ≤ai0i0(t1)Ke−β(t1−σ)pi0 +
n∑

j=1,j 6=i0

|ai0j(t1)|Ke−β(t1−σ)pj+

n∑
j=1

(
V ar[−h,0]µ̄i0j(t1, ·) +

n∑
j=1

V ar[−h,0]η̂i0j(t1, ·)
)
Ke−β(t1−σ)eβhqj

= Ke−β(t1−σ)
(
ai0i0(t1)pi0 +

n∑
j=1,j 6=i0

|ai0j(t1)|pj+

n∑
j=1

(
V ar[−h,0]µ̄i0j(t1, ·) +

n∑
j=1

V ar[−h,0]η̂i0j(t1, ·)
)
eβhqj

)
(14)
< −βKe−β(t1−σ)pi0 = D+vi0(t1).

On the other hand, (18) implies that

D+|yi0(t1)| = lim sup
t→t+1

|yi0(t)| − |yi0(t1)|
t− t1

≥ limk→∞
|yi0(τk)| − |yi0(t1)|

τk − t1

≥ limk→∞
vi0(τk)− vi0(t1)

τk − t1
= lim

k→∞

vi0(τk)− vi0(t1)
τk − t1

=
dvi0
dt

(t1) = D+vi0(t1).

This is a contradition.

Assume that (ii) holds. It follows from (17) and (19) that

|xk0(t1)|
(17)

≤ |yk0(t1)|+
n∑
j=1

∣∣ ∫ 0

−h
d[µk0j(t1, θ)]xj(t1 + θ)

∣∣
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≤ |yk0(t1)|+
n∑
j=1

V ar[−h,0]µk0j(t1, θ) sup
θ∈[−h,0]

|xj(t1 + θ)|

(ii)

≤ Ke−β(t1−σ)pk0 +
n∑
j=1

V ar[−h,0]µk0j(t1, θ)Ke
−β(t1−σ)qje

βh

= Ke−β(t1−σ)
(
pk0 +

n∑
j=1

V ar[−h,0]µk0j(t1, θ)e
βhqj

)
(15)
< Ke−β(t1−σ)qk0 = uk0(t1).

This conflicts with (19). Thus, we have |x(t)| ≤ u(t),∀t ≥ σ and |y(t)| ≤ v(t),∀t ≥ σ.

In particular, this yields |x(t;σ, ϕ)| ≤ Ke−β(t−σ)q, ∀t ≥ σ,∀ϕ ∈ C, ‖ϕ‖ ≤ 1. Since (1) is

linear, it follows that

|x(t;σ,
ϕ

‖ϕ‖
)| = 1

‖ϕ‖
|x(t;σ, ϕ)| ≤ Ke−β(t−σ)q, ∀t ≥ σ, ∀ϕ ∈ C, ϕ 6= 0.

Therefore,

|x(t;σ, ϕ)| ≤ K‖ϕ‖e−β(t1−σ)q, ∀t ≥ σ,∀ϕ ∈ C.
This yields

‖x(t;σ, ϕ)‖ ≤ K‖q‖e−β(t1−σ)‖ϕ‖, ∀t ≥ σ,∀ϕ ∈ C.
So (1) is exponentially stable. This completes the proof.

�

Remark 3.5. (i) Let

(20) V (t) :=
(
Vij(t)

)
∈ Rn×n+ , t ∈ R,

where

Vij(t) := V ar[−h,0]µ̄ij(t, ·) + V ar[−h,0]η̂ij(t, ·), t ∈ R.
Note that (14) and (15) can be represented in the form

(21)
(
M(A(t))

)
p+ V (t)eβhq � −βp

(22) p+ (V ar[−h,0]µ(t, ·))eβhq � q.

(ii) The proof of Theorem 3.4 also shows that D(t, ϕ) exponentially decays. That is,

there exist K1, β > 0 such that

‖D(t, ϕ)‖ ≤ K1e
−β(t−σ)‖ϕ‖, ∀t ≥ σ, ∀ϕ ∈ C.

Theorem 3.6. Let D ∈ Rn×n+ satisfy (6) and let V (t) be defined by (20). Suppose there

exist A ∈ Rn×n and B ∈ Rn×n+ such that

(23) M(A(t)) ≤ A, ∀t ∈ R; V (t) ≤ B, ∀t ∈ R.

Then (1) is exponentially stable if one of the following conditions holds:
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(i) there exist β > 0 and p, q ∈ Rn+, p� 0, q � 0 such that

(24) Ap+Beβhq � −βp; p+Deβhq � q.

(ii) ρ(D) < 1 and s
(
A+B(In −D)−1

)
< 0;

(iii) s(A) < 0 and ρ((−A)−1B +D) < 1.

(iv) there exist p, q ∈ Rn+, p� 0, q � 0 such that

(25)

(
A B

In D

)(
p

q

)
�

(
0

q

)
.

Proof. Note that (ii), (iii) and (iv) of Theorem 3.6 are equivalent, by Lemma 2.2. By

continuity, (iv) implies that (i) holds for sufficiently small β > 0. Thus, it remains to

show that (1) is exponentially stable provided (i) holds.

Clearly, (14)-(15) follow from (23) and (31). Therefore, (1) is exponentially stable, by

Theorem (3.4). This completes the proof. �

Consider the linear neutral differential system

(26)

d

dt

(
x(t)−

∫ 0

−h
d[µ(t, θ)]x(t+θ)

)
= A(t)x(t)+

r∑
k=1

Bk(t)x(t−τk)+
∫ 0

−h
C(t, θ)x(t+θ)dθ, t ≥ σ,

where µ(t, θ) satisfies (8)-(9) and A(·) : R → Rn×n, Bk(·) : R → Rn×n, k ∈ r and C(·, ·) :

R× [−h, 0]→ Rn×n, are given continuous functions and 0 ≤ τk ≤ h, k ∈ r.
Let

(27) V0(t) :=
m∑
i=1

|A(t)Di(t)|+
∫ 0

−h
|A(t)E(t, s)|ds+

r∑
i=1

|Bk(t)|+
∫ 0

−h
|C(t, s)|ds, t ∈ R.

The following theorems are immediate from Theorem 3.4.

Theorem 3.7. Suppose there exist β > 0 and p, q ∈ Rn+, p, q � 0 such that

(28)
(
M(A(t))

)
p+ V0(t)e

βhq � −βp, ∀t ∈ R,

(29) p+
( m∑
i=1

|Di(t)|+
∫ 0

−h
|E(t, s)|ds

)
eβhq � q, ∀t ∈ R.

Then (26) is exponentially stable.

Theorem 3.8. Let Di ∈ Rn×n+ (i ∈ m) and E0(·) : [−h, 0] → Rn×n+ satisfy (9). Assume

that there exist A,B ∈ Rn×n such that

(30) M(A(t)) ≤ A, t ∈ R; V0(t) ≤ B, t ∈ R.

Then (26) is exponentially stable if one of the following conditions holds:
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(i) there exist β > 0 and p, q ∈ Rn+, p� 0, q � 0 such that

(31) Ap+Beβhq � −βp; p+ (
m∑
i=1

Di +

∫ 0

−h
E0(s)|ds)eβhq � q;

(ii) ρ(
∑m

i=1Di +
∫ 0

−hE0(s)ds) < 1 and s(A+B(In −
∑m

i=1Di −
∫ 0

−hE0(s)ds)
−1) < 0;

(iii) s(A) < 0 and ρ((−A)−1B +
∑m

i=1Di +
∫ 0

−hE0(s)ds) < 1;

(iv) there exist p, q ∈ Rn+, p� 0, q � 0 such that

(32)

(
A B

In
∑m

i=1Di +
∫ 0

−hE0(s)ds

)(
p

q

)
�

(
0

q

)
.

Corollary 3.9. Suppose A,B,D ∈ Rn×n are given and C(·) : R → Rn×n is a given

continuous function. The linear neutral time-invariant differential system

(33)
d

dt
(x(t)−Dx(t− r)) = Ax(t) +Bx(t− τ) +

∫ 0

−h
C(θ)x(t+ θ)dθ,

is exponentially stable if

(34) ρ(|D|) < 1; s
(
M(A) + (|AD|+ |B|+

∫ 0

−h
|C(θ)|dθ)(In − |D|)−1

)
< 0.

Corollary 3.10. The linear differential system of retarded type

(35)
d

dt
x(t) = A(t)x(t) +

∫ 0

−h
d[η̂(t, θ)]x(t+ θ), t ≥ σ.

is exponentially stable if there exists p ∈ Rn, p� 0 such that

(36)
(
M(A(t))

)
p+ (V ar[−h,0]η̂ij(t, θ))e

βhp� −βp

Furthermore, if there exist A ∈ Rn×n and B = (bij) ∈ Rn×n+ such that

(37) M(A(t)) ≤ A, t ∈ R; (V ar[−h,0]η̂ij(t, ·)) ≤ B, ∀t ∈ R,

and one of the following conditions holds:

(i) s
(
A+B

)
< 0;

(ii) s(A) < 0 and ρ((−A)−1B) < 1.

(iii) (A+B)p� 0 for some p ∈ Rn+.

then (35) is exponentially stable for any h > 0.

4. Discussion and illustrative examples

As mentioned in the Introduction, problems of stability of linear neutral time-varying

differential equations are not straightforward to solve. Up to our knowledge, there are

no explicit criteria for exponential stability of linear neutral non-autonomous functional

differential equations of the form (1). Some abstract criteria for asymptotic stability of

(1) could be found in [9], [14] and recently in [8].
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In [1], the authors considered the scalar linear neutral differential equation

(38)
d

dt
(x(t)− d(t)x(t− r)) + a(t)x(t) + b(t)x(t− τ) = 0,

where a(·), b(·), d(·) : R → R+ are continuous functions such that p1 ≤ a(t) ≤ p2; q1 ≤
b(t) ≤ q2, 0 ≤ d(t) ≤ d1 < 1, ∀t ∈ R and |d′(t)| ≤ d2, ∀t ∈ R for some p1, p2, q1, q2, d1, d2 ∈
R+. Using a Lyapunov functional, it has been shown in [1, Theorem 2] that if

p1 > q2 + d1(p2 + q2),

then every solution x(t) of (38) satisfies x(t)→ 0 as t→∞. Some similar results can be

found in [5], [9].

Note that −a(t) ≤ −p1, ∀t ∈ R and | − b(t)| ≤ q2,∀t ∈ R. By Theorem 3.8 (ii), (38) is

exponentially stable if −p1 + (p2d1 + q2)(1− d1)−1 < 0, or equivalently,

p1 > q2 + d1(p1 + p2).

Note that the conditions |d′(t)| ≤ d2; a(t) ≤ p2; b(t) ≥ q1, ∀t ∈ R, are redundant when

we apply Theorem 3.8 (ii) to (38). Recall that, in general, exponential stability of linear

neutral differential equations is stronger than their asymptotic stability, see [13].

Next, we consider a neutral logistic equation of the form

(39)
du(t)

dt
= γu(t)

[
p

(
1− u(t)

k

)
+ q

(
1− u(t− h)

k

)
+ c

d

dt

(
1− u(t− τ)

k

)]
,

where γ, p, q, c, k, h, τ are positive numbers.

Using the change of variable, y(t) = ln u(t)
k

, it has been shown in [1] that if the linear

equation

(40)
d

dt
(y(t) + γcy(t− τ)) = −γpy(t)− γqy(t− h),

is exponentially stable, then the steady state value k of (39) is locally asymptotically

stable. Applying Theorem 3.7 to (40), we conclude that (40) is exponentially stable if

γc <
p− q

2p
.

To illustrate the advantage of the results of this paper, we present a numerical example

for which the stability criteria given in [1], [7], [16], [18] cannot be applied.

Consider the linear time-varying differential system of neutral type defined by

ζ̇(t) = −4ζ(t)− (sin t)ζ(t)− 1

t2 + 16
η(t− 1) +

1

16
e−t

2

∫ 0

−1
η(t+ s)ds+

1

4
ζ̇(t− 1)

η̇(t) = −3η(t)− e−t2η(t) +
1

6
e−t

2

ζ(t− 1)− 1

8
η̇(t− 1).

Clearly, the given system can be rewritten as

(41)
d

dt

(
x(t)−Dx(t− 1)

)
= A(t)x(t) +B(t)x(t− 1) +

∫ 0

−1
C(t)x(t+ s)ds,
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where x(t) := (ζ(t), η(t))T ∈ R2, t ∈ R and

D :=

(
1
4

0

0 −1
8

)
; A(t) :=

(
−4− sin t 0

0 −3− e−t2

)
,

B(t) :=

(
0 − 1

t2+16
1
6
e−t

2
0

)
; C(t) :=

(
0 1

16
e−t

2

0 0

)
.

Let us define

A :=

(
−3 0

0 −3

)
; B :=

(
5
4

1
8

1
6

1
2

)
.

It is easy to check that ρ(|D|) < 1 and

M(A(t)) ≤ A, ∀t ∈ R; |A(t)D|+ |B(t)|+
∫ 0

−1
|C(t)|ds,≤ B, ∀t ∈ R.

Thus, (30) holds. By simple computation, we have

A+B(I2 − |D|)−1 =

(
−4

3
1
7

2
9
−17

7

)
.

Because of (
−4

3
1
7

2
9
−17

7

)(
1

1

)
�

(
0

0

)
,

the Metzler matrix A+B(I2−|D|)−1 is Hurwitz stable, by Theorem 2.1. Thus, the given

system is exponentially stable, by Theorem 3.8 (ii).

Finally, a remarkable result on asymptotic stability of the linear neutral time-invariant

differential systems can be found in [17]. It has been shown [17, Theorem 3.1] that (33)

with C(·) ≡ 0 is asymptotically stable if

(42) ‖D‖ < 1 and µ(A) +
‖B‖+ ‖A‖‖D‖

1− ‖D‖
< 0,

where µ(A) := limε→0+
‖In+εA‖−1

ε
is the matrix measure of A. It is quite easy to show that

(42) is more conservative than (34) (with C(·) ≡ 0).

5. Concluding remark

In this paper, we have addressed the challenging problem of stability analysis for linear

non-autonomous systems described by functional differential equations of neutral type

and presented some novel conditions for exponential stability of time-varying functional

differential equations. By using a system transformation, the comparison principle and

spectral properties of Metzler matrices, the resulting criteria are both generic and ex-

plicitly obtained. As such, the proposed approach can be extended to study problems of

exponential stability of nonlinear and singular time-varying systems, which will be subject

to our future work.
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