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We consider the spectral response of moving diffraction gratings, in which the incident light extends over
a broad angular range and where the diffracted light is observed from a specific angle. We show that the
dispersion relation between the frequency perceived by an observer who is looking at a moving grating

and the incident frequency can exhibit some unique features, such as a flat band (i.e., a local minimum).

An observer can see the light diffracted into a non-specular diffraction order from a multitude of incident
light rays and the angle of incidence of each ray is frequency-dependent; as a consequence, when the
grating is moving, each incident ray experiences a Doppler shift in frequency that depends on its angle of
incidence. We find that remarkable features appear near a Wood anomaly where the angle of incidence,
for a given diffraction angle, can change very quickly with frequency. This means that light of multiple
frequencies and incident from multiple angles can be mixed by the motion of the grating into the same
diffracted ray and their frequencies can be compressed into a narrower range. The existence of a flat band
means that a moving grating can be used as a device to increase the intensity of the perceived diffracted
light due to spectral compression. The properties of a grating in motion in sunlight can also be relevant
to the study of naturally occurring gratings which are typically in oscillatory motion. © 2016 Optical Society

of America

OCIS codes:

http://dx.doi.org/10.1364/A0. XX XXXXXX

(050.1950) Diffraction gratings; (190.2055) Dynamic gratings; (290.0290) Scattering; (350.6050) Solar energy.

1. INTRODUCTION

The Doppler shift has been successfully used to understand
the frequency shift generated by moving reflectors, such as
a mirror [1], a moving grating [2] or a grating acousto-optic
modulator [3]. In many applications, diffraction gratings are
typically operated at a fixed incidence angle (and a fixed non-
specular diffraction order). For instance grating spectrometers
are used to split a polychromatic ray (at a given incidence angle)
into several diffracted monochromatic rays which propagate
in different directions; the angle of the propagation direction
depends on the frequency and can change very quickly with
the frequency, near a Wood anomaly.

Here we are interested in the problem of an observer who
is watching a diffracted ray from a moving grating (at a fixed
non-specular diffraction order). Since at any given time the
observer’s viewing angle has a fixed value, this problem can
be seen as a reciprocal situation of the case where a single
polychromatic ray is incident on a grating: here the observer
can only see the diffracted fields which are propagating in a

given direction; the corresponding incident rays are coming
from several different directions and are merged into a single
diffracted ray (see Fig. 1). The incidence angle of each incident
ray is frequency-dependent and, again, can change rapidly with
frequencies near a Wood anomaly. In practice, polychromatic
continuous diffuse light (e.g., direct sunlight, diffuse skylight)
can readily provide a light ray with the required incidence
angle.

The Doppler shift depends on the angle of incidence and
the fact that the angle of incidence is frequency-dependent
implies that, when the grating is moving, there is variability
in the frequency shift experienced by each incident frequency.
The main purpose of the current work is to investigate the
properties of the Doppler shift created by a moving grating
under a frequency-dependent incidence angle. The angular
dispersion of the incidence angle with respect to the frequency
can be very high near a Wood anomaly. As a consequence, the
Doppler dispersion relation (i.e., the observed frequency as a
function of the incident frequency) can be expected to exhibit
some interesting non-linear behavior. In particular, we will look
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for conditions which lead to the existence of a flat band. When
a band of incident frequencies inside a flat band is Doppler-
shifted into a narrower band of observed frequencies (spectral
compression), from energy conservation, we can expect that
the observer will perceive an increased intensity of the light
diffracted by a moving grating compared to the light diffracted
by a stationary grating.

The properties of a grating in motion in polychromatic
diffuse light can also be relevant to the study of natural
diffraction gratings as they seem to be placed on surfaces
designed to undergo oscillatory motion, for instance, the
wings of butterflies, leaves and flowers of plants (wind-
induced oscillations). Many species also display rapid cycles
of movement of iridescent colors in ritualized dances during
courtship, e.g., bird-of-paradise [4] and peacock spider [5].
Since the work of Robert Hooke [6] and Isaac Newton [7], it
is known that the iridescent colors from some animals and
plant species are generated by grating structures, although the
functional purpose of the oscillations of natural gratings is still
not well understood [8].

For the numerical simulation of moving gratings, we
will consider a grating geometry based on the periodic
nanostructure found in the wing scales of a Morpho rhetenor
butterfly. Our choice is motived by several reasons. First the
blue nanostructure of the Morpho rhetenor are one of the most
studied butterfly nanostructures. This nanostructure can also
be modelled as a one-dimensional diffraction grating, leading
to a substantial reduction of the computer simulation time and
memory usage. The Morpho rhetenor is also well-known for
its ability to produce a bright blue color; for instance, in 1864
the English naturalist and explorer Henry Bates wrote that a
Morpho rhetenor butterfly flapping its wings in the sunlight can
produce a blue flash that “is visible a quarter of a mile off” [9]
and it has been reported that this flash can even be seen from
a low-flying aircraft [see p. 218 10]. The relatively long range
of visibility of the Morpho butterfly wing flap is consistent with
our prediction that the motion of a grating under sunlight can
induce a strong reflection due to the spectral compression and
so the grating model for the Morpho rhetenor nanostructure is an
appropriate example for a case study.

The paper is organized as follows. In Section 2, we will
analyze the angular dispersion of the incidence angle with
respect to frequency. The properties of the Doppler shift
produced by a grating in a translational motion and a rotational
motion will be investigated, respectively, in Sections 3 and
4. Some numerical simulation results will be presented in
Section 5 and a conclusion section will follow.

