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Abstract 

δ-Atracotoxins (δ-ACTX), isolated from the venom of Australian funnel-web spiders, are 

responsible for the potentially lethal envenomation syndrome seen following funnel-web spider 

envenomation. They are 42-residue polypeptides with four disulfides and an ‘inhibitor cystine-knot’ 

motif with structural but not sequence homology to a variety of other spider and marine snail 

toxins. δ-Atracotoxins induce spontaneous repetitive firing and prolongation of action potentials 

resulting in neurotransmitter release from somatic and autonomic nerve endings. This results from a 

slowing of voltage-gated sodium channel inactivation and a hyperpolarizing shift of the 

voltage-dependence of activation. This action is due to voltage-dependent binding to neurotoxin 

receptor site-3 in a similar, but not identical, fashion to scorpion α-toxins and sea anemone toxins. 

Unlike other site-3 neurotoxins, however, δ-ACTX bind with high affinity to both cockroach and 

mammalian sodium channels but low affinity to locust sodium channels. At present the 

pharmacophore of δ-ACTX is unknown but is believed to involve a number of basic residues 

distributed in a topologically similar manner to scorpion α-toxins and sea anemone toxins despite 

distinctly different protein scaffolds. As such, δ-ACTX provide us with specific tools with which to 

study sodium channel structure and function and determinants for phyla- and tissue-specific actions 

of neurotoxins interacting with site-3.  

 
 
Keywords: Funnel-web spider, δ-atracotoxin, voltage-gated sodium channel, inhibitor cystine-knot, 

scorpion α-toxin, sea anemone toxin 
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1. Introduction 

Spider venoms contain potent neurotoxins and other bioactive compounds, many of which are 

lethal to humans or selectively insecticidal. Many of these neurotoxins are highly potent and 

specifically target ion channels, receptors or other targets involved in important physiological 

functions (for a review of other spider toxins see Escoubas et al., 2000; Rash and Hodgson, 2002). 

In particular, some toxins, such as ω-agatoxin IVA and α-latrotoxin, have been invaluable 

molecular tools for the identification and characterization of ion channel subtypes and the process 

of neurotransmitter exocytosis, respectively. Others are now being investigated for their possible 

use as bioinsecticidal agents for the control of phytophagous pests.  

The focus of this review is the primate lethal neurotoxins isolated from Australian funnel-web 

spiders, commonly regarded as the World’s most dangerous spider. The review will detail the site 

and mechanism of action of these neurotoxins and discuss structure-function with relevance to the 

application of these neurotoxins in the fields of pharmacology and neuroscience and the 

development of novel insecticides.  

 

2. Taxonomy and distribution of Australian funnel-web spiders 

Australian funnel-web spiders (Araneae:Mygalomorphae:Hexathelidae:Atracinae) are a diverse 

group of large aggressive, nocturnal spiders that are classified into two genera, Atrax (Cambridge) 

and Hadronyche (Koch). They comprise of at least 40 species, based on morphological and 

electrophoretic data, however many species remain undescribed (Gray, 1988). These spiders form 

the sub-family Atracinae and are found primarily along the eastern seaboard of Australia reaching 

from southeastern Queensland to Tasmania and in a small pocket of the Flinders Ranges in South 

Australia. Despite being classified into separate genera, all spiders in this sub-family are thought to 

have venom potentially toxic to primates (White et al., 1995; Graudins et al., 2002). The apparent 

resistance of non-primates to funnel-web venom is thought to be due to the presence of IgG, and 

possibly cross-linked IgG and IgM, inactivating factors in their plasma that bind to the toxins 

responsible for the envenomation syndrome, or it may simply involve a non-specific reaction due to 

the highly basic nature of the toxins (Sheumack et al., 1991). 
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3. Clinical features of funnel-web spider envenomation 

Funnel-web spider venom arguably represents the most toxic spider venom known to affect 

humans. When significant envenomation does occur, a unique syndrome develops which can cause 

death within 15 minutes. Between 1927 and the introduction of an antivenom for clinical use in 

1980, fourteen deaths were reported in the medical literature (Sutherland, 1980). All deaths were 

caused by bites from the male Sydney funnel-web spider Atrax robustus. Nevertheless, additional 

species of funnel-web spider from varied locations have caused serious systemic illness in humans. 

They include male H. versuta (Blue Mountains funnel-web), H. formidabilis (Northern 

tree-dwelling funnel-web), H. cerberea (Southern tree-dwelling funnel-web) and H. infensa 

(Toowoomba funnel-web) (Dieckmann et al., 1989; Harrington et al., 1999; Miller et al., 2000). 

Envenomation resulting from the bite of these species appears to be becoming more common as the 

human population spreads up and down the eastern seaboard of Australia. 

The envenomation syndromes observed following bites by all these spiders are identical 

(Dieckmann et al., 1989; Harrington et al., 1999; Miller et al., 2000). Clinical features of 

envenomation in primates involve initial local features including muscle fasciculation, sweating, 

and piloerection. Early symptoms of systemic envenomation include perioral tingling, tongue and 

facial muscle fasciculation, nausea, vomiting, profuse sweating, salivation, lachrymation, and 

dyspnoea. Patients may rapidly develop confusion, agitation, and coma associated with marked 

hypertension, metabolic acidosis, raised intracranial pressure, mydriasis, generalised muscle 

fasciculation, and non-cardiogenic pulmonary oedema (Torda et al., 1980). Untreated envenomation 

may result in marked hypotension refractory to fluids and inotropic agents, profound coma, and 

continuing, persisting muscle fasciculation. Death results from progressive, irreversible 

hypotension, or possibly raised intracranial pressure resulting from cerebral oedema (Torda et al., 

1980). These signs and symptoms suggest involvement of both the somatic and autonomic nervous 

systems.  

 

4. Neurotoxins isolated from Australian funnel-web spider venom 

A variety of peptides, known as atracotoxins (ACTX), have been isolated from the venom of 

funnel-web spiders. These toxins include two structurally distinct families of ω-ACTX, which 
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selectively inhibit insect voltage-gated calcium channels (Fletcher et al., 1997b; Wang et al., 1999; 

Wang et al., 2001), ACTX-Hvf17, a peptide with strong sequence homology to mamba intestinal 

toxin-1 (Szeto et al., 2000), and more recently the insecticidal J-ACTX (Wang et al., 2000) that 

inhibit insect target voltage-gated potassium channels (Nicholson, G.M. and Gunning, S.J., 

unpublished data) (for a review of insecticidal neurotoxins see King et al., 2002). However, the 

lethal toxins responsible for the major primate-specific symptoms of envenomation have been 

shown to target the voltage-gated sodium channel and according to the systematic nomenclature 

system of Fletcher et al. (1997b) have been designated as δ-ACTX. A single primate-specific 

variant of δ-ACTX-1 is the major component of most Australian funnel-web spider venoms 

(Sheumack et al., 1985; Brown et al., 1988), but some species produce multiple δ-ACTX-1 

homologues. For example, Hadronyche versuta venom is known to contains two pharmacologically 

characterized δ-ACTX-Hv1 homologues purified from crude venom (Sheumack et al., 1985; Szeto 

et al., 2000). Further screening of A. robustus, H. valida, H. infensa, and H. versuta venom gland 

cDNA libraries has also revealed the presence of 12 novel δ-ACTX-like mature toxins, some with 

single residue changes others with much greater variation in peptide sequence (D. Wilson and P.F. 

Alewood, personal communication; B. Sollod, personal communication). 

 

5. Isolation and structural characterization of δ-atracotoxins 

To date, of the many species of funnel-web spiders identified, only the venom of two species, 

the Sydney funnel-web spider (Atrax robustus) and the Blue Mountains funnel-web spider 

(Hadronyche versuta), have been extensively studied for the presence of δ-ACTX. Using various 

purification techniques, such as ion-exchange and reverse-phase HPLC, lethal neurotoxins were 

extracted from the venom of both species, namely δ-ACTX-Ar1a (formerly robustoxin) from 

A. robustus (Sheumack et al., 1984; Sheumack et al., 1985) and δ-ACTX-Hv1a (formerly 

versutoxin) from H. versuta (Brown et al., 1988). Both δ-ACTX-Ar1a and δ-ACTX-Hv1a produce 

an envenomation syndrome in anaesthetized monkeys indistinguishable from that seen in humans 

suggesting that they are responsible for the physiological effects seen with crude venom (Phillips et 

al., 1987; Mylecharane et al., 1989). 



 G.M. Nicholson et al. 6 

Early attempts at isolation of δ-ACTX-Ar1a and subsequent sequence determination gave 

conflicting and incorrect results (Gregson and Spence, 1983; Sheumack et al., 1984). The advent of 

more reliable analysis methods resulted in a proposed amino acid sequence of 42 residues 

containing eight cysteines (Sheumack et al., 1985). Similar peptides have subsequently been found 

in the venom of other Australian funnel-web spiders including δ-ACTX-Hv1b from Hadronyche 

versuta (Szeto et al., 2000) and δ-ACTX-Hs20.1a from Hadronyche sp. 20 (Wilson D, 

Birinyi-Strachan LC, Alewood PF and Nicholson GM, unpublished data)(Fig. 1). 

Figure 1 here 

All δ-ACTX are highly homologous 42-residue peptides with no significant sequence 

homology with any presently known neurotoxins. The toxins have a high proportion of basic 

residues and are cross-linked by four conserved intramolecular disulfide bonds (Fig. 1). The 

cysteine framework of δ-ACTX is unique in bioactive peptides due to the occurrence of three 

contiguous cysteines (Cys14,15,16) and disulfide-bridged cysteine residues at both the N- and 

C-termini. The disulfide connectivity of δ-ACTX-Ar1a and δ-ACTX-Hv1a corresponds to a 1-4, 2-

6, 3-7, 5-8 motif that has also been observed in the venom of snakes (echistatin; Calvete et al., 

1992) and scorpions (AaHIT, chlorotoxin; Darbon et al., 1982; DeBin et al., 1993) but none of 

these other toxins have the same cysteine spacings as δ-ACTX. The three-dimensional solution 

structures of δ-ACTX-Hv1a (Fletcher et al., 1997a) and δ-ACTX-Ar1a (Pallaghy et al., 1997) have 

been determined using NMR spectroscopy (Fig. 2). They comprise a core β region containing a 

triple-stranded antiparallel β-sheet and a thumb-like extension protruding from the β region. The 

C-terminal region (residues 34-42) differs slightly between the two molecules, given that it is the 

region of lowest homology, with a 310-helix in δ-ACTX-Hv1a and a series of classic or inverse 

γ-turns in δ-ACTX-Ar1. However, these structures are positioned in close proximity to the β 

domain by a disulfide bond between Cys42 and Cys16.  

Figure 2 here 

δ-Atracotoxins have structural similarities, and to a much lesser extent sequence homology, 

with a number of other related and unrelated spider toxins (µ-ACTX-Hi:0B4219, J-ACTX-Hv1c, 

ω-agatoxin IVA, ω-agatoxin IVB, µ-agatoxin I, huwentoxin-I, hanatoxin1; Kim et al., 1995; Reily 

et al., 1995; Omecinsky et al., 1996; Qu et al., 1997; Takahashi et al., 2000; Wang et al., 2000; 
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Rosengren et al., 2002), marine snail toxins (ω-conotoxin GVIA, conotoxin GS; Hill et al., 1997; 

Pallaghy and Norton, 1999) and a sweet taste suppressing plant polypeptide (gurmarin; Fletcher et 

al., 1999), all of which have six conserved cysteine residues. Interestingly, the β region of δ-ACTX 

contains a ‘disulfide-knot’ which places them in a class of toxins and inhibitory polypeptides with 

an ‘inhibitor cystine-knot’ (ICK) motif (Pallaghy et al., 1994; Norton and Pallaghy, 1998). Within 

this class however, the biological activities of ICK toxins are quite diverse with activity at voltage-

gated sodium, potassium or calcium channels, mechanosensitive channels, nicotinic acetylcholine 

receptors or ryanodine receptors (Fig. 3). As such, they provide few clues to predict the target site 

of δ-ACTX from their three-dimensional fold and highlight that different biological functions are 

often grafted onto the same or similar structural scaffolds. Nevertheless, the cystine-knot no doubt 

contributes to the high stability and resistance to proteases of δ-ACTX, reducing in vivo 

degradation. 

Figure 3 here 

 

6. Electrophysiological characterization of δ-atracotoxins 

Electrophysiological studies have identified that δ-ACTX alter neuronal excitability by causing 

a prolongation of action potential duration. This results in the appearance of plateau potentials, 

accompanied by spontaneous repetitive firing (Grolleau et al., 2001; Alewood et al., 2003). These 

actions underlie the intense muscle fasciculation and autonomic disturbances seen clinically during 

systemic envenomation. Effects on the autonomic nervous system, including vomiting, profuse 

sweating, salivation, lachrymation, marked hypertension followed by hypotension, together with 

effects on the somatic nervous system to cause muscle fasciculation and dyspnoea (Sutherland and 

Tibballs, 2001), are presumably due to excessive neurotransmitter release. These actions are 

consistent with the effects of δ-ACTX to cause spontaneous and prolonged prejunctional action 

potentials in efferent nerve fibres. Moreover, it is these effects that ultimately lead to death from 

respiratory or circulatory failure (Sutherland and Tibballs, 2001) and highlights that δ-ACTX are 

the toxins primarily responsible for lethality (Phillips et al., 1987; Mylecharane et al., 1989). 

In order to determine the underlying cause of this increased neuronal excitability, the effects of 

δ-ACTX on ion channel gating and kinetics was determined using whole-cell patch-clamp 
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techniques in dorsal root ganglia and periaqueductal gray neurons. δ-Atracotoxins were shown to 

produce a selective slowing of tetrodotoxin (TTX)-sensitive voltage-gated sodium current 

inactivation and a reduction in peak sodium current. These actions were only apparent when toxin 

was applied to the external bathing solution, indicating an extracellular target on the channel. In 

addition, the toxins caused a modest hyperpolarising shift in the voltage-dependence of activation 

(Nicholson et al., 1994; Nicholson et al., 1998; Szeto et al., 2000). Figure 4 shows the effects of a 

δ-ACTX-Hs20.1a, a previously unreported δ-ACTX isolated from the venom of Hadronyche 

sp. 20, showing modulation of sodium channel gating and kinetics representative of other δ-ACTX. 

Sodium channels were also observed to have an increased rate of recovery from inactivation to the 

resting state, allowing channels to be available for activation much earlier than under control 

conditions (Nicholson et al., 1994; Nicholson et al., 1998). The above actions indicate that δ-ACTX 

inhibit conversion of the sodium channel from the open to the inactivated state, resulting in sodium 

current remaining at membrane potentials where inactivation is normally complete. Moreover, the 

alterations in action potential firing and duration are consistent with these actions to slow sodium 

channel inactivation and shift the voltage-dependence of activation to potentials closer to the resting 

membrane potential. Notably, these actions are comparable to those observed with scorpion 

α-toxins and sea anemone toxins which bind to neurotoxin receptor site-3 on the sodium channel 

(Strichartz and Wang, 1986; Hanck and Sheets, 1995). 

Figure 4 here 

 

7. Neurochemical characterization of the binding site of δ-atracotoxins 

Based on apparent similarity in the electrophysiological effects of scorpion α-toxins and 

δ-ACTX, subsequent studies aimed to determine if the binding site of δ-ACTX on the voltage-gated 

sodium channel was analogous to scorpion α-toxins, or a novel site. A variety of neurotoxins target 

different receptor sites on the sodium channel, leading to the characterization of at least seven 

binding sites, referred to as neurotoxin receptor sites 1-7 (Table 1) (for reviews see Catterall, 1992; 

Gordon, 1997a,b; Cestèle and Catterall, 2000). Classical scorpion α-toxins, such as AaH-II (Martin-

Eauclaire and Courand, 1995) and Lqh-II (Gordon et al., 1998; Sautière et al., 1998), and sea 

anemone toxins, such as anthopleurin-B (ApB) (Benzinger et al., 1998), bind to receptor site-3 on 
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mammalian voltage-gated sodium channels. This interaction with site-3 on the S3-S4 extracellular 

loop in domain IV of the sodium channel α-subunit is voltage dependent. This receptor site has also 

been shown to have complex allosteric interactions with site-2, shown to bind several lipid soluble 

alkaloid toxins such as batrachotoxin and veratridine, and site-5 which binds the cyclic polyether 

toxins brevetoxin and ciguatoxin (Cestèle and Catterall, 2000). The alkaloid toxins induce persistent 

activation of sodium channels by shifting the voltage-dependence of activation to very negative 

membrane potentials and inhibiting the inactivation process. Brevetoxins, from marine 

dinoflagellates, also shift the voltage-dependence of activation to more hyperpolarized potentials to 

cause repetitive firing of action potentials. Scorpion α-toxins were shown to cooperatively enhance 

the effect of alkaloid toxins by increasing their binding affinity and activity (Catterall, 1977; Ray et 

al., 1978) whereas brevetoxins allosterically inhibit the binding of scorpion α-toxins to site-3 

(Cestèle et al., 1995) (Table 1). 

Table 1 here 

Using both 22Na+ uptake and radiolabelled neurotoxin binding assays, it was found that 

δ-ACTX bind to site-3 in rat brain synaptosomes but exhibit unusual allosteric interactions with the 

site-2 alkaloid toxin receptor. δ-ACTX produce up to a 30% increase in 22Na+ flux and at nanomolar 

concentrations δ-ACTX also completely inhibit the binding of the classical scorpion α-toxins Lqh-

II and AaH-II to site-3 on rat brain synaptosomes (Little et al., 1998a; Little et al., 1998b). 

Moreover, while they enhance 3H-batrachotoxin binding to site-2 similarly to scorpion α-toxins 

they differ from scorpion α-toxins in that they inhibit, rather than enhance, the activation of sodium 

channels by batrachotoxin (Little et al., 1998b). 

Voltage-dependent binding to site-3 has recently been confirmed using 125I-labelled 

δ-ACTX-Hv1a (Gilles et al., 2002). However, depolarizing conditions hinder δ-ACTX-Hv1a 

association to a lesser extent than Lqh-II, which may be related to their different structures (see 

section 9). Nevertheless, δ-ACTX-Hv1a binding was inhibited competitively by the classical 

scorpion α-toxin Lqh-II and allosterically inhibited by brevetoxin-1. In light of the subtle variations 

in action and binding properties (Little et al., 1998b; Nicholson et al., 1998), it suggests that 

δ-ACTX interact at a non-identical yet overlapping site to that of scorpion α-toxins at site-3.  
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8. Phyla-specific actions of δ-atracotoxins 

Of great interest has been the finding that δ-ACTX are, in addition to being mammalian toxic, 

also insecticidal. Both δ-ACTX-Ar1a and δ-ACTX-Hv1a are lethal by lateroventral injection into 

crickets, showing similar signs of delayed contractile paralysis as the anti-insect scorpion α-toxin 

LqhαIT (Eitan et al., 1990; Little et al., 1998a). These neurotoxic actions on insects led researchers 

to investigate the effects of δ-ACTX on insect voltage-gated sodium channels. In isolated giant 

axon and dorsal unpaired median neurones of the cockroach Periplaneta americana, δ-ACTX-Hv1a 

modified the action potential by prolonging the repolarization phase, causing the development of 

spontaneous plateau action potentials. Under voltage-clamp conditions, these alterations in neuronal 

excitability were found to be due to a slowing of sodium channel inactivation and a shift in the 

voltage-dependence of activation towards more negative potentials (Grolleau et al., 2001). These 

actions are very similar to LqhαIT (Eitan et al., 1990) and almost identical to that observed in 

mammalian preparations (Nicholson et al., 1994). 

All site-3 toxins that compete for classical scorpion α-toxin binding to rat brain sodium channel 

have been shown to compete for LqhαIT binding, a well defined ligand of insect sodium channel 

receptor site-3, albeit at different potencies (Gordon et al., 1996; Little et al., 1998a). For example, 

100-fold higher concentrations of classical scorpion α-toxins, such as AaH-II, Lqh-II and Lqq-V 

(LqTx; Ray et al., 1978), which bind rat brain synaptosomes with high affinity (Kd < 1 nM), are 

required to compete for LqhαIT binding to cockroach sodium channels. In contrast to the 

phyla-specific actions of scorpion α-toxins, radioligand binding experiments revealed that δ-ACTX 

inhibit 125I-labelled LqhαIT binding to cockroach neuronal membranes with a Kd of less than 1 nM 

(Little et al., 1998a; Gilles et al., 2002). Therefore δ-ACTX are unique in that they bind with equal 

high affinity to receptor site-3 of both rat brain and cockroach sodium channels (Little et al., 1998a; 

Little et al., 1998b; Gilles et al., 2002). 

Notably, however, δ-ACTX-Hv1a exhibits a low binding affinity to locust sodium channels 

(Gilles et al., 2002). Thus unlike scorpion toxins, which are only capable of differentiating between 

mammals and insects, δ-ACTX differentiate between insect voltage-gated sodium channels from 

different insect orders (Dictyoptera vs. Orthoptera). Structural differences between the two types of 

insect sodium channels have been previously inferred from allosteric modulations of LqhαIT 
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binding. For example, brevetoxin (site-5) and veratridine (site-2) have been shown to increase the 

binding of LqhαIT to locust but not cockroach sodium channels (Gordon and Zlotkin, 1993; Cestèle 

et al., 1995; Gordon et al., 1996). In addition, it has been shown that the α-like scorpion toxin 

Lqh-III, which binds to locust and cockroach site-3 with equal affinity, preferentially lost its 

binding capacity to locust sodium channels upon iodination (Gilles et al., 2000). The ability of 

site-3 to differentiate between such subtle structural alterations on Lqh-III (addition of an iodine 

atom) and the differential binding of δ-ACTX suggests structural differences at the binding site 

between sodium channels from the two insect orders. Hence, employing various toxin probes can 

expose subtle differences at receptor site-3. However, the structural basis for these selective 

interactions still awaits elucidation of the contact surfaces between the various toxins and their 

receptor binding sites in different sodium channel subtypes. This may lead to the development of 

more efficacious and more selective insecticidal toxins capable of being employed in a recombinant 

baculovirus model or used to design non-peptide mimetics that could be used in foliar sprays. 

 

9. Structure-function relationships 

Despite the difference in three-dimensional structure, size, and primary sequence, the similarity 

in binding and electrophysiological properties of scorpion α-toxins and δ-ACTX may suggest some 

structural resemblance at the bioactive surface. Unfortunately, the presence of four disulfide bonds 

has severely limited the efficient production of synthetic or recombinant δ-ACTX in order to assess 

the effect of mutations to ascertain the toxin pharmacophore. Therefore, the structure-function 

relationships of these toxins have not been determined directly.  

Nevertheless, attempts have been made to indirectly identify critical residues involved in 

δ-ACTX binding to site-3 based on knowledge of the binding site on the sodium channel or from 

mutagenesis studies of related site-3 toxins. This is despite distinctly different protein scaffolds of 

δ-ACTX in comparison to other site-3 toxins such as AaH-II (Fontecilla–Camps et al., 1982), 

LqhαIT (Tugarinov et al., 1997) and the sea anemone toxin anthopleurin-B (ApB) (Monks et al., 

1995). One model (Fletcher et al., 1997a) proposes that the interaction is based mainly on 

electrostatic complementarity with a patch of charged residues known to be critical for site-3 toxin 

binding. These residues are located within the short extracellular S3–S4 loop of domain IV of the 
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mammalian voltage-gated sodium channel α-subunit (Rogers et al., 1996). Some of these residues 

identified as critical for binding (Glu1613, Glu1616 and Lys1617) are charged, consistent with the 

identification of several anionic and cationic residues in scorpion α-toxins and sea anemone toxins 

that are crucial for binding to site-3 (Gordon et al., 1996; Rogers et al., 1996). Fletcher et al. 

(1997a) found that three cationic and two anionic residues in δ-ACTX-Hv1a can be superimposed 

on similarly charged residues in the structures of ApB and AaH-II, despite their lack of sequence 

homology and totally different three-dimensional folds. They proposed that Lys3, Arg5 and Asp13 in 

δ-ACTX-Hv1a provide a complementary surface to the residues identified in the S3-S4 loop of 

domain IV.  

In a more recent search for possible resemblance on the molecular exterior of these toxins 

Gilles et al. (2002) compared LqhαIT, AaH-II and δ-ACTX-Hv1a focusing on residues previously 

shown by mutagenesis studies to constitute the bioactive surface of LqhαIT (Tugarinov et al., 1997; 

Zilberberg et al., 1997; Gurevitz et al., 2001). These residues cluster similarly on the counterpart 

surface of AaH-II and also appear on the surface of δ-ACTX-Hv1a. Although not included in their 

study, Figure 5 shows a number of residues in δ-ACTX-Ar1a also cluster in a similar fashion due to 

the homology in sequence and structure between δ-ACTX-Ar1a and δ-ACTX-Hv1a. Accordingly, 

the conserved positively charged residues Lys3, Lys4, Arg5, and Lys10 of δ-ACTX-Hv1a and 

δ-ACTX-Ar1a seem to occupy a similar surface position to the bioactive Lys8, Arg58, Lys62, and 

Arg18 of LqhαIT. The aromatic Trp7 and Tyr25 in δ-ACTX-Hv1a and Trp7 and Tyr22 in 

δ-ACTX-Ar1a resemble to some extent Trp38 and Phe17 in LqhαIT and Trp38 and Phe15 in AaH-II. 

The nonpolar Asn6 in δ-ACTX-Hv1a and δ-ACTX-Ar1a occupies a similar position to Asn44 in 

LqhαIT or AaH-II. Finally, the negatively charged Glu12 in δ-ACTX-Hv1a and δ-ACTX-Ar1a 

resembles Glu24 in both LqhαIT and AaH-II. Also included in this figure are residues known to be 

important for binding of the sea anemone toxin ApB which selectively binds to site-3 on cardiac 

sodium channels and also slows channel inactivation (Benzinger et al., 1998). It would also appear 

that critical residues known to be important for ApB binding (Dias-Kadambi et al., 1996; Khera and 

Blumenthal, 1996) group together in a similar fashion. Figure 5 shows that bioactive residues in 

ApB (Asp9, Arg12, Arg14, Asn16, Leu18, Lys37, Lys49, Trp33) occupy a similar topological position to 

those residues in the δ-ACTX, as detailed above, and to a lesser extent in scorpion α-toxins. 
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Differences between these residues and those in the scorpion α-toxins may therefore provide clues 

for the tissue-specific actions of ApB known to selectively target cardiac rather than neuronal 

sodium channels (Benzinger et al., 1998). In addition, the similar disposition of these residues on 

the surface of peptide toxins with different three-dimensional structures, particularly the scorpion 

α-toxins and δ-ACTX, demonstrates a possible route of convergent evolution of site-3 toxins.  

Figure 5 here 

Structural comparison of δ-ACTX-Hv1a to scorpion α-toxins suggests a similar putative 

bioactive surface but a slightly ‘narrower’ face which may explain its accessibility, with high 

binding affinity, to both rat brain and cockroach receptor site-3 (Gilles et al., 2001). This possibility 

may also explain the smaller alteration in binding affinity to site-3 between polarized and 

depolarized rat brain synaptosomes compared to Lqh-II, an AaH-II analogue (Gilles et al., 2001). 

The conformational change in the sodium channel that is associated with depolarization-induced 

shift from high to low affinity state of receptor site-3 (Gilles et al., 2001) may involve steric 

hindrance for toxin access, which is less pronounced for the slimmer δ-ACTX-Hv1a. This 

hypothesis is in concert with the smaller effect of membrane depolarization on the δ-ACTX-Hv1a 

association rate, kon, compared to the effect on Lqh-II. However, the variations in kon and unusual 

selectivity of toxins binding to receptor site-3 may result from either variations at the bioactive 

surface, or other differences in the entire toxin structure (Gilles et al., 2001).  

Recently a homologous δ-ACTX was isolated from the venom of the Blue Mountains 

funnel-web spider H. versuta (Szeto et al., 2000). This 42–residue peptide, designated 

δ-ACTX-Hv1b, shows 67% sequence identity with δ-ACTX-Hv1a previously isolated from the 

same spider as shown in Fig. 1 (Szeto et al., 2000). δ-ACTX-Hv1b is unique amongst the δ-ACTX 

in that it lacks insecticidal activity and shows a 15- to 30-fold reduction in mammalian activity 

compared to δ-ACTX-Hv1a/Ar1a (Szeto et al., 2000). Close inspection of the primary structure 

reveals that a number of charged amino acids at the N-terminus are not conserved between 

δ-ACTX-Hv1b and δ-ACTX-Hv1a/Ar1a (Fig. 1) such that the cationic residues Lys4 and Arg5 of 

δ-ACTX-Hv1a/Ar1a are substituted by Ser4 and Asp5 in δ-ACTX-Hv1b. In addition, Asn6 of 

δ-ACTX-Hv1a/Ar1a is substituted by Gly6 and the hydrophobic residue Tyr22 in 
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δ-ACTX-Hv1a/Ar1a is replaced by Lys22. This lends support to the hypothesis that these residues, 

putatively involved in binding, are important for determining insect and/or mammalian selectivity.  

Given that δ-ACTX target both mammalian and insect sodium channels they have considerable 

potential as tools to aid in the investigation of structural requirements for anti-insect versus 

anti-mammal activity. The residues that differ between δ-ACTX-Hv1b and δ-ACTX-Hv1a/Ar1a 

therefore may give us an unexpected insight into the residues that facilitate interaction of δ-ACTX 

with insect sodium channels. This raises the possibility that manipulation of key residues may 

enable construction of a functional mirror-image of δ-ACTX-Hv1b, namely a δ-ACTX that binds to 

insect, but not vertebrate, voltage-gated sodium channels. Such an insect-specific δ-ACTX 

homologue might be a useful biopesticide. 

 

9. Future directions 

Further screening of venom gland cDNA libraries from other funnel-web spider species may 

provide important clues about the pharmacophore of these toxins by comparison of the primary 

sequence of toxin homologues. However, in isolation this approach has some drawbacks in that it 

does not provide any information of biological activity of any novel δ-ACTX homologues, 

especially insect vs. mammalian toxicity. This is highlighted by δ-ACTX-Hv1b that completely 

lacks insecticidal activity, an action not predictable from comparison of the primary sequence. At 

present, the best opportunity for determination of the bioactive surface of δ-ACTX most likely 

arises from the solid-phase peptide synthesis approach recently described for the production of 

synthetic δ-ACTX-Ar1a (Alewood et al., 2003). This provides for a direct means to identify the 

pharmacophore of the δ-ACTX by synthesizing analogues with selected residue changes. This 

would involve substitutions with non-natural amino acids as has been achieved with other toxins 

such as ShK, a potassium channel blocker from the sea anemone Stichodactyla helianthus (Kalman 

et al., 1998). Future structure-function studies to map the pharmacophores of these toxins using 

synthetic toxin analogues, combined with binding and electrophysiological approaches, should 

contribute to a more detailed mapping of site-3. This should provide structure-activity data critical 

for determining the phyla- and tissue-specific actions of this family of atracotoxins, and site-3 
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neurotoxins in general. This information may enable the design of insect-selective δ-ACTX even 

though selectively insecticidal δ-ACTX are unlikely to be found in funnel-web spider venom. 
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Table 1. Receptor sites 1-7 identified by neurotoxins and pyrethroids on mammalian voltage-gated 
sodium channels. 
 

Neurotoxin 
receptor site Toxin Effect on ion permeation or gating Allosteric 

couplinga 

Site-1 
Tetrodotoxin (TTX) 
Saxitoxin (STX) 
µ-Conotoxin 

Block Na+ conductance +3, +5, –2 

Site-2 

Batrachotoxin (BTX) 
Veratridine 
Aconitine 
Grayanotoxin 

Persistent activation 

Hyperpolarising shift in voltage 
dependence of activation and inhibit 
inactivation 

+3, –6 

Site-3 
Scorpion α-toxins 
Sea anemone toxins 
δ-Atracotoxins  

Inhibit inactivation, minor 
hyperpolarising shift in voltage 
dependence of activation 

+2, –5 

Site-4 Scorpion β-toxins Hyperpolarising shift in voltage 
dependence of activation  

Site-5 Brevetoxins  
Ciguatoxins  

Hyperpolarising shift in voltage 
dependence of activation and inhibit 
inactivation 

+2, +4, –3 

Site-6 δ-Conotoxins (δ-TxVIA) Inhibit inactivation –2 

Site-7 Pyrethroids 
Inhibit inactivation, shift voltage 
dependence of activation and slow 
activation and deactivation kinetics 

+2, +3, +5 

 
aAllosteric coupling refers to the alteration in affinity of toxins binding at the neurotoxin 

receptor site (first column) by neurotoxin occupancy at the indicated site (final column). Positive 

cooperativity (+) indicates enhancement of binding of the toxin and/or stimulation of Na+ influx 

while negative cooperativity (–) refers to a decrease in toxin binding (Gordon et al., 1998). Adapted 

from (Cestèle and Catterall, 2000; Zlotkin et al., 2000). 
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      β1           β2         β3            
    II           VIa          I                 

 1         10          20          30          40   %Identity %Homology 

δ-ACTX-Hv1a C A K K R N W C G K T E D C C C P M K C V Y A W Y N E Q G S C Q S T I S A L W K K C 100 100 

δ-ACTX-Hs20.1a C A K K R N W C G K N E D C C C P M K C I Y A W Y N Q Q G S C Q S T I T G L F K K C 86 95 

δ-ACTX-Ar1a C A K K R N W C G K N E D C C C P M K C I Y A W Y N Q Q G S C Q T T I T G L F K K C 83 95 

δ-ACTX-Hv1b C S R S D G W C G K T E D C C C P M K C I K A W Y K Q N G N C Q N T I S A I W K N C 67 79 
                                             

 1              15 16                          42   
        8            20                         
              14                 31              
 
 

Fig. 1. Comparison of the amino acid sequences of all currently available members of the δ-ACTX family. Identical residues are shaded in black and 

conservatively substituted residues, relative to δ-ACTX-Hv1a, are shaded in grey. Toxins are ordered by homology to δ-ACTX-Hv1a. The disulfide 

bonding pattern for the strictly conserved cysteine residues determined for δ-ACTX-Ar1a (Pallaghy et al., 1997) and δ-ACTX-Hv1a (Fletcher et al., 

1997a) is indicated below the sequences; it is assumed that δ-ACTX-Hs20.1a and δ-ACTX-Hv1b have the same disulfide bonding pattern. Secondary 

structure for δ-ACTX-Hv1a is shown at the top of the figure where shaded squares represent β-turns (the type is indicated in the squares), black arrows 

represent β-strands, and the black cylinder represents a 310 helix (Fletcher et al., 1997a). The percentage identity and homology with δ-ACTX-Hv1a is 

shown to the right of the sequences. Additional sequence data is taken from δ-ACTX-Hv1b (Szeto et al., 2000), and δ-ACTX-Hs20.1a (Wilson D and 

Alewood PF, unpublished data). 

 
310 
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42
42
37
36

48
48
45
37
36
33
37
35
30
35
33
34
34
27
27
26
26
25
25
28

C I Y A W Y N Q Q G S - - - C Q T T I T G L F K K C
C V Y A W Y N E Q G S - - - C Q S T I S A L W K K C
C T C R Y F P K C I C R N N N
C S C R Q P P K - - - - C I C R N N N

C R C S M I G T N - - - C E C T P R L I M E G L S F A
C I C S I M G T N - - - C E C K P R L I M E G L G L A
C K R G S - - - - - - - - - C V S S G P G L V G G I L G G I L
C T F K E N E N G N T V K R C D
C K S K W P R N I - - - - - C V W D G S V
C S D K H K W - - - - - - - C K W K L
C K A E S N G V S Y - - - - C R K D E P
C K F R D K Y - - - - - - - C A W D F T F S
C R L W - - - - - - - - - - C K L D W
C S K L F K L - - - - - - - C N F S S G
C K R R G T N I E K R - - - C R
C S S Y A N K - - - - - - - C L
C G R G N P Q K - - - - - - C I G A H X D V
C I V L V - - - - - - - - - C T
C N O Y T K R - - - - - - - C Y
C L G V - - - - - - - - - - C M W
C G R R G K - - - - - - - - C
C N R G R - - - - - - - - - C
C R S G K - - - - - - - - - C
C N R F N K - - - - - - - - C V

V VI
Amino 
Acids

- - - -

Target

C S R K T R W - - - - - C K Y Q I- -

δ-ACTX-Ar1a
δ-ACTX-Hv1a
µ-Aga IV
µ-Aga I

ω-Aga IVB
ω-Aga IVA
ω-ACTX-Hv2a
ω-ACTX-Hv1a
ω-GrTx SIA
HWTX-I
J-ACTX-Hv1c
HaTx1
HpTx2
GsMTx-4
MCa
Ptu1
Conotoxin GS
δ-CTX TxVIA
ω-CTX GVIA
ω-CTX TxVII
ω-CTX MVIIC
ω-CTX MVIID
ω-CTX MVIIA
κ-CTX PVIIA

- - - - C A K K R N W - C G K N E D - C C
- - - - C A K K R N W - C G K T E D - C C
- - - A C V G E N Q Q - C A D W A G P H C C D G Y Y -
- - - E C V P E N G H - C R D W Y D E - C C E G F Y -

- E D N C I A E D Y G K C T W G G T K - C C R G R P -
- K K K C I A K D Y G R C K W G G T P - C C R G R G -
- L L A C L F G N G R - C S S N R D - C C E L T P V
- S P T C I P S G Q P - C P Y N E N - - C C S Q S - -
- - - D C V R F W G K - C S Q T S D - - C C P H L A -
- - - A C K G V F D A - C T P G K N E - C C P N R V -
- - A I C T G A D R P - C A A C C P - - C C P G T S -
- - - E C R Y L F G G - C K T T S D - - C C K H L G -
- - D D C G K L F S G - C D T N A D - - C C E G Y V -
- - - G C L E F W W K - C N P N D D K - C C R P K L K
- - G D C L P H L K L - C K E N K D - - C C S K K - -
A E K D C I A P G A P - C F G T D K P - C C N P R A W
- - - A C S G R G S R - C O O Q - - - - C C M G L R -
- - - W C K Q S G E M - C N L L D Q N - C C D G Y - -
- - - - C K S O G S S - C S O T S Y N - C C R S - - -
- - - - C K Q A D E P - C D V F S L D - C C T G I - -
- - - - C K G K G A P - C R K T M Y D - C C S G S - -
- - - - C Q G R G A S - C R K T M Y N - C C S G S - -
- - - - C K G K G A K - C S R L M Y D - C C T G S - -
- - - - C R I O N Q K C F Q H L D D - C C S R K - -

III IIIIV

Spiders

Marine
molluscs

Scorpion
Insect

-
-

C P M K -
C P M K -

-

-

Source

HWTX-IV E C L E I F K A - C N P S N D Q - C C K S S K L

Na+

Na+

Na+

Na+
Na+
Ca2+ / P,Q
Ca2+ / P,Q
Ca2+ / insect
Ca2+ / insect
Ca2+ /  P,Q,N
Ca2+ / N 
K+ / insect
K+ / 2.1, 4.2
K+ / 4.2 
MSC
RyR1
Ca2+ / N
Na+

Na+

Ca2+ / N
Ca2+ / L
Ca2+ / P,Q
Ca2+ / P,Q
Ca2+ / N
K+ / Shaker

-
-

-
-

-
-
-
-
-
-

-

-
-
-
-
-
-
-
-

-
-

-

-
-
-
-

V 35

 

Fig. 2. Alignment of δ-ACTX and other toxic inhibitor cystine-knot (ICK) peptides. Only toxins with experimentally determined cysteine connectivities 

are shown. Alignment is based on cysteine residues, which are highlighted and numbered I-VI. The ICK motif connectivity (I-IV, II-V, III-IV) is shown 

below the table. The additional fourth disulfide bond (Cys16-Cys42) in the δ-ACTX-1 family has been omitted for clarity. The sequences are ordered 

based on source, target and length. Data are from: δ-ACTX-Ar1a (Pallaghy et al., 1997), δ-ACTX-Hv1a (Fletcher et al., 1997a), µ-Aga IV (Omecinsky 

et al., 1996), µ-Aga I (Omecinsky et al., 1996), HWTX-IV (Peng et al., 2002), ω-Aga IVB (Reily et al., 1995), ω-Aga IVA (Kim et al., 1995), 

ω-ACTX-Hv2a (Wang et al., 2001), ω-ACTX-Hv1a (Fletcher et al., 1997b), ω-GrTx SIA (Takeuchi et al., 2002), HWTX-1 (Qu et al., 1997), J-ACTX-
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Hv1c (Wang et al., 2000), HaTx1 (Takahashi et al., 2000), HpTx2 (Bernard et al., 2000), GsMTx-4 (Oswald et al., 2002), MCa (Fajloun et al., 2000), 

Ptu1 (Bernard et al., 2001), conotoxin GS (Hill et al., 1997), δ-CTX TxVIA (Kohno et al., 2002), ω-CTX GVIA (Pallaghy and Norton, 1999), 

ω-CTX TxVII (Kobayashi et al., 2000), ω-CTX MVIIC (Farr-Jones et al., 1995), ω-CTX MVIID (Civera et al., 1999), ω-CTX MVIIA (Nielsen et al., 

1996), κ-CTX PVIIA (Naranjo, 2002). MSC, mechanosensitive channel; RyR1, type 1 ryanodine receptor. 
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Fig. 3. Structure of δ-ACTX. (A-B) Stereo schematic view of the structures of δ-ACTX-Ar1a (A; PDB 

file 1VTX) and δ-ACTX-Hv1a (B; PDB file 1QDP) showing the location of β-strands (cyan arrows) 

and C-terminal 310-helix (green). The N- and C- termini are labeled. These disulfides bridges form an 

inhibitor cystine-knot (ICK) motif and are shown as red tubes. (C) Stereo view of the ICK motif of 

δ-ACTX-Hv1a. The Cys14-Cys31 disulfide pierces a 14-residue loop formed by the Cys1-Cys15 and 

Cys8-Cys20 disulfides (red) and the intervening sections of the polypeptide backbone (green) to create a 

pseudo-knot. (D) Structural comparison of δ-ACTX-Hv1a, gurmarin (PDB file 1C4E), and µ-agatoxin 

I (PDB file 1EIT). Stereo view of an overlay of the backbone of gurmarin (green), δ-ACTX-Hv1a 

(red), and µ-agatoxin I (blue). Note that δ-ACTX-Hv1a has a C-terminal 310-helical extension relative 

to the other two structures. Toxin models were prepared using PyMOL. 
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Fig. 4. Effects of δ-ACTX-Hs20.1a on TTX-sensitive sodium currents in rat dorsal root ganglion 

neurons. δ-ACTX-Hs20.1a was purified from the venom of Hadronyche sp. 20 collected from 

Gerringong, New South Wales, according to the methods of Alewood et al. (2003). Whole-cell patch 

clamp recording and analysis of isolated sodium currents from immature rat dorsal root ganglion 

neurons were carried out according to the methods of Szeto et al. (2000). Potassium and calcium 

currents were blocked as detailed in Szeto et al. (2000). (A) Superimposed TTX-sensitive sodium 

current traces recorded following a depolarization to –10 mV from a holding potential of –80 mV 

before, and 10 min after, the addition of 30 nM δ-ACTX-Hs20.1a. Note the slowed sodium current 

inactivation kinetics; inset shows the magnified peak TTX-sensitive sodium currents. (B-C) Typical 

effects of δ-ACTX-Hs20.1a on the current voltage (I/V) relationship. Families of sodium currents were 

evoked by a series of 50-ms depolarizations from –80 to +70 mV in 5-mV steps applied every 10 sec 

from a holding potential of –80 mV. Families of sodium currents before (B) and after (C) application of 
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30 nM δ-ACTX-Hs20.1a. For clarity only sodium currents recorded in 15-mV steps are presented. 

Note that the inactivation kinetics of both inward and outward currents are slowed and incomplete in 

(C) only. (D) Peak (circles) and late (squares) I/V relationships are shown before (filled symbols), and 

following (empty symbols), a 10-min perfusion with 30 nM δ-ACTX-Hs20.1a. Late currents were 

measured at the end of each 50 ms depolarizing test pulse. 
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Fig. 5. Structural comparison of site-3 neurotoxins. The structures for AaH-II (Fontecilla-Camps et al., 

1988; PDB accession code 1PTX), LqhαIT (Tugarinov et al., 1997; 1LQH), anthopleurin-B (ApB) 

(Monks et al., 1995; 1APF), δ-ACTX-Hv1a (Fletcher et al., 1997a; 1VTX) and δ-ACTX-Ar1a 

(Pallaghy et al., 1997; 1QDP) are presented with a similar orientation of their putative bioactive 

surfaces. Residues determined to form the pharmacophore of LqhαIT (Zilberberg et al., 1997; Gurevitz 

et al., 2001) and ApB (Dias-Kadambi et al., 1996; Khera and Blumenthal, 1996) together with 

topologically related residues in AaH-II, δ-ACTX-Hv1a and δ-ACTX-Ar1a are highlighted and colour 

coded: blue, positively charged; yellow, negatively charged; green, aromatic/hydrophobic; magenta, 

Asn. Highlighted residues and intervening peptide backbone are superimposed on the toxin molecular 

surface. Modified from Gilles et al. (2002). Toxin models were prepared using PyMOL. 


