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Abstract

In this paper, we extend Smets’ transferable be-
lief model (TBM) with probabilistic priors. Our
first motivation for the extension is about eviden-
tial reasoning when the underlying prior knowl-
edge base is Bayesian. We extend standard
Dempster models with prior probabilities to rep-
resent beliefs and distinguish between two types
of induced mass functions on an extended Demp-
ster model: one for believing and the other es-
sentially for decision-making. There is a natu-
ral correspondence between these two mass func-
tions. In the extended model, we propose two
conditioning rules for evidential reasoning with
probabilistic knowledge base. Our second moti-
vation is about the partial dissociation of betting
at the pignistic level from believing at the credal
level in TBM. In our extended TBM, we coordi-
nate these two levels by employing the extended
Dempster model to represent beliefs at the credal
level. Pignistic probabilities are derived not from
the induced mass function for believing but from
the one for decision-making in the model and
hence need not rely on the choice of frame of dis-
cernment. Moreover, we show that the above two
proposed conditionings and marginalization (or
coarsening) are consistent with pignistic transfor-
mation in the extended TBM.

1 INTRODUCTION

Reasoning about uncertainty is a fundamental issue for
Artificial Intelligence [HALPERN, 2005]. Numerous ap-
proaches have been proposed, including the Dempster-
Shafer theory of belief functions [SHAFER, 1976] (also
called the theory of evidence or simply DS theory). Ever
since the pioneering works by Dempster and Shafer, the
theory of belief functions has become a powerful formal-
ism in Artificial Intelligence for knowledge representation

and decision-making.

The transferable belief model (TBM) is a model de-
veloped to justify the use of belief functions (includ-
ing Dempster’s rule of combination) to model someone’s
beliefs [SMETS AND KENNES, 1994]. A TBM M =
〈(Ω,m), Betp〉 is a two-level mental model which distin-
guishes between two aspects of beliefs on a frame of dis-
cernment Ω, beliefs for weighted opinions, and beliefs for
decision making. The two levels are: the credal level,
where beliefs are entertained and represented by a mass
function m, and the pignistic level, where beliefs are used
to make decisions and quantified as a probability distribu-
tion Betpm, which is derived from mass function m by
the so-called pignistic transformation (usually denoted by
Betp). The justification for the use of pignistic probabil-
ities is usually linked to “rational” behavior exhibited by
an ideal agent involved in some betting or decision con-
texts. But those probabilities do not represent the agent’s
beliefs; they are only the functions needed to derive the
best decision. Let’s consider a motivating example in TBM
[SMETS AND KENNES, 1994].

Example 1.1 (Betting under total ignorance) Consider a
guard in a huge power plant. On the emergency panel,
alarmsA1 andA2 are both on. The guard never heard about
these two alarms. He takes the instruction book and discov-
ers that A1 is on iff circuit C is in state C1 or C2 and that
alarm A2 is on iff circuit D is in state D1, D2 or D3. He
never heard about these C and D circuits. There, his be-
liefs on the C circuit will be characterized by a “vacuous”
belief function belΩC on space ΩC = {C1, C2}, i.e., a be-
lief function whose mass function satisfies mΩC (ΩC) = 1
(this particular belief function is the one that represents the
state of total ignorance). By the application of pignistic
transformation, his pignistic probabilities will be given by

BetpΩC (C1) = BetpΩC (C2) = 1
2 .

Similarly, for the D circuit, the guard’s belief belΩD on the
space ΩD = {D1, D2, D3} will be vacuous, i.e., its corre-
sponding mass function mΩD (ΩD) = 1, and the pignistic
probabilities are



BetpΩD (D1) = BetpΩD (D2) = BetpΩD (D3) = 1
3 .

Now by reading the next page on the manual, the guard
discovers that circuits C and D are so made that when-
ever C is in the state C1, circuit D is in state D1 and vice
versa. So he learns that C1 and D1 are equivalent (given
what the guard knows) and that C2 and (D2 or D3) are
equivalent. In the TBM, this information does not modify
his belief about which circuit is broken. Within the trans-
ferable belief model, the only requirement is that equiva-
lent propositions should receive equal beliefs (it is satis-
fied as belΩC (C1) = belΩD (D1) = 0). Pignistic prob-
abilities depend not only on these beliefs but also on the
structure of the betting frame. In contrast, according to
Bayesian approach, equivalent propositions should receive
identical beliefs and therefore identical probabilities. How-
ever, BetpΩC (C1) = 1

2 and BetpΩD (D1) = 1
3 although

belΩC (C1) = belΩD (D1) = 0.

The fact that the TBM can cope easily with such states of
ignorance results from the partial dissociation between the
credal and the pignistic levels. But this kind of separation
between betting from believing makes the TBM vulnerable
to Dutch books in decision-making [SNOW, 1998].

In this paper, we extend Smets’ TBM with a probabilistic
prior to coordinate reasoning at the credal and pignistic lev-
els. Our first motivation is about evidential reasoning when
the underlying prior knowledge base is Bayesian. In or-
der to incorporate the influence of the Bayesian knowledge
base, we extend standard Dempster models, which are used
for representing belief functions, with probabilistic priors.
For an extended Dempster model M with a prior probabil-
ity pr, there are two induced mass functions. The first one
mD is derived in the standard way from the Dempster part
D of M without the prior probability and hence complies
with the well-known DS theory, especially with Dempster’s
rule of combination. The second mM is induced by com-
bining mD with the prior probability pr. Conversely, mD

can be obtained from mM by removing the influence of
pr. So, there is a natural correspondence between mD and
mM . However, these two mass functions are essentially
different: mD measures the belief update and mM abso-
lute belief or weighted opinion. We propose a new combi-
nation rule for the mass functions mM ’s which incorporate
prior probabilities. The new combination rule is shown to
be parallel to Dempster’s rule for the mass functions mD’s
without the influence of prior probabilities. According to
the new combination rule, we provide two prediction-style
conditioning rules: one for certain conditioning knowledge
and the other for uncertain knowledge.