2. ANGULAR DISPERSION AT A FIXED ANGLE OF
DIFFRACTION

As a model problem, we consider a one-dimensional diffraction
grating as illustrated in Fig. 2. The grating is periodic in the x-
direction, with a period A, invariant with respect to y and has
a finite thickness in the z-direction. The analysis of the angular
dependence is based on the grating equation

singp = singp + M )
A
where A is the wavelength, p is a given diffraction order, ¢

and ¢p are respectively the angle of incidence and the angle

Fig. 1. Observation at a fixed angle ¢qps: FoOr a given
diffraction order p, an observer looking at a point S on the
grating interface can see a diffracted light (blue dashed arrow)
if its angle of diffraction ¢p is equal to ¢ops. The angle of the
corresponding incident light (red solid arrows) depends on the
frequency v if p # 0 (see Eq. (2)).

of diffraction. We consider an incidence by a continuous
polychromatic diffuse light with an observer who is looking
at the grating at an observation angle ¢q,s. For a given
incident field with a wavelength A, the observer can see the
light diffracted into the order p when ¢p = ¢qps and the
corresponding angle of incidence ¢ can be obtained from the
grating equation Eq. (1):

. . Bp
¢o = arcsin (sm ¢p — 7) , (2)

where v = ¢/ A is the frequency of the incident light, ¢ being the
speed of light in vacuum. The symbol B, is defined as
cp
e (3)
The angular dispersion of the angle of incidence with respect to
the frequency v can be derived from Eq. (2):
d B B
%: _p B2 Y cops4>0’ “
v24/1— (smcpp - 7")

since sin¢p — Bp/v = singp — pA/A = sin¢g (see Eq. (1)). The
incidence angle Eq. (2) exists as a real number ¢y € R if and
onlyif =1 <sin¢p — pA/A <1, ie.,ifp >0, we have

Bp =

A <At = (1+sin )A<:>v>v __Be (5)
> /Zcut — (Pp P = Veut — 1+sin<pp’
while if p < 0, we get
. A —B
A< At = (1=singp) — <= v > veur = e (6)

-p 1—singp’

The curve in Fig. 3 shows the profile of the cut-off frequency
veut as the angle of diffraction ¢ varies (for the case p > 0). The
angle of incidence at the cut-off frequency is either ¢9 = —71/2
if p > 0or¢o = /2 if p < 0. This shows that the angular
dispersion Eq. (4) can be arbitrarily large when v is near the cut-
off frequency vyt defined in Eq. (5) or Eq. (6). The following
asymptotic relation is valid for a frequency v near veyt:

2|Bp| (v — veut)
fo ~ —sign(p) (Zpt) Q

Veut
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where sign(p) = 1if p > 0 and sign(p) = —1if p < 0.

The square root function in Eq. (7) shows that the incidence
angle ¢g can vary rapidly with frequencies v near veyt. The
relation Eq. (7) can be derived from Eq. (2) by using the fact
that B, = sign(p) |Bp| and sin¢p = Bp/veur — sign(p) (since
¢o = —sign(p) /2 at the cut-off frequency), and by applying
the asymptotic relation arcsin (1—x) ~ % — /2x for small
values of x.

Fig. 2. Hlustration of a diffraction grating. The grating is
periodic in the x-direction, with a period A, invariant in the
y-direction and has a finite thickness h; in the z-direction.

Bp

Veut
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o
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Fig. 3. Curve of the cut-off frequency v¢yt in Eq. (5) as a
function of the angle of diffraction ¢, (for p > 0).

3. FREQUENCY SHIFTING BY A GRATING IN A
TRANSLATIONAL MOTION

We assume that the grating is in a translational motion with
a velocity parallel to the normal direction z. As illustrated in
Fig. 1, an observer, who is looking at a point S on the grating at
a viewing angle ¢qps, can see the light diffracted into an order p
if the angle of diffraction is equal to the observation angle:

$p = Pobs: (8)

and the corresponding angle of incidence ¢y is given by Eq. (2).
The angle ¢ is frequency-dependent for non-specular orders.

Note that we will consider in Section 4D, some particular cases
where the condition Eq. (8) can be relaxed so that ¢p can be
different from ¢gps.

Translational motion of the grating will create a Doppler
shift and we want to compute the frequency shift perceived by
the observer. The reflection of a wave from a moving surface
involves a double Doppler shift. First at incidence, the point S

can be seen as a receiver moving at the velocity V = V z, the
velocity component in the direction of the light source is given
by V cos ¢ so that the Doppler shift (in the classical limit where
[V/c| <« 1)is

V cos
v Vv cos¢o .

Avg =
0 c

9)
On reflection, the point S can be seen as a light source moving at
the speed V; the velocity component in the observer’s direction
is given by V cos ¢p so that the Doppler shift is:

Avp =v m. (20)
The total Doppler shift is
Av = Avg+ Avp =v v (cos ¢OC+ cos ‘PP) ’ (12)
and the observed frequency can be written as
V =v+Av=v+vA (cos¢gg + Cos¢p), (12)
with
A = ! (13)

For the specular order p = 0, we have ¢g = ¢p and Eq. (11)
takes the form Av = —2v A cos ¢g, which is the formula of
the Doppler shift created by a flat mirror in a translational
motion [p. 74 1]. The Doppler shift Eq. (11) is also in agreement
with the formula for the frequency shift by a moving grating
in [see Eqg. (1) 2]; note that the grating considered in [2] was
moving along the x-direction and so the cosine function in
Eq. (11) is replaced by the sine function in [2].

There are some important differences between the Doppler
shift from a specular order and a non-specular order. For
the case of specular reflection, the angle of incidence ¢q is
equal to ¢p, i.e., independent of the frequency, and there is
no cut-off frequency; in particular the Doppler shift scales
linearly with the frequency. In a contrast, with a non-specular
reflection, the angle of incidence depends on the frequency and
the diffracted field can propagate only for frequencies above a
cut-off frequency veyt; this means that, for an illumination by a
diffuse polychromatic light, the Doppler shift for non-specular
orders can display some unique and interesting behaviors.

