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Abstract 

Ethanol direct injection plus gasoline port injection (EDI+GPI) is a new technology to utilise ethanol fuel 

more effectively and efficiently in spark-ignition engines by taking the advantages of ethanol fuel and direct 

injection, such as the cooling effect and anti-knock ability. A full cycle numerical modelling including both 

port and direct injection sprays was performed to understand the mechanisms behind the experimental 

results of the EDI+GPI engine. The turbulence-chemistry interaction of the two-fraction-mixture partially 

premixed combustion was solved by a five-dimensional presumed Probability Density Function table. 

Effects of direct injection timing on fuel evaporation, mixing, wall-wetting, combustion and emission 

processes were investigated. The results showed that when the direct injection timing was retarded, the 

mixture around the spark plug became leaner and the distribution of equivalence ratio became more uneven. 

Moreover, late direct injection resulted in severe fuel impingement and caused local over-cooling effect and 

over-rich mixture. Consequently, the combustion speed and temperature were decreased by retarded direct 

injection timing, leading to reduced NO emission and increased HC and CO emissions. Finally, numerical 

modelling was performed to investigate the strategy of injecting small amount of ethanol fuel on reducing 

the fuel impingement and incomplete combustion caused by late direct injection. 
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1. Introduction 

Driven by financial incentives and renewable energy policies, ethanol fuel is becoming more and more 

popular globally in recent years. The global consumption of ethanol fuel has increased from 4.5 billion 

gallons in 2000 to 21.8 billion gallons in 2012 [1]. Ethanol fuel is usually used as a substitute or octane-

enhancer for gasoline fuel in spark ignition (SI) engines. Ethanol can be used as neat fuel or blended fuel 

with gasoline in SI engines. The performance of engines fuelled with neat ethanol fuel was investigated [2-

4]. The results showed the advantages of using pure ethanol fuel in the tested conditions. However, as neat 

fuel, ethanol may be not suitable to power SI engines in some conditions because of its low volatility, low 

heating value and high enthalpy of vaporization, especially under cold conditions [5-7]. At present, therefore, 

ethanol is mostly used via blending with gasoline fuel, such as E10 (gasoline containing 10% of ethanol by 

volume) for commercial passenger cars and E85 (gasoline containing 85% of ethanol by volume) for 

flexible-fuel vehicles (FFV). Many studies have been conducted in this field. Karavalakis et al. [8] measured 

the gaseous and particulate emissions of spray-guided and wall-guided DI SI engines fuelled with 

ethanol/gasoline and iso-butanol/gasoline blends. Ozsezen et al. [9] investigated the performance of a 

vehicle fuelled with 5% and 10% alcohol/gasoline blends. Suarez-Bertoa et al. [10] measured the regulated 

and unregulated emissions from a Euro 5a FFV fuelled with different gasoline/ethanol blends. Turner et. al. 

[11] investigated the combustion performance of a DI SI engine with various ethanol/gasoline blending 

ratios. The results showed that blending ethanol with gasoline reduced emissions and increased efficiency, 

and the impact changed with the blending ratio. 

Blending ethanol with gasoline at a fixed ratio limits ethanol's potentials in improving the engine 

performance over the wide engine operation conditions. To make the use of ethanol fuel more flexible and 

efficient, a dual-injection system was developed, which combined the advantages of port injection (PI) and 

direct injection (DI). Dual-injection concept has been intensively investigated in compression ignition (CI) 

engines. For example, to reduce the NOx and soot emissions by reducing in-cylinder temperature, water was 

injected by a PI system whilst diesel was supplied in a separate DI system [12-14]. Water PI was used to 

enhance the hydrogen energy share in a diesel DI engine [15]. Recently, a dual-injection strategy called 

Reactivity Controlled Compression Ignition (RCCI) was developed for CI engines, in which a lower 

reactivity fuel (e.g., gasoline) was supplied via PI and a more reactive fuel (e.g., diesel) was supplied via DI 

[16-19]. Although dual-injection has been investigated in CI engines, the application of dual-injection 

concept in SI engines is relatively new. Cohn et al. firstly proposed to use ethanol DI in a downsized, highly 

turbocharged and high compression ratio gasoline PI engine [20]. The engine efficiency was predicted to be 

greatly increased by using a small amount of ethanol fuel with engine downsizing technologies. Toyota 

developed a D-4S (Direct injection 4-stroke gasoline engine system Superior version) engine equipped with 

a PI injector and a DI injector [21]. The gasoline PI is applied in part load and the gasoline DI is applied in 

full load. By doing so, the compression ratio of the D-4S engine has been increased to 12.7 in production 
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cars [22]. Following the dual-injection concepts of MIT and Toyota, many studies have been carried out. 