Our second motivation is to coordinate reasoning at the
credal and pignistic levels. We extend Smets’ TBM by
employing an extended Dempter model M to represent be-
liefs at the credal level and provide a corresponding gen-
eralized pignistic transformation Betp for this extended

TBM. We prove that the above two new conditioning rules
in M are consistent with this pignistic transformation. In
our extended TBM, since beliefs are represented by the in-
duced mass function mD of the Dempster part of M , they
are insensitive to the choice of frame. Pignistic probabili-
ties are derived not from the induced mass function mD of
the Dempster part of M but from the induced mass func-
tionmM , which have incorporated the prior probability pr.
We show by transforming the prior probability that pignis-
tic probabilities obtained in this way need not rely on the
choice of frame of discernment.

2 BASIC DEFINITIONS AND NOTIONS

Let Ω be a frame of discernment and A = 2Ω be the
Boolean algebra of events. A mass function (or mass
assignment) is a mapping m : A → [0, 1] satisfying∑

A∈Am(A) = 1. A mass function m is called normal
if m(∅) = 0. Without further notice, all mass functions in
this paper are assumed to be normal. A set is called focal
if m(A) > 0. A mass function m is called categorical if
it has only one focal set. A belief function is a function
bel : A → [0, 1] satisfying the following conditions:

1. bel(∅) = 0, bel(Ω) = 1; and

2. bel(
⋃n

i=1Ai) ≥
∑
∅6=I⊆{1,··· ,n}(−1)|I|+1bel(∩i∈IAi)

where Ai ∈ A for all i ∈ {1, · · · , n}.

A mapping f : A → [0, 1] is a belief function if and only if
its Möbius transform is a mass function [SHAFER, 1976].
In other words, if m : A → [0, 1] is a mass function,
then it determines a belief function bel : A → [0, 1]
as follows: bel(A) =

∑
B⊆Am(B) for all A ∈ A.

Moreover, given a belief function bel, we can obtain its
corresponding mass function m as follows: m(A) =∑

B⊆A(−1)|A\B|bel(B) for all A ∈ A. Intuitively, for a
subset event A, m(A) measures the belief that an agent
commits exactly to A, not the total belief bel(A) that an
agent commits to A. The corresponding plausibility func-
tion pl : 2Ω → [0, 1] is dual to bel in the sense that
pl(A) = 1 − bel(A) for all A ⊆ Ω. If m1 and m2 are two
mass functions on Ω induced by two independent evidential
sources, the combined mass function is calculated accord-
ing to Dempster’s rule of combination: for any C ⊆ Ω,

(m1 ⊕m2)(C) =

∑
A∩B=C m1(A)m2(B)∑
A∩B 6=∅m1(A)m2(B)

(1)

When an event E is observed, then the conditional mass
function of m is obtained according to Dempster condi-
tioning: for any C ⊆ Ω,

m(C | E) =

∑
B∩E=C m(B)

pl(E)
(2)



A transferable belief model M = 〈(Ω,m), Betp〉
[SMETS AND KENNES, 1994] is a two-level mental
model: the credal level where beliefs are represented by
a mass function m, and the pignistic level where decisions
are made by maximizing expected utility. Hence we must
build a probability distribution to compute these expecta-
tions. This probability distribution is based on the agent’s
beliefs, but should not be understood as representing the
agent’s beliefs. It is just a probability distribution derived
from the mass function through pignistic transformation
Betp. The pignistic transformation for the above mass
function m is given by

Betpm({ω}) :=
∑

ω∈B⊆Ω
1
|B|m(B) for any ω ∈ Ω.

Note that Betpm is a probability distribution on Ω and is
called a pignistic probability distribution. When the con-
text is clear, we usually use m to denote the belief model
M .

In order to show the sensitivity of pignistic transformation
to the choice of frames of discernment, we need to set up
a setting in terms of refinements and coarsenings of frames
of discernment. The idea that one frame Ω of discern-
ment is obtained from another frame Θ by splitting some
or all of the elements of Θ may be represented mathemat-
ically by specifying, for each θ ∈ Θ, the subset ω({θ}) of
Ω consisting of those possibilities into which θ has been
split. Such a mapping ω is called a refining. Whenever
ω : 2Θ → 2Ω is a refining, we call Ω a refinement of Θ
and Θ a coarsening of Ω. In this paper, we are particu-
larly interested in the case when Θ is the set of equivalence
classes with respect to some partition Π of Ω. So the map-
ping ω({Π(w)}) = Π(w) for each w ∈ Ω is a refinement
and Θ is a coarsening of Ω where Π(w) is the equivalence
class of w. We denote this special coarsening Θ of Ω as
Ω/Π. On the other hand, Ω/Π may be regarded as a subal-
gebra B of the powerset of Ω with the set of atoms forming
the partition Π of Ω. In the following sections, we won’t
distinguish between Ω/Π and 〈Ω,B〉. For each A ⊆ Ω, we
define B(A) :=

⋂
{B ∈ B : A ⊆ B}. In other words,

B(A) is the least element of B that contains A as a sub-
set and hence is called the upper approximation of A in
B. For example, Π = {{w1}, {w2, w3}, {w4, w5, w6}}
is a partition of Ω = {w1, w2, w3, w4, w5, w6}. Then
the associated subalgebra B consists of the sets

⋃
B⊆ΠB

with the atoms {w1}, {w2, w3}, and {w4, w5, w6} in B. If
A = {w1, w3, w5}, then B(A) = Ω.