For a non-specular order p, the application of the asymptotic
relation Eq. (7) together with cos(7t/2 — x) = sinx = X, leads to
the following asymptotic expression of Eq. (12) for frequencies
v near veyt:

vV o~ v+vAcosdp+ Ay/2[Bp| (v — veur), (14)

where the estimate v/Zveyt =~ 1 is used for the factor of
the square root function. The presence of the square root
function in Eq. (14) indicates that the observed frequency v’
changes rapidly when the incident frequency v varies near
the cut-off veyt. In fact near vqyt, the derivative of the shift

Av = 2A,/2|Bp| (v —veur) with respect to the frequency

v dominates that of the linear terms v(1 + V cos¢p/c) and
so the square root term determines the sign of the slope of
the Doppler dispersion relation v/ = v + Av near a cut-off
frequency. If V > 0, i.e.,, the grating is moving toward the
observer, the observed frequency v/ increases monotonically
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with the frequency v (see Fig. 4 (a)). As illustrated in Fig. 4 (b),
if V < 0, i.e, the grating is moving away from the observer,
the asymptotic function Eq. (14) is a decreasing function when
the incident frequency v is close enough to the cut-off veyt,
reaches a minimum and start increasing as the contribution of
the linear term dominates when v is far enough from veye. A
detailed analysis of the radiated power for frequencies near the
minimum will be carried out in the next section (for the case of a
rotating grating) and will not be repeated here as the results for
a rotational motion and a translational motion are very similar.

We note that if the grating is moving horizontally instead of
vertically then the observed frequency Eqg. (12) takes the form
v = v+ vA (singp —singg) and the asymptotic expression
Eq. (14) becomes v/ ~ v+ v A singp = A (v — [Bp| (v — veut)),
since we have singg = ++/1 —cos? g ~ 4 (1 — (cos? ¢p)/2).
We can conclude that the observed frequency does not have
a flat band since the square root term does not appear in the
asymptotic expression.

@ (b)

s
Veut
Veut

Fig. 4. Typical profiles of the non-specular Doppler dispersion
relation Eq. (12) near a cut-off. The velocity V is respectively
positive and negative for the panels (a) and (b).

4. FREQUENCY SHIFTING BY A GRATING IN A
ROTATIONAL MOTION

We now suppose that the grating depicted in Fig. 1 is rotating
around the y-axis. For a given incident ray, as the grating
is rotating, the angle of incidence ¢y of the ray will change
with an angular velocity denoted Q)y. For a given diffraction
order p, the diffracted wave will also be rotating at an angular
speed Qp = d¢p/dt, the value of which can be obtained
by differentiating Eqg. (1). The time-derivative of the grating
equation Eqg. (1), at fixed frequency, leads to the following
angular momentum conservation relation:

Qpcosgpp = g CcOS¢y, (15)
so the angular velocity () can be expressed in term of Qg as

_  Cos¢o
Qp = 05 ¢y Qp. (16)

We now apply a treatment similar to the one presented in
Section 3, in order to find the Doppler-shifted frequency
perceived by an observer watching the point S = (xg, 0) on the
grating interface z = 0. At incidence, the point S can be seen as
a receiver moving at the speed

Vo= —XsOpz, (17

the velocity component in the direction of the light source is
given by Vp cos¢g. The minus sign in the expressionVy =
—Xs g z comes from the fact that when O3y > 0, a point S

on the left of the rotation axis moves upward while it moves
downward on the right side. At reflection, since the diffracted
field is rotating at the angular speed Q)p, the point S can be seen
as a light source moving at the speed

the component of V in the observer’s direction is Vp cos ¢p.
The total Doppler shift is then

Xs (g cos )y cos
Av = Avg + Avp = —v s (Do (POch p COSPp) (19)

For the specular order p = 0, Eq. (19) takes the form Av =
—2v X5 Qg cos ¢p/c, which is the formula of the Doppler shift
created by a rotating flat mirror. By applying the angular
momentum relation Eq. (15), we can verify that Eq. (19) also
takes the form Av = —2vxg5Q)g cos¢p/c, for non-specular
orders. However, for a non-specular order, the angle of
incidence ¢y is frequency-dependent and a cut-off exists; again,
this means that for a rotating grating illuminated by a diffuse
polychromatic light, the wave diffracted into a non-specular
order can display some non-trivial Doppler effect which will
be studied at the next section.

A. Asymptotics of the frequency shift

An asymptotic treatment can provide some useful insight into
the physics of a moving grating in a polychromatic diffuse light.
From Eq. (19) and the angular momentum relation Eq. (15), the
observed frequency can be written as

vV = v+ Av=v+2vA cosdgy, (20)
with
—Xg O)
A — % (21)

By repeating the derivation for the asymptotic approximation
Eq. (14), we can obtain the following asymptotic expression of
the observed frequency Eg. (20)

vV & v+2A/2|Bp| (v — vew). (22)

Numerical tests have shown that the asymptotic
approximation Eq. (22) accurately reflects the behavior of the
Doppler dispersion relation Eq. (20) near a cut-off. Accordingly
we now carry out an analytic investigation of Eq. (20) based
on the asymptotic Eq. (22). If A > 0, the observed frequency
v' increases monotonically with the frequency v (see Fig. 4 (a)).
As illustrated in Fig. 4 (b), if A < 0, the asymptotic function
Eq. (22) is a decreasing function when the incident frequency
v is close enough to the cut-off veyt. We can verify that the
asymptotic function reaches a minimum when v takes the
value

Vmin = Veut +2 A? |Bp|| (23)

and the corresponding observed frequency is

Uhnin % Vimin +2 A /2 |Bp| (vmin — veut) & veur — 2 A%[By. (24)

We note that the cut-off frequency vyt is the average of
vl i and vmin. With the parameters considered in this work,
the frequency width (vmin — veut) & 2 A?|Bp| is very small
compared to vmin OF veut € [|Bp|/2, [Bpl] (see Egs. (5) and (6)).
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As an illustration, if the velocity of the point Sis V = 10 m/s,
then we have (Vmin — veut)/veut < 4A% = 4(V/c)? = 4.4 x
10~15, We will show in Section 4D that a larger value for the
parameter A can be possible (see Eq. (37)) and this leads to
an increased value of the ratio (vmin — veut)/veut. The cut-off
frequency curve in Fig. 3 can also be relevant to the frequencies
Vmin and v/, when they are close to veyt.