Ford introduced the “EcoBoost” engine in the 2010 Lincoln MKS [23]. The gasoline is used via PI and E85 

is used via DI. The “EcoBoost” engine showed significant leveraging effect of E85 on reducing the gasoline 

fuel consumption and CO2 emission. Zhu et al. [24] investigated the combustion characteristics of an engine 

fuelled by three injection strategies, including gasoline PI plus gasoline DI, gasoline PI plus E85 DI, and 

E85 PI plus gasoline DI. Recently, Wang et al. [25] compared the engine performance of alcohols-gasoline 

(alcohols PI plus gasoline DI) and gasoline-alcohols (gasoline PI plus alcohols DI) dual-fuel spark ignition 

(DFSI) systems. The results in [24] and [25] showed that the engines fuelled by gasoline PI plus alcohols DI 

demonstrated higher efficiency than other injection strategies because alcohols DI better utilized the high 

enthalpy of vaporization of alcohol fuels. Wu et al. [26] tested the dual-injection concept of gasoline PI plus 

ethanol or DMF DI as a flexible way to utilise bio-fuels. The leveraging effect of using ethanol fuel on 

reducing gasoline fuel consumption in an ethanol DI plus gasoline PI (EDI+GPI) engine was experimentally 

studied [27]. The combustion and emission characteristics of an ethanol PI and gasoline DI engine was 

investigated, which aimed to utilise the charge cooling effect of both gasoline and ethanol fuels [28]. The 

anti-knock ability [29-31] of the dual-injection concept of alcohols DI plus gasoline PI was experimentally 

investigated. 

The experiments reviewed above have shown the advantages of EDI+GPI over the conventional single 

injection fuel system in terms of engine performance. To understand the mechanisms behind the 

experimental results and further exploit ethanol’s potentials, the in-cylinder flows, fuel evaporation and 

mixing, combustion and emission processes need to be investigated. The combustion characteristics of 

gasoline PI plus ethanol or DMF DI dual-injection were investigated in an optical engine [32]. The results 

showed that gasoline-ethanol dual-injection had faster combustion speed than that of gasoline PI. 

Computational fluid dynamics (CFD) modelling has been proven a feasible and economic tool to get the 

visualised in-cylinder flows and thus shorten the research cycle [33]. So far, however, only a few 

publications were found on the spray combustion modelling of dual-injection systems. Yang et al. [34] 

numerically studied the dual-injection combustion mode with gasoline PI plus diesel DI. The combustion 

process of in-cylinder fuel blending by gasoline PI plus early diesel DI was modelled [35]. The reactivity 

gradient of a dual fuelled engine with gasoline PI plus diesel DI was numerically investigated [36]. Lu et al. 

[37] simulated the combustion and emission processes of a dual-fuel sequential combustion (DFSC) engine 

with n-heptane PI plus iso-octane DI. The effects of DI strategy on a diesel DI plus natural gas PI RCCI 

engine was numerically studied [38]. The simulations in the above reviewed studies did not include the fuel 

port injection process. Instead the port injected fuel was assumed to be homogenous in the combustion 

chamber before combustion or intake valve close. However, experimental and numerical results showed that 

the fuel was not fully evaporated as excepted or evenly distributed in the combustion chamber for the port 

injected gasoline spray [39-41]. 
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As reviewed above, following the demonstration of advantages of EDI+GPI, it is needed to investigate the 

in-cylinder flow details of EDI+GPI dual-injection by CFD simulation. However little numerical study has 

been reported to investigate the mixture formation and combustion characteristics of the dual-injection 

system considering both the port injection and direct injection sprays. Modelling spray combustion of 

EDI+GPI is challenging because it is a typical example of partially premixed SI combustion and the 

distributions of the two fuels at each computational grid vary. As a result, solving spray combustion fields of 

two fuels simultaneously can be much more computationally expensive than that of single injection system 

[40]. The present work investigated the fuel evaporation, mixing, wall-wetting, combustion and emission 

characteristics of an EDI+GPI dual-fuelled research engine in a full engine cycle CFD simulation. The two-

fraction-mixture combustion of dual-injection was modelled by combining the ECFM partially premixed 

combustion model with a five-dimensional double-delta PDF look-up table. CFD simulations were carried 

out to understand the mechanisms associated with the experimental results and investigate potential ideas 

that may improve the engine performance, which could not be experimentally implemented on the current 

engine. 