Let 〈Ω,B〉 be a coarsening of Ω where B is a subalgebra
of the powerset 2Ω with its atoms forming a partition of
Ω. Each element B of B is a disjoint union of some atoms
in B. Suppose that bel : 2Ω → [0, 1] is a belief function
on Ω with m as its corresponding mass function. Then the
derived mass function mB on the coarsening 〈Ω,B〉 can be
obtained through the formula: for any B ∈ B, mB(B) =∑

B(A)=B,A⊆Ωm(A). Let belB denote the corresponding

belief function. It is easy to check that, for any B ∈ B,
belB(B) = bel(B). Intuitively, belB is the derived belief
function on the coarsening frame of discernment with less
distinctions. The beliefs in the same propositions in these
two different frames with different distinctions should be
the same as each other. In this sense, believing in terms
of belief functions is insensitive to the choice of frame of
discernment.

3 EXTENDED DEMPSTER MODELS

In order to motivate our work of extending Smets’ transfer-
able belief models with probabilistic priors, we first repre-
sent belief functions through Dempster models.

3.1 EXTENDED DEMPSTER MODELS

Definition 3.1 A Dempster model is a tuple
〈(U,Pr),Γ,Ω〉 where (U,Pr) is a probability space
and Γ is a multivalued mapping from U to Ω, i.e., a
mapping from U to 2Ω, the powerset of Ω. �

The multivalued mapping Γ is essentially a random subset
on Ω, and it induces a mass function m on Ω: m(A) :=
Pr(Γ−1(A)) for any A ⊆ Ω. We have the correspond-
ing belief function Bel(A) =

∑
B⊆A Pr(Γ

−1(B)). Con-
versely, any mass function on Ω can be represented as the
induced mass function of some Dempster model. Before
we extend Dempster models with probabilistic priors on Ω,
we use the well-known three prisoner paradox to show the
necessity of the probabilistic priors.

Example 3.2 (The Three Prisoners Paradox
[HALPERN, 2005]) Of three prisoners a, b and c, only
one of them is to be executed but a does not know which
one. He therefore says to the jailer, “Since either b and c
is certainly going to be declared innocent, you will give
me no information about my chances if you give me the
name of one man, either b or c, who is going to be freed.”
Accepting this argument, the jailer truthfully replies,“b will
be freed.” Thereupon a feels sad because of the Bayesian
conditioning on U := {a, b, c}: before the jailer replied,
his own chances of being executed was one-third, but
afterwards there are only two people, himself and c, who
could be the one being executed, and so his chances of
execution increases and is one-half.

Is a justified in believing that his chances of being exe-
cuted have increased? Now we formulate this problem in
the framework of a Dempter model. Consider the set of
all possible outcomes: Ω := {(a, b), (a, c), (b, c), (c, b)}
where, for example, (a, b) means that a is to be exe-
cuted and the jailer says that b will be freed. Suppose
that at first a assumes that the initial decision as to who
will be executed is made at random but assumes nothing
about how the jailer will act except that he will tell the



truth. Let the random choice of who will be executed be
represented by the probability space (U,Pr) where Pr
is the uniform distribution on U . A multivalued map-
ping Γ : U → 2Ω for delineating the possible outcomes
when a, b or c is to be executed is given by: Γ(a) =
{(a, b), (a, c)},Γ(b) = {(b, c)},Γ(c) = {(c, b)}. So the
induced mass function m at the credal level is given by:
m({(a, b), (a, c)}) = m({(b, c)}) = m({(c, b)}) = 1

3 .
Let Ea denote the event that a will be executed and Jb the
event that the jailer says that b will be freed. Then Ea =
{(a, b), (a, c)} and Jb = {(a, b), (c, b)}. According to
Dempster’s rule of conditionalization, we get thatBel(Ea |
Jb) = Pl(Ea | Jb) = 1

2 . So Dempster’s conditioning
provides the same answer as that by the above a’s condi-
tioning on the “naive” space U according to Bayesian rule
[GRÜNWALD AND HALPERN, 2003]. By applying Smets’
pignistic transformation, we obtain its probability distribu-
tion at the pignistic level: Betpm(a, b) = Betpm(a, c) =
1/6 and Betpm(b, c) = Betpm(c, b) = 1/3.

More generally, we may assume that the jailer will tell the
truth and a’s knowledge about the jailer’s preference over
his possible choices is formulated by a probabilistic prior
on Ω, which is independent of the assumption that the ex-
ecuted prisoner is chosen at random. Now we extend stan-
dard Dempster models by incorporating this kind of proba-
bilities and express the induced beliefs at the credal level.

Definition 3.3 An extended Dempster-model M =
〈(U,Pr),Γ, (Ω, pr)〉 is a Dempster model 〈(U,Pr),Γ,Ω〉
plus a prior probability pr on Ω where pr is independent of
Γ with respect to Pr. �

Now we explain this independence through a representa-
tion result of extended Dempster models.

Lemma 3.4 Every extended Dempster model M =
〈(U,Pr),Γ, (Ω, pr)〉 can be represented as a standard
Dempster model 〈(U ′, P r′),Γ′,Ω〉 with an additional
mapping γ′ from U ′ to Ω for some probability space
(U ′, P r′) and some multivalued mapping Γ′ from U ′ to Ω.

Proof. For a given extended Dempster model M =
〈(U,Pr),Γ, (Ω, pr)〉, we define a new probability space
(U ′, P r′), which is essentially the Cartesian product of
(U,Pr) and (Ω, pr), as follows:

• U ′ = U × Ω;

• Pr′(x, y) = Pr(x)pr(y) for any (x, y) ∈ U ′.

Further we define a multivalued mapping Γ′ : U ′ → 2Ω

and a mapping γ′ : U ′ → Ω as follows:

• Γ′(x, y) = Γ(x),

• γ′(x, y) = y for any (x, y) ∈ U ′.