B. Diffraction efficiency for frequencies v near vmin
For scattering problems, the diffraction efficiency

_ lpfl cos¢p
P cos ¢

into an order p is a quantity of interest and it needs to
be sufficiently high in order to have a physically detectable
diffracted light. The symbol pp in Eq. (25) is the diffraction
coefficient into the order p. For a stationary grating, the
diffraction efficiency is usually defined for each frequency.
However with a rotating grating, the incident frequencies can
be Doppler-shifted in a non-uniform way (especially inside a
flat band), and so it can be useful to characterize the diffraction
efficiency in terms of integrals of the radiated powers over a
given frequency band.

(25)

For frequencies v in the vicinity of vy, the asymptotic
function Eq. (22) can be replaced by its second order Taylor
series (see Eq. (23)):

(v— Vmin)z

~—M 26
4 (Vmin - cht) min (26)

The parabolic approximation Eq. (26) shows that a frequency
band centered on v, and of width W < 2 (vimin — Veut), i€,
V € [Vmin — W/2,Vmin + W/2], will be Doppler-shifted into the
band v/ € [Vin: Vinin + W], With W = W2/(16 (vmin — veut))-

The ratio of the bandwidths W and W is:

W _ 16 (Vmin — cht) _ 16 (Vmin - cht) @7)

- W' w W'

The energy flow carried through the upper interface of a
grating unit cell by an incident plane wave with intensity | is
proportional to (I cos ¢p) and the energy flow of the diffracted
wave of order p is proportional to (1 |p%| cos ¢p ). For incidence
by plane waves with a frequency v in the band [vmin —
W/72, Vmin + W/2], the normalized total energies radiated by
the incident waves and diffracted waves are respectively

fp

Umin+W/2
& = /I/min—W/Z |(1/) cos ((Po(l/)) dv, (28)
o o [lmetr2 , d 2
b /Vmin*W/Z 1(v) lop(v)] cos (¢p(v)) dv.  (29)

If we assume that the width VW is small enough so that the
integrals Egs. (28) and (29) can be evaluated by the midpoint
numerical integration formula, we then have

& ~ WIcosgy, (30)
& ~ WI|p3| cosp, (31)
where ¢g = ¢o(Vmin), | = 1(Vmin), Pp = PD(Vmin)-

For the case of a rotating grating, at a given time t, the
assumption can be made that the power 5") radiated by

a diffracted field over the Doppler-shifted frequency band
[Vin: Vmin + W'] is same as the power &, radiated by a
stationary grating:

Ep=Ep ~ W |p3| cosgp. (32)

We could define an effective diffraction efficiency as the ratio
of the diffracted power 8{3 by the incident power over the

frequency band [v/in. Vmin + W']. But we intend to compare
the reflectance of a moving grating against that of a perfectly
reflecting mirror (both have same size), as any reflector with an
effective reflectance equal or higher than that of a perfect mirror
can be expected to produce exceptionally bright reflected light.
Accordingly, we will compare 5,’) to the maximum incident

power flow (i.e., cos¢y = 1) for frequencies v/ € [V in, Vinin +
W'l

-
min

g/ _ v,fanrW’ |( ~ /
0= v)dv = W'I. (33)
1%

The ratio of £; and &; can be written as (see Eq. (27)):

&L W|p3| cos¢ -
_Yp p P 2 Vmin — Veut
D;) = —86 R 41p5| cosp 7}/\// . (39

C. Visual range of a moving grating

The visual range of a reflector (i.e., the maximum distance at
which the reflector can be seen) can also be used to characterize
the strength of a reflected radiation. Indeed the reflectivity of
the Morpho rhetenor butterfly is often described in term of a
distance where it can be seen [9, 10]. Here we assume that a
perfect mirror is observed at a distance equal to its visual range,
and by using a simplified but realistic model we will identify
conditions under which the diffracted light from a moving can
also be seen at the same distance. We note that, during daytime,
the background radiation from the sky or the sun is the main
limiting factor for the visual range.

The power ratio Eq. (34) takes the value D;) = 4, for instance,
when W is set to

W' = (vimin — veut) | cos® ¢p, (35)

in theory, this means that the moving grating can reflect
a brighter light than a perfect passive reflector with 100%
reflectance, for observed frequencies v/ € [V, Vinin = W']. If
a moving diffraction grating can radiate at least 4 times more
power than a perfect reflector over the observed frequency
range v’ € [Vpin: Vmin + YV'], then it can be physically possible
to see such a relatively bright light at a distance greater than
the visual range of a perfect reflector. The brightest light will
occur for observed frequencies v’ € [V/pin, Vimin + ¥V'] Where the
incident light comes directly from the sun; since the grating is
rotating the light will then appear as a sudden bright flash.

