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ABSTRACT 

In this thesis we show how the multi-factor quadratic Gaussian model can be used 
to price default free and defaultable securities. The mathematical tools used in-
clude the theory of stochastic processes, the theory of matrix Riccati equations, 
the change of measure technique, Ito's formula, use of Fourier Transforms in swap-
tion valuation and approximation methods based on replacing the values of some 
stochastic processes by their time zero values. 

The first chapter of the thesis deals with the derivation of efficient closed form 
formulas for the price of zero coupon bonds in the multi-factor quadratic Gaussian 
model and the calibration of the multi-factor quadratic Gaussian model to the 
domestic and foreign forward rate term structures through closed form formulas. 

In the second chapter of the thesis, we derive approximations for the price of 
default free swaptions which are based on log-quadratic Gaussian processes. Using 
numerical experiments, we show the limitations of these approximations. \Ve also 
give some numerical results for the pricing of a default free swaption using moment-
based density approximants of the probability density function of the swaption's 
payoff. 

The third chapter of the thesis deals with the calibration of a quadratic Gaus-
sian reduced form model of credit risk to the default free forward rate curve and to 
the survival probability of an obligor. \Ve also consider different approximations 
for the price of credit default swaptions. Using numerical experiments, we show 
the limitations of the approximations. 

The final chapter of this thesis considers a two country reduced form model 
of credit risk. \Ve examine the relationship between the domestic forward credit 
spread and the foreign forward credit spread of an obligor and provide quanto 
adjustment formulas for the probability of survival of an obligor. In the final part 
of this chapter, we show that the valuation of a quanto default swap is tractable in 
a contagion type reduced form model of credit risk which assumes that underlying 
processes are modelled by quadratic Gaussian processes. 
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ABBREVIATIONS AND NOTATION 

Notation for Chapter 1: 

• loge(x)=Natural Logarithm of x i.e. logarithm to the base e. 

• Tr[A]=Trace of the rectangular matrix A. 

• ln=The identity matrix of dimension n. 

• Onxn=The zero matrix which is the square matrix of dimension n x n which 
has all its elements equal to zero. 

• On =The zero column vector which is the column vector of length n such that 
all its elements are equal to zero. 

• ln := (1, ... , l)T =Column vector of dimension n which has all its elements 
equal to the number one. 

• SDE=Stochastic differential equation; 

• F=first order derivative of the time dependent (matrix) function F. 

• RDE=1fatrix Riccati differential equation; 

• Q: (Domestic) risk neutral measure for default free and defaultable economy. 

• Qf: Foreign risk neutral measure for default free and defaultable economy. 

• JEQ: Expectation under the probability measure Q: 

• 1EQ1
: Expectation under the probability measure Qf. 

• vVi: Standard multi-dimensional Brmvnian motion under the Risk Neutral 
Measure. 

• lF = (Ft)(o~t~T•) : Filtration generated by lVi representing default free market 
information. 

• T: Default time of an obligor or a corporation. 

• 1-It: Indicator function for default time T. 

• 1it = a(Hu : u ~ t): Filtration generated by Ht. 
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• gt = a(Gu : u ~ t) = a(Fu v Hu : u ~ t): Filtration generated by default 
free market information and whether default has taken place or not. 

• rt: The (domestic) default free instantaneous rate of interest rate. 

• r{: The foreign default free instantaneous rate of interest rate. 

• Jd: Diagonal matrix with a one for row i if the ith factor is used to model Tt 

and a zero otherwise. 

• If: Diagonal matrix with a one for row i if the ith factor is used to model 
r{ and a zero otherwise. 

• yt: Gaussian Ornstein Uhlenbeck process with zero drift. 

• Zt: Gaussian Ornstein Uhlenbeck process used for modeling state variables. 

• A: Constant diagonal matrix used to denote the speed of mean reversion 
matrix in the SDE of Yi. 

• :E: Constant matrix used to denote the instantaneous volatility in the SDE 
of yt. 

• a(t): A time dependent deterministic vector function used to calibrate Zt to 
the term structure of default free zero coupon bonds . 

• al (t): A time dependent deterministic vector function used to calibrate Zt 
to the foreign term structure of default free zero coupon bonds. 

• C: Constant symmetric matrix used to model the quadratic part of rt in the 
quadratic Gaussian multifactor model. 

• B: Time dependent deterministic vector function used to model the linear 
part of rt in the quadratic Gaussian multifactor model. 

• A: Time dependent deterministic scalar function used to model the scalar 
part of rt in the quadratic Gaussian multifactor model. 

• D(t): The default free savings account. 

• >..t: The intensity of default in a reduced form model. 

• C: Constant symmetric matrix used to model the quadratic part of >..i in the 
quadratic Gaussian multifactor model. 

• B: Time dependent deterministic vector function used to model the linear 
part of At in the quadratic Gaussian multifactor model. 

• A: Time dependent deterministic scalar function used to model the scalar 
part of At in the quadratic Gaussian multifactor model. 
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• P(t, T): Price of the domestic default free zero coupon bond at time t for 
maturity T. 

• Pi(t, T): Price of the foreign default free zero coupon bond at time t for 
maturity T. 

• St: The price of one unit of foreign currency in terms of domestic currency. 

• F(t, T): The (domestic) default free instantaneous forward rate. 

• Fi (t, T):The foreign default free instantaneous forward rate. 

• l,.>tP(t, T): Price of defaultable zero coupon bond at time t for maturity T. 

• C(t, T): Symmetric positive definite matrix used to express the quadratic 
part of log(P(t, T)) in the quadratic Gaussian multifactor model. 

• B(t, T): Time dependent vector used to express the linear part oflog(P(t, T)) 
in the quadratic Gaussian multifactor model. 

• A(t, T): Time dependent scalar function used to express the scalar part of 
log(P(t, T)) in the quadratic Gaussian multifactor model. 

• C(t, T): Symmetric positive definite matrix used to express the quadratic 
part of log(P(t, T)) in the quadratic Gaussian multifactor model. 

• B(t, T): Time dependent vector used to express the linear part oflog(P(t, T)) 
in the quadratic Gaussian multifactor model. 

• A(t, T): Time dependent scalar function used to express the scalar part of 
log(P(t, T)) in the quadratic Gaussian multifactor model. 

• C 5 (t}: Symmetric positive definite matrix used to express the quadratic part 
of log( St) in the quadratic Gaussian multifactor model. 

• B 5 (t): Time dependent vector used to express the linear part of log(St) ·in 
the quadratic Gaussian multifactor model. 

• As ( t): Time dependent scalar function used to express the scalar part of 
log(St) in the quadratic Gaussian multifactor model. 

• Af(T) := A+2EETC5 (T): Time dependent speed of mean reversion matrbc 
for the dynan1ics of yt under the foreign risk neutral measure. 

• 'Jf: Default free forward measure for maturity T corresponding to using 
P( t, T) as the numeraire. 

• JET: Expectation under the (domestic) default free forward measure. 
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• '][' f: Foreign default free forward measure for maturity T corresponding to 
using pl(t, T) as the numeraire. 

• JET': Expectation under the foreign default free forward measure. 

• <I>(.Q, z): Characteristic function of the quadratic form.Qin Gaussian random 
variables. 

• J..,f(t, T): The mean of Yr under'][' conditional on :Ft,. 

• V(t, T): The variance-covariance matrix of Yr under'][' conditional on :Ft,. 

• J..,f I ( t, T): The mean of Yr under '][' f conditional on :Ft. 

• V f (t, T): The variance-covariance matrix of Yr under']['/ conditional on :Ft. 

Notation for Chapter 2: 

• FFT: Fast Fourier Transform; 

• DFT: Discrete Fourier Transform; 

• AT.l\1: At the money strike rate; 

• ITM: In the money strike rate; 

• OTM: Out of the money strike rate; 

• bp: Basis points; 

• Cl\lS: Constant l\laturity Swap; 

• LLJV1: Lognormal Libor Market Model; 

• PVBPOl: Present Value of a Basis Point; 

• Re[ c]: Real part of the complex number c. 

• ']['0 : The default free forward measure corresponding to using P(t, Ta) as the 
numeraire. 

• JET"': Expectation under ']['a. 

• T = {Ta+b ... , T13 } : Payment dates for a forward swap starting on initial 
day Ta and ending on final day Tp. 

• K: Fixed rate payed in a default free interest rate swap by the receiver. 

• Ti: Year fraction between 7i-i and 7£. 
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• Swapa,µ(t): The swap rate at time t which is the value of the fixed rate K 
that will make the value of a swap with starting date Ta and ending date Tµ 
equal to zero. 

• Swaptna,{J(t): The exact price of a European payer swaption with maturity 
date Ta to enter a swap starting on date Ta and ending T13 . 

• Pa,p(t): The log-quadratic Gaussian process that is used to derive approxi-
mation to swaption prices. 

• wi(t): The ith weight obtained by dividing KT P(t, Ti) by Pa,.B(t) for i 
o: + 1, ... , /3 - 1 and (1 + K T13)P(t, T13) by Pa,13(t) for i = /3. 

• 4>(Qi, ... , QN, zi, .•. , ZN): Joint characteristic function of N quadratic forms 
in Gaussian random variables dented by Qi, ... , QN. 

• Gi(x, k): Type of payoff function which varies with i. 

• Cai (z): Fourier transform with respect to strike of an option with payoff 
given by Gi(x, k) 

• Swaptna,.B(t): The approximation of a swaption price that is obtained by 
approximating the exercise region through Pa,.B(t). 

• Swaptnla,f3(t): The approximation of a swaption price that is obtained by 
approximating the exercise region and the payoff through P0 ,,a(t). 

• P0 ,13 (t): The present value of a basis point. 

• Qa,{J: The swap measure corresponding to using P0 ,13(t) as the numeraire. 

• IEQ0 .P: Expectation under Qa,.B· 

• L(t, Ti): Forward libor rate for period [Ti, Ti+i]; 

• ](ATM: The at the money strike rate of a default free swaption. 

• KiTM: An in the money strike rate of a default free swaption. 

• K 0 n 1 : An out of the money strike rate of a default free swaption. 

Notation for Chapter 3: 

• CIR: Cox-Ingersoll-Ross; 

• CDS: Credit Default Swap; 

• DPVBP: defaultable present value of a basis point; 



Abbreviations and Notation xiv 

• T = {Tn+li ... , TN} : Payment dates for the premium leg of a credit default 
at time Tn < Tn+l· 

• f3i: Year fraction between~ and ~-I· 

• ((7): The last premium payment before default or the premium date on 
which default occurred if default coincided with the premium date. 

• K: The premium rate of a CDS 

• Z: Deterministic amount payed as default protection in case of default in 
CDS contract. 

• 8: The recovery rate which is used to determine the default protection pay-
ment amount. 

• CDS(t, T, T, K, Z): The value at time t of a payer forward credit default 
swap starting at time T with premium payment schedule T, premium rate 
Kand default protection payment Z. 

• CDSop(t, Tn, Tn,N, T, K, Z): The value of a credit default swaption at time t 
which gives the owner of the swaption to enter into a CDS at time T paying 
a premium rate of K to get a default protection of Z. 

• R1(T): The market CDS rate which is the value of the premium rate that 
would make the value of a CDS equal to zero. 

• G(O, T): The probability of survival of an obligor under the risk neutral 
measure. 

• G(O, T): The probability of survival of an obligor under the default free 
forward measure. 

• gi: The conditional probability of default over (Ti, '.IJ+1). 

• H(O, T): The probability of default of an obligor under the risk neutral 
measure. 

• d(gi, 9i+1): Distance between the conditional probabilities of default. 

• v: Parameter used to determine smoothness of probability of survival. 

• ak: Estimate of Gaussian error in market CDS quotes. 

• .AJ(t, T): The mean of Yr under the default.able forward measure. 

• V(t, T): The variance-covariance matrix of Yr under the default.able forward 
measure. 

• Un,N(Tn): The default.able present value of a basis point. 
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• Wj (Tn): The ratio of the defaultable bond P(Tn, Tj) and the defaultable 
present value of a basis point. 

• 1IJ: The measure which is absolutely continuous to the risk neutral measure 
corresponding to using the defaultable present value of a basis point as the 
numeraire. 

• JEU: Expectation under the measure 1IJ. 

• KvATM: The at the money strike rate of a credit default swaption. 

• Kv1rM: An in the money strike rate of a credit default swaption. 

• KvorM: An out of the money strike rate of a credit default swaption. 

Notation for Chapter 4: 

• Qd: The domestic risk neutral measure for default free and defaultable secu-
rities. 

• QI: The foreign risk neutral measure for default free and defaultable securi-
ties. 

• ]EQd: Expectation under the domestic risk neutral measure denoted by Qd. 

• lEQ': Expectation under the foreign risk neutral measure denoted by QI. 

• iv{ Standard Brownian motion under the domestic risk neutral measure 
denoted by QI. 

• iv {: Standard Brownian motion under the foreign risk neutral measure de-
noted by QI. 

• r: Default time of a reference entity(corporation or obligor). 

• rd: Default time of a reference entity( corporation or obligor) in the domestic 
economy. 

• rf: Default time of a reference entity( corporation or obligor) in the foreign 
economy. 

• ,\: Intensity of default for the default time T. 

• ,\d: Intensity of default for the default time Td. 

• >./: Intensity of default for the default time Tl. 

• Ht = lr~t= Indicator function for default time T. 

• Ht = lro;;;t: Indicator function for default time Td. 
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• H{ = lr~t: Indicator function for default time 11. 

• :Ft: Filtration generated by Wl. 
• Ht: Filtration generated by Ht. 

• t;;it: Filtration generated by :Fi v Ht v H{. 

• Ad: The (:Fi,Q)-martingale hazard process of Td. 

• Al: The (:Ft, Q)-martingale hazard process of 11. 

• rd: The :Fi-hazard process of rd. 

• rt: The :Ft-hazard process of rl. 

• pd(t, T): The price of a domestic default free zero coupon bond. 

• pl (t, T): The price of a foreign default free zero coupon bond. 

• lr>tf>d(t, T): The price of a domestic defaultable zero coupon bond when 
there is cross default of the entity( corporation or obligor). 

• lr>tpf (t, T): The price of a foreign defaultable zero coupon bond when there 
is cross default of the entity( corporation or obligor). 

• lrd>tf>d(t, T): The price of a domestic defaultable zero coupon bond when 
there is no cross default of the entity( corporation or obligor). 

• '1r1>tpl (t, T): The price of a foreign defaultable zero coupon bond when 
there is no cross default of the entity( corporation or obligor). 

• St: The foreign exchange representing the price of one unit of currency_ in 
terms of domestic currency. 

• as: The instantaneous volatility of the foreign exchange rate. 

• X(t, T): The forward exchange rate. 

• aM(t, T): The instantaneous volatility of the forward exchange rate. 

• X(t, T): The defaultable forward exchange rate. 

• 1fd: The domestic forward measure corresponding to using pd(t, T) as the 
numeraire. 

• 1fd: The foreign fonvard measure corresponding to using pl (t, T) as the 
numeraire. 