It is easy to check that Pr′((Γ′)−1(A)) = Pr(Γ−1(A)),
and Pr′((γ′)−1(A)) = pr(A) for any A ⊆ Ω. QED

So, in the following sections of this paper, we won’t dis-
tinguish these two forms of extended Dempster models
and will sometimes write an extended Dempster model as
M = 〈(U,Pr),Γ, γ,Ω〉 where 〈(U,Pr),Γ,Ω〉 is a stan-
dard Dempster model and γ is a mapping from U to Ω.
In M , the prior probability pr is obtained by pr(A) =
Pr({u ∈ Ω : γ(u) ∈ A}). In this paper, Γ = A is short-
hand for the event {u ∈ U : Γ(u) = A}, γ ∈ A for
{u ∈ U : γ(u) ∈ A} and γ ∈ Γ denotes {u ∈ U : γ(u) ∈
Γ(u)}. In M , the independence of the prior probability pr
of the multivalued mapping Γ with respect to Pr means the
independence of γ and Γ: for any subsets A and B of Ω,

Pr((Γ = A) ∩ (γ ∈ B)) = Pr(Γ = A)Pr(γ ∈ B).

Just as in a Dempster model, we associate each extended
Dempster model M = 〈(U,Pr),Γ, γ,Ω〉 with a mapping
mM : 2Ω → [0, 1] which incorporates the mapping γ as
follows:

mM (A) := Pr(Γ = A | γ ∈ Γ) (3)

It is easy to see that, since Γ and γ are independent with
respect to Pr, Pr(γ ∈ Γ) =

∑
A⊆Ω Pr((γ ∈ A) ∩ (Γ =

A)) =
∑

A⊆Ω Pr(γ ∈ A)Pr(Γ = A). And Pr(γ ∈ Γ) is
used to measure the degree of consistency of the evidence
represented by Γ with the prior represented by γ. It follows
that

∑
A⊆Ω

mM (A) =
∑
A⊆Ω

Pr(Γ = A | γ ∈ Γ)

=
∑
A⊆Ω

Pr((Γ = A) ∩ (γ ∈ Γ))

Pr(γ ∈ Γ)

=
∑
A⊆Ω

Pr((Γ = A) ∩ (γ ∈ A))

Pr(γ ∈ Γ)

=
∑
A⊆Ω

Pr(Γ = A)Pr(γ ∈ A)

Pr(γ ∈ Γ)

= 1

So such a defined mapping mM is actually a mass function
on Ω and is called the induced mass function of M .

Next we show that extended Dempster models are as ex-
pressive as standard Dempster models in the sense that any
mass function m on Ω can be represented as the induced
mass function mM of some extended Dempster model M .
We prove a lemma which implies this expressiveness result.

Lemma 3.5 For any mass function m and probability dis-
tribution pr on Ω, there is an extended Dempster model
M = 〈(U,Pr),Γ, γ,Ω〉 such that



1. mM (A) = m(A) for each A ⊆ Ω where mM is the
induced mass function of M ;

2. pr(A) = Pr(γ−1(A)) for any A ⊆ Ω.

Proof. Given a mass function m and a probability function
pr on Ω, we define a mappingmD : 2Ω → [0, 1] as follows:
for any A ⊆ Ω,

mD(A) =

m(A)
pr(A)∑

A⊆Ω
m(A)
pr(A)

(4)

Since
∑

A⊆ΩmD(A) = 1, mD is a mass function
on Ω. It follows that there is a standard Demp-
ster model 〈(UD, P rD),ΓD,Ω〉 such that mD(A) =
PrD(Γ−1

D (A)) for any A ⊆ Ω. From the proof of
Lemma 3.4, we know that the extended Dempster model
〈(UD, P rD),ΓD, (Ω, pr)〉with the prior probability pr can
be represented as a Dempster model 〈(U,Pr),Γ,Ω〉 with γ
as a mapping from U to Ω. For this equivalent representa-
tion M := 〈(U,Pr),Γ, γ,Ω〉 of the extended model, we
have that

• Pr(Γ = A) = Pr(Γ−1(A)) = PrD(Γ−1
D (A)) =

mD(A);

• Pr(γ ∈ A) = Pr(γ−1(A)) = pr(A).

It follows that

Pr(γ ∈ Γ) =
∑
A⊆Ω

Pr(Γ = A)Pr(γ ∈ A)

=
∑
A⊆Ω

mD(A)pr(A)

=
∑
A⊆Ω

m(A)
pr(A)∑

A⊆Ω
m(A)
pr(A)

pr(A)

=

∑
A⊆Ωm(A)∑
A⊆Ω

m(A)
pr(A)

=
1∑

A⊆Ω
m(A)
pr(A)

So we have that the induced mass function mM :

mM (A) = Pr(Γ = A | γ ∈ Γ)

=
Pr(γ ∈ A)Pr(Γ = A)

Pr(γ ∈ Γ)

= m(A).

QED

From the above proof, we know that, for any extended
Dempster model M = 〈(U,Pr),Γ, (Ω, pr)〉, there are two
induced mass functions on Ω: the induced mass function

mD(A)(= Pr(Γ = A)) in the part D := 〈(U,Pr),Γ,Ω〉,
which is actually a standard Dempster model, and the in-
duced mass function mM (A)(= Pr(Γ = A | γ ∈ Γ))
of M . mD measures the belief update and is called
basic certainty value, while mM measures absolute be-
lief. This distinction is crucial to our following exten-
sion of Smets’ transferable belief models with proba-
bilistic priors. In our extended belief models, we use
mass functions mD for believing and mass functions mM

for decision-making. Mass functions for believing are
based on the theory of evidence while mass functions for
decision-making are essentially Bayesian and hence con-
sistent with pignistic transformation. Basic certainty values
are used in the probabilistic interpretation of CF in MYCIN
[HECKERMAN, 1985]. For a given extended Dempster
model M = 〈(U,Pr),Γ, (Ω, pr)〉, there is a one-to-one
correspondence (see Eqs.(3) and (4)) between the induced
mass function mM of M and the induced mD in the
standard-Dempster-model part D = 〈(U,Pr),Γ,Ω〉. As-
sume that pr is given. The induced mass function mM

can be expressed in terms of mD as follows: mM (A) =
pr(A)mD(A)∑

A⊆Ω pr(A)mD(A) . We denote this expression as mM =

mD ◦pr. Moreover, mD can be expressed in terms ofmM :
mD(A) = mM (A)/pr(A)∑

A⊆Ω mM (A)/pr(A) , which is denoted asmD =

mM/pr. From the proof of Lemma 3.5, we know that the
two operations ◦ and / are reverse to each other in the sense
that (mD ◦ pr)/pr = mD and (mM/pr) ◦ pr = mM .

Let M1 = 〈(U1, P r1),Γ1, (Ω, pr)〉 and M2 =
〈(U2, P r2),Γ2, (Ω, pr)〉 be two extended Dempster mod-
els representing two independent bodies of evidence on
the same probability space (Ω, pr). Let mD1

and mD2
be

the two induced mass functions for belief updates in the
standard-Dempster-model parts D1 = 〈(U1, P r1),Γ1,Ω〉
and D2 = 〈(U2, P r2),Γ2,Ω〉, respectively. As in Demp-
ster models, mD1

and mD2
are combined according to the

well-known Dempster’s rule: for any C ⊆ Ω,

(mD1 ⊕D mD2)(C) =

∑
A1∩A2=C mD1

(A1)mD2
(A2)

KD

(5)

where KD =
∑

A1∩A2 6=∅mD1
(A1) ·mD2

(A2) is the nor-
malization factor. So the combination (mD1

⊕D mD2
)

also measures belief update for the same probability space
(Ω, pr). Let mM1 and mM2 denote the two induced mass
functions for absolute belief on the extended Dempster
models M1 and M2, respectively. Now we provide a new
combination rule for the extended Dempster models as fol-
lows: for any C ⊆ Ω,

(mM1 ⊕M mM2)(C)

=

∑
A1∩A2=C

pr(A1∩A2)
pr(A1)Pr(A2)mM1

(A1)mM2
(A2)

KM
(6)



where

KM :=
∑

A1∩A2 6=∅
pr(A1∩A2)

pr(A1)Pr(A2)mM1
(A1)mM2

(A2)

is the normalization factor. The following proposition says
that the new combination ⊕M of mass functions for ab-
solute beliefs is consistent with the Dempster combination
⊕D of their corresponding mass functions for belief up-
dates.

Proposition 3.6 The combination mM1 ⊕M mM2 of mM1

and mM2 for absolute belief satisfies the following prop-
erty:

mM1 ⊕M mM2 = (mD1 ⊕D mD2) ◦ pr. (7)

Proof. For any A ⊆ Ω,∑
A⊆Ω[pr(A)

∑
A1∩A2=AmD1

(A1)mD2
(A2)]

=
∑

A⊆Ω[pr(A)
∑

A1∩A2=A

mM1
(A1)

pr(A1)

K1

mM2
(A2)

pr(A2)

K2
]

=
∑

A⊆Ω[
∑

A1∩A2=A
pr(A)

pr(A1)pr(A2)

mM1
(A1)

K1

mM2
(A2)

K2
]

where K1 =
∑

A⊆Ω
mM1

(A)

pr(A) and K2 =
∑

A⊆Ω
mM2

(A)

pr(A) .
The first equality comes from Eq.(3) and the second from
Eq.(4). So we have

((mD1
⊕D mD2

) ◦ pr)(A)

=
(mD1 ⊕D mD2)(A)pr(A)∑

A⊆Ω(mD1
⊕D mD2

)(A)pr(A)

=
pr(A)

∑
A1∩A2=AmD1(A1)mD2(A2)∑

A⊆Ω[pr(A)
∑

A1∩A2=AmD1
(A1)mD2

(A2)]

=

∑
A1∩A2=A

pr(A)
pr(A1)pr(A2)

mM1
(A1)

K1

mM2
(A2)

K2∑
A⊆Ω[

∑
A1∩A2=A

pr(A)
pr(A1)pr(A2)

mM1
(A1)

K1

mM2
(A2)

K2
]

=

∑
A1∩A2=A

pr(A)
pr(A1)pr(A2)mM1(A1)mM2(A2)∑

A⊆Ω[
∑

A1∩A2=A
pr(A)

pr(A1)pr(A2)mM1
(A1)mM2

(A2)]

=(mM1
⊕M mM2

)(A)

QED

3.2 TWO CONDITIONING RULES

There are two types of conditioning in Bayesian proba-
bility theory [DUBOIS AND DENOEUX, 2012]. The first
one is known as revision. Given a probability function
Pr (which usually is a subjective probability), one learns
a hard evidence in terms of a sure event C. The prob-
lem is to determine the new subjective probability mea-
sure Pr′, such that Pr′(C) = 1, according to some min-
imal change principle. The other one is called predic-
tion. When dealing with prediction, we have at our dis-
posal a model of uncertainty in the form of a probability

measure Pr issued from a representative set of statistical
data. Moreover, given the knowledge C on the current
state of the world, we combine this knowledge with the
belief model Pr and predict some property A of the cur-
rent world with its associated degree of belief Pr(A|C).
For belief functions, however, these two types of condi-
tioning are essentially different and the mainstream liter-
ature is a revision theory of handling singular uncertain
evidence [SHAFER, 1976], not so much an extension of
Bayesian statistical prediction, although Dempster’s pio-
neering works on upper and lower probabilities are moti-
vated by statistical reasoning. The well-known Dempster’s
rule of conditioning, which is a special case of Dempster’s
rule of combination, can be viewed as a revision process.
In general, prediction cannot be achieved using Demp-
ster conditioning [DUBOIS AND DENOEUX, 2012]. Fa-
gin and Halpern [FAGIN AND HALPERN, 1991] and Jaf-
fray [JAFFRAY, 1992] provided two prediction-style con-
ditioning rules which generalize Bayesian prediction by
interpreting belief functions as inner measures and lower
probabilities, respectively.

In this paper, we provide a new prediction-style condi-
tioning rule which is consistent with the revision style
of conditioning performed according to Dempster’s rule
of conditioning. For a given extended Dempster model
M = 〈(U,Pr),Γ, (Ω, pr)〉, the prediction conditioning
is carried out for the induced mass function mM while
the revision rule is for the induced mass function mD of
the part D = 〈(U,Pr),Γ,Ω〉 without the prior proba-
bility pr. These two conditioning are consistent in the
sense of Proposition 3.6 when the certain knowledge C
is represented by a categorical mass function with C as
its only focal set. Our following rule for prediction-style
conditioning provides a formula of how to compute con-
ditional belief mM (·|C) on the knowledge C. Generally,
for each E ⊆ Ω, we transfer a proportion rE · mM (E),
where 0 ≤ rE ≤ 1, to E ∩ C and (1 − rE) · mM (E)
to E ∩ C [DUBOIS AND DENOEUX, 2012]. In particular,
whenE∩C = ∅, we set rE = 0, which contributes nothing
toE∩C; whenE ⊆ C, we set rE = 1 and leave the whole
mM (E) to E. According to this idea, we obtain a general
formula for conditioning:

m(A|C) :=
∑

E∩C=A rE ·mM (E)∑
E∩C 6=∅ rE ·mM (E) .

It is easy to check that

• m(A|C) is exactly the Dempster rule of conditioning
in the case when rE = 1 iff E ∩ C 6= ∅;

• m(A|C) is exactly the geometric rule of conditioning
in the case when rE = 0 iff E 6⊆ C.

In this paper, we define a new rule for prediction-style con-
ditioning between the above two by setting rE = pr(E∩C)

pr(E) :



mM (A|C) =
∑

E∩C=A
pr(E∩C)

pr(E)
·mM (E)

K

where K =
∑

E∩C 6=∅
pr(E∩C)
pr(E) · mM (E) is a normaliza-

tion factor. It is easy to see that the conditioning mM (·|C)
is a special case of the new combination rule for absolute
beliefs (Eq.(6)) when the knowledge C is represented by a
categorical mass function with C as its only focal set.

Example 3.7 (Continue with Example 3.2) Assume that
the jailer’s preference over possible choices according
to a’s knowledge is represented by a uniform distribu-
tion pr on Ω. We obtain the induced mass function
mM : mM ({(a, b), (a, c)}) = 1/2, mM (b, c) = 1/4,
mM (c, b) = 1/4 and hence the corresponding beliefs
BelM (Ea|Jb) = 1/2 = PlM (Ea|Jb).

By using our definition of conditioning rule mM (·|C) on
the certain knowledge C, we define its corresponding Jef-
frey’s rule when the prior knowledge is uncertain and is
represented by a probability function pre on a coarsening
of Ω: (Ω,B) where B is a subalgebra of the powerset 2Ω

with its atoms forming a partition of Ω. Let At(B) denote
the set of atoms of B. A mass function m′M on (Ω, 2Ω)
is said to be obtained from mM by belief kinematics on
(Ω,B) if, for any B ∈ At(B),

mM (A|B) = m′M (A|B) for all A ⊆ Ω. (8)

m′M is called the mass function proposed by Jeffrey’s rule
if it is obtained as follows: for any A ⊆ Ω,

m′M (A) =
∑

B∈At(B)

mM (A|B)pre(B), (9)

Intuitively, the above principle of belief kinematics on
(Ω,B) says that, even though mM and m′M may disagree
on propositions on (Ω,B), they agree on their relevance to
every proposition A ⊆ Ω.

4 EXTENDED TRANSFERABLE BELIEF
MODELS WITH PROBABILISTIC
PRIORS

Definition 4.1 LetmM be the induced mass function of an
extended Dempster model 〈(U,Pr),Γ, (Ω, pr)〉. Its associ-
ated pignistic probability functionBetpmM

on Ω is defined
as follows: for any A ⊆ Ω,

BetpmM
(A) =

∑
E⊆Ω

mM (E)
pr(E ∩A)

pr(E)
(10)

The transformation betweenmM andBetpmM
is called the

generalized pignistic transformation. When the context is
clear, we simply call it pignistic transformation. �

Since mM (A) = mD(A)pr(A)∑
E⊆Ω mD(E)pr(E) , the pignistic

probability function can be expressed in terms of the
mass function mD for belief updates: BetpmM

(A) =∑
E⊆Ω mD(E)pr(E∩A)∑

E⊆Ω mD(E)pr(E) . Note that Smets’ pignistic transfor-
mation is not a special case of the above defined general-
ized pignistic transformation when the prior probability pr
is the uniform distribution on Ω.

Example 4.2 (Continue with Example 3.7) We may com-
plete the above partial model 〈Ω,m〉 and obtain a prob-
abilistic model according to the uniform distribution pr.
When a is to be executed, the “chances” of the jailer’s say-
ing b or c are equal. So a will distribute the mass m(Ea)
equally between (a, b) and (a, c). Then we have m(b, c) =
m(c, b) = 1/3 and m(a, b) = m(a, c) = 1/6, which is
exactly the probability function according to Smets’ pig-
nistic transformation. Also we obtain the corresponding
beliefs Bel(Ea|Jb) = 1/3 = Pl(Ea|Jb), which is the
same as expected according to Bayesian reasoning. How-
ever, this distribution is not the same as the one obtained
according to the above generalized pignistic transformation
in Eq.(10). Instead, BetpmM

(a, b) = BetpmM
(a, c) =

BetpmM
(c, b) = BetpmM

(b, c) = 1/4.

Assume that m1, · · · ,ml are induced mass functions on
(Ω, pr) and p1, · · · , pl are non-negative numbers such that∑l

i=1 pi = 1. It is interesting to note that pignistic trans-
formation Betp satisfies the following linearity property:

Betp(

l∑
i=1

pimi) =

l∑
i=1

piBetp(mi). (11)

This property is both the major requirement that led
Smets to the solution for the pignistic transformation
[SMETS, 2005] and the crucial step to show the commu-
tativity of the diagrams in the following Theorem 4.5.
In addition to the linearity property, Smets proposed
other requirements: credal-pignistic link, projectivity,
continuity, efficiency, anonymity and impossible event
[SMETS, 2005]. These requirements lead to the unique
solution of Smets’ pignistic transformation. One can
check that our generalized pignistic transformation meets
all these requirements except the anonymity one. The
anonymity requirement rephrases a general form of insuf-
ficient reason principle and hence is equivalent to the con-
straint that the prior probability in the extended Dempster
model is uniform.

Definition 4.3 An extended transferable belief model
(ETBM) M = 〈M,Betp〉 is a two level mental model: the
credal level where beliefs are represented by an extended
Dempster model M = 〈(U,Pr),Γ, (Ω, pr)〉, and the pig-
nistic level where the pignistic probability function is ob-
tained from the induced mass function mM of M by the
generalized pignistic transformation Betp . �



Smets’ transferable belief model is a special case of the
above defined extended transferable belief model when the
prior probability is uniform.

Theorem 4.4 Let Condp and Cond denote the above de-
fined prediction style conditioning operator for mass func-
tions and the standard one for Bayesian probability func-
tions, respectively. We have that the following diagram
commutes:

(mM , C)

Betp

��

Condp
// mM (·|C)

Betp

��
(Pr,C)

Cond // Pr(·|C)

Theorem 4.5 LetmM , pre andm′M be as in Eq.(9). Prob-
ability measures Pr and Pr′ denote the pignistic probabil-
ity functions of mM and m′M , respectively. Then the fol-
lowing diagram commutes:

(mM , pre)

Betp

��

J // m′M

Betp

��
(Pr, pre)

J // Pr′

where the first J is the Jeffrey conditioning for mass func-
tions as defined in Eq.(9) and the second J denotes the
standard Jeffrey conditioning in Bayesian probability the-
ory. In other words, our Jeffrey’s rule is nothing but the
linearity property in Eq.(11).

The above two theorems tell us that in extended transfer-
able belief models the two new conditioning rules are con-
sistent with pignistic transformation; in other words, the
following two strategies are equivalent: we can revise the
pignistic probabilities which are transformed from the prior
beliefs with Bayes rule applied to the (certain or uncertain)
knowledge, or revise the prior beliefs at the credal level by
the above two conditioning rules and recompute the pignis-
tic transformation.

However, from Example 1.1, we know that marginaliza-
tion or coarsening is inconsistent with pignistic transforma-
tion. That is to say, pignistic transformation is sensitive to
the choice of frame of discernment, which causes the par-
tial dissociation between the credal and pignistic levels. In
the remainder of this section, we show that, in an extended
TBM, these two levels can be coordinated by transforming
its prior probability function.

Let M = 〈(U,Pr),Γ, (Ω, pr)〉 be a given extended Demp-
ster model. Let mM and mD denote the induced mass
functions for absolute beliefs and belief updates, respec-
tively. Let (Ω,B) be a coarsening of Ω where B is a
subalgebra of the powerset of Ω with its atoms C :=
{B1, · · · , Bn} forming a partition of Ω. So each element

of B is a disjoint union of some atoms from the basis
C. Correspondingly, the coarsening ΓC of the multival-
ued mapping Γ must be defined in the following way: for
any u ∈ U , ΓC(u) = B(Γ(u)) where B denotes the op-
eration of taking upper approximation in the subalgebra
B. The natural associated prior probability function prC0
in the coarsening frame is given by prC0 (B) := pr(B)
for all B ∈ B. Consider the coarsened extended Demp-
ster model MC

0 = 〈(U,Pr),ΓC , ((Ω,B), prC0 )〉. It is easy
to check that the associated belief function for belief up-
date remains unchanged: for any B ∈ B, (BelD)B(B) =
BelD(B) where BelD and (BelD)B are the belief func-
tions corresponding to the mass functions mD and (mD)B,
respectively. But the pignsitic probabilities may change:
Betpm

MC
0

(B) 6= BetpmM
(B) for some B ∈ B.

In order to coordinate pignistic probabilities with coars-
ening, we need to transform the prior probability func-
tion prC0 to a new prior probability prC on the coarsen-
ing (Ω,B) such that the pignistic probabilities on the new
coarsening frame MC := 〈(U,Pr),ΓC , ((Ω,B), prC)〉
are the same as those on the original extended Demp-
ster model M(= 〈(U,Pr),Γ, (Ω, pr)〉): for all Bi ∈ C,
BetpmM

(Bi) = BetpmMC
(Bi). This equality is equiva-

lent to the following one:∑
B∈B(mD)B(B)prC(B ∩Bi)∑

B∈B(mD)B(B)prC(B)
= BetpmM

(Bi). (12)

Let Pl(Bi) denote the sum
∑

Bi⊆B(mD)B, where 1 ≤
i ≤ n. It is easy to see that

∑
B∈B(mD)B(B)prC(B) =∑

1≤i≤n pr
C(Bi)Pl(Bi) and

∑
B∈B(mD)B(B)prC(B ∩

Bi) = prC(Bi)Pl(Bi). So the equality (12) is reduced to
the following form: for any 1 ≤ i ≤ n,

prC(Bi)∑
1≤i≤n pr

C(Bi)Pl(Bi)
=
BetpmM

(Bi)

Pl(Bi)
. (13)

In this equation, prC(Bi) is the only unknown quantity.
Since there are n equations with n unknowns in the group
G of Eq.(13), this group has at least one solution. But we
don’t know whether this solution is nonnegative or not.
Now we provide a constructive solution to G. Let K de-
note

∑
B pr

C(Bi)Pl(Bi) and ai =
BetpmM

(Bi)

Pl(Bi)
. The

above group of equations can be simplified as follows:
prC(Bi) = aiK, 1 ≤ i ≤ n. Since

∑
1≤i≤n pr

C(Bi) = 1,
we get the following equation by adding the equations in
G together: 1 = (a1 + a2 + · · · + an)K. So we get:
K = 1∑

1≤i≤n

BetpmM
(Bi)

Pli

. Finally we solve G and obtain

the following solutions: for any 1 ≤ i ≤ n,

prC(Bi) =

BetpmM
(Bi)

Pl(Bi)∑
1≤i≤n

BetpmM
(Bi)

Pli(Bi)

. (14)



Theorem 4.6 The above defined coarsening frame MC =
〈(U,Pr),ΓC , ((Ω,B), prC)〉 with the prior probability
prC given in Eq.(14) is consistent with pignistic transfor-
mation. Let mmMC

be the induced mass function of MC

and mDC be the induced mass function of the Dempster
part DC := 〈(U,Pr),ΓC , (Ω,B)〉. Then we have:

• (mD)B(B) = mDC (B);

• BetpmMC
(B) = BetpmM

(B) for all B ∈ B.

So prC serves as a coordinator between believing repre-
sented by mDC (= (mD)B) and betting by BetpmMC

on
MC by recording the sensitivity of the pignistic probabili-
ties derived frommDC . Pignistic transformation provides a
credal-pignistic link (Assumption 3.1 in [SMETS, 2005]);
prC here offers another credal-pignistic link between pig-
nistic probabilities (BetpmM

(Bi)) and plausibility Pl(Bi)
(defined in terms of mD) for belief update.

As for Example 1.1, according to the above for-
mulation, we have that BetpmD

M
(D1) = 1

3 and
BetpmD

M
({D2, D3}) = 2

3 . So, since pignistic probabilities
are insensitive to the choice of frame, BetpmC

M
(C1) = 1

3

andBetpmC
M

(C2) = 2
3 . Moreover, we get that Pl(C1) = 1

and Pl(C2) = 1. Finally we obtain the prior probability on
the frame ΩC : prC(C1) = 1

3 and prC(C2) = 2
3 .

5 RELATED WORKS AND
CONCLUSIONS

Yen ([YEN, 1986]) extended the multivalued mapping in
the DS theory to a probabilistic one that uses conditional
probabilities to express the uncertain associations. He also
proposed a combination similar to our rule in Eq.(6) and
discussed its relationship to Dempster’s rule of combina-
tion. Moreover, he distinguished between mass functions
for belief update and those for absolute beliefs. Such
a distinction motivated our definition of generalized pig-
nistic transformation in extended TBM. But his frame-
work differs from ours in that Yen considered proba-
bilistic multivalued mapping while our probabilistic ex-
tension is about prior knowledge base. Our method of
combining evidence with prior knowledge is similar to
[MAHLER, 1996, FIXSEN AND MAHLER, 1997]. Mahler
proposed a similar combination rule and investigated its re-
lationship with Bayesian parallel combination. More im-
portantly, he pointed out the connection between his com-
bination rule and pignistic transformation. He extended DS
theory mainly from the perspective of random sets while
we stick to the Dempster-model approach. Our work es-
sentially differs from those papers in that we focus on both
the partial dissociation of betting from believing and the
(in)sensitivity of pignistic probabilities to the choice of
frame of discernment. Wilson [WILSON, 1993] did study

the sensitivity problem of pignistic probabilities in TBM.
But he stayed within the DS theory without considering any
probabilistic extension.

In order to translate DS models into probability models
which are consistent with belief-function semantics (espe-
cially Dempster’s rule of combination), Cobb and Shenoy
[COBB AND SHENOY, 2006] proposed another probabil-
ity transformation method called plausibility transforma-
tion as an alternative to pignistic transformation. Plau-
sibility transformation enjoys many interesting proper-
ties. The most important one is the so-called regular-
ity property, i.e., plausibility transformation turns Demp-
ster combination of belief functions into “pointwise” com-
bination of probability functions. But, as Cobb and
Shenoy [COBB AND SHENOY, 2006] pointed out, another
important operation in DS belief networks, coarsening
(or marginalization), is not invariant under this transfor-
mation. In fact there is no probability transformation
for DS models with Dempster’s rule of combination that
enjoys the regularity property and makes coarsening in-
variant [COBB AND SHENOY, 2006]. For a more com-
pressive survey of probability transformation, one may
refer to [CUZZOLIN, 2015]. There are many propos-
als for Jeffrey’s rule in DS theory [MA ET AL., 2010,
MA ET AL., 2011, SMETS, 1993, ZHOU ET AL., 2014].
But none of these Jeffrey’s rules was proposed from the
perspective of pignistic transformation as in this paper. Our
proposed conditioning rules are consistent with pignistic
transformation.

In order to focus on pignistic transformation, we simplify
the presentation in this paper by taking a closed world as-
sumption, which is different from Smets’ open world as-
sumption for TBM. Moreover, here we choose to represent
beliefs with Dempster models, which is opposed to Smets’
TBM without probabilistic interpretation. So we would
like to investigate the extension of TBM with probabilistic
priors under the open-world assumption and its probabilis-
tic interpretation.
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