2. CFD modelling 

2.1.  3D Engine model 

The three-dimensional CFD simulations were performed in the ANSYS FLUENT code environment. The 

in-cylinder flows were modelled by the Realizable k-ε turbulence model. A number of sub-models were 

used to simulate the various physical and chemistry processes in the combustion chamber, including the 

droplet break-up, evaporation, distortion and drag, wall-film, combustion and emission formation, as listed 

in Table 1. The dual-fuel spray was modelled using the Eulerian-Lagrangian approach which was based on 

the Monte-Carlo statistical method. The continuous gas phase was treated using the Eulerian method whilst 

the dispersed spray droplets were tracked in the Lagrangian method. The spray was represented by a number 

of discrete parcels. Each parcel contained a group of identical non-interacting droplets. By solving the 

ordinary differential equations for the trajectory, momentum, heat and mass transfer of a single droplet, it 

solved the equations for many droplets in the whole parcel. The interactions between the gas and liquid 

phases were taken into account by the source terms in the partial differential equations of the gas phase. 

Obviously, the larger the number of the parcels was, the more accurate of the representation for the spray 

behaviours was [42, 43]. Therefore 20 parcels per hole were released at the nozzle exit in each time step in 

the present study. The total number of parcels introduced into the computational domain was around 9000 

for gasoline spray and 30000 for ethanol spray. The Rosin-Rammler Diameter Distribution Method was 

used to model the primary breakup process (blob injection concept) [44]. It was based on the assumption 

that an exponential relationship existed between the droplet diameter (d) and the mass fraction of droplets 

with diameter greater than d. The consequent droplets breakup process was modelled by the WAVE model 
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[45]. WAVE model was appropriate for high Weber number (We >100) flows, which considered the 

breakup of the droplets to be induced by the relative velocity between the gas and liquid phases [46, 47]. 

Although the initial velocity of the low pressure (0.25 MPa) GPI spray was relatively slow, the air velocity 

in the intake manifold could be as high as 200 m/s, as shown in Fig. 5. As a result, the We numbers for both 

the EDI and GPI droplets were greater than 100. The droplet distortion and drag were taken into account by 

the Dynamic Drag model [48]. It assumed that the droplet drag coefficient was related to the magnitude of 

the drop distortion. The droplet-wall interaction model was based on the work of Stanton [49] and O’Rourke 

[50]. A liquid droplet may stick, rebound, spread or splash when it collides with a wall, depending on the 

impact energy and wall temperature. The Convection/Diffusion Controlled Model [51] was adopted to 

model the evaporation process of ethanol and gasoline sprays. It takes into account the effects of gradient 

diffusion and convection on the droplet evaporation. 

The spray evaporation model provided the combustion model with the amount and distribution of vapour 

fuel for each fuel. The combustion process was initiated in the Zimont model by releasing a specific amount 

of energy to the cells at the spark plug gap [47]. The flame kernel increased from an initial radius 2 mm to 

the final radius 5 mm with a time exponent of 1/3. Spray combustion in DI SI engines was a typical example 

of partially premixed combustion because the mixture was not perfectly homogeneous and evaporating and 

mixing processes were still occurring by the time of ignition. Therefore, the consequent dual-fuel 

combustion process was modelled by the Extended Coherent Flame Model (ECFM) with the partially 

premixed combustion concept, in which both the progress variable c and the mixture fraction Z were solved 

[40]. The Coherent Flame Model (CFM) was based on the assumption that the chemical time scales were 

much smaller than the turbulence time scales, which was applicable for both premixed and non-premixed 

internal combustion engine conditions. The ECFM model was the extension of the CFM and aimed to be 

able to simulate the stratified spray combustion conditions [52]. It was mainly developed for DI SI engines. 

The ECFM combustion model was properly tuned by acting on the intermediate turbulent net flame stretch 

(ITNFS) term so that the modelled in-cylinder pressure traces matched the experimental data. The laminar 

flame speeds of ethanol and gasoline fuels were taken from the experiments [53]. The turbulent flame speed 

was calculated based on the laminar flame speed and the local turbulence intensity in the combustion model. 