• 1fd: The defaultable forward measure for the domestic economy correspond-
ing to using the domestic defaultable zero coupon bond as the numeraire. 
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• 'Jr/: The defaultable forward measure for the foreign economy corresponding 
to using the foreign defaultable zero coupon bond as the numeraire. 

• jd(t, T): The domestic continuously compounded default free instantaneous 
forward rates. 

• JI (t, T): The foreign continuously compounded default free instantaneous 
forward rates. 

• fd(t, T): The domestic continuously compounded defaultable instantaneous 
forward rates. 

• f I ( t, T): The foreign continuously compounded defaultable instantaneous 
forward rates. 

• sd(t, T): The domestic continuously compounded instantaneous forward rate 
spread. 

• sf (t, T): The foreign continuously compounded instantaneous forward rate 
spread. 

• ad(t, T): The volatility of domestic default free instantaneous forward rates. 

• a;(t, T): The volatility of the domestic continuously compounded instanta-
neous forward rate spread. 

• a{(t, T): The volatility of foreign continuously compounded instantaneous 
forward rate spread. 

• {;d(t, T): The probability of survival of the reference entity( corporation or 
obligor) under the domestic forward measure. 

• {;! ( t, T): The probability of survival of the reference entity( corporation or 
obligor) under the foreign fonvard measure. 

• az: The instantaneous volatility of the probability of survival of the reference 
entity( corporation or obligor) under the domestic forward measure. 

• a£: The instantaneous volatility of the probability of survival of the reference 
entity( corporation or obliger) under the foreign forward measure. 

• rl(t, T): The instantaneous volatility of pd(t, T). 

• rJ'(t, T): The instantaneous volatility of Pf(t, T). 

• ijd(t, T) The instantaneous volatility of f>d(t, T). 

• r;'(t, T) The instantaneous volatility of f>l(t, T). 

• ry;: Diffusion part of the intensity of default >.: in a contagion type model. 
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• o:d: The jump in the intensity of default in the domestic market due to the 
default of the obligor in the foreign market. 

• o:f: The jump in the intensity of default in the foreign market due to the 
default of the obligor in the domestic market. 

• si(t, T): Forward credit spread process for the obligor in the ith economy. 

• T/ii: Deterministic function representing the jump in the forward credit spread 
si(t, T) due to default of obligor in the jth market. 



INTRODUCTION 

In this thesis we extend some results that have been given for the default free single 
factor quadratic Gaussian model (see, e.g., Pelsser (2000) and Jamshidian (1996)) 
to the multi-factor quadratic Gaussian model for default free and defaultable mar-
ket. We also consider the extension of the reduced form model for credit risk (see 
Bielecki and Rutkowski (2002)) to include a foreign economy besides a domestic 
one. The extension is made under the assumptions of cross default1 and absence 
of cross default. 

The Black and Scholes (BLSC) model (see Black (1976) and Black & Scholes 
(1973)) is used by market participants to quote the implied volatilities of caps, 
floors and swaptions. The BLSC model assumes that the libor (swap) rate has 
constant volatility contrary to the fact that the implied volatility of quoted caps 
as well as floors (swaptions) exhibit a term structure of volatilities that vary with 
the strike price and maturity of the interest rate option. This term structure of 
implied volatilities is referred to the smile or the skew implied by the interest 
rate option. In order to be consistent with the smile, various models have been 
proposed in the literature. The lognormal libor rate model (LL1vl) and the log-
normal swap rate model (LSl\1) (see Brace, Gatarek and l\lusiela (1997), l\fosiela 
and Rutkowski (2005) and Brigo and l\lercurio (2006) for a detailed discussion) 
have been extended by some researchers to account for the smile through the in-
troduction of stochastic volatility and jumps in the dynamics of the libor or swap 
rate. However using a libor market model or a swap market model to price exotic 
interest rate contracts can be a computationally intensive task. Therefore some 
market participants prefer to use factor models to price interest rate contracts. 
l\Ioreover there has been some suggestions by some practitioners to use models 
that require less computational effort (see, e.g, :Mercurio and Pallavivini (2005) or 
Andreasen (2006)). The quadratic Gaussian model can be used as a basis for such 
a model similar to what has been done in l\lercurio and Pallavivini (2005) using 

1 By cross default, we mean that the default of the obligor in one of the markets (domestic or 
foreign) will lead to the default of the obligor in the other market. 
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a Gaussian short rate model. The quadratic Gaussian model is also a tractable 
model that can be use for the pricing of credit sensitive contracts. In Brigo and 
Alfonsi (2004), a reduced form model of credit risk based on the Cox-Ingersoll-Ross 
(CIR) process (see Cox et al. (1985)) was introduced. However in this model, we 
do not have closed form formulas for defaultable zero coupon bonds if we assume 
that there is correlation between the short term of interest rate and the intensity 
of default. In contrast to the reduced form model of credit risk based on CIR 
processes, the multi-factor quadratic Gaussian model enables the calculation of 
the price of defaultable zero coupon bonds when there is correlation between the 
short term of interest and the intensity of default2 • However the computation of 
the closed form price of the default free and defaultable zero coupon bonds can 
be computationally intensive. In chapter one, we give computationally efficient 
formulas for the computation of the price in the multi-factor quadratic Gaussian 
model extending the formulas that were given in Pelsser (2000) for the single fac-
tor quadratic Gaussian model. In addition to deriving efficient formulas for the 
price of zero coupon bonds, we also extend the formula which is used to calibrate 
the quadratic Gaussian model (see Pelsser (2000)) to the term structure of default 
free zero coupon bonds from the single factor model to the general multi-factor 
model. In this chapter, we also provide closed form formulas for the calculation 
of zero coupon bond prices in the foreign economy and a closed form formula for 
the calibration of the multi-quadratic Gaussian model to the the term structure 
of foreign default free zero coupon bonds. In the last section of chapter one, we 
consider a multi-factor quadratic Gaussian model where the Gaussian process yt 
which is used to model the state variables has a piecewise constant speed of mean 
reversion matrix and piecewise constant instantaneous volatility. For such a model, 
we provide a method for calculating the price of zero coupon bonds in closed form. 

Chapter two considers the pricing of default free swaptions. In the multi-factor 
quadratic Gaussian model, one can price caps and floors accurately and efficiently 
using the Fourier transform technique. The exact pricing of swaptions on the other 
hand cannot be done through closed form formulas in the multi-factor quadratic 
Gaussian model. For pricing correlation sensitive interest rate contracts, it is 
important to calibrate to market information which is represented by the quotes of 
liquid swaption prices (see Brigo and l\Iercurio (2006) and l\Iercurio and Pallavivini 

2 See Grasselli and Tebaldi (2004) for a discussion regarding solvability of the CIR model and 
the quadratic Gaussian model. 
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(2005)). Since we do not have exact formulas for swaption prices in the multi-factor 
quadratic Gaussian model, it is important to have approximations which can make 
the calibration of the model to swaption prices easier. Hence in this chapter we 
investigate different approximations that are based on replacing the ratio of default 
free zero coupon price to the sum of default free zero coupon bond prices by their 
time zero values. This technique was introduced in Rebonato (1998) and is popular 
in deriving approximation to the price of interest rate options (see, e.g. Brigo and 
Mercurio (2006), d'Aspremont (2003) and Schrager and Pelsser (2006)). We try 
to investigate the limitations of this technique in the context of a multi-factor 
quadratic Gaussian model through numerical experiments. 

Chapter three provides a method to extract the term structure of survival 
probabilities that is implied by the quotes of credit default swaps (CDS). This 
method is an extension of the method proposed in Martin et al. (2001) for a reduced 
form model with a deterministic intensity of default to a reduced form model with 
stochastic intensity of default. \Ve then consider a quadratic Gaussian model for 
the intensity of default and provide closed form formulas for the calibration of the 
model to the term structure of survival probabilities when the intensity of default 
is independent of the instantaneous rate of interest. If the intensity of default and 
the instantaneous rate of interest are not independent, we provide a method for 
calibrating the intensity of default to the term structure of survival probabilities 
through the numerical solution of an ordinary differential equation (ODE). In the 
last section of this chapter, we provide various approximations for the price of 
a credit default swaption. These approximations are derived through a similar 
technique used to approximate the price of default free swaptions. In this case we 
replace the ratio of defaultable zero coupon bond prices to the sum of defaultable 
zero coupon bonds by their time zero values. \Ve present some numerical results 
that indicate the limitations of such an approach. 

The last chapter of this thesis considers the extension of the reduced form model 
of credit risk to a two country setting. \Ve first show that if we use a Heath Jarrow 
Morton (HJl\1) model for the instantaneous defaultable forward rates (see Bielecki 
and Rutkowski (2002) and Schonbucher (2000)), we do not have the freedom to 
specify the volatilities of the domestic defaultable forward rates, the volatilities of 
the foreign defaultable forward rates and the volatilities of the foreign e.xchange 
rate independent of each other. \Ve then give a quanto adjustment formula that can 
be used to obtain the foreign probability of survival from the domestic probability 
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of survival or vice versa. This extends the result that is given in the Gaussian case 
(see, e.g. Anderson (2003)) to other factor models. We also consider a contagion 
type model for the intensity of default by assuming that an obligor has different 
intensity of default in the domestic and foreign market but default of the obligor 
in one market leads to a jump in the intensity of default in the other market. 
Assuming a quadratic Gaussian intensity of default in both markets, we show how 
we can price a quanto default swap in this contagion type model. 



1. QUADRATIC GAUSSIAN FACTOR MODELS 

In this section we review some basic properties of quadratic Gaussian factor models 
for the default free instantaneous rate of interest and the intensity of default. The 
quadratic Gaussian factor model was introduced by Beaglehole and Tenney (1991) 
and analyzed further in El Karoui et al. (1991) and Jamshidian (1996). There 
has been further work on applying the quadratic Gaussian factor model to price 
default free interest rate derivatives and empirical results on fitting the model to 
historical data (see Cherif and Durand (1995), Boyle and Tian {1999), Pelsser 
{2000), Ahn, Dittmar and Gallant (2002), Leippold and \Vu (2002), Leippold and 
\Vu (2003), Chen et al. (2003), Kim (2004) and Chen et al. (2006)). Quadratic 
Gaussian models for default free interest rates have been extended to a rnulti-
country context in Cherif et al. (1994) and Leippold and vVu {2002). In this 
chapter, we first extend the result given in Pelsser (2000) regarding the efficient 
computation of bond prices in a single factor quadratic Gaussian model to the 
multifactor setting. \Ve then provide a closed form calibration formula for the 
multifactor quadratic Gaussian model extending the result given in Pelsser (2000) 
for the single factor quadratic Gaussian model and the result given in Jamshidian 
(1996) for the separable1 multifactor quadratic Gaussian model. 

We now consider a model where besides default free assets, defaultable assets 
are traded. \Ve assume that we have a filtered probability space (n, 9, Q) where Q 
is the risk-neutral measure. \Ve assume the filtration IF= (Ft)(o~t~T*) is generated 
by n independent Brownian motions lV{t) = l.Vi(t), i = 1, ... , n and satisfies the 
usual conditions. The time horizon is assumed to be finite so that T* > 0 is 
some finite number. Let T denote the default time of a corporate which has issued 
defaultable bonds. Let Ht = lr~t represent the default indicator function. Let 
'lit = a(Hu : u ~ t) = a({T ~ u} : u ~ t). \Ve then define 9t = :Fi v ?tt. vVe 

1 Dy separable quadratic Gaussian models, it is meant that the state variables are independent. 
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denote by At the 9rintensity of Ht which has the property that 

tl\T 

Ht - f Au du 
0 

is a Q-martingale under the risk neutral measure Q. Let the random vector 

follow a Gaussian Ornstein-Uhlenbeck process: 

dyt = Ayt dt + E d~Vi 

6 

{1.1) 

{1.2) 

where Yo= (0, ... , 0) and A and E are constant square matrices. We assume that 
A is a diagonal matrix so that 

an 

A= 0 

0 

and 
o-u 0 

E= 
Pi10"ii 

is chosen so that 

EET = 

0 0 

aii 

0 
0 0 

0 0 
0 

0 

0 

0 0 

0 
0 

2 
O"nn 
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Hence E is the lower triangular matrix corresponding to the Cholesky decomposi-
tion of EET. We now use quadratic forms in 

Zt = yt + a:(t) (1.3) 

as the state variables. Note there is no loss of generality in assuming (1.3) as we 
can write the general case of a Gaussian Ornstein Uhlenbeck process which has a 
drift term equal to a deterministic time dependent vector µ(t): 

dxt = (µ(t) + Axt)dt + E dWt (1.4) 

Xt = (xlt,•••,Xnt)T 

as 
Xt = yt + exp(At)xo + s: exp(A (t - s))µ(s) ds. (1.5) 

However it is better to use (1.3) as it makes it easier to derive calibration of the 
quadratic Gaussian model to the term structure of default free and defaultable 
zero coupon bonds through a:(t). \Ve now model the short term interest rate rt 
as a quadratic form in Zt = yt + a:(t). If we are considering a reduced model of 
credit risk, we also assume that the intensity of default At is a quadratic form in 
Zt = Yi+ a:(t). Therefore we can write rt as 

T~ ~T ~ 

rt =Yi Cyt + B (t)yt + A(t) (1.6) 

and in the defaultable case At as 

T- -T -At =Yi Cyt + B (t)yt + A(t) (1.7) 

where C and C are constant and symmetric matrices, B(t) and B(t) are time 
dependent deterministic vectors, A(t) and A(t) are time dependent deterministic 
scalars. \Ve denote by D(t) the default free savings account which is the value of 
investing one unit of currency at time t = 0 and rolling over the account at the 
default free instantaneous rate of interest rt: 

t 

D(t) =exp (f rs ds). (1.8) 
0 
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Suppose Gr is some stochastic process and we are considering the expectation 
Gr with under a given measure M and with respect to the sigma algebra :Ft 
representing the information from the market at time t given by 

To simplify the notation we write instead 

\Ne denote the price of a default free zero coupon bond by P( t, T) which is given 
by (see, e.g., Musiela and Rutkowski (2005)) 

\Ne denote the predefault price of a defaultable zero coupon bond by P(t, T) so 
that under the assumption of the reduced form model we are considering, the price 
of a defaultable zero coupon bond is given by2 (see, e.g., Bielecki and Rutkowski 
(2002), p.245) 

r 
lr>tP(t, T) = lr>t1E? [exp ( - f (rs+ >.s) ds)]. 

t 

If we model the default free interest rate rt and the intensity of default >-t by 
quadratic forms of multivariate quadratic Gaussian processes, default free zero 
coupon bond prices P(t, T) and defaultable zero coupon bond prices P(t, T) are 
log-quadratic Gaussian. \Ve state the following general result obtained in El Karoui 
et al. (1991) which is also valid even if the matrices A and L: in (1.3) are time 
dependent. 

Theorem 1.1 (El Karoui, Viswanathan and l\lyneni). 