In order to gain some qualitative insight, let us assume that
the reflected fields are monochromatic plane waves emerging
from a finite grating of length L. If the grating is conceptualized
as an aperture of width L (the interface is located at z = 0 with
X € [—=L/2,L/2]), the field at a point (x,y) = (Rsin¢, Rcos¢)
can be calculated using the Fraunhofer diffraction formula (far-
field approximation) [see Eq. (5) 11], [12]:

2 cos2 2
1(¢) = I % (sinc ((sincp—sin ¢p) %)) . (36)
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Fig. 5. Diffracted intensity 1(¢) obtained with the Fraunhofer
diffraction formula Eq. (36) for the angles of diffraction ¢ €

{0°,60°,89.9°,89.99°}. The dashed curve is the intensity 1(0)
under a normal incidence (1(0) is the maximum intensity at a
given distance R).

where |y is the intensity of the plane wave at the aperture
interface. The intensity curves are plotted in Fig. 5 (red
continuous curves) for the angles of diffraction ¢, = 0°,
¢p = 60°, ¢p = 89.9° and ¢p = 89.99°. For the numerical
simulation in Fig. 5, the aperture of length is set to L = 200 ym
(as a one dimensional model of the scales of Morpho rhetenor
butterflies which are typically 75 x 200um in size [13]) and
the incident wavelength is set to A = 500nm (blue light).
The horizontal dashed lines in Fig. 5 represent the intensity
level 1(0) = lgL2/(AR) which is the maximum value of 1(¢)
for given values of Iy and R (the maximum then occurs at a
normal angle of propagation ¢, = 0 for ¢ = 0). For each
of the panels in Fig. 5, the power flow at the grating interface
from the field associated with the red continuous curve is four
times that of the field associated with the dashed line (or the
intensity lg in Eqg. (36) is set, respectively for the continuous
and dashed curves, to Iy = lIa and Iy = lg such that I =
4 1g/ cos ¢p). So if R is the visual range of a perfect reflector,
the portion of the continuous curve which is above the dashed
curve, corresponds to the directions where the field radiated
by the grating can be seen beyond the visual range of a perfect
reflector. We note that for the high grazing angle of diffraction
¢p = 89.99° the intensity 1o = 4lg/cos¢p is very large
compared to lg and if the power flow associated with the red
continuous curve is six time smaller (instead of four times
larger) than the power flow associated with the dashed line, i.e.,
Ia = g/ (6 cos¢p), the peak intensity of the red continuous
curve will still be above the dashed line. So for grazing angles
of diffraction, a diffracted light can still be visible beyond the
visual range of a perfect reflector even if the power ratio DE) is
a small fraction of one.

In practice, when a photodetector (e.g., eye) is used to
detect the reflected light from the grating, it can collect the
diffracted radiations (with an intensity above a threshold) from
the moving grating over a range of angles and frequencies
(Pp.v) € [Ppa,Pa + APp] X [V, Vs + AV']. We assume that
the photodetector is operated at a distance equal to the visual
range of a perfect reflector and so it can only detect a reflected
light from the grating if the intensity is higher or equal to
that of a perfect reflector. For an angle ¢p € [Ppa,Pa +

Va'+AY'

Pa Pat+Ao,
Pp

Fig. 6. lllustration of the range of angles and frequencies
where a detector collects the diffracted light. The red
continuous curve and the blue dashed curve represent
respectively the frequencies v/,,;, and (v}, + W') as a function
of ¢p.

A¢yp], the spectrally compressed radiation appears over a band
[V € [Vhin(Pp), Vimin (¢p) + W'] and the detector can collect the
radiated energy from this band if it is a part of [V}, v, + AV'].
This is illustrated in Fig. 6, where the red continuous curve
(for v/in(¢p)) and the blue dashed curve (for v/ ;. (¢p) + W)
represent respectively the lower and upper edges of the region
where the detector can receive a signal from the moving grating.

The actual detection will also depend on the properties of the
detector. For instance, since the grating is rotating, the detector
will be exposed to the bright light for only a finite time duration
and a detection may not happen if the duration is too short
for the detector. The exposure duration also depends on the
angular velocity of the grating and the distance between the
grating and the detector. We can assume that a duration of a
few milliseconds can be enough as the duration specifications
of common photographic flashes are typically in the order of
milliseconds. The Morpho butterflies flap their wings slowly
and this should allow sufficient exposure time within a few
hundred of meters.

D. Cases where the angle of diffraction and the angle of
observation are different

So far, we have assumed that the angle of diffraction is equal
to the observation angle (see Eg. (8)), although the spreading
wavefront, from the field diffracted by a grating of finite size,
means that the light diffracted into an order p can also be seen at
an observation angle ¢,s Which is not necessarily equal to the
angle of diffraction ¢p. But in general we expect the brightest
light to occur when the diffracted light is pointing directly
toward the observer, and so it can be reasonable to assume, in
practice, that ¢p is equal ¢ps in such situations. However a
notable exception to this rule can be the case of a grazing angle
of diffraction. Indeed, at a grazing angle of diffraction ¢, the
angular spread has an asymmetric profile and even the peak
intensity (for observation at a fixed distance from the grating)
can occur at a viewing angle ¢ps different from ¢p. For instance
in Fig. 5, the peak intensity for the grazing angle of diffraction
¢p = 89.9° appears at an angle ¢ = 87.54° and it has deviated
from the angle of diffraction ¢p by 2.36°.

When ¢, is different from ¢qps, the derivation leading
to Eq. (19) can be modified as follows: At reflection, the
point S can be seen as a light source moving at the speed
Vp = —XsOpz and the velocity component in the observer’s
direction is given by V cos ¢, SO that the total frequency shift
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can still be written in the form Eq. (20) if the definition Eq. (21)
of the parameter A is changed to:

Q
A — _ XS 0 (1 + Cos (PObS) . (37)
2c Cos ¢p

Since the denominator term cos¢p in Eq. (37) can be very
small at a grazing angle of diffraction ¢p, the absolute value
of the parameter A in Eq. (37) can be much higher when ¢; is
different from ¢gps (With |¢p| > [Pops|) than when ¢, is equal
to ¢ops. This can result in a stronger Doppler shift. We also
note that although Eq. (16) shows that the angular velocity ()
of a diffraction order at a grazing angle of diffraction ¢, can
be much higher than g, the linear velocity Vp = —xsQpz
has a vertical direction, which is almost perpendicular to the
direction of view of an observer when ¢p = ¢ops, resulting in
a smaller contribution to the Doppler shift than when ¢gpg is
allowed to deviate from ¢, (toward the normal direction).

The results in this section can also be relevant to multi-level
micro/nanostructures such as butterfly wing scales [14]. Each
scale can be large enough to be modelled as a nanostructured
diffraction grating. The scales are in turn arranged as a
microstructured array which covers a butterfly wing. In the
far field, constructive interference between the scale scatterers
can occur in other directions than the original direction of
the diffraction orders of the individual scales, i.e., ¢, can be
different from ¢gps.
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Fig. 7. The panels (a) and (b) show a unit cell of gratings
with, respectively, uniform alternating lamellae and apodized
alternating lamellae.

5. NUMERICAL SIMULATIONS

For the numerical simulations, we use the two grating
geometries shown in Fig. 7. They are multilayer gratings

consisting of alternating lamellae attached to a ridge structure.

The refractive index of the lamellae is n = 1.56 + 0.06 i (chitin)
and they are surrounded by air. The grating periods in the x
and z directions are dy = 746 nm and d; = 207 nm. The values
of the lamella length Ly and thickness h are Ly = 308 nm and

h = 62nm. The thickness of the ridge is hr = 60 nm. For the
grating in Fig. 7 (b), a linear apodization is applied to the length
of the top 7 lamellae: Ly = Lo —40m, form € {1,2,...,7}. The
diffraction problem can be solved numerically using the finite
element method presented in [15] or a one-dimensional version
of the finite element-based modal method described in [16].

The grating in Fig. 7 (b) models the nanostructures found
in Morpho rhetenor wing scales [see Fig. 9 17]. This grating
can be seen as an apodized (or tapered) version of the one in
Fig. 7(a). Apodization is a technique where the strength of
a grating is slowly reduced over a transition region, near an
output or input end. The profile of the Morpho rhetenor grating
has also some similarity with structures consisting of a regular
photonic crystal whose interface is corrugated or indented. For
instance with a photonic crystal consisting of lattice of rods,
the corrugation can be introduced by removing some rods
from the interface layer [18] or changing the cylinder radius
in the interface layer [19]. Such structures, sometimes referred
to as photonic crystal gratings, can combine the properties
of photonic crystals (e.g., high reflectance or existence of
surface modes inside a band-gap) and diffraction gratings (e.g.,
efficient scattering into higher diffraction orders) to deliver
some interesting diffraction properties. We will compare the
scattering properties of the two gratings in order to identify
some possible advantages for the use of apodization in the
nanostructures of Morpho butterflies.
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Fig. 8. The sub-figures (a) and (b) represent the total
reflectance curves from the gratings shown respectively in
Fig. 7 (a) and (b). The red continuous curves and the blue
dashed curves correspond respectively to incidence by
Hy-polarized and Ey-polarized plane waves. The angle of
incidence is normal.

The total reflectance of the two gratings is shown in Fig. 8,
for normal incidence by Hy-polarized (red continuous curves)
and Ey-polarized (blue dashed curves) plane waves. We can
observe in Fig. 8 (a) that the non-apodized grating has a
high reflectance band A € [400nm,510nm]. The apodized
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grating can also reflect strongly the ultraviolet radiations in
the wavelength range A € [340 nm, 400 nm]. We have noticed
that the apodized grating reduces substantially the reflection
into the specular order (this can be beneficial to the reflectance
into higher diffraction orders). For instance the diffraction
efficiency eg into the specular order is lower than 0.1% for A €
[400 nm, 500 nm|] for both polarizations. With the untapered
grating, the diffraction efficiency eg can reach 5% and 8%
respectively for the Hy and Ey-polarizations, over the same
wavelength band.

Figure 9 shows that the orders p = —1,2,3 can have a cut-
off in the wavelength range A € [400nm, 510 nm] where the
gratings can diffract strongly light from the visible spectrum.
Here we will carry out a numerical simulation for the order p =
3, because its cut-off wavelength at a grazing angle ¢qs 0ccurs
within the band A € [400nm, 510 nm]. For instance, when the
angle of diffraction is set to ¢p = 89°, the cut-off wavelength
of the diffraction orders p=1, 2, 3 and 4 are respectively Acyt
= 1491.89 nm, 745.943 nm, 497.295 nm and 372.972 nm. The
order p = 4 can be relevant for a study of the scattering in the
ultraviolet band.

For the numerical calculation of the Doppler shift perceived
by an observer watching a point S on the grating interface, the
linear velocity of S is set to V = —10m/s, along the direction z.
This velocity V is supposed to be approximately in the same
order of magnitude as the wing movement of a butterfly in
flight. The computed Doppler dispersion curves are shown in
Fig. 10. Figure 10(a) shows the observed frequency from the
specular order p = 0 (or a moving flat reflector). A specular
order does not have a cut-off frequency and so the parameter
veut €an have an arbitrary value; the choice of an arbitrary value
for veut (Or ¢p) does not have any visually noticeable impact
on the shape of the curve in Fig. 10(a) since, from Eq. (12), we
have v/ — vy = (v —veut) (L+2Acos¢dg) ~ (v — veut), as
|A| = |V/c| =3333x 1078 <« 1.

375.

428.57

Acyt (NM)
(61
8
Veut (THZ)

1000.

dp (deg.)

Fig. 9. The plots of the cut-off wavelength A¢yt (or cut-off
frequency veyt) in Egs. (5) and (6) as a function of the angle
of diffraction ¢p, for the diffraction orders p = £1, £2, 3, 4.

Figures 10(b) and (c) show the perceived frequency, from
the diffracted order p = 3, respectively, under a translational
motion (see Eq. (12)) and under a rotational motion with ¢3 =
¢Pobs- Both curves exhibit a flat band where the Doppler effect
can be expected to amplify the perceived illumination. Note
that in the case of a translational movement, the frequency
shift at the cut-off frequency vyt is not zero, accordingly the
shifted frequency vf,; = veut (14 V cos¢s/c) is used in the
label (v/ — v{,) for the vertical axis in Fig. 10(b) (a similar

rule is also applied to Fig. 10(a)). The value of the cut-off
frequency veut depends on the diffraction angle ¢, (see Egs. (5)-
(6) and Fig. 3), but the asymptotic approximations Eqs. (14)
and (22) shows that, near the cut-off, the shape of the Doppler
dispersion curves in Fig. 10(b) and (c) is almost independent
from ¢p. The non-linear effect from the Doppler shift is stronger
in Fig. 10(c) than in Fig. 10(b), as the minimum frequency occurs
further away from the cut-off. Indeed, with Fig. 10(c) we have
Vmin — Veut ~ 2A2Bg = 2.681Hz (see Eq. (23)) and we can
verify that we get vmin — Veut ~ AZ2B3/2 = 0.670Hz with
Fig. 10(b). The frequency separation (vmin — veut) is four times
larger in Fig. 10(c) than in Fig. 10(b) because the square root
term in the asymptotic approximation Eq. (22) for a rotational
motion is multiplied by 2 A while it is only multiplied by A in
the asymptotic relation Eq. (14) for a translational motion.
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Fig. 10. The panel (a) shows a Doppler dispersion curve from
a flat mirror under a translational motion (specular order).
The panels (b), (c) and (d) show respectively the non-specular
Doppler dispersion curves (order p = 3) from a grating
under a translational motion, under a rotational motion with
¢p = ¢Pops and under a rotational motion with ¢p # Pops.

The perceived diffracted light at the frequency v/, is

spectrally compressed. In order to compare the visual range of
a moving grating to that of a perfect flat reflector, we have used
a heuristic approach to model the propagation of spectrally
compressed waves. For a given diffraction angle ¢p, the field
associated with a spectrally compressed band v' € [v} i, Viin +
W' is approximated by a plane wave with a frequency v/, ;,, an
angle of propagation equal to ¢, and a power flow Pp equal
to the frequency-averaged power over the observed frequency
band v' € [V]in: Vinin + W'] (the total power over [V/in, Vimin +
W] is given by Eq. (32)). Since the maximum distance, at which
the light reflected by a perfect flat mirror can be seen, occurs at
a normal incidence, we assume that another plane wave with
a power Pg is propagating away from a perfect reflector at
normal incidence. By following the example of Fig. 5, we can
use the Fraunhofer diffraction formula Eqg. (36) to find out how
large the ratio Pa/Pg needs to be so that a plane wave with a
power Pa, which propagates at an angle ¢p, can be seen at a
greater distance than a plane wave with a power Pg, which
propagates in the normal direction of the grating. Once the
required value of the ratio Pa/Pg is determined, we can find

the corresponding bandwidth W' of the compressed light by
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solving the power ratio relation Eq. (34), where Dg is set to
Dy, = Pa/Pp. If the bandwidth W' is large enough (to be
physically meaningful) then we can expect the moving grating
to have a comparable (or even a larger) visual range than a
perfect reflector.

For an application of the heuristic approach, we consider
the case of Fig. 10(c). We can verify that if a monochromatic
plane wave (at a frequency vy,;,) emerges from a finite grating
of length L = 200 um at an angle ¢35 = 60°, for instance, it
can be visible beyond the visual range of a perfect flat reflector
if Pp is higher or equal to 2.5Pg. We note that if a plane
wave has a power flow Pg at a normal propagation, for a
propagation at ¢3 = 60°, its power flow across the grating
becomes Pg cos¢3 = 0.5Pg, which is 5 times smaller than
Pa = 2.5Pg. Here the values of the variables Dy, |op|, ¢p and

(Vmin — Veut) in Eq. (34) are Djy = 2.5, |pp| = [p3| = 7.0 x 1078,
¢p = ¢3 = 60° and (vmin — veut) = 2.681 Hz, so that we obtain

W' = 16 (Umin — veut) [op| cos? pp/ D = 4.1397 x 10~ Hz.

With the present example, the bandwidth W' is very small
compared to the frequency v/, and its physical significance is
uncertain.

The results above suggest that the Doppler shift from the
point S on the grating is too small to produce a significant
spectral compression when the point S has a linear speed of
V = —10m/s and ¢p = ¢ops. However, for a rotating
grating, although the point S is moving physically at a speed
V = —x5Qy = —10m/s (see Eq. (17)), we note that, with a
diffracted field of order p # 0, the point S simulates a source
point moving at a speed Vp = V cos ¢/ cos ¢p (see Egs. (16)
and (18)) and so the absolute value of V, can be substantially
higher than 10 m/s if cos ¢g > cos ¢y, i.e., if ¢p is close enough
to £7t/2. We also note that, for the calculation of the Doppler
shift, it is the velocity component in the observer’s direction,
i.e., Vp COS ¢gps, that is relevant. When ¢qps is equal to ¢p, the
denominator term cos ¢, in the expression for V, is cancelled
and the Doppler shift will not be amplified when ¢ is close
to +7t/2. But the Doppler shift can be very strong at a grazing
angle of diffraction ¢, when the grating is in a rotational motion

with ‘Pp ?é $obs:

Indeed with a grazing angle of diffraction ¢p, as pointed
out in Section 4D, it can be reasonable to consider situations
where the angle of diffraction ¢ is different from the angle
of observation ¢qps. The interference between neighboring
scales of a butterfly wing can further increase this angular
deviation (for example most of the non-evanescent diffraction
orders of the scale lattice will propagate in directions which
deviate away from the grazing direction). However we do not
have a simple formula for evaluating such a deviation, and for
an illustration purpose, the value of the angular deviation is
set arbitrarily to 30° in this work (the main observations will
still hold for other non-zero deviation values). The Doppler
dispersion curve in Fig. 10(d) is obtained by using ¢3 = 89.99°
and ¢ops = ¢3 —30° = 59.99°. We can see that, in Fig. 10(d), the
Doppler frequency shift is stronger near the cut-off frequency
than in Figs. 10(b) and (c) (in Fig. 10(d) the frequency is in
megahertz unit MHz). This is due to the fact that the parameter
A for Fig. 10(d) is given by Eq. (37), i.e., A = —4.777 x 107,
and it is about 1433 times larger than the value of the parameter
A (from Egs. (13) and (21)) used in Figs. 10(b) and (c), i.e.,
A= -3333x1078,
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¢3 Vmin V3] |os] w’
(deg.) (THz) (m/s) (Hz)

89.0  603.263 0.00116 7.68 x 1076 4.71 x 10~
89.9  603.218 0.1101 7.88x10~° 2.62 x 10~/
89.99 603217 10.95 7.90 x 10~* 2.61 x 1071
89.999 603.218 1094. 7.82 x 10~% 2,51 x 107>
89.9999 603.272 109418. 7.15 x 1072 17.55

Table 1. Values of vmin, [V3], [p3| and W' as ¢3 approaches the
right angle. The diffraction coefficient p3 at vy, corresponds
to an incidence by Hy-polarized plane waves over the
apodized grating.

The Table 1 shows the frequency vmin, the linear velocity
V3 = V cos¢y/ cos ¢, the diffraction coefficient |p3| at vmin
and the computed frequency bandwidth W’ (where the visual
range of the moving grating may be equal or higher than that
of a perfect reflector) when the angle of diffraction ¢3 is set

to: ¢ = 89.0°, p{?) = 89.9°, p\¥ = 89.99°, 9p{* = 89.999°

and ¢{® = 89.9999° (with gops = ¢{ — 30°). We can see that
the linear speed V3 associated with the rotating diffracted field
can take very large values when ¢3 approaches a right angle.
In order to determine W', we have first used the Fraunhofer

formula Eg. (36) to find D;)(i) = Pa/Pg such that a plane

wave emerging at an angle ¢3 = ¢§') from the grating, with
a radiated power Pp, can be seen at a greater distance than a
plane wave with a radiated power P which propagates away
from the grating in a normal direction; fori = 1,...,5 we

have: D, = 15, D}® = 2, D,® = 0.2, D,¥ = 0.02 and
D;)(S) = 0.002. We can then obtained W' from Eq. (34) by

setting the value of D} to Dg('). The values of W in Table 1
increase rapidly as ¢3 approaches a right angle and so we can
expect that, at high grazing angles of diffraction, the moving
grating can reflect a bright light which can be seen at a greater
distance than the light reflected by a perfect reflector.

Since a rotating grating can produce a stronger spectral
compression at a grazing angle of diffraction ¢p (with ¢p #
¢Pobs). it can be desirable to use a diffraction grating which can
deliver a relatively high diffraction efficiency ep (or diffraction
coefficient pp) when ¢y is close to a right angle. The results in
Table 1 correspond to an incidence over the apodized grating
by Hy-polarized plane waves. When we repeat the same
calculations with the non-apodized grating, the values of the
calculated diffraction coefficients |p3| were about 50% (more
precisely between 43% and 48%) of the values obtained with the
apodized grating. For incidence by Ey-polarized plane waves,
the performance of the non-apodized grating at grazing angles
of diffraction is even worse since the values of the diffraction
coefficients |p3| are between 3.7% and 8.9% of the value given
by the apodized grating. The superior behavior of the tapered
grating shows that it is better-suited for the purpose of spectral
compression at grazing angles of diffraction.
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6. CONCLUSION

A light ray emerging from a point S on a grating, illuminated
by a polychromatic diffuse light, can be seen as a superposition
of the diffracted fields from a multitude of incident rays which
are converging toward the point S. For a given non-specular
diffraction order p, the angle of incidence of each incident ray
is frequency-dependent and so, as the grating moves, each
incident ray (and its diffracted ray) can experience a different
Doppler effect. The most dramatic Doppler effect occurs near
a Wood anomaly, where the Doppler dispersion curve from
a receding point S can exhibit a flat band. The incident
frequencies inside a flat band can be Doppler-shifted into a

narrower band of perceived frequencies (spectral compression).

From the principle of energy conservation, the perceived light
from the compressed frequency band can be brighter than the
light diffracted by a stationary grating or even brighter than the
light reflected by a perfect passive reflector with a reflectance of
100% (since the spectral compression factor can be arbitrarily
large).

In particular, this means that a moving grating, under the
sunlight, can be seen as a kind of a super reflector. Our work also
leads to the question as to whether the intense blue flash, which
can be perceived when the Morpho rhetenor butterfly is flying
under the sunlight, can be attributed to a spectral compression
mechanism. Although this can be possible according to our
theoretical results, a proper answer to this question can require
further research (e.g., a direct observation) and can be the
subject of a future work. Finally, although we have considered
the simplified model of a one-dimensional grating, with the
incident and diffracted rays lying in a plane perpendicular to
the grating grooves, our results can still hold for more general
grating geometries, as they are mainly based on the strong
angular dispersion near a Wood anomaly.
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