The NO formation was model by the Extended Zeldovich mechanism [54]. To model the turbulence-

chemistry interactions of the two-fraction mixture, a five-dimensional double-delta Probability Density 

Function (PDF) table was generated to take into account the two fuels. The chemistry look-up table was 

generated using complex reaction mechanisms which incorporated the latest insights on combustion 

chemical kinetics [55]. The instantaneous scalar values (species mass fractions, density and temperature) 

were calculated as a function of the first fuel mixture fraction, the secondary fuel partial fraction and the 

normalized heat loss/gain before the calculation. These information were stored in the five-dimensional PDF 

look-up table. The mean values of mass fractions, density and temperature in each cell of the computational 

domain were obtained by interpolation during the calculation. 
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The computational mesh was generated based on the geometry scanned from the cylinder head of the 

EDI+GPI engine. As shown in Fig. 1, the mesh includes the geometry details of the combustion chamber, 

valves, spark plug, intake manifold with the throttle plate, and the exhaust manifold. The GPI injector was 

installed after the throttle plate and the EDI injector was mounted 15 mm to the spark plug on the intake 

valve side. The number of grids were 178887 at the start of calculation (410 CAD BTDC). The mesh density 

independence study was carried out in a previous study [40]. The simulation started from the GPI injection 

(410 CAD BTDC) and ended at the exhaust top dead centre (360 CAD ATDC). To reduce the computation 

time, the grids for the intake or exhaust port were deactivated when the valve was closed. 

2.2.  Model verification 

Fig. 2 shows the comparison between the simulated and measured in-cylinder pressure traces at different 

EDI timings at the engine speed of 4000 rpm. The good agreement, including the peak pressure value and its 

phase, illustrates that the engine model is valid for investigating the effect of EDI timing on the EDI+GPI 

dual-fuel mixture formation and combustion processes. 

2.3.  Engine setup and simulation conditions 

The EDI+GPI engine to be modelled is a single-cylinder air-cooled SI engine [27]. Table 2 lists the engine 

specifications. The EDI+GPI dual-injection fuel system offers the flexibility to change the ethanol/gasoline 

ratio according to the engine conditions. Table 3 gives the engine conditions investigated in the present 

study. Three EDI timings at different regions were tested, including early EDI timing during the intake 

stroke at 300 CAD BTDC (IT300), medium EDI timing at 180 CAD BTDC (IT180) and late EDI timing 

during the compression stroke at 100 CAD BTDC (IT100). The mixture was stoichiometric and 

ethanol/gasoline ratio was fixed at 46% by volume (8.5 mg gasoline PI + 8.0 mg ethanol DI). The GPI 

timing was 410 CAD BTDC and the spark timing was 15 CAD BTDC. The injection pressure was 0.25 MPa 

for GPI and 6.0 MPa for EDI. The effect of direct injection of small amount of ethanol fuel at 25% and 10% 

on reducing the wall-wetting and incomplete combustion of late EDI timing at 100 CAD BTDC was also 

investigated. 

3. Results and discussion 

In the development of EDI+GPI, late EDI timing is desired because late EDI timing is more effective than 

early EDI timing on knock mitigation. Experimental results showed that late EDI timing allowed more 

advanced spark timing without knock issue than early EDI timing did, but also deteriorated the combustion 

and emission performance of the engine [31]. As shown in Fig. 2, the peak cylinder pressure decreases with 

the retarded EDI timing. The measured CO and HC emissions increase and IMEP and NO emission decrease 

when EDI timing is retarded, as shown in Fig. 3. The present study aims to understand the mechanisms 

behind the experimental results by CFD simulation. The following sections will present and discuss the 
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effect of injection timing on the mixture formation, wall-film, combustion and emission processes of the 

EDI+GPI engine in the experimentally tested conditions. Based on that, the potential of direct injection of 

small amount of ethanol fuel that cannot be realised on the current research engine on reducing the wall-

wetting and incomplete combustion has been examined. 

3.1.  Effect of EDI timing on mixture formation 

Fig. 4 shows the variations of the mass of evaporated ethanol fuel with crank angle degrees (CAD) from 

intake top dead centre (TDC) to exhaust valve open (EVO). As shown in Fig. 4, the mass percentage of 

evaporated ethanol fuel at spark timing decreases from 93.4% (7.47mg/8.00mg) in IT300 condition to 89.4% 

(7.16mg/8.00mg) in IT180 condition and 44.8% (3.583mg/8.00mg) in IT100 condition. This is because the 

flow field is less intensive in the compression stroke and the time is shorter for the fuels to evaporate and to 

mix with air with retarded EDI timing. As introduced in Section 2.1, the Convection/Diffusion Controlled 

model [51] is used to simulate the evaporation processes of gasoline and ethanol droplets in the present 

study. The gradient diffusion effect is governed by the fuel saturation vapour pressure and the convection 

effect is governed by the flow velocity. In high-velocity flows, the effect of convective flow on taking the 

evaporating material from the droplet surface to the bulk gas phase becomes significant. Fig. 5 shows the in-

cylinder flow velocity vectors at the start and the end of the EDI injection of different injection timings. As 

shown in Fig. 5, for IT300 condition, the intake valve is fully open and the intake flow rate is as high as 200 

m/s. This high flow rate increases the heat and mass transfer between the fuel droplets and the ambient gas, 

thus accelerates the fuel evaporation and enhances the mixing. The in-cylinder flows become much slower 

in the compression stroke. This leads to the low evaporation rate of ethanol fuel at retarded EDI timings of 

IT180 and IT100. Particularly, the intake gas flow rate reduces significantly from 150 m/s at the start of EDI 

injection to 90 m/s at the end of EDI injection for IT180 due to the intake valve closing, as shown in Fig. 5. 