P(t, T) =exp (-YiT C(t, T)yt - B(t, T)Tyt - A(t, T)) 

2 Here we are assuming that we have a reduced form model where the intensity is modeled 
by a quadratic form in Gaussian random variables. The discussion given in the first section 
of Chapter 4 provides more detail regarding valuation formulas for the price of credit sensitive 
securities in a reduced form model such as the one we are considering here. 
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P(t, T) =exp (-~T C(t, T)yt - B(t, T) Tyt - A(t, T}) 
where C(t, T), B(t, T), A(t, T) solve the following Riccati ordinary differential 

equations( ODE) 

OtC(t, T) = - AT C(t, T) - C(t, T)A + 2C(t, T) TEET C(t, T) - c, C(T, T) = Onxn 

(1.9) 

OtB(t, T) = - AT B(t, T) + 2C(t, T)EET B(t, T) - B(t), B(T, T) =On (1.10) 

otA(t, T) = - Tr[EET C(t, T)] + ~B(t, T)TEET B(t, T) -A(t), A(T, T) = 0. 

(1.11} 

Similarly C(t, T), B(t, T), A(t, T) solve the following Riccati ODE 

OtC(t, T) = - AT C(t, T) - C(t, T)A + 2C(t, T)TEET C{t, T) - C, C(T, T) = Onxn 

(1.12) 

OtB(t, T) = - AT B(t, T) + 2C(t, T)EET B(t, T) - B(t), B(T, T) =On (1.13) 

otA(t, T) = -Tr[EET C(t, T)] + ~B(t, T)TEET B(t, T) - A(t), A(T, T) = 0. 

{l.14) 

In general if we consider the matrices A, E in (1.3) to be time dependent, we 
cannot guarantee the existence of a closed form solution of the Riccati equations. 
However if we assume A, E are constant, Freiling (2002) (see Appendi..x A) presents 
an analytic solution of matrix Riccati equations of type (1.9). If we assume the 
matrices A, E are constant, the solution of (1.9) can be vHitten as a function of 
time to maturity T - t. Thus we have 

OtC(t, T) = -orC(t, T) = -i)yC(T - t). 

Hence if we multiply the right hand side of the matrix Riccati equation (1.9) by 
-1 and write it as a function of time to maturity T - t, we get an initial value 
ODE 

dC(JT- t) = AT C(T - t) + C(T - t)A - 2C(T- t) TEET C(T - t) + 6 (1.15) 

with initial condition C(T-t)IT=t = Onxn· In the following we apply Theorem A.2 
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(see Freiling (2002) for more detail) to solve3 (1.15). Let In denote the identity 
matrix of dimension n x n and Onxn denote the zero matrix4 of dimension n x n. 
According to Theorem A.2, we can solve (1.15), by considering the linear ODE 
associated with (1.15): 

( 9cr-t)) = (-:4 2EET) ( Q(T-t)) 
P(T-t) c AT P(T-t) ' ( 

Q(O)) ( In ) 
P(O) = Onxn . 

(1.16) 
\Ve can apply the second part of Theorem A.2 to conclude that the solution of 
(1.15) is given by 

C(t, T) = P(T - t)Q-1(T - t). (1.17) 

To find a closed form formula for B(t, T) we use an integrating factor to solve 
the ODE given by (1.10). It is not difficult to show that {l.16) implies that 
Q(t, T) := Q(T - t) satisfies 

otQ(t, T) = (A - 2EET C(t, T))Q(t, T)), Q(T, T) =In. (1.18) 

Using {l.10) and (1.18), we have after some simplifications 

ot(Q(t,T)TB(t,T)) = -Q(t,T)TB(t). (1.19) 

Using direct integration and the boundary conditions for (1.10) and (1.18), we get 
an explicit analytic solution for B(t, T): 

T 

B(t, T) = Q-1(t, T)T f Q(s, T)T B(s) ds. (1.20) 

The solution of A(t, T) can be found by direct integration of (1.11): 

T 

A(t,T) = f (rr[EETC(s,T)]-~B(t,T)TEETB(s,T)+A(s)) ds (1.21) 
t 

Let'][' be the default free T-measure which is given by the following Radon Nikodym 
3 Alternatively we can consider the ODE satisfied by ft C(T - t) and apply Theorem A.3. 
4 The zero matrix is a matrix which has all its entries equal to zero. 
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density d'Irl F'(T,T) IJ(t) 
dQ :Ft = IJ(T) F'(t, T)" (1.22) 

Let V(t, T) denote the variance-covariance matrix of Yr under the measure 1I' 
conditional on Ft and M(t, T) denote the vector representing the mean of Yr under 
the measure 1' conditional on Ft. We can show how to get closed form formulas for 
V(t, T) and M(t, T). By Ito's formula, the stochastic differential equation (SDE) 
satisfied by the default free zero coupon bond is given by 

dF'(t, T) = F'(t, T)(rt - (2 ~T C(t, T) + B(t, T))E dVyt). (1.23) 

Now using Girsanov's theorem (Karatzas and Shreve 1991, p. 191) we have that 

t 

Wl = lVt + f 2 ET { C( s, T)Ys + B ( s, T)) ds. (1.24) 
0 

is a Brownian motion under the measure 'JI'. Hence the dynamics of Yi under the 
measure 1I' is given by 

dYt =[(A- 2EET C(t, T))Yt- EET B(t, T)]dt + E dlvr (1.25) 

Now using the fact that 

otQ(t, T) = (A - 2EET C(t, T))Q(t, T), Q(T, T) =In, (1.26) 

we can solve the Ornstein Uhlenbeck equation {l.25) explicitly for Yi by using 
Q( t, T) as an integrating factor5 • Thus we have 

r r 
Yr= Q- 1(t,T)Yt- f Q-1 (s,T)EETB(s,T) ds+ f Q- 1(s,T)EdlVI. {l.27) 

t t 

\Ve can calculate AJ(t, T) by taking the conditional expectation of {l.27). There-
5 Consider the SDE that is satisfied by Q( t, T)-1 Yi which can be solved by direct integration. 
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fore we have: 

M(t, T) =lEY(YT] 
T T 

=1Er[Q-1(t,T)yt- f Q-1(s,T)EETB(s,T) ds+ f Q-1(s,T)Edw;] 
t t 

(1.28) 
T 

=Q-1(t, T)yt - f Q-1(s, T)EET B(s, T) ds (1.29) 
t 

where we have used the fact that 

t f Q-1 (s, T)E dvv; 
0 

is a martingale (see, e.g., Karatzas and Shreve (1991), p. 139) in (1.28) to get 
(1.29). The conditional variance V(t, T) is calculated using 

V(t, T) =lEriYTYf] -lEnYT)lEY(YT)T 
T T 

=lEr[ ( Q-1(t,T)yt- f Q-1(s,T)EETB(s,T) ds+ f Q-1(s,T)Edvv;) 
t t 

T T T 

( Q-1(t, T)yt - f Q-1 (s, T)EET B(s, T) ds + f Q-1(s, T)E div;) ] 
t t 

(1.30) 

t 
Now using (1.27), (1.29) and S Q-1(s, T)E dlV]" is a martingale on the expression 

0 
given by (1.30), we get after some simplifications: 

T T T 

V(t,T) = lEr[ (f Q-1(s,T)EdlVI) (f Q-1(s,T)Edlv;) l {l.31) 
t t 

Let 
T 

Ft:= f Q-1 (s, T)E div;. {l.32) 
t 
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The quadratic variation of Ft which is denoted by (F)t is the unique process such 
that (see, e.g., Karatzas and Shreve (1991), p. 138) 

(1.33) 

is a martingale. Moreover the quadratic variation of Ft is given by (see, e.g., 
Karatzas and Shreve (1991), p. 138) 

t J Q-1(s, T)EET Q-1 (s, T) ds. (1.34) 
0 

Using (1.33) is a martingale and (1.34), we can show that (1.31) is equal to 

T J Q-1(s, T)EET Q-1 (s, T) ds. (1.35) 
t 

\Ve therefore have proven the following lemma. 

Lemma 1.2. The conditional mean M(t, T) and conditional variance-covariance 
matrix V(t, T) of Yr are given by the following formulas. 

T 

Af(t, T) =Q-1 (t, T)yt - f Q-1(s, T)EET B(s, T) ds (1.36) 

T 

V(t, T) = f Q-1 (s, T)EET Q-1(s, T) ds. (1.37) 

If we assume that Tt is given by 

Tt = (Yi+ a(t)) T (Yi+ a(t)). 

\Ve can show that 

rt = -or(Loge(P(t, T)))lr=t = YiTYi + 2a(t) Tyt + a(t) T a(t). 

and B(s) in (1.20) will be equal to 2a(s) (see Cherif et al. (1994)). vVe will show 
in Theorem 1.7 that a(t) can be used to calibrate the quadratic gaussian model 
to the data given by the prices of default free zero coupon bonds. Hence B(s) will 
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be given by an integral and therefore the computation of B(s, T) will involve a 
double integral. Thus computation of V(t, T) involves a single integral while the 
computation of M(t, T) involves an integrand that is a double integrand. This 
will be slower than an alternative method of computing V(t, T) and M(t, T) which 
is given in Cherif et al. (1994) (see Lemma 1.4), a result which is valid in the 
more general case of time dependent speed of mean reversion matrix A(t) and a 
time dependent variance-covariance matrix E(t) for the state variable yt. In the 
following we provide the result which is given in Cherif et al. (1994) as a lemma 
since it will be cited several times in this thesis. 

Lemma 1.3. The following ODE's are satisfied by V(t, T) and l\1(t, T) 

orV(t, T) = AV(t, T) + V(t, T) AT - 2V(t, T) CV(t, T) + EET 

orAf(t, T) = Al\1(t, T) - 2V(t, T) C Af(t, T) - V(t, T) B(t) + µ(T), 

with initial conditions V(t, t) = Dnxn and A!(t, t) = yt. 

{l.38) 

{l.39) 

The proof of lemma 1.3 is found in Cherif et al. (1994). Therefore V(t, T) 
can be obtained by solving a matrix Riccati differential equation while Af(t, T) 
can be obtained by solving a system of ODE's. In lemma 1.3, µ(T) represents the 
drift term of the Ornstein Uhlenbeck process of the Gaussian factors underlying 
the quadratic Gaussian factor model. For our model yt has no drift and therefore 
µ(T) = On but we will see later that when we consider a two economy model, Yi 
will have a drift under the foreign risk neutral measure. \Ve have in Lemma 1.3 
a particular case of the more general result given by Cherif et al. (1994) as we 
are considering the case of a constant speed of mean reversion matrLx A and a 
constant instantaneous volatility matrix E instead of the more general case of a 
time dependent A and a time dependent E. \Ve provide new analytic formulas for 
V(t, T) and A/(t, T) in the following lemma by solving the ODE's given in (1.38) 
and (1.39). 

Lemma 1.4. 

V(t, T) =P(T - t)Q- 1 (T - t) (1.40) 
T 

A!(t,T) =Q-1(t,T)Tyt +Q-1(t,T)T J P(t,s)TB(s) ds. (1.41) 
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where (Q(T) P(T))T is the solution of the following system of linear ODE's 

d ( Q(T) ) ( -AT 20 ) ( Q(T) ) 
dT P(T) = EET A P(T) ' ( ~(O) ) = ( In ) . (1.42) 

P(O) Dnxn 

Proof. Assuming time independent A and E enables us to find the closed form 
solution of (1.38) using Theorem A.2 which is given in Appendix A. This is 
similar to what we did to solve for C(t, T). The system of linear ODE's given 
by (1.42) can be solved explicitly using matrix exponentiation (see, e.g. Leonard 
(2002) or Moler and Van Loan (1978)). Therefore applying the second part of 
Theorem A.2, we get (1.40). To solve (1.39), consider first the equation satisfied 
by Q(t, T) := Q(T - t) which can be obtained from (1.42) 

orQ(t, T) = -AT Q(t, T) + 2 CP(T- t), Q(t, t) =In. (1.43) 

Using (1.40) we can rewrite (1.43) as 

OTQ(t, T) = (-AT+ 2 CV(T- t))Q(t, T), Q(t, t) =In· (1.44) 

We now use Q(t, T)T as an integrating factor. Specifically differentiate 

Q(t, T) T AJ(t, T) 

with respect to T and simplify to get: 

or(Q(t, T)T Af(t, T)) = -Q(t, T)T B(t). (1.45) 

\Ve can solve (1.45) using direct integration and the boundary conditions given in 
(1.10) and (1.44) to get (1.41). D 

The alternative formulas for V(t, T) and Af(t, T) which are given by (1.40) and 
(1.41) respectively are more efficient than the pre'\ious formulas given by (1.36) 
and (1.37)6 • In order to calculate A(t, T), we have to integrate a nonlinear function 
of a double integral (specifically consider B(s, T)TEET B(s, T)). Thus we cannot 
use cubature methods (see Cools and Haegemans (2003)) for three dimensional 

6 \Ve will see later in this chapter that we can get B(t) through a single integral and therefore 
we can use cubature to perform the double integration which is necessary to calculate J\.!(t, T). 
In comparison in the integrand of (1.36), D(t, T) requires a double integral such that 've need a 
triple integral to calculate .M(t, T) this way. 
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integrals to gain some efficiency in integration. Hence it is important to find 
efficient ways of computing these values. For the single factor quadratic Gaussian 
model, Pelsser (2000) provides efficient formulas for the calculation of B(t, T) and 
A(t, T). We extend these formulas to the multifactor quadratic Gaussian model. 
First to simplify the discussion we assume that 

(1.46) 

Hence the constant matrix 6 = In where In is then x n identity matrix, B(t) = 
2 o:(t) and A(t) = o:(t)T o:(t) in (1.6). Let F(t, T) denote the default free forward 
rate as seen from the date t < T i.e. 

F(t, T) := -orlo&(P(t, T)). (1.47) 

Let 1 denote the column vector of dimension n which has all its elements equal to 
the number one: 

1 := (1, ... ,l)T. 

The following lemma generalizes a result given in Pelsser (2000) which is given for 
the one factor case. 

Lemma 1.5. 

