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Abstract—Big data consists of large multidimensional
datasets that would often be difficult to analyze if working
with the original tensor. There is a rising interest in the use of
tensor decompositions for feature extraction due to the ability
to extract necessary features from a large dimensional feature
space. In this paper the matrix product state (MPS) decom-
position is used for feature extraction of large tensors. The
novelty of the paper is the introduction of a single core tensor
obtained from the MPS that not only contains a significantly
reduced feature space, but can perform classification with high
accuracy without the need of feature selection methods.
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I. INTRODUCTION

There is an increasing need to handle large multidimen-
sional datasets that cannot easily be analyzed or processed
using modern day computers. Due to the curse of dimen-
sionality researchers need to investigate mathematical tools
which can evaluate information beyond the properties of
large matrices. The essential goal is to reduce the dimen-
sionality of big data with minimal information loss. One
such method is to approximate multidimensional datasets in
terms of tensor decompositions [1]. This method has been of
great interest within the last decade and successfully applied
in a diverse range of research areas such as data classification
[2], computer vision [3], quantum many-body physics [4],
[5] and signal processing [6].

In this paper we focus on the dimensionality reduction
of higher-order tensors using the MPS decomposition [7]
(also known as the tensor-train (TT) decomposition [8]).
Specifically, we introduce the concept of a core tensor,
similarly used in the Tucker decomposition (TD) [1], in
the context of MPS. We demonstrate that this core tensor
contains a greatly reduced feature space from the original
tensor, and can be used sufficiently in supervised learning
problems. To our knowledge, the concept of a core tensor
in MPS has not been introduced in previous research.

II. MATRIX PRODUCT STATE DECOMPOSITION AND
MULTILINEAR CLASSIFICATION

A. Mathematical notation

We first review some mathematical notation frequently
used in multilinear algebra [1]. A tensor is a multidimen-
sional array and its order is the number of dimensions
it contains. Zero-order tensors are scalars and denoted by
lowercase letters, e.g., x. A first-order tensor is a vector,
which we denote by boldface lowercase letters, e.g., x. A
matrix is a tensor of order two and is defined by boldface
capital letters, e.g., X. A higher-order tensor (tensors of order
three and above) are denoted by boldface calligraphic letters,
e.g., X . Therefore a general Nth-order tensor can be defined
as X ∈ RI1×I2×···×IN , where each Ii is the dimension of the
local subspace i. We denote ai as the ith entry of a vector a
and aij as an element of a matrix A. The element of a third-
order tensor X is denoted as xijk and thus defined similarly
for a general Nth-order tensor. Indices will range from 1 to
their captial version, e.g., i = 1, . . . , I or δ = 1, . . . ,∆ for
Greek letters. The nth element in a sequence of tensors is
denoted with a superscript in parentheses, e.g., A(n) is the
nth matrix.

B. Matrix product state decomposition for multilinear clas-
sification

The general problem for multilinear classification is as
follows [9]:

Problem 1: Given a set of K training samples repre-
sented by Nth-order tensors X (k) ∈ RI1×I2×···×IN (k =
1, 2, . . . ,K) corresponding to Q categories, and a set of T
test data X (t) ∈ RI1×I2×···×IN (t = 1, 2, . . . , T ), classify
the test data into the categories Q with high accuracy. The
classification problem is a supervised problem where the
categories Q are defined according to the problem and the
data provided.
This problem has been solved using the TD [9], where a
single core tensor and common factors to training and test
data were obtained. The main issue for the TD is that the
feature space of the core tensor for classification can be quite
large, thus further feature selection is always needed.
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Alternatively we propose the MPS solution to Problem 1
similar to the TD, in which we obtain a main core tensor1

and common factors. Firstly concatenate the set of training
data {X (k)} such that

Y = [X (1)X (2) · · ·X (K)] ∈ RI1×I2×···×IN×KN+1 , (1)

with elements yi1···iNkN+1
. In the tensor representation in

Eq. (1), a new index kN+1 is added to represent the number
of samples in the training data. We can now introduce the
MPS decomposition of Y , where each element is given by

yi1···kN+1
= a(1)

i1
A(2)
i2
· · ·A(N)

iN
a(N+1)
kN+1

, (2)

For each ij (j 6= 1), the corresponding matrix A(j)
ij

has the

size ∆(j−1) ×∆j , and for each i1, kN+1, a(1)
i1

and a(N+1)
kN+1

correspond to row and column vectors of size ∆1 and ∆N ,
respectively. This MPS decomposition can be obtained by
applying a sequence of singular value decompositions (SVD)
to Y [10].

The sample index kp can be at an arbitrary position p =
{1, . . . , N + 1}, e.g. in Eq. (2) p = N + 1. To obtain a
unique core tensor Ctr from the MPS decomposition we
need to ensure the decomposition is in a mixed-canonical
form [10]. Rearranging Eq. (2)

yi1···kp···iN+1
= a(1)

i1
· · ·A(p−1)

ip−1
A(p)
kp

A(p+1)
ip+1

· · · a(N+1)
aN+1

, (3)

then the tensors to the left and right of A(p) in Eq. (3) must
satisfy left- and right-canonical constraints

I1∑
i1=1

a†(1)
i1

a(1)
i1

= I (4)

In∑
in=1

A†(n)
in

A(n)
in

= I, (5)

and
IN+1∑
iN+1=1

a(N+1)
iN+1

a†(N+1)
iN+1

= I (6)

In′∑
in′=1

A(n′)
in′

A†(n
′)

in′
= I, (7)

to be considered mixed-canonical. With I as the identity
matrix, n = {1, . . . , p − 1} and n′ = {p + 1, . . . , N + 1}.
More specifically, each tensor from positions (1) → (p −
1) and (p + 1) → (N + 1) are left- and right-orthogonal,
respectively. The core tensor can now be extracted from the
MPS in the following way,

Ctr = (· · ·A†(p−1)
ip−1

A(p−1)
ip−1

)A(p)
kp

(A(p+1)
ip+1

A†(p+1)
ip+1

· · · )

= A(p)
kp
, (8)

1In [8] each tensor in the MPS is defined as a core tensor, however the
core tensor defined in this paper follows from the TD, and is a unique
tensor from the MPS that is used for classification.

where for each training sample kp, there are ∆p−1 × ∆p

features. Subsequently, for each kp of the core tensor, the
remaining tensors are unchanged. Therefore all tensors but
the core tensor with index kp can be regarded as common
factors to all training samples. In the context of supervised
learning we only need to use the tensor with the index kp
for classification because it contains the necessary features
for each training sample kp.

Furthermore the position p = (N+1)
2 or p = (N+1)+1

2
for even or odd order Y is the optimal position of the core
tensor because it can represent the entire feature space of
the original tensor! [7]. This may sound like a huge setback,
but what can be exploited here is that the size of the core
tensor can be significantly reduced to a fixed small size ∆,
which correlates to decreasing the number of features for
classification. Then for fixed ∆� min(∆p−1,∆p) the size
of Ctr is ∆ ×Kp ×∆. We define ∆ as a bond dimension
of the training core tensor, then for each training sample kp
there are ∆2 features. We have applied this smaller core
tensor directly to pattern recognition problems and have
obtained high classification rates with only a small number
of features.

The next step is to obtain the test data core tensor that can
be used for classification with the training data core tensor.
Let the concatenation of test data {X (t)} result in a tensor

W = [X (1)X (2) · · ·X (T )] ∈ RI1×I2×···×IN×T . (9)

This is necessary to be compatible with the concatenation of
the training tensor. As we moved the index kp describing the
number of samples into position p. The test tensor should
have index tp in the position p as well. The common factors
obtained from the mixed-canonical MPS decomposition of
the training tensor Y should be common to all test data, then
the test core tensor can be extracted using these common
factors. Assuming the position of the training and test indices
kp and tp are at an optimal p, the resultant test core tensor
Cts in element form is

ctsδp−1tpδp+1
=

{Il},{∆m}∑
{il},{δm}=1

wi1···tp···iN+1

a∗i1δ1 · · · a
∗
δp−2ip−1δp−1

a∗δpip+1δp+1
· · · a∗δN iN+1

(10)

where l = {1, . . . , N + 1} \ p and m = {1, . . . , N} \
(δp−1, δp). Note that if Ctr has fixed ∆, then Cts will have
equivalent bond dimensions. We can now apply classifiers
such as support vector machine (SVM) or k-nearest neigh-
bors (k-NN) for classification using Ctr and Cts.

III. EXPERIMENTS AND RESULTS

The MPS training and test core tensor have been tested
with three datasets: The Columbia University Image Li-
braries COIL-20 [11] and COIL-100 [12], [13], and the
Extended Yale B dataset [14].



A. COIL-20

The database consists of 1440 grayscale images of 20
objects (72 images per object). All images used were initially
128×128 pixels and then downsampled to 32×32 grayscale
(0-255). Images were randomly divided into two partitions
according to a hold/out ratio. For our the experiment we
tested with hold/out ratios of 10%, 30%, 50%, 70%, 90% and
95%, e.g. a 10% hold/out ratio accounts to 10% test data and
90% training data. The training and test data were structured
as third-order tensors of dimensions K×32×32 and T×32×
32, respectively. The training and core tensors were at p = 2
and for each k2, t2, the bond dimension ∆1 = ∆2 = ∆, with
∆ = {2, . . . , 32}. The results were averaged over 10 trials.

The classification algorithm used was k-NN with corre-
lational distance. The classification accuracy was plotted
versus the bond dimension (∆2 features) in Fig. 1. The
highest classification accuracy was from a 10% hold/out
ratio as expected, with a 100% classification accuracy for
a several number of features. With 30% hold/out ratio the
highest accuracy was 99.79%. At 50% hold/out ratio the
highest accuracy is 99.35%. The remaining hold/out ratios
70%, 90% and 95% had maximum classification accuracies
of 97.64%, 89.95% and 81.18%, respectively.
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Figure 1. Classification accuracy on COIL-20 database.

B. COIL-100

This database has 7200 color images of 100 objects (72
images per object). The hold/out ratios for training and test
data were also tested with 10%, 30%, 50%, 75%, 90% and
95%. Images were originally 128 × 128 × 3 pixels and
downsampled to 32 × 32 × 3 pixels. The training and test
data were constructed as fourth-order tensors of dimensions
K×32×32×3 and T×32×32×3, respectively. The training
and core tensors had the same conditions from COIL-20. The
results were averaged over 10 trials.

The classification algorithm used was k-NN with correla-
tional distance. Classification rate is plotted in Fig. 2. The
highest classification accuracy was from a 10% hold/out

ratio with 99.85%. A 30% hold/out ratio had 99.74%. At
50% hold/out ratio the highest accuracy is 99.22%. The
remaining hold/out ratios 75%, 90% and 95% had accuracies
of 96.65%, 89.14% and 80.59%, respectively.
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Figure 2. Classification accuracy on COIL-100 database.

C. Extended Yale Face database B

The database contains 16128 grayscale images with 28
human subjects under 9 poses, where for each pose there
is 64 illumination conditions. To improve computational
time each image was cropped to keep only the center area
containing the face, then resized to 73 x 55. Training data
and test data was but partitioned according to poses. For
training and test data we selected poses 0, 2, 4, 6 and 8
and 1, 3, 5, and 7, respectively. For a single subject the
training tensor was size 5× 73× 55× 64 and the test tensor
was size 4 × 73 × 55 × 64. Hence for all 28 subjects we
had a training fourth-order tensors 140× 73× 55× 64 and
112× 73× 55× 64 for training and test data, respectively.
The training and core tensors had the same conditions from
COIL-20 and COIL-100 except ∆ = {2 . . . , 55}.

Four classification methods were used to compare per-
formance: Support vector machine (SVM) one-against-one
(1v1), SVM one-against-all (1vall), 1-NN and 2-NN al-
gorithms. Classification accuracy was plotted versus bond
dimension (∆2 features) in Fig. 3. The 1v1 SVM algorithm
obtained the highest accuracy with 93.75% compared to the
1vall SVM with 88.39%. Using k-NN, we see that 1-NN and
2-NN have classification accuracies of 91.07% and 89.29%,
respectively.

D. Analysis

The fixed bond dimension ∆ for the training and test
core tensors had a direct affect on the classification of the
test data. In all experiments a small number of features
was only needed to achieve high classification accuracies,
however the accuracy does not necessarily increase with
more features. This is because a larger number of features
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Figure 3. Classification accuracy on extended Yale face database B.

does not necessarily correlate to increased classification
performance.

In the COIL-20 and COIL-100 results it was expected
that larger hold/out ratios decreases the classification per-
formance and this can be seen by the decreased accuracies
at a hold/out ratio of 95%. For COIL-100 our algorithm
outperformed several methods [15]–[17] at the 75% hold/out
ratio. This is also using the full color image as opposed to
the converted grayscale image for these experiments.

The classification performance for the Extended Yale Face
database B (EYFB) is much more stable, has lower compu-
tational complexity, and has higher classification accuracies
at small δ compared to multilinear discriminant analysis
(MDA) algorithms known as Direct General Tensor Dis-
criminant Analysis (DGTDA) and Constrained Multilinear
Discriminant Analysis (CMDA) proposed recently by Li &
Schonfeld [2] as well as other methods mentioned in their
paper.

IV. CONCLUSION

The classification performance has shown that the MPS
decomposition can be used as an efficient and simple
mechanism in representing multidimensional datasets for
feature extraction and classification with supervised learning.
Furthermore the core tensor required to sufficiently classify
data was of a reduced order and size, showing that only
a small number of features was needed to classify higher-
order tensors in pattern recognition problems. In future work
we need to compare the efficiency in detail of our method
against other higher-order classification algorithms such as
multilinear principal component analysis (MPCA) and the
TD as well as test our method with higher-order data.
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