This significant change in velocity may lead to the fluctuation of IMEP when EDI timing is between 120 

and 250 CAD BTDC in the engine experiments, as reported in [31]. The lower evaporation rate of late EDI 

injection has significant effect on the following combustion process. As the EDI timing retards, the 

combustion speed becomes slower to propagate to the regions with too-rich and over-cooled mixture (which 

will be discussed in Fig. 10). As a result, after the combustion takes place, both the gasoline and ethanol 

vapour fuels are burnt/consumed more slowly in IT180 and IT100 than that in IT300, as shown in Fig. 4. By 

the time of EVO, there are 0.018 mg (0.21%) unburnt gasoline and 0.041 mg (0.51%) unburnt ethanol in the 

IT300 condition. The unburnt gasoline and ethanol fuels increase to 0.504 mg (5.93%) and 2.196 mg 

(27.45%) respectively in IT180 condition and 0.340 mg (4.00%) and 2.081 mg (26.01%) in IT100 condition. 

These unburnt fuels contribute to the increased HC emission in the engine experiments, as discussed in 

Section 3.3. 

Fig. 6 shows the spatial mass distributions of gasoline and ethanol vapours and the equivalence ratio on a 

vertical plane passing through the spark plug by spark timing. With retarded EDI timing, the gasoline fuel 
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becomes leaner in the left side of the combustion chamber because more ethanol fuel is vaporised in this 

region, which consequently cools this region and slows down the gasoline evaporation. As the EDI timing 

retards, the ethanol droplets have less time to interact with the intake swirls which would entrain the ethanol 

fuel to the right region of the combustion chamber. As a result, the ethanol mass fraction becomes leaner in 

the right side, but richer in the left side. With the retarded EDI timing, the mixture around the spark plug 

becomes leaner from 0.83 equivalence ratio in IT300 condition to 0.67 in IT180 condition and 0.68 in IT100 

condition. This leads to longer combustion initiation duration, slower flame propagation speed and difficulty 

for the flame to reach the near wall regions. Consequently it reduces the peak cylinder pressure and 

combustion temperature and increases the HC and CO emissions. This will be further discussed in Section 

3.3. 

3.2.  Effect of EDI timing on fuel impingement 

Fig. 7 shows the variation of wall film mass with crank angle degrees at the EDI timings of 300, 180 and 

100 CAD BTDC.  As shown in Fig. 7, the fuel impingement on the cylinder and piston walls becomes 

severer when EDI timing is retarded from 300 to 180 and then to 100 CAD BTDC. At the EDI timing of 300 

CAD BTDC (during the intake stroke), the intake air flow rate is high and the piston is moving downward, 

as shown in Fig. 5. The ethanol droplets are being entrained into the intake air swirls. This avoids the 

ethanol spray collision on the cylinder and piston walls. When EDI timing is retarded to be in the 

compression stroke (IT180 and IT100), the volume of the combustion chamber becomes smaller and the in-

cylinder flow rate reduces. However, the in-cylinder pressure during the IT180 and IT100 spray injections 

does not increase significantly when EDI timing is retarded from 300 to 100 CAD BTDC, as shown in Fig. 2. 

As a result, the ethanol droplets reach the cylinder and piston walls more easily at late EDI timings, causing 

severer fuel impingement. Moreover, at early EDI timing of 300 CAD ATDC, the wall film has more time 

to absorb the heat from the hot cylinder walls and evaporate before the combustion takes place. While the 

wall film formed in IT180 and IT100 conditions does not have enough time to evaporate by the time of 

spark timing, as shown in Fig. 7. The increased wall film becomes another import source for the formation 

of HC emission of late EDI timing conditions. 