1 A!(t, T) = Q-1 (t, T)Yt + 2Q(t, T) T orB(t, T) - o:(T) (1.48) 

and 
T 

B(O, T) = 2 f Q-1(0, s)T F(s) ds (1.49) 
0 

where 

P(s) = 
F(O, s) - tr(V(O, s)) l 

n 
Proof. First we use the following known result (see Corollary 11.3.1 in l\1usiela and 
Rutkowski (2005)) 

F(t, T) = lEi[rr] (1.50) 

Note that 
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and 
lEnYiYT] = tr(V(t, T)) + M(t, T)T M(t, T) (1.51) 

Using the formula given in (1.36), we have 

T T 

M(t, T)T M(t, T) = ( Q-1 (t, T)Yt - f Q-1(s, T)EET B(s, T) ds) 
t 

T 

( Q-1 (t, T)Yt - f Q-1 (s, T)EET B(s, T) ds) (1.52) 
t 

and therefore we can use this expression to calculate 

(1.53) 

On the other hand from (1.47) we get 

F(t, T) = °YiT iJTC(t, T)yt + l';T iJTB(t, T) + orA(t, T) (1.54) 

Now we match quadratic terms with quadratic terms in equations (1.54) and (1.53) 
and get 

(1.55) 

\Ve do not use (1.55) here but this result will be used in another lemma. l\ilatching 
linear terms with linear terms in equations (1.54) and (1.53), we have 

T 

iJTB(t, T) = -2Q-1 (t, T)T f Q-1(s, T)EET B(s, T) ds + 2Q-1 (t, T)T o{T), (1.56) 

while matching constant terms gives us 

T 

oTA(t, T) = tr(V(t, T)) - 2o{T)T ( f Q-1(s, T)EET B(s, T) ds )+ 
t 

T T T 

+ ( f Q-1 (s, T)EET B(s, T) ds) ( f Q-1(s, T)EET B(s, T) ds) + o(T)T o(T). 
t t 

(1.57) 
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From (1.56) we get 

T -f Q-1 (s, T)L.L.T B(s, T) ds = ~Q(t, T) T orB(t, T) - o:(T). {l.58) 

Since 
T 

M(t, T) = Q-1(t, T)yt - f Q-1 (s, T)EET B(s, T) ds 
t 

we can use (1.58) to write 

M(t, T) = Q-1 (t, T)yt + ~Q(t, T) T orB(t, T) - o:(T) 

and this proves (1.48) given in the lemma. Note that this equation can be used 
to calculate M(t, T) fort> 0 as we will later show in lemma 1.7 that we can find 
a formula7 for orB(t, T). Therefore the calculation of M(t, T) can be done using 
one dimensional integration. Using (1.58) we can simplify (1.57) to obtain 

orA(t, T) = tr(V(t, T)) + ~orB(t, T) T Q(t, T)Q(t, T) T orB(t, T). (1.59) 

When t = 0, we have 

1 F(O, T) = orA(O, T) = tr(V(O, T) + 4orB(O, T)T Q(O, T)Q(O, T)TorB(O, T) 
{l.60) 

as Y0 = {O, ... , 0). Therefore 

orB(O, T) T Q(O, T)Q(O, T) T orB(O, T) = 4(F(O, T) - tr(V(O, T))) (1.61) 

Now one solution to (1.61) among many is to choose 

Q(O, T) T orB(O, T) = 2V F(O, T) - :(V(O, T)) 1. {l.62) 

Thus we have 

7 The formula will involve only one dimensional integration. 
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Integrating both sides completes the proof of the lemma. 0 

Remark 1.6. Note that in (1.63) we can choose the right hand side vector to be 
different than our choice as long as v in 

has the property that 

vTv = -JF(O,T)-tr(V(O,T)). 

Hence there is no unique way of choosing a(t). ~Ve have not investigated how this 
can be used to calibrate the quadratic Gaussian model in different ways. 

Lemma 1.7. 

B(t, T) =(In+ 2C(t, T)V(O, t))Q(O, t) T {B(O, T) - B(O, t))+ 
+2C(t, T)(a(t) - F(t)) 

orB(t, T) =2Q-1(t, T) T Q-1(t, T)(V(O, t)Q(O, t) T (B(O, T) - B(O, t))+ 
(1.64) 

+a(t) - F(t)) +(In+ 2C(t, T)V(O, t))Q(O, t)T2Q-1 (0, T)T F(T) 
(1.65) 

( 
P(O,t)) 1 

A(t, T) =loge P(O, T) - 2 lo~ (I In+ 2C(t, T)V(O, t) 1)-

-(a(t) - F(t)) T Un+ 2C(t, T)V(O, t))-1C(t, T)(n(t) - F(t))+ 
- 1 +(a(t) - F(t) + 2 V(O, t)B(t, T))(In + 2C{t, T)V(O, t))-1 B(t, T) 

(1.66) 

Proof. \Ve prove the lemma using the approach used by Pelsser (2000) for the 
one factor quadratic Gaussian model. Specifically we use the fact that under the 
default free forward measure1 which is denoted by 11', the values of contingent claims 
normalized by the default free bond of maturity T are martingales. Therefore if 
we assume T < S, we have 

P(t, S) = JET[P(T S)] 
P(t,T) t ' . 

(1.67) 

1 The default free forward measure corresponds to using the default free bond of maturity T 
as the numeraire. 
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First note that 

P(t, S) ( T( ( ) ( p ( t, T) = exp - Yi C t, S - C t, T)) yt 

- (B(t, S) - B(t, T)) Tyt - (A(t, S) - A(t, T))). (1.68) 

Since we know the moment generating function of a quadratic form in Gaussian 
random variables (see Lemma B.l), we can calculate 

IEnP(T, S)] = IEl[ exp ( - Yi C(T, S)YT - B(T, S)TYT -A(T, S))]. (1.69) 

To do so note that 

-Yi C(T, S)YT - B(T, S) TyT - A(T, S) (1.70) 

is a quadratic form in the Gaussian random vector YT with a known mean vector 
M(t, T) and variance covariance matrix V(t, T) under the forward measure'][' (note 
the mean and variance are with respect to the filtration F,,). Thus (1.69) can be 
obtained by evaluating the moment generating function of the quadratic form 
(1.70) at the value z = 1. 

Therefore a straightforward application of the moment generating function of 
a quadratic form in Gaussian variables gives: 

IEnP(T, S)] = IEI [exp ( - YrC(T, S)Yr - B(T, S) TyT - A(T, S))] 

=I I+ 2C(T, S)V(t, T) 1-4 exp ( - ~(l\f(t, T) TV(t, T)-1 l\f(t, T) + 2A(T, S)) 

+ ~(1\J(t, T) - V(t, T)B(T, S))T (I+ 2C(T, S)V(t, T))-1 

V(t, T)- 1(1\f(t, T) - V(t, T)B(T, S))). (1.71) 

\Ve now use (1.41) from lemma 1.4 for the mean Af(t, T) in (1.71) and match 
quadratic terms with quadratic terms, linear terms with linear terms and constant 
terms with constant terms in (1.68) and (1.71). This procedure yields 

- (C(t, S) - C(t, T)) = -~Q-1 (t, T) TV(t, T)- 1Q-1(t, T) 

+ ~Q- 1 (t, T) T (I+ 2c(T, S)V(t, rn- 1v(t, r)-1Q-1(t, T) (1.72) 
2 
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which can be rewritten as 

(I+ 2C(T, S)V(t, T))-1 =I - 2Q(t, T)T (C(t, S)-C(t, T))Q(t, T)V(t, T). (1.73) 

We do not use (1.73) here. For the linear terms we get 

T 

- (B(t, S) - B(t, T)) = Q-1(t, T)TV(t, T)-1 f Q-1 (s, T)EET B(s, T) ds 
t 

T 

- Q-1(t, T) T (I+ 2C(T, S)V(t, T))- 1V(t, T)- 1 f Q-1(s, T)EET B(s, T) ds 
t 

- Q-1(t, T) T (I+ 2C(T, S)V(t, T))-1B(T, S) (1.74) 

which can be rewritten as 

B(T, S) = (I+ 2C(T, S)V(t, T))Q(t, T) T (B(t, S) - B(t, T)) 
T 

+ 2C(T, S) f Q-1 (s, T)EET B(s, T) ds. (1.75) 

From the proof of Lemma 1.5, we have (1.58) and (1.62) which can be used to 
show that 

t f Q-1 (s, t)EET B(s, t) ds = o:(t) - F(t). (1. 76) 
0 

We can thus write (1. 75) in terms of t and T by substituting 0 for t, t for T and 
T for S to get 

B(t, T) = (I+ 2C(t, T)V(O, t))Q(O, t)T (B(O, T) - B(O, t)) 
t 

+ 2C(t, T) f Q-1(s, t)EET B(s, t) ds. (1.77) 
0 

and then substitute (1.76) in (1.77) which proves (1.64). 
\Ve can use the formula for B(t, T) as given in (1.64) to find the derivative 

orB(t, T) which can be used to calculate the mean Af (t, T) more efficiently for 
t > 0 as claimed in the proof of lemma 1.5. To do so we use (1.55) for oTC(t, T) 
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and (1.49) for orB(O, T) to get 

orB(t, T) =2Q-1 (t, T)T Q-1(t, T)V(O, t)Q(O, t)T (B(O, T) - B(O, t))+ 

+(Jn+ 2C(t, T)V(O, t))Q(O, t) T 2Q-l {O, T) T F(T)+ 

22 

+ 2Q- 1(t, T)T Q-1(t, T)(a(t) - F(t)). (1.78) 

\Ve now can simplify (1.78) to prove (1.65) stated in the lemma. For constant 
terms we get 

1 
- (A(t,S)-A(t,T)) = -2loge I I+ 2C(T,S)V(t,T) I 

T T -~ ( f Q-1(s, T)EET B(s, T) ds) T V(t, T)-1 ( f Q- 1(s, T)EET B(s, T) ds) 
t t 

T 

- A(T, S) + ~ ( f Q- 1(s, T)EET B(s, T) ds) T (I+ 2C(T, S)V(t, T))- 1V(t, T)-1 

t 
T T 

(f Q-1(s,T)EETB(s,T)ds) + (f Q-1(s,T)EETB(s,T)ds) T 

t t 

(I+ 2C(T, S)V(t, T))- 1 B(T, S)+ 

+ ~B(T,S)TV(t,T)T(I +2C(T,S)V(t,T))-1B(T,S). {l.79) 

Thus for the special case of t = 0 we have 

(
P(O,T)) 1 A(T, S) = loge P(O, S) - 2 loge I I+ 2C(T, S)V(O, T) I 

- (a(T) - F(T))T (I+ 2C(T, S)V(O, T))- 1C(T, S)(a(T) - F(T)) 

+ [ {a{T) - F(T))T + ~B(T, S)TV(O, T)T](I + 2C(T, S)V(O, T))-1 B(T, S). 

(1.80) 

Now substituting t for T and T for Sin (1.80) proves (1.66). 0 

Therefore Lemma (1.5) and Lemma (1.7) can be used to compute B(t, T) and 
A(t, T) using analytic formulas and one dimensional integration. For pricing pur-
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poses, if we need M(O, T), we can once again use 

F(O, T) = ET[rJrr] = tr(V(O, T)) + (M(O, T) + a(T))T(M(O, T) + a(T)) (1.81) 

to get 
M(O, T) = F(T) - a(T). (1.82) 

We can calculate 
F(T) = -}F(O, T) - tr(V(O, T)) 

in closed form and therefore we only need one dimensional integration for calcu-
lating a(T) as the following theorem shows. 

Theorem 1.8. We can calibrate to the default free term structure at t = 0 given 
in terms of forward rates F(O, T) by the following one dimensional integral 

T 

a(T) = F(T) +2exp(AT) f exp(-As)V(O,s)F(s) ds 
0 

where A is the speed of mean reversion diagonal matrix in the dynamics ofyt given 
in (1.3). 

Proof. Differentiating equation (1.82) with respect to T, we get 

dA! {O, T) da(T) dF(T) 
dT +dT= dT. (1.83) 

From the assumption that we made in (1.46) we have that 6 =In where In is the 
n x n identity matrix, B(t) = 2 a(t) and A(t) = a(t)T a(t). Using the result of 
Cheri£ et al. (1994) which is given in lemma 1.3, \Ve therefore have 

da(T) dF(T) 
A M(O, T) - 2V(O, T)Af(O, T) - 2V{O, T)a(T) + dT = dT (1.84) 

Using (1.82), we can reduce (1.84) to 

d~~) =A a(T) -A F(T) + 2V(O, T)F(T) + d~c:). (1.85) 

\Ve now can solve (1.85) using the integrating factor exp(-A T) i.e consider the 
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ODE satisfied by exp(-A T)a(T). Thus the solution of (1.85) is given by 

T -

f - dF(s) a(T) = exp(A T)(a(O) - exp(-A s)(A-2V(O,s))F(s) - exp(-As) ds ds. 
0 

Integrating by parts the expression 

T -f exp( -A s) d~~ 8 ) ds 
0 

(1.86) 

in (1.86) and noting that a(O) is equal to F(O), we obtain the following simplified 
one dimensional integral 

T 

a(T) = F(T) + 2exp(A T) f exp(-A s)V(O,s)F(s) ds. (1.87) 
0 

This completes the proof of the theorem which generalizes the result given in 
Pelsser (2000). D 

1.1 A Quadratic Gaussian A-f odel to include a Foreign Economy 

In the following we consider a model for the default free term structures of two 
economies, a domestic economy and a foreign economy. To model the interest 
rate term structures of a domestic and foreign market and the movement of the 
exchange rate between the two economies, we now assume that we have two filtered 
probability spaces. Let (fi, P, Qi) represent the filtered probability space which is 
used to model the domestic(foreign) economy for i = d(i = j) whereby Qi is the 
domestic(foreign) risk-neutral measure for i = d(i = f). \Ve assume the filtration 
JFi = (~\)co,,;;t,,;;T*) corresponding to the domestic economy(foreign) economy for 
i = d(i = f) is generated by n independent standard Brownian motions lVi(t) = 

lVi(t),j = 1, ... , n under Qi which is the domestic(foreign) risk neutral measure 
for i = d(i = f). The n Brownian motions represent the information generated 
by a domestic economy, a foreign economy and the movement of the exchange 
rate between the economies. The exchange rate is defined to be the value of one 
unit of foreign currency in terms of domestic currency. Assuming that there is 
extra information in the movement of the exchange rate between the domestic and 
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foreign market is supported by empirical results (see Leippold and Wu (2002)). 
Once again we assume the state of the international economy is represented by 

Zt = Yi+ a(t) = (Ytt, ... , Ynt) + a(t) 

which is an n-dimensional Gaussian Ornstein-Uhlenbeck process under the domes-
tic economy. Hence we assume as in the introduction of this section the dynamics 
of yt is given by (1.3) under the domestic risk neutral measure. 

Definition 1.9. Let St denote the foreign exchange rate between the domestic and 
foreign economy i.e St is the value of one unit of foreign currency in terms of units 
of domestic currency. 

We now denote by ri the domestic(foreign) instantaneous rate of interest for 
i = d(i = !). \Ve assume that we use different factors to model rf and r{ and 

where Ji is used to denote a matrix that has a one or a zero for the diagonal 
element of row k, k E {I, ... , n} depending on whether the kth factor is used to 
model d or not. All off-diagonal elements of Ji(i = d, f) are taken to be equal to 
zero. The exchange rate is assumed to be log-quadratic Gaussian and we give the 
following theorem which is given in Cherif et al. (1994). 

Theorem 1.10 (Cheri£, El Karoui, ~'1yneni, and Viswanathan ). A necessary 
and sufficient condition for the factors Zt to be Gaussian under the domestic and 
foreign risk neutral probabilities is to assume that the dynamics of St is given by 

(1.88) 

where C 5 (t) is a square matrix and B 5 (t) is a vector and both are assumed to be 
square integrable. Thus the instantaneous volatility of St is an affine function of 
the factors Zt. If we assume that St is a regular function of Zi then C 5 (t) is a 
symmetric matrix and there exists a deterministic function A 5 (t) such that: 

(1.89) 

and 
(1.90) 



1. Quadratic Gaussian Factor Models 

where cs ( t), B 5 ( t), As ( t) satisfy the following equations 

dC5 (t) 
dt 

dB5 (t) 
dt 

dA5 (t) 
dt 

- -AT Cs(t) - C 5 (t)A - 2C5 (t)EET C 5 (t) + Cs(t) 

- -AT B 5 (t) -2C5 (t)EETB5 (t) + fJS(t) 

- -Tr[EET Cs(t)] - !B5 (t)TEET B 5 (t) + _As(t) 
2 

Proof. See Cherif et al. (1994). 
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(1.91) 

(1.92) 

(1.93) 

D 

The initial data is given by the value of the foreign exchange rate at time t = 0 
such that C 5 (0), B 5 (0) and As(o) are known. Therefore the ODE given by (1.91) 
is an initial value symmetric matrix Riccati ODE which can be solved in closed 
form. Note however that we set up our model such that Yo= (0, ... , 0). Therefore 
we can take cs(o) to be equal to the zero matrix, B 5 (0) to be the zero vector of 
dimension n and use As ( 0) to calibrate to the foreign exchange rate data at time 
t = 0. Similar to the solution of {l.15) we have the follo\\<ing lemma. 

Lemma 1.11. The solution of (1.91) is given by 

where (Q5 (t), P 8 (t))T is the solution of the linear system 

( 
1:..QS(t) ) ( A 2EET ) ( QS(t) ) 
~PS(t) = Jd - Jf -AT pS(t) ' ( Qs(o)) ( I ) 

P 8 (0) = C 8 (0) 
(1.94) 

Proof From the equality given by equation (1.90), it follows that cs is equal to 
the matrix corresponding to the quadratic term of 

rt - r{ = (o(t) + Yt) T Jd(o(t) + Yt) - (o(t) + yt) T 11 (o(t) + Yt). 

Thus 65 = Jd - JI. \Ve can now apply Lemma (A.2) which is given in Ap-
pendix A(see Freiling (2002) for more detail) to get the result of the lemma. D 

The following lemma gives closed form solutions for B 5 (t) and A8 (t). 
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Lemma 1.12. 

t 

B 8(t) = 2(Q5 (t)- 1)T f Q8(r)T(Id-Jf)a(r) dr (1.95) 
0 

and 

t 

A 8 (t) = A 8 (0) + f -Tr[EET C 8 (r)] - ~B8(r)TEET B 8 (r)+ 
0 

Proof. First note that from (1.90), we have 

and 

where a:(t) is the vector corresponding to the vector Yt + a(t) which is used as 
the state variables for the quadratic Gaussian model. From Lemma 1.11 it follows 
that Q8 (t) satisfies the following ODE: 

Using Q5(t)T as the integrating factor we can now solve for B 8 (t). Specifically we 
have ! (Qs(t)T Bs(t)) = Qs(t)T2(Id - Jf)a(t). 

vVe can integrate the above equation to obtain the result (1.95). The solution 
of (1.93) can be found by direct integration which gives (1.96) using the initial 
condition for (1.93). 0 

To make the results given in this section easier to read we use the following 
notations: 

• P(t, T):=price at time t of the domestic default free zero coupon bond of 
maturity T; 

• pl (t, T):=price at time t of the foreign default free zero coupon bond of 
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maturity T 

• al ( t) : = I I a ( t) time dependent function used for calibration to the foreign 
discount term structure; 

• pl (t, T) := - d"T Ioge(PI (t, T)) the foreign instantaneous forward rate; 

• VI (t, T):=Variance of Yr with respect to the filtration :Ft. under QI 

• Ml (t, T):=Mean of YT with respect to the filtration :Ft. under QI 

• Al (T) := A + 2EET C8 (T) 

• WT:=Standard Brownian motion under 1'. 

• 1'1 :=the foreign default free forward measure 

• WT1 :=Standard Brownian motion under 1'1. 

Assuming that St is a log-quadratic Gaussian process ensures that the dynamics 
of Yi remains Gaussian under the foreign risk neutral measure Qf and is given by 
(see, e.g,Cherif et al. {1994)) 

dYi =(EET B 5 (t) +(A+ 2EET C5 (t))Yi) dt + E di·V( 

={EET B 5 (t) + A1 (t)) dt + E div/. 

{l.97) 

{l.98) 

Since we assumed that the foreign instantaneous short rate of interest r{ is given 
by 

r{ = (Yi+ a(t)) T 11 (Yi + a(t)) = y;T 11Yi + 2a1 (t)Yi + a1 (t) T a{t), 

it now follows by Theorem 1.1 that the price of the foreign default free zero coupon 
bond is log-quadratic Gaussian8 • Therefore 

pf(t, T) = exp(-YiCf(t, T)Yi - B1(t, T)Yi -A1(t, T)) (1.99) 

where Cf (t, T), Bf(t, T) and Al (t, T) satisfy the following symmetric Riccati ODE's 
(see Cherif et al. (1994)): 

8 Note that, as mentioned earlier in this section, Theorem 1.1 is true in the general case of a 
time dependent speed of mean reversion matrix and a time dependent instantaneous volatility 
matrix even if Yi has a non zero drift. 
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:t ct (t, T) = -AtT ct (t, T) - ct (t, T)At + 
+ 2C'(t, T)EET Cf (t, T) - JI, Cf (T, T) = Onxn 

{l.100) 

!Bt(t,T) = -AtT Bf(t,T) +2C'(t,T)EETBf(t,T)-

- 2ct(t, T)EET B 5 (t) - 2a/(t), Bt(T, T) =On {l.101) 

!Al (t, T) = -Tr(EET Cf (t, T)] - Bf (t, T)TEET B 5 (t)+ 

+ ~Bf(t, T)TEET Bf (t, T) - o/(t)T a(t)f, Al (T, T) = 0 (1.102) 

We now have a time dependent speed of mean reversion matrix Al (t). In (1.16) 
we used the fact that A is a constant matrix to get a closed form solution9 • Here 
we cannot use matrix exponentiation to get a closed form solution of the associated 
ODE (see Theorem A.2). However we can give a closed form solution for Cf (t, T) 
using Theorem B.3 which is given in the Appendix B. 

Lemma 1.13. The closed form solutions oJCf(t,T),Bf(t,T) andAf(t,T) can be 
given by the following formulas: 

{l.103) 

where for fixed T, (Qf(t, T), pl(t, T)) T is the solution of the terminal value linear 
ODE given by 

( 
~Q~(t, T) ) = ( A -2EET ) ( Qf(t, T) ) 
~Pl(t, T) -Jd -AT Pf(t, T) ' ( Q~(T,T)) = (In) 

Pf(T,T) Sr ' 
{l.104) 

9 \Ve can use matrix exponentiation to solve (1.16). 
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T 

Bf(t,T) = ~t (<Ql(T,T)Tr 1Bs(T)+2(Qf(t,T)T)-1 f Ql(s,T)Tldo.(s) ds), 
t 

(1.105) 

T 

A1(t,T) = ~t ( As(T) + f Tr[EETCJ(s,T)]- ~Bf(s,T)Tr;r;TBf(s,T)+ 
t 

Proof. Default free securities in the foreign economy can be converted into domestic 
default free securities using the foreign exchange rate St. Therefore the value of 
pf (t, T) which is one unit of foreign currency at time T is equal to Sr when 
converted to domestic currency using the foreign exchange rate. By the principle 
of risk neutral valuation (see, e.g. Harrison and Pliska (1981)) the value of a 
domestic security discounted by the domestic savings account is a martingale under 
Q. Hence we first calculate 

T 

pf(t, T) :=lEQ[ exp ( - Jr: ds )sr] 
t 
T 

=lEQ [exp ( - fr: ds) exp(Yi cs (T)Yr + Bs (T) TyT +As (T)) l 
t 

(1.107) 

By the absence of arbitrage converting the domestic security back to a foreign 
security through the inverse of the foreign exchange, we can claim that the following 
equality must be true: 

I 1 -, P (t,T) =St P (t, T). (1.108) 

Since the payoff at time Tis log-quadratic Gaussian in (1.107), we can now apply 
Theorem B.3 given in the Appendix B to get the following result: 

(1.109) 
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where cl(t, T), Bl(t, T) and Af(t, T) solve the following ODE's 

! cl(t, T) =-AT cl(t, T) - cl(t, T)A+ 

+ 2cl(t, T)EET cl(t, T) - Id, cl(T, T) = 0 8 (T) 

{l.110) 

:t nl(t, T) =-AT nl(t, T) + 2 ci(t, T)EET nl(t, T) - 2 Jdo(t), 

nl(T, T) = B8 (T) {l.111) 

!Al(t, T) = -Tr[EETcl(t, T)] + ~Bf(t, T)TEET Bi(t, T) - o(t)T Ido(t) 

Ai(T, T) = A8 (T) (1.112) 

\Ve can solve (1.110) by applying Theorem A.3 from Appendix A. Hence we need 
to solve the terminal value ODE given by (1.104). Using standard results for a 
system of linear ODE's with constant coefficients (see, e.g., Leonard {2002), we 
can give the solution of {l.104) by the following formula 

where 

( Q',(t, T) ) = exp(-M (T - t))(I C 5 (T)) 
P (t, T) 

---... _ ( A -2EET ) Al- d T • -I -A 

(1.113) 

Since M is a constant matrix, we can find exp( - M (T- t)) in closed form. There.-
fore using Theorem A.3, we can conclude that the solution of {l.110) is given 
by 

{1.114) 

Using (1.108), we get (1.103) from (1.114). To solve for Bl(t, T) first note that 
from (1.104), we get that Qi(t, T) is a solution of the following ODE for fi"'<ed T 

(1.115) 
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We now use Ql(t, T)T as an integrating factor to solve for Bf(t, T). Specifically 
differentiation with respect to t of Qf(t, T)T Bf(t, T) gives us after some simplifi-
cations the following ODE 

(1.116) 

The solution of (1.116) can be obtained using direct integration and the boundary 
condition Bf(T, T) = B 5 (T). Using (1.108) and the closed form solution for 
Bf (t, T), we get (1.105). vVe can get Af(t, T) through direct integration of (1.112) 
and using the boundary condition, Al(T, T) = A 5 (T). \Ve then apply (1.108) to 
the closed form solution of Af(t, T) to get (1.106). This completes the proof of the 
lemma. D 

There are other ways of solving for pl (t, T) which do not require us to solve 
a Riccati ODE's as in Lemma 1.13. For some of the formulas , we will use the 
following lemma which is given in Cherif et al. (1994). 

Lemma 1.14. Let 

dNI _ Nr P(O, T) _ exp(YiCN(T)Yr + BN(T)TYr + AN(T))P(O,T) 
an' :FT P(T,T) No exp(YoTCN(O)Yo+BN(O)TY0 +AN(O)) 

(1.117) 
represent the Radon Nikodym density for the change of measure from the forward 
measure '][' to a new measure N which corresponds to the measure under which 
Nt = exp(¥? CN ( t) Yt + BN ( t) Ty;+ AN ( t)) is the numeraire i.e. discounting risk free 
assets by the numeraire Nt converts them into martingales under the corresponding 
measure N. Let 

VN (t, T) = the variance-covariance matrix of Yt under N 

and 
A1N(t,T) = the mean vector oJY,, underN. 

Then we have the following f orrnulas relating V N ( t, T) and Al N ( t, T) to the variance-
covariance matrix V(t, T) and the mean vector 1'1(t, T) under the forward measure 
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1r : 

yN (t, T) = (I - 2V(t, T)CN (T) )-t V(t, T) 

MN(t,T) =(1-2V(t,T)CN(T))-
1
(M(t,T) + V(t,T)BN(T)). 
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(1.118) 

(1.119) 

Proof. The authors in Cherif et al. (1994) base the proof of the lemma on the 
direct calculation using multivariate Gaussian densities. We give a much shorter 
proof by using the moment generating function of a quadratic form of Gaussian 
random variables which is given in Lemma (B.l). We now calculate the moment 
generating function of Yi under N. Let <I>N (z) denote the moment generating of 
Yi under N. Using the Radon Nikodym density (1.117) and the abstract Bayes 
formula we have 

<I>N (z) = E~[exp(z TyT)] 

T[ exp(Y:f CN(T)YT + BN(T)TYT + AN(T)) T ] 
=Et IEl[exp(Y:f CN(T)YT + BN(T)Yr + AN(T))] exp{z Yr) · 

We denote by O.N(T) the quadratic form 

so that we can write {l.121) as 

N _ IE[ [ exp(O.N(T)) J 
<I> (z) - El[exp(Y:f CN(T)Yr + BN(T)Yr + AN(T))r 

(1.120) 

(1.121) 

(1.122) 

(1.123) 

If we assume that CN (T) is symmetric10 and use the fact that VN (t, T) is invertible 
for t # T (and therefore positive definite), it will follow that <I>N ( z) is defined 
everywhere (see Theorem 3.2a in l\fathai and Provost (1992)). \Ve can calculate 

10 This is true for the case of zero coupon default free bonds and zero coupon defaultable bonds 
considered in this thesis because C{t, T) and C(t, T) are solutions of symmetric matrbc. Riccati 
equations and will be true if we consider log quadratic Gaussian processes which can be obtained 
through the solution of symmetric matrix Ricca.ti equations such that the initial or terminal 
condition is also a symmetric matrix. 
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using the moment generating function of a quadratic form in Gaussian random 
variables which is given in lemma B.l (see (B.l)): 

cJ>(ON, 1) =I I - 2CN (T) V(t, T) 1-4 exp ( - ~(M(t, T)V(t, T)-1 M(t, T)-

- 2AN (T)) + ~(M(t, T) + V(t, T)(BN (T) + z)) T (I - 2CN (T) V(t, T)r1 

V(t, T)-1(M(t, T) + V(t, T)(BN (T) + z))) 

=I 1- 2cN (T) V(t, T) 1-! exp ( - ~(M(t, T)V(t, T)-1 M(t, T) - 2AN (T))+ 

~(M(t, T) + V(t, T)BN (T))T (I - 2 CN(T)V(t, T))- 1V(t, T)- 1 

(M(t, T) + V(t, T)BN(T))) exp (~zTV(t, T)(I - 2cN(T)V(t, T))- 1V(t,T)- 1 

(M(t,T) + V(t,T)(BN(T) +z)) + ~(M(t,T) + V(t,T)BN(T))T 

(I - 2 CN (T)V(t, T))-1z) 

= IEnexp(Yl cN (T)YT + BN (T)YT +AN (T))] 

exp (z T (I - 2V(t, T)CN (T))- 1(Af(t, T) + V(t, T)BN (T)) 

1 + 2z T (I - 2V(t, T)CN (T)r1v(t, T)z. (1.124) 

Hence inserting {l.124) into (1.123) and simplifying we get 

cI>N(z) =exp (~zT(l-2V(t,T)CN(T))-1 (1\I(t,T) + V(t,T)CN(T)) 