3.3.  Effect of EDI timing on combustion and emissions 

Fig. 8 shows the distributions of flame-brush on a plane cutting through the spark plug varing with the crank 

angle degree at different EDI timings and Fig. 9 shows the corresponding distributions of combustion 

temperature. In the modellling of premixed combustion, progress variable c is introduced to describe the 

state of the reactants, where c=0 stands for fresh mixture and c=1 is for burnt mixture. A value between 0 

and 1 indicates the flame-brush. Fig. 8 shows that the ignition flame kernel is well formed at 5 CAD ATDC 

in IT300 condition but still very small in IT180 and IT100 conditions, demonstrating a shorter combustion 

initiation duration of IT300 than that of IT180 and IT100. The calculated combustion initation duration 
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(CA0-10%) from the measured cylinder pressure increased from 20.7 CAD in IT300 to 24.3 CAD in IT180 

and 24.8 CAD in IT100. Consistently the flame propagates much faster in IT300 than that in IT180 and 

IT100. This is because the mixtures are leaner in IT180 and IT100 due to the less intensive in-cylinder flows 

and less time for ethanol to evaporate and to mix with the air, as shown in Figs. 4 and 5. The flame speed 

and combustion temperature reach their peaks at the stoichiometric equivalence ratio. Either lean or rich 

mixture results in much lower combustion speed and temperature [53, 56]. Consequently, as shown in Fig. 9, 

the combustion temperature is much lower in IT180 and IT100 conditions than that in IT300 condition. 

Particularly, the temperature in the region next to the spark plug is relatively high (~2500K) in IT300 

condition. This is because this region has equivalence ratio closer to 1, as shown in Fig. 6. This higher 

temperature region is also the main place for the NO formation, as shown in Fig. 11 which will be discussed 

later. 

Fig. 10 shows the distributions of flame brush, ethanol droplets, equivalence ratio and combustion 

temperature on a horizontal plane under the spark plug at EVO. Compared with IT300 condition, there are 

larger unburnt regions in IT180 and IT100 conditions. This is caused by the fuel not evaporated yet and poor 

quality of mixture at late EDI injection, resulting in a large proportion of unevaporated ethanol droplets 

during the combustion and uneven distribution of equivalence ratio. Fig. 10 shows clearly that the regions in 

which the flame cannot propagate to are the regions where the ethanol droplets concentrate at. By the time 

of spark, 6.6% of ethanol fuel remains unevaporated in IT300 condition, 10.6% in IT180 and 55.2% in 

IT100 (Fig. 4). As the flame propagating, most of the ethanol droplets have evaporated and been burnt by 

the time of EVO at IT300. However, as shown in Fig. 10, there are still some ethanol droplets remaining in 

the near wall regions with late EDI injections of IT180 and IT100. The high ethanol droplet concentration 

deteriorates the combustion process in two ways. Firstly, as shown in Fig. 10, the ethanol droplets evaporate 

and lead to very rich mixture in the high concentration regions. When the equivalence ratio is higher than 

2.0, the flame speed becomes very slow [53]. Secondly, the over-cooling effect becomes significant with 

late EDI injections. When ethanol droplets evaporate in the high concentration regions, they need a large 

amount of thermal energy for the phase change. This results in over-cooling effect in the corresponding 

regions. As shown in Fig. 10, larger regions in IT180 and IT100 conditions have been cooled to as low as 

400 K. Such a low temperature makes it more difficult for the flame to reach these regions. 

Fig. 11 shows the spatial distribution of the NO concentration at EVO. The formation of thermal NO is a 

result of high temperature (>1800K) and rich oxygen concentration. As shown in Fig. 11, the high 

temperature regions shown in Fig. 9 have the highest NO concentrations. The formation of NO emission 

becomes less intensive with the retarding of the EDI timing because of the reduced cylinder temperature. As 

shown in Fig. 3, the measured indicated specific NO emission decreased from 10.14 g/kw-h in IT300 

condition to 7.76 g/kw-h in IT180 condition and 6.58 g/kw-h in IT100 condition. 
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CO is generated in rich mixture and high temperature conditions. Experimental results showed that the 

indicated specific CO and HC emissions increased from 151.13 and 1.98 g/kw-h to 188.67 and 5.04 g/kW-h 

respectively when injection timing was retarded from 300 to 100 CAD BTDC, as shown in Fig. 3. This is 

mainly caused by the poor mixing (Fig. 6) and wall-wetting (Fig. 7) of late EDI injection. Fig. 12 shows the 

distribution of CO concentration at EVO from simulation. It can be seen that the left region in the 

combustion chamber has the highest CO formation rate. This is because the mixture in these regions is richer 

than the stoichiometric equivalence ratio and there is not enough oxygen for a complete burning (Fig. 6). 

Consequently CO is generated in incomplete combustion. The CO concentration is higher in late EDI 

injections (IT180 and IT100) than that in early EDI injection (IT300) due to the uneven mixture (Figs. 6 and 

10). Moreover, there are more liquid fuel droplets (Fig. 10) and wall-film (Fig. 7) in IT180 and IT100 

conditions than that in IT300 condition. These will also contribute to the increased CO and HC emissions of 

late EDI timing conditions. 

3.4.  Reducing wall wetting and incomplete combustion by decreasing the ratio of fuel directly injected 

In the original proposal of EDI [57], only a small proportion of ethanol fuel was used to significantly reduce 

the consumption of gasoline fuel in SI engines by implementing engine downsizing technologies. This sub-

section aims to numerically investigate the potential of direct injection of small amount of ethanol fuel on 

reducing the wall-wetting and incomplete combustion at late EDI timing at 100 CAD BTDC. Fig. 13 shows 

the distributions of equivalence ratio and wall film height of 46% (E46), 25% (E25) and 10% (E10) of EDI 

at spark timing of 15 CAD BTDC. As shown in Fig. 13, the equivalence ratio around the spark plug 

increases due to the increase of gasoline vapour with the decrease of the proportion of ethanol fuel. This 

should lead to readier ignition and consequently faster combustion. Meanwhile, the fuel impingement on the 

piston and cylinder walls becomes much less with smaller amount of EDI. The calculated wall-film mass 

reduces significantly from 0.733 mg in E46 to 0.330 mg in E25 and 0.071 mg in E10. This is because 

smaller amount of EDI requires shorter injection time, which reduces the spray penetration length and leads 

to less fuel impingement, resulting in reduced HC and soot emissions [58]. 

Fig. 14 shows the spatial distributions of unburnt mixture, ethanol droplets and cylinder temperature at the 

time of EVO. When the ethanol ratio is reduced from E46 to E25 and then E10, the area of unburnt mixture 

(c=0) at EVO reduces significantly and the unevaporated ethanol droplets are greatly reduced. These should 

reduce the over-rich mixture and over-cooling regions, as identified and discussed in Fig. 10, and 

consequently reduce the HC and CO emissions. As shown in Fig. 14, the local over-cooling regions with 

temperature lower than 400 K are reduced from E46 to E25 and eliminated at E10. Figs. 13 and 14 suggest 

that the fuel impingement and incomplete combustion caused by the local over-rich and over-cooling of late 

EDI timing can be addressed by direct injection of smaller amount of ethanol fuel, such as E25 and E10. 
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4. Conclusions 

Ethanol direct injection plus gasoline port injection (EDI+GPI) is a new technology to utilise ethanol fuel 

more effectively and efficiently in SI engines by taking advantages of ethanol fuel and direct injection, such 

as the cooling effect and anti-knock ability. In the development of EDI+GPI, late EDI timing was desired 

because late EDI timing was more effective than early EDI timing on knock mitigation, but combustion and 

emission performance of the engine were deteriorated by late injection, as reported in previous experimental 

study. To understand the mechanisms behind the experimental results, a full CFD modelling was performed 

to investigate the mixture formation and combustion characteristics in an EDI+GPI dual-fuelled research 

engine considering both the port injection and direct injection sprays. The mixture was stoichiometric and 

ethanol/gasoline ratio was 46% by volume. The engine speed was 4000 rpm and spark timing was 15 CAD 

BTDC. The EDI pressure was 6.0 MPa and the GPI pressure was 0.25 MPa. The effects of injection timing 

on the fuel evaporation, mixing, wall-wetting, combustion and emission formation processes were 

investigated. Based on the understanding gained from simulation, the potential of direct injection of small 

amount of ethanol fuel that cannot be realised on the current research engine on reducing the wall-wetting 

and incomplete combustion was examined. The major results of this study can be concluded as follows. 

1. When EDI timing is retarded from IT300 to IT180 and IT100, the mixture around the spark plug 

becomes leaner and the distribution of equivalence ratio becomes more uneven due to the slower 

in-cylinder flows and reduced time for ethanol fuel to evaporate and to mix with air. Moreover, 

the fuel impingement on cylinder and piston walls becomes severe with the retarding of EDI 

timing because of the reduced combustion chamber volume and gas flow rate in the compression 

stroke. 

2. The combustion speed becomes slower because of the leaner mixture around the spark plug when 

EDI timing is retarded. As a result, the peak cylinder pressure and combustion temperature of 

IT180 and IT100 conditions are smaller than that of IT300 condition. Late EDI timing causes 

over-cooling effect and over-rich mixture in the region opposite the spark plug, which 

consequently leads to incomplete combustion. 

3. The wall impingement is more significant and more fuel remains unburnt by the time of EVO 

when EDI timing is changed from 300 to 180 and then to 100 CAD BTDC. This explains why 

the HC emission increased at late EDI timing in the experimental investigation. The NO 

decreases with the retarding of EDI timing due to the reduced combustion temperature. The CO 

increases with the retarding of EDI timing due to the poor mixing process. 

4. The fuel impingement and incomplete combustion caused by the local over-rich and over-cooling 

of late EDI timing can be addressed by reducing the ratio of ethanol fuel to an optimal point. 
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Nomenclature 

ABDC: After bottom dead centre 

ATDC: After top dead centre 

BBDC: Before bottom dead centre 

BDC: Bottom dead centre 

BTDC: Before top dead centre 

CAD: Crank angle degree 

CFD: Computational fluid dynamics 

CFM: Coherent Flame Model 

CI: Compression ignition 

DI: Direct injection 

DFSC: Dual-fuel sequential combustion 

DFSI: Dual-fuel spark ignition 

ECFM: Extended Coherent Flame Model 

EDI+GPI: Ethanol direct injection plus gasoline port injection 

EVO: Exhaust valve open 

FFV: Flexible-fuel vehicle 

ITNFS: Intermediate turbulent net flame stretch 

IT’xxx’: Injection timing of xxx CAD BTDC 

PDF: Probability Density Function 

PI: Port injection 

RCCI: Reactivity Controlled Compression Ignition 

SI: Spark ignition 
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Table 1. Computational models. 

Turbulence model Realizable k-ε model 

Primary break-up model Rosin-Rammler Distribution Method 

Secondary breakup model WAVE model [45] 

Distortion and drag Dynamic Drag model [48] 

Wall-film model Stanton [49] and O’Rourke [50] model 

Evaporation model Convection/Diffusion Controlled model [51] 

Spark model Zimont model [47] 

Combustion model ECFM partially premixed combustion [40] 

NO model Extended Zeldovich mechanism [54] 
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Table 2. Engine specifications. 

Engine type Single cylinder, air cooled, four-stroke 

Displacement 249.0 cc 

Stroke × Bore 58.0 × 74.0 mm 

Compression ratio 9.8:1 

Intake valve open 22.20 CAD BTDC 

Intake valve close 53.80 CAD ABDC 

Exhaust valve open 54.60 CAD BBDC 

Exhaust valve close 19.30 CAD ATDC 

Ethanol delivery system Direct injection 

Gasoline delivery system Port injection 
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Table 3. Simulated engine conditions. 

Engine speed (rpm) 4000 

Throttle position 36% 

Ethanol/gasoline ratio  46%, 25% and 10% 

Spark timing (CAD BTDC) 15 

GPI pressure (MPa) 0.25 

GPI timing (CAD BTDC) 410 

EDI pressure (MPa) 6.0 

EDI timing (CAD BTDC) 300, 180 and 100 
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Fig. 1. Computational mesh. 
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Fig. 2. Comparison of experimental and numerical in-cylinder pressure with different EDI timings. 
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Fig. 3. Experimental results of IMEP, ISNO, ISCO and ISHC varying with EDI timing. 
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Fig. 4. Variations of mass of the vapour ethanol fuel with crank angle degrees. 
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 At the start of EDI At the end of EDI 

IT300 

  

IT180 

  

IT100 

                                                              
Fig. 5. Air flow velocity vectors on the engine symmetry plane at the start and end of EDI injection with 

different EDI timings. 
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(a) IT300. 

 
(b) IT180. 

 
(c) IT100. 

   
Fig. 6. Distributions of the vapour mass fractions of gasoline and ethanol fuels and the equivalence ratio on a 

vertical plane passing through the spark plug by spark timing. 
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Fig. 7. Variations of wall film mass with crank angle degrees at different EDI timings. 
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Fig. 8. Evolution of flame-brush with different EDI timings. 
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Fig. 9. Spatial distributions of combustion temperature with different EDI timings. 
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                                                    (a) IT300                       (b) IT180                           (c) IT100 

 

 

 

 
Fig. 10. Distributions of flame brush, ethanol droplets, equivalence ratio and temperature at EVO at different 

EDI timings. 
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(a) IT300                         (b) IT180                         (c) IT100 

 

 
Fig. 11. Distribution of NO mass fraction at EVO. 
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(a) IT300                        (b) IT180                          (c) IT100 

  

 

Fig. 12. Distribution of CO mass fraction at EVO. 
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(a) E46                                           (b) E25                                       (c) E10 

 

 

 

 

Fig. 13. Distributions of the equivalence ratio and wall film of smaller amount of ethanol fuel at IT100 by 

spark timing. 
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                                                                (a) E46                             (b) E25                            (c) E10 

  

 

 

Fig. 14. Distributions of flame brush, ethanol droplets and temperature of smaller amount of ethanol fuel at 

IT100 at the time of EVO. 