+ ~z T (I - 2cN (T)V(t, T))- 1V(t, r))- 1V(t, T)z (1.125) 

which is the moment generating function of a multivariate Gaussian random vari-
able with mean vector and variance-covariance matrix as in the lemma. This 
completes the proof of the lemma. D 

Before we state the next theorem we will state the following well known result 
which will be used in the proof of the theorem. The change of measure from the 
domestic forward measure 'JI' to the foreign forward measure 'JI' I is done through the 
forward exchange rate (see, e.g., Cherif and El Karoui (1993) or Schlogl (2002)) 
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which is denoted by X(t, T) and is given by 

X(t T) = St pl (t, T) 
' P(t, T) . (1.126) 

Since 11." is the domestic default free forward measure corresponding to using P(t, T) 
as the numeraire, it follows from (1.126) that X(t, T) is a martingale under 11.". 
Therefore the dynamics of X(t, T) is given by 

d:c~:'~) = (2 ~T(C8(t)-C' (t, T)+C(t, T))+B8 (t)-B' (t,T)+B(t, T))ET dWT. 
(1.127) 

Using Girsanov's theorem the Brownian motions under the different measures are 
related by 

dWl = dWl' +ET(2( C 8 (t)-C1(t, T)+C(t,T))Yt+B8 (t)-B'(t,T)+B(t, T)) dt. 
(1.128) 

Thus the dynamics of yt under the foreign forward measure ']['I can be obtained 
using (1.128) and (1.25): 

Theorem 1.15. JtVe can get Cf(t, T) using the following formula: 

(1.130) 

where 
Q' (t, T) T ·= Q(t, T) - 2P(t, T) T C8 (T). (1.131) 

Proof. Let QI (t, T) be the solution of the following ODE 

(1.132) 

Then we can solve the SDE (1.129) exactly by considering the integrating factor 
Q'(t, r)-1, specifically consider 

d(Qf (t, T)- 1yt) =QI (t, T)-1EET (B5 (t) - Bl (t, T)) dt + E dlVl1 (1.133) 

which can be integrated directly to yield 
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r r 
Yr= Qf(t,Tf1Yt+ f Q1(r,Tf

1
EET(B8 (r)-Bf(r,T)) dr+ f Qf(r,T)-1E dW,!1

• 

t t 

Therefore the mean of Yr under 'If/ conditional on Ft is given by 

r 
Mf(t,T) = Qf(t,T)-1yt + f Qf(r,T)-1EET(B8 (r)-Bf(r,T)) dr. (1.134) 

t 

On the other hand using the result of Cherif et al. {1994) given in Lemma 1.14, 
we can find the mean Ml (t, T) directly. Recall from (1.36), M(t, T) is given by 

r 
!vf(t, T) = Q-1(t, T)Yt - f Q-1 (s, T)EET B(s, T) ds. 

t 

The change of measure from the domestic forward measure 'If to the foreign forward 
measure 'If/ is done through the forward exchange rate (see {l.126)) which is equal 
to 

X(T,T) =Sr 

at time T i.e. the spot exchange rate. Hence applying Lemma 1.14, we get 

Ji,fl (t, T} = (1 - 2V(t, T)C8 (T) )-
1 

( Q- 1(t, T)Y; 
T -f Q-1(s, T}EET ~(s, T} ds + V(t, T)B8 (T) ). (1.135) 

Therefore comparing the result in (1.135) with (1.134), we get that 

(1.136} 

From {l.36} and (1.41}, we get that 

Q(t, T} = Q(t, T)T. (1.137) 
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Thus using (1.40), (1.137) and V(t, T) = V(t, T)T we get from (1.136): 

Q'(t,T) = Q(t,T)(I- 2V(t,T)Cs(T)) = Q(t,T) -2P(t, T)T cs(T). 

vVe can therefore solve (1.132) for Cl (t, T) to obtain (1.130). D 

Lemma 1.16. Another way of calculating pl (t, T) is through 

P'(t, T) = ~t P(t, T) 11 - 2cs(T)V(t, T) 1-~ 

exp ( - ~(M(t, T)TV(t, T)-1 M(t, T) - 2A5 (T)) 

+ ~(M(t, T) + V(t, T)B(T, S))T (I - 2cs(T)V(t, rn-1 

V(t, T)- 1(M(t, T) + V(t, T)Bs(T)) ). (1.138) 

Proof. A foreign default free zero coupon bond can be converted into a domestic 
security by regarding it as a domestic security that pays Sr units of domestic 
currency at time T. In the domestic economy we can use the domestic risk neutral 
measure Qd to calculate the arbitrage free price of this security at time t ~ T and 
then convert this price using the prevailing exchange rate to find the price of the 
foreign default free zero coupon bond Pf (t, T) (see the proof of Lemma 1.13 or 
Cherif and El Karoui (1993) for more detail). Hence we have 

T 

P'(t,T) =~t lE?d[ exp ( - Jr! dr)sr] 
t 

= ~t P(t, T) 1Erlexp(YrCs(T)Yr + Bs(T)Tfr + As(T))]. (1.139) 

vVe can now proceed as in Lemma l.7{see (1.71)) to prove the lemma. Thus we use 
the moment generating function of a quadratic form in Gaussian random variables 
(see Lemma B.1 in Appendix B). 'Ve only have to consider the quadratic form in 
Yr 

YrCs (T)Yr + Es (T) Tyr +As (T). 
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Thus we have 

JEY(exp(YrC8 (T)Yr + B 8 (T)TYr + A5 (T))] =I 1 - 2C5 (T)V(t, T) 1-~ 

exp ( - ~(M(t, T)TV(t, T)-1 M(t, T) - 2A8 (T)) 
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+ ~(M(t, T) + V(t, T)B(T, S))T(J - 2C8 (T)V(t, T))-1 

V(t,T)-1(M(t,T) + V(t,T)B8 (T))). (1.140) 

Thus substituting (1.140) into (1.139) we get the result of the theorem. D 

If we assume that Jdyt is independent of I !yt, we can use the proof method used 
to prove Lemma 1.5 and Lemma 1. 7 to obtain similar results for the parameters 
of pl(t, T). 

Lemma 1.17. 

where 

T 

Bf(o,T) = 2 f (Qf(o,s)T)-1.Ff(s) ds 
0 

where 
frl(s) := 11 Ff(O,s)-tr(J!Vf(O,s)Jf)ln, 

m 
and Ff (0, T) denotes the foreign forward rate for maturity T at time t = 0, m < n 
is the number off actors used to model r{. 

Proof. See the proof of Lemma 1.5. D 

Lemrna 1.18. 

Bf(t, T) =(I'+ 2C'(t, T)Jfyf (0, t))Q'(o, tf (Bf (0, T) - B1(o, t)) 
+ 201 (t, T)(o/(t) - fr! (t)) (1.141) 
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f - ( pf (0, t) ) - ! Cl J f f I I A (t, T) - loge pl (O, T) 2 loge I + 2C (t, T)J V (0, t) ) 

- (o/(t) -Pl(t))T(Jf + 2cl(t,T)11v1(0,t))-1c1(t,T)(a/(t)- frl(t)) 

+ (o/(t) - pl (t) +~fly! (0, t)Bf(t, T))(Jf + 2cf(t, T)JfVf(o,t))- 1 Bf(t, T) 

(1.142) 

Proof. See the proof of Lemma 1. 7. D 

Lemma 1.17 and Lemma 1.18 give computationally efficient ways of computing 
Bf (t, T) and Al (t, T) by reducing the dimensions of the integrals that are needed 
to calculate Bf(t,T) and Af(t,T). This show we have a tractable model for the 
pricing of default free bond prices in both economies because default free zero 
coupon bond prices in the foreign economy are also log-quadratic Gaussian. Recall 
that the foreign short term interest rate is given by 

(yt + a(t))T Jf (yt + a(t)). 

The drift term of the factors that are used to model the foreign instantaneous rate 
of interest is denoted by al(t) := JI o.(t). If we assume that the domestic and 
foreign short term interest rates have no common factors and the factors used to 
model them given by Jdyt and I lyt are independent, we can calibrate the drift 
term o.l (t) to the foreign forward rate curve using the formula which is given in 
the following theorem (see Assefa {2007) for a closed form solution of o.f(t) where 
Jdyt and Jfyt can be correlated). 

Theorem 1.19. lVe can calibrate to the foreign term structure at time t = 0 by 
the J ollowing integral 

T 

a'(T) = ftl(T) +2Q5 (T) f Q5 (r)-1Vl(O,r)Ff(r) dr-
o 

T 

- Q 5 (T) J Q5 (r)-1EET JI B 5 (r) ds. (1.143) 
0 

Proof. First note that similar to (1.50), we have 

(1.144) 
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Substituting 

into (1.144), and using the fact that Yr is Gaussian under 'JI'f, we get 

Ff(o, T) = Tr[JfVf(o, T)I1]+(Mf(o, T)+a/(T))T Jf(Mf (0, T)+a/(T)). (1.145) 

Hence we get11 

(1.146) 

We can therefore linearize (1.145) as follows: 

pl (T) = Jf (o/(T) + Mf(o, T)) (1.147) 

Differentiating (1.147) with respect to T gives us 

The dynamics of Yi under Qf is obtained by using the fact that 

(see Cherif et al. (1994)) which gives us 

Recall that we stated that the ODE for the mean of Yr conditional on :Ff. which 
is given in (1.40) is valid for a general setting in which the speed of mean reversion 
matrix A(t) and the instantaneous variance coYariance matrix :E(t) can be time 
dependent. Thus Af f (t, T) which denotes the mean of Yr under the foreign risk 

11 We have defined Ff(T) in the statement of Lemma 1.17 
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neutral measure QI and conditional on :Ft satisfies 

d~MI (0, T) =Al (T)Mf (0, T) - 2v1 (0, T)Jf Ml (0, T)-

- 2V1 (0, T)a/ (T) + EET B8(T), M(O,O) = (O, ... ,o)T (1.149) 

when t = 0. Hence substituting (1.149) in (1.148) gives us: 

d~o/(T) =-I' A'(T)Ml(t,T) + 1'2vf(t, T)Jf M'(o, T)+ 

+ Jf2 Vf (0, T)o/ (T) - JfEET B 8(T) + d~p! (T). (1.150) 

Now note that JI= Jf JI and therefore o/(T) can be written as 

(1.151) 

We now make the assumption that the Jdyt, which are the factors used to model 
the domestic short rate of interest rt, are independent of Jfyt, which are the factors 
used to model the foreign short rate of interest r{. Under this assumption 

(1.152) 

because in 

A is a diagonal matrix and EET C8 (T) commutes with Jf provided we choose the 
initial value12 C8 (0) to be equal to JI. \Ve also have under the assumption of 
independence between Jdyt and Jfyt: 

Hence using (1.147) we can reduce (1.150) to 

..!!:_al (T) = A' (T)al (T) - Al (T)Ff (T) + 2V I (0, T)Ff (T)-
dT 

(1.153) 

- EET JI B 5(T) + :rF'(T). (1.154) 

12 Recall that we said we calibrate St through the initial value for A 5 (0) as ,.,.e have Yo =On 
and therefore we are free to choose the value of C5 (O). 
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From (1.94) given in Lemma 1.11, we can get 

Therefore 

!:_(Qs(r)-1af (T)) = -Qs(T)-1A'(T)a' (T) + Qs(r)-1 (A'(T)a'(T)-
dT 
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(1.155) 

-A'(T)F'(T) + 2v'(o, T)F'(T) - EET 11Bs(T) + d~P'(T)). (1.156) 

which simplifies to 

d~(Qs(T)-1a'(T)) = Q5 (T)-1(-A'(T)F'(T) + 2V'(O,T)F'(T)-

-EETJfBs(T) + d~F'(T)). (1.157) 

We can solve (1.157) by direct integration to get 

T 

Qs(T)-1a'(T) = o/(O) - f Qs(r)-1Af(r)F'(r) dr 
0 

T T 

+ 2 f Q5 (r)-1(Vf (0, r)F' (r) - EET JI B 5 (r)) dr + f Q5 (r)-1 d~p! (r) dr. 
0 0 

Integrating by parts the last term of (1.158) we have 

T 

f Qs(r)-1!:_p1(r) dr = Qs(T)-Ift'l(T)- Qs(o)-Ift'l(o)+ 
dT 

0 
T 

(1.158) 

+ f Q8 (r)-1A'(r)F'(r) dr. (1.159) 
0 

Using 
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we can simplify (1.158) to get 

T 

Q5 (T)- 1o/(T) = Q5 (T)-1 pf (T) + 2 J Q8 (r)- 1v1 (0, r)Ff (r) dr-
o 

T -f Q5 (r)- 1r:;ETJf B 8 (r) dr. (1.160) 
0 

We can now obtain the statement of the theorem from (1.160). 0 

1.2 Explicit Solutions for Piecewise Constant Case 

In this section, we give a method for explicitly solving the parameters of the default 
free zero coupon bond when we assume that the speed of mean reversion matrix A 
and the instantaneous variance-covariance matrix :E:ET are assumed to be piecewise 
constant in the quadratic Gaussian model (1.3). The explicit solution for this case 
is not given in the literature. 

Theorem 1.20. Let T = {O = Ti, ... , Tm} be a partition of the time interval 
[O, T*]. Assume A(t) and :E:ET (t) in (1.3) are piecewise constant such that 

Then we can solve for C(t, T), B(t, T) and A(t, T) by a backward recursion by first 
solving for the values of C(t, T), B(t, T) and A(t, T) in the last interval [Tm-It T*]. 

Proof Recall that we said Lemma (1.9) is true even if A and :E:ET were assumed 
to be time dependent rather than constant(see Cherif et al. (1994)). \Ve now 
assume that A(t) and :E(t):E(t)T are piecewise constant as stated in the theorem 
and E(t)E(t) T is positive definite1 . Because A(t) and :E(t)E(t)T are only piecewise 
contstant, we can only have a piecewise differentiable solution of the the following 

1 we can weaken this assumption to being semi- positive definite. 
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terminal value ODE's(see Filippov (1988)) 

OtC(t, T) = - (A(t) T C(t, T) + C(t, T)A(t)) + 2C(t, T) TE(t)ET (t)C(t, T) - I 

(1.161) 

otB(t, T) = - AT B(t, T) + 2C(t, T)E(t)E(t)T B(t, T) - 2a(t) (1.162) 

OtA(t, T) = - Tr[E(t)E(t) T C(t, T)] - ~B(t, T) TE(t)E(t)T B(t, T) - a(t) T a(t). 

(1.163) 

Clearly A(t) and E(t)E(t)T are piecewise continuous and locally bounded. Thus 
two of the assumptions of Theorem A.4 given in Appendix A (see for more detail 
Freiling (2002) or Filippov (1988)) are satisfied. Applying the conclusion of this 
theorem, we get that a unique solution of (1.161) exists and is positive semi-definite 
for all values t. These unique solutions of the terminal value ODE's (1.161),(1.162) 
and (1.163) can be found by the following procedure. For the la.st interval the values 
of Cm(t, T), Bm(t, T) and Am(t, T) are obtained by solving explicitly the following 
OD E's 

OtCm(t, T) = - (AT Cm(t, T) + Cm(t, T)A) + 2Cm(t, T)TEET Cm(t, T) - I 

(1.164) 

OtBm(t, T) = - AT Bm(t, T) + 2Cm(t, T)EET Bm(t, T) - 2a{t) (1.165) 
1 OtAm(t, T) = - Tr[EET Cm(t, T)] - 2Bm(t, T) TEET Bm(t, T) - a(t)T a(t) 

(1.166) 

with the usual boundary conditions 

Cm(T, T) = 0, Bm(T, T) = 0, Am(T, T) = o. 

\Ve now set C(t, T) = Cm(t, T), B(t, T) = Bm(t, T) and A(t, T) = Am(t, T) for 
T E [Tm-Ii T*]. For the values of C(t, T), B(t, T) and A(t, T) in the interval 
[Tm_2 , Tm-i] we can apply the results of Theorem A.4) to solve explicitly the 
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following terminal value matrix Riccati ODE 

OtCm-1 (t, T) = -(AT Cm-1 (t, T) + Cm-1(t, T)A) 
+ 2Cm-1(t, T) Tr;r;T Cm-1(t, T) - J 

with the boundary condition 

Using the method of integrating factor and direct integration which were used to 
solve (1.10) and (1.11) respectively, we can solve the following terminal value linear 
OD E's 

OtBm-1(t, T) =-AT Bm-1(t, T) + 2Cm-1(t, T)EET Bm-1(t, T) - 2o:(t) (1.167) 

otAm-1 (t, T) = - Tr[EET Cm-1 (t, T)] - ~Bm-1 (t, T) Tr;r;T Bm-1(t, T) - a(t)T o:(t) 

(1.168) 

with the boundary conditions 

Am-1(Tm-1' Tm-1) = A(Tm-1' Tm-1)-

\Ve continue this procedure until we solve for the values of C(t, T), B(t, T) and 
A(t, T) in the first interval [Ti, T2]. This procedure insures that C(t, T), B(t, T) 
and A(t, T) are piecewise continuously differentiable and this is the smoothest 
solution that can be found. 0 



2. SWAPTIONS IN THE QUADRATIC GAUSSIAN MODEL 

2.1 Introduction 

There is some work in the pricing of default free swaptions in a factor model (see, 
e.g., Collin-Dufresne and Goldstein (2002), Tanaka et al. {2005) and Schrager and 
Pelsser {2006)) and in the context of libor market models (see, e.g., d'Aspremont 
(2003)). However none of these papers directly address the pricing of swaptions in 
a quadratic Gaussian factor framework. The paper by Tanaka et al. {2005) men-
tions a Gram-Charlier expansion framework that can be used also in quadratic 
Gaussian models but it does not go into the details of the implementation. The 
results presented in Schrager and Pelsser (2006) for affine factor models could be 
applied to quadratic Gaussian models by mapping the quadratic Gaussian model 
to an equivalent affine factor model "'ith more factors than the original model 
through the procedure given in Cheng and Scaillet (2004). In this chapter we 
derive approximation to swaption prices in the multi-factor quadratic Gaussian 
model. Even though the use of libor models with jumps and/or stochastic volatil-
ity (see, e.g., lVIusiela and Rutkowski (2005)) is better for the pricing of interest 
rate derivatives because we can calibrate the models using libor rates and options 
on libor rates, such models can be computationally intensive. Therefore in Mercu-
rio and Pallavivini (2005) (see also Mercurio and Pallavivini (2006)), a mixture of 
Gaussian short rate models is proposed for the pricing of exotic interest rate deriva-
tives such as constant maturity swaps ( C.l\IS) and options on C.l\IS. The quadratic 
Gaussian model is a better model than a Gaussian short rate model as the short 
rate in the Gaussian model is not guaranteed to be non-negative for all scenarios. 
Therefore one can improve the mixture model suggested in :Mercurio and Palla-
vivini (2005) by using a mixture of quadratic Gaussian factor models. In order to 
price CMS and options on Ci\IS in a manner consistent with market information, 
it is important that any model be calibrated to swaption prices. Even though caps 
and floors can be priced accurately in the multi-factor quadratic Gaussian model 
using numerical inversion of Fourier transforms, there is no such procedure for the 
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accurate pricing of swaptions. In general we have to calibrate the quadratic Gaus-
sian model to the prices of caps, floors and swaptions given by the market so that 
we can price options on CMS and other exotic interest rate options. Hence we try 
to find the parameters of the quadratic Gaussian model (i.e. A and E given in 
(1.3)) that minimize the difference between the prices given by the model and the 
prices given by the market. This procedure involves a non-linear optimization pro-
cedure where we search for the parameters by calculating the prices of caps, floors 
and swaptions for different values of the parameters. Hence the calibration of the 
quadratic Gaussian model can be computational intensive as the calculation of the 
exact price of a swaption requires multidimensional integration. The search can be 
made faster if we start with a set of parameters that are close to the local minimum 
or global minimum of the non-linear functional that is being minimized. Therefore 
it is useful to generate good starting points for the optimization procedure which 
is used to calibrate the model. Approximations to swaption prices can be used 
to generate good starting points through an initial less computationally intensive 
optimization procedure where instead of exact prices of swaptions, we would use 
the approximations. In this chapter we give different analytic approximations to 
the price of swaptions in a quadratic Gaussian factor framework. The formulas 
presented perform well for different strike values. We first give definitions of an 
interest rate swap and interest swaptions. \Ve assume the notional amount is one 
unit of currency in all subsequent discussions. 

Definition 2.1. The spot libor rate at time t for maturity T denoted by L(t, T) 
is the constant interest rate at which an amount of P(t, T) {the price of a default 
free zero coupon bond of maturity T at time t) units of currencies invested at time 
t will give a payoff of one unit of currency at time T i.e. 

P(t, T)(l + (T- t)L(t, T)) = 1 

Definition 2.2. A standard interest rate payer swap over the period [Ta, T13] is 
a contract where the payer pays a fixed rate denoted by ]( at the dates T -
{ T0 + 1 , ... , Ta+n = Tf3} to the receiver and receives in return the spot libor rate 
L(Ta+ii Ta+i+I) which is set at time Ta+i at the next date Ta+i+I for i = 0, ... , n-1. 
Jn a standard interest rate swap, the fixed rate K is chosen such that the vab.te of 
the contract is equal to zero at the start date of the contract T0 • 

If T0 = O, we have a standard interest rate swap for which we can get market 
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SwaoRateK 

Payer Receiver 
LIBORRate 

Fig. 2.1: interest rate swap over [Ta, T,a] 

quotes while for Ta > 0, we have a forward starting swap. The value of a swap 
to the payer at time t is given by the difference between the cash flows received 
by the payer and the cash flows paid by the payer (see Chapter 13 in Musiela and 
Rutkowski (2005) ). This value is given by 

{3 

P(t, Ta) - P(t, T.a) - K L TiP(t, 7i) (2.1) 
i=a+l 

where Ti = 1i - Ti-1· For a swap starting starting at time t = 0, the market 
practice is to choose the strike rate K such that the value of the swap is zero at 
time t = 0. Similarly for a swap starting at time t > 0, there is a strike rate such 
that the value of the swap is equal to zero at time t = 0. \Ve call this strike rate as 
the market swap rate and denote it by Swapa,fJ(t). \Ve can calculate Swapa,fJ(t) 
by setting (2.1) to zero. Thus 

S ( ) 
_ P(t, Ta) - P(t, TfJ) 

wapa,/3 t - .a . {2.2) 
l: TiP(t, 1i) 

i=a+l 

Definition 2.3. A European payer swaption with maturity T0 gives the payer the 
right but not the obligation to enter a standard payer swap over the period [T0 , TfJ] 
at time Ta by paying a fixed rate K which is agreed upon at the time t < T0 when the 
payer buys the swaption. If the rate I< is lower than the prevailing market swap rate 
Swap0 ,{J(T0 ), then the payer will exercise the swaption but if K;::: Swap0 ,p(Ta), it 
is not in the interest of the payer to exercise the swaption. 

Under the absence of arbitrage, we can use risk neutral valuation theory (see, 
e.g., Harrison and Pliska {1981)) to calculate the price of a swaption. The price at 
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time t:::;;; T0 of a payer swaption which we denote by Swaptn0 ,11(t) is given by (see 
Chapter 13 of Musiela and Rutkowski (2005)) 

To {J + 
Swaptno,{J(t) = IE? [exp ( - f rs ds) ( 1 - P(t, Tn) - K -~ TiP(T0 , 1i)) ] . 

t i-a+l 

(2.3} 

2.2 Pricing Swaptions under the Forward Measure 

In this section we assume we have a quadratic Gaussian factor model based on 
a Gaussian Ornstein-Uhlenbeck multivariate factor Yi as in chapter l(see (1.3)). 
Thus in the SDE satisfied by Yi we have a constant speed of mean reversion matrix 
A and a constant instantaneous volatility matrix E. The short term interest rate 
is assumed to be 

TA AT A 
rt= °Yi CY;+ B (t)Yt + A(t). 

We assume for simplicity 6 = I, fJ = 2a(t) and A(t) = a(t)T a(t) (this is equiv-
alent to assuming rt = Zl Zt where Zt = yt + a(t)). To derive the first analytic 
approximation we write the price of a swaption as an option on a coupon bond 
(see, e.g., chapter 13 in 1'.fosiela and Rutkowski (2005)) 

where Ti = KTi for i = 1, ... , n - 1 and i;. = 1 + KTn· Recall from chapter 1 the 
price of a default free bond is log-quadratic Gaussian and is denoted by 

P(t, T) =exp ( - °YiT C(t, T)yt - B(t, T)Tyt -A(t, T)). 

Let 
(2.5) 

for i = a + 1, ... , /3 and let 

{J 

Pa,fJ(t) = ~ TiP(t, 'n) (2.6) 
i=o+l 
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denote the present value of a basis point (PVBPOl). Using Ito's formula we dif-
ferentiate the SDE satisfied by (2.6) and obtain 

We now replace wi(t) in the SDE by their values at time t0 where t0 < t so that we 
can get analytic approximations to the price of swaptions in the quadratic Gaussian 
factor model. This technique has been used in the context of approximations in the 
lognormal libor market model (LLM) (see Rebonato (1998), d'Aspremont (2003)). 
Recently it has been used in the affine factor model in Schrager & Pelsser (2006) 
to approximate the swap rate as an affine factor. In this particular approximation 
we only freeze the weights wi(t) which gives an approximation of the dynamics of 
Pa,/J ( t). Hence we have 

jJ 

dPa,p(t) ~ Pa,,a(t) (rt dt + ~ wi(to)(2C(t,1i)Yi + B(t, 7i))T Edi-Vt). (2.8) 
i=a+l 

Consider the stochastic processes whose dynamics is given by 

d ;;p °' p(t, T) ( Tc;;p( rp )"',,.. B;;p( rp rp )T"l.T ,......_, ' = Yi t, Ta+b ... ' .l.[3 Lt + t, .l.a+b ... '.l.[3 Lt+ 
aP a,fJ(t, T) 

+ A.;p(t, T.+i, ... , Tp)) dt-,f 
1 

w;(t0)(2 C(t, T;)Y, + B(t, T;))T EdW, (2.9) 

where 

n {3 

C;;p(t, T0 +i, •.• , T,a) = -AT ~ wi(to)C(t, 7i) - ~ wi(to)C(t, 1i)A-
i=a+l i=0t+l 
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- {J ({J ) 
BaP(t, T0 +1, ... , TfJ) = -AT i=~l wi(to)B(t, Ti) - Ot i~l wi(to)B(t, Ti) + 

n {3 

+ 2 I: wi(to)C(t, Ti)EET I: wi(to)B(t, Ti) T 
i=a+1 i=a+l 

A.;p(t, T0 +1, ••• , Tp)T = -Tr[ EET •-~1 w;(to)C(t, '.Ti)]-
- a, (_~1 w;(to)A(t, T;)) + ~IET ·-~1 W;(to)B(t, r.f 

Theorem 2.4. The log-quadratic Gaussian process 

{2.10) 

is a solution of (2.9) and can be used to approximate the process which is the 
solution of (2.8) with initial value given by Pa,fJ(t0 ). 

Proof. Using Theorem B.2 given in Appendix B, we can show that ;;p a,fJ(t) is the 
solution of (2.9) with initial value given by Pa,fJ(t0 ). 

vVe use the fact that C(t, Ti), B(t, Ti), A(t, Ti), i =a+ 1, ... , /3, satisfy their 
corresponding Riccati equations, to obtain the following equalities 

a, (._~ 1 W; ( to)C( t, '.Ii)) = t, w;( to)( -AT C(t, '.Ii) - C( t, T;)A + 

+ C(t, Ti)EET C(t, Ti) - I) 

a, ( ·-~ 1 w;( lo) B( t, '.Ii)) = t, w;( lo}( -AT B( t, '.Ii)+ 2C( I, T;)EE TB( t, T;)-2a(t)) 
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Using the above equalities in the SDE given by (2.9) and the fact that the weights 
wi(t0 ) add up to one, we get 

d;;p f3(t T) ( ( f3 
,....... 

0
' ' = y;Tyt+2a(t)Tyt+a(t)Ta(t)+2YiT ~ wi(to)C(t,'.li)EETx 

aP a,{3(t, T) i=a+l 
{3 {3 

x ,!,;_, w;(to)C(t, T;) - •~~1 w;(t0 )C(t, T;)EET C(t, T;) )Y,+ 

+2 (f, w;(to)C(t, T;)EE:~f 
1 
w,(to)B(t, T;)-t. w;(t0 )C(t, T;)EET B(t, T;)) TY,+ 

+ 4IE:~t, w;(to)B(t, T;)l
2 

- ,f 
1 
w.(t0)1ET B(t, T;)i2

) dt+ 

{3 

+ ~ wi(to)(2C(t,'.1i)yt+B(t,1j))TEdwt (2.11) 
i=a+l 

First note that rt = y;Tyt + 2a(t)Tyt + n(t)T a(t). \Ve now show that the terms 
that remain in the drift do not cancel out. Since the weights wi ( t 0), i = a+ 1, ... , f3 
add up to one, we can write C(t, 1i) as 

{3 

C(t, 1i) = ~ wi(t0 )C(t, Ji). 
j=a+l 

Therefore the quadratic term in (2.11) can be rewritten as 

{3 {3 [J 

~ wi(to)C(t, 1i)EET ~ wi(to)C(t, Ji) - ~ wi(to)C(t, 1i)EET x 
i=a+l i=a+l i=a+l 

[J {3 f3 
x ~ wi(t0 )C(t, '.Ii) = ~ wi(t0 )C(t, 1i)EET ~ wi(to)(C(t, T;) - C(t, '.Ii)) 

j=a+l i=a+l j=a+1J#i 

f3 
~ wi(t0 )wi(to)C(t, '.Ii)EET (C(t, 7j) - C(t, '.Ii)). (2.12) 

i=a+l j=a+l,j#i 

Now the sum in the last line of (2.12) consists of terms that are multiplied by 
the product of the weights wi(t0 )wi(to). Since the weights wi(to) are less than one, 
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the product wi(t0 )wi(t0 ) is even smaller. Hence the error depends on the values: 

in (2.12). Typical values of C(t, T) which are obtained by calibrating the quadratic 
Gaussian model to market prices of options are of small order. Therefore the 
solution of {2.8) should be approximated by P0 ,,a(t0 ). This assertion is supported 
by numerical experiments conducted in section 2.3 where a similar approximation 
method is used and the most significant error is shown to be due to the freezing of 
the weights wi(t). The error that is introduced by using a log quadratic Gaussian 
process to approximate the solution of a SDE which is similar to {2.8) is shown to 
be not a significant source of error. A similar statement can be made with regards 
to the linear term in (2.11) as it can be written as 

.8 n .8 
~ wi(to)C(t, 1i)EET ~ wi(to)B(t, 1i) - ~ wi(to)C(t, 'Ji)EET B(t, 1i) 

i=o+l i=o+l i=l 

which has a similar structure to the quadratic term. \Ve can also use the same 
argument for the constant term in (2.11): 

.8 
~ wi(to)IET B(t, 7i)l2 

i=o+l 

as it can be rewritten as 

The drift and volatility of 

exp ( - Y,~~t, w.(t0) C(t, T;) Y, - <~ti w;(to) B(t, T;) TY, - <~ti w;(to) A(t, T;)) 

(2.13) 
are equal to that of ;;?0 ,p(t) but (2.13) is obtained by taking weighted averages of 
the quadratic forms: loge(P(t, Ji)), i = a: + 1, ... , {3. Since the value of the zero 
coupon bond price P(t, 1i) is between 0 and 1, loge(P(t, 1i)) < 0. Therefore the 
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weighted average 
/3 
~ wi(to) loge(P(t, '.Ii)) 

i=a+l 

has a value which is less than zero. Therefore (2.13) has a value that is between 
zero and one. To make (2.13) approximate P0 ,13 (t) more accurately, we adjust the 
initial value of {2.13) by making it match with that of P0 ,13(t) at time t0 • Therefore 
multiplying {2.13) by 

we get ;;:? a ,(3 { t). 

{2.14) 

D 

Computations described later in this chapter show that for strike rates that are 
at the money or in the money and swap tenors less than five years using;;:? 0 ,13 (t, T) 
to approximate P0 ,13(t, T) given in (2.6) in the swaption payoff does not give much 
error in the swaption prices. However using;;:? a,f3(t, T) to approximate only the 
exercise region of the swaption gives very good results for strike rates that are at 
the money, in the money and out of the money even when the swap tenors are 
equal to or greater than five years. 

\Ve first show how we can use;;:? 0 ,11 (t, T) to approximate the exercise region of 
Swaptn0 ,13(t). In fact the swap underlying Swaptn0 ,13 (t) whose value is given by 

/3 
1 - P(T0 , T13) - K ~ riP(T°' Ji) 

i=a+l 

will be exercised at time T0 if Pa,p(T0 ) < 1. This exercise region can be approx-
imated by ;;:?a,f3(t, T0 ) < 1. Since ;;J>a,f3(t, T) is log-quadratic Gaussian, it will 
make it possible to use Fourier techniques to compute the approximate price of 
the default free swaption. The method of taking the Fourier transform of the 
option price with respect to the strike value and inverting the transform to get 
the option price was first introduced by Carr & Madan (1998). For a detailed 
explanation of this Fourier approach to option pricing, we refer the reader to Lee 
(2004). \Ve use the results presented by Lee (2004) in this chapter. \Ve will see in 
numerical experiments that this leads to an approximation that is accurate over 
a range of strikes because we only approximate the exercise region. First we give 
some definitions and notations. For simplicity we discuss valuation at time t = 0. 

Definition 2.5. The discounted characteristic function <P(z) for z E Rn of the 
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random vector x is given by 

(2.15) 

Subsequently we will only have to deal with using 

«P(z) = JET[exp (iz.x)] 

to calculate JET[G(xr,J] for the appropriate payoff function G(x), since we only 
need to multiply this value by P(O, T) to get the option price. In general we need 
to dampen option prices by an appropriate factor exp (&K) for some & > 0 so 
that the fourier transform of the dampened option price is finite. If the character-
istic function is defined everywhere, we have more choices for the value of a and 
this yields additional formulas for inverting the transform (see Lee (2004)). For 
quadratic Gaussian random variables, the characteristic function is defined every-
where (see Mathai and Provost (1992)) and therefore we can use the additional 
formulas derived in Lee (2004) to calculate the option price including a = 0. We 
will not investigate the advantage of using different a for calculating the option 
price in different ways. The approximate swaption pricing problem we are looking 
at is: 

Swaptn0 ,/J(O) ~ 

Swaptn0 ,/J(O) :=P(O, T0 )1Et0 [1J>a,.a(Ta)<l - ± fiP(T0 , 7i)1J>,.,.a(Ta)<l] (2.16) 
i=o+l 

The price of default free zero coupon bond prices in the quadratic Gaussian mod~l 
are log-quadratic Gaussian and hence 

is a quadratic Gaussian random variable and ;;p c.,13(T0 ) < 1 is equivalent to 

fJ {J 

Q0 ,{J(T0 ) := YiT I: Wi(O)C(T0 , Ji)yt + I: wi(O)B(T0 , Ji)Tyt+ 
i=o+l 

fJ 
+ I: wi(O)A(T0 , 1i) > J( 

i=o+l 
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where k = 0. In order to use the method of transforming the option price with 
respect to the strike price as introduced in Carr and Madan (1998) and extended 
in Lee (2004), we now regard the "strike price" to be kin s--:;;;;;pi,na,/3(0) and write 

to make the approximate swaption price a function of k. As this is not the strike 
price of the swaption but a pseudo strike price which is always equal to zero, we 
do not have the computational advantage of using the discrete fourier transform 
(DFT) or the fast fourier transform (FFT) to simultaneously calculate the the 
prices of options at multiple strikes (see Lee (2004)) but this is a consequence of 
the fact that the approximation 

is strike dependent. However we can still use FFT to speed up the Fourier inversion 
needed to calculate the swaption price for each strike price rather than using a 
quadrature method to do the inversion. In Lee (2004), it is shown that we can 
have a better error control of the Fourier inversion by choosing to price the put 
or call option together with an optimum choice of & to dampen the option price 
by exp(&k). We do not make an investigation of the efficiency of the different 
formulas for the numerical Fourier inversion which are given in Lee (2004). Instead 
we choose & = 0 or & = 1 and use the integration routine NI ntegrate of the 
commercial package Mathematica to do the Fourier inversion. The choice of & 
is not motivated by any particular reason. \Ve have not investigated the effect of 
choosing different values for&. Hence we can write the swaption pricing problem 
as 

s--:;;;;;pi,nOt.,/3(0, K) = P(O, T0r.)JETa [1Qa,,s(T,.)>K - . ± TiP(T0r., '.li)loa,/3(Ta)>k]. 
i=0t.+l 

(2.17) 
The approximate option price Swaptno:,/3(0, k) is the sum of terms whose payoffs 
are of type 

(2.18) 
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where bi and bo are appropriately chosen (see Lee (2004)). In particular 

(2.19) 

for the terms corresponding to 

while 
bo = (0, 1), bi = (0, 0), X = (0, Qa,,a(Ta)) (2.20) 

for the term corresponding to 

loa,p(Ta)>K 0 

The Fourier transform with respect to strike k of the dampened option price is 

co 

s-;;;;;;tna,,B(z) = I exp(O:K)S~na,IJ(O, K) exp (izK) dK (2.21) 
-co 

where i = .J=I. Notice that we need to choose a> 0 to dampen the option price 
in (2.21) so that the Fourier transform is defined and the swaption price can be 
obtained by inverting (2.21). In Lee (2004) (see Theorem 5.1 of this reference) a 
generalized formula is provided to calculate the option price for general &. This 
formula is derived using the residue theorem of complex analysis and hence it does 
not rely on inverting the Fourier transform for the chosen value of 0: in (2.21). We 
refer the reader to Lee (2004) for the details of the derivation of the generalized 
formula1 : 

co-oi 

~ f Re[<J?(Qi,Q2;;bo - bii) exp(-izk)] dz (2.22) 
o-oi 

where Re[] means the real part of a complex number, k = 0 and <J?(Qi, Q2 , zb0 -

bi i) is the joint characteristic function of two quadratic forms in Gaussian ran-
dom variables which are denoted by Qi and Q2 (i.e <J?(Qi, Q2 , zi, z2 ) evaluated at 
z1 = 0, z2 = z as we have zbo - b1i = (0, z)). \Ve need to consider the joint charac-
teristic function rather than the characteristic function for a single quadratic form 
in Gaussian random variables (see (B.l)) as we are considering payoffs of type 

1 There is also a detailed analysis of error control for the formula. 
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(2.18). The joint characteristic function of quadratic forms in Gaussian random 
variables is given in closed form in (Mathai and Provost 1992, p. 68). We first give 
the joint characteristic function of N quadratic forms in Gaussian random vari-
ables. Let X = (Xi, ... , XM) be a multivariate random vector which is normally 
distributed with mean vector M eanX and positive definite variance-covariance 
matrix of dimension M x M which is denoted by Var X. Also let IM denote the 
M x M identity matrix and 

be N quadratic Gaussian random variables. Then the joint characteristic function 
<P(Qi, ... , QN, z1, ... , ZN) of N quadratic forms in Gaussian random variables is 
given by 

N 

<P(Qi, ... ,QN,zi, ... ,zN) = IIM-2Liz1A1VarXI-~ 
j=l 

{ 
1 N 

exp - 2 MeanXTVarX- 1A-feanX + ~ iz1d1 

1 N N 
+ 2(MeanX + L iziVarXai)T(J - 2 L iz1A1Varx)-1 

j=l j=l 

Varx- 1 (MeanX + t,iz;VarXa;) }- (2.23) 

For the pricing problem we are considering we only need to consider the joint char-
acteristic function of two quadratic Gaussian random variables for any Gaussian 
random vector }vf ~ 1. Hence even if the number of factors used X = (X1 , ... , )(M) 

increases the dimension of the characteristic function does not increase. However 
we will have to deal with inverting matrices of dimension Af x A!. In practice 
one only needs to use two or three factors to model term structures, therefore the 
additional computational burden is limited. Let Ou denote the Af x A! matrix 
whose entries are all equal to zero i.e. the zero matrix. Therefore using the above 
formulas we can specifically give the Fourier transform of the Swaptn0 ,fJ(O, K) with 
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the respect to the strike k: 

(2.24) 
For the particular case x = (xi, x2) let us denote by Ca3 (K) the option price which 
is normalized by the price of the zero coupon bond with maturity equal to the 
maturity of the option where the payoff is of type (2.18). Let Ca3 (z) be defined2 

by: 

(2.25) 

Then the problem of obtaining the option price through Fourier inversion for a 
specific strike k is given by (see Lee (2004)) 

where 

oo-&i 

Ca3 (K) = R&,a3 + ! J Re[Ca3 (z)exp(-izk)] dz 
0-&i 

&<0 

&=0 
&>0 

{2.26) 

To calculate §:;;;;;ptna,/3(0, K) (fork= 0) by applying the above method, we need 
to use the formula several times since we have a payoff which is a sum of payoff 
type (2.18) (see also (2.19) and (2.20)). Thus the approximate price of the default 

2 In general the characteristic function of a random variable does not exist for all values of 
z E C but we do not need to get into the details of the domain of existence for our problem since 
for quadratic forms in Gaussian random variables the joint characteristic function is defined 
everyv.·here. 
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free swaption can be written as 

oo-&i 

P(O,Ta,/3)(<I>(OM,Qo,;(To),O,O) + ! I Re[<I>(OM,Qa;:(T0 ),0,z)] dz 
o-&i 

13 • oo-oi . -. 2= ?\ <I>(Qi(Ta), Q;11(T0 ), -i, 0) + ! I Re[ <I>(Qi(T0 ), Q::(T0 ), -i, z)] dz). 
i=a+l O-oi 

(2.27) 

Hence when we use ;;p 0 ,11 (T0 ) to approximate the exercise region for the swaption 
price (2.3), we have to calculate several Fourier transforms and numerically invert 
several Fourier transforms since we are dealing with a sum of payoffs of type (2.18). 
Consequently even though this method is more accurate than using ;;J> 0 ,11(T0 ) 

instead of P0 ,11(T0 ) for the payoff in (2.3), it is takes more time to compute the 
swaption price. For strike values that are at the money or well in the money and 
swap tenors that are less than five years, a quicker way of calculating the swaption 
price is to substitute ;;J> a,11(T0 ) for P0 ,11(T0 ) in (2.3) to get 

Swaptn.,p(t) "'Swaptnl0 JJ{t) ~ JE? [exp ( - ir. r, ds) ( 1 -.:J'>.,p{T.)) +l 
{2.28) 

For (2.28) we have a single payoff function of type 

cr*(x, k) := (exp(k) - exp(x))+. (2.29) 

Let Car* (k) denote the option price which has payoff type {2.29) and let Cc:•(k) 
denote the Fourier transform of Ccu(k) with respect to the strike price k. For 

1 

such a payoff function, Lee (2004) gives the Fourier transform of the option price3 • 

The Fourier transform with respect to the strike price is given by 

CA ( ) <I>(Q, z - i) 
G** Z = · 2 • 1 'lZ - Z 

(2.30) 

To obtain the price of the option from the transform by integrating along a contour 
3 Here it is meant as in previous sections JET[Gr*(x, k)] i.e. the option price normalized by the 

zero coupon bond of the option's maturity 
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passing through 6: < -1 we use 

Ca** (k) = .!_ 
00

f-&i Re[~(z - ~ exp(-izK)] dz. 
1 1r zz - z (2.31) 

o-ai 

To minimize sampling and truncation error for the Fourier inversion Lee (2004) 
recommends which choices of 6: to take and to use put-call parity type relationships 
to price the corresponding put or call option depending on the option type and 
the strike level. Here we do not investigate the various ways of calculating the 
swaption price which can minimize the error in the Fourier inversion as shown in 
Lee (2004). However since pricing the call type of payoff gives more flexibility 
in choosing 6: as opposed to the put type payoff (2.29), we choose to value the 
swaption by writing the swaption payoff as: 

Therefore the price of the swaption is given by 

Swaptn0 ,p(O) ~ P(O, T0 )Er· [ 1 - P(T°' Tp) - K '~' r;P(Tm T;)+ 

+ ( K <~~i r,P(T0 , T;) - (1 - P(T0 , Tp))) +]. (2.33) 

\Ve can calculate 

fJ 
P(O, T0 )lEr0 (I - P(Ta, T/J) - /{ ~ riP(Tc,, Ji)] (2.34) 

i=o+l 

exactly since 

is a martingale under 1'0 • Therefore (2.34) is equal to 

fJ 
P(O, T0 ) - P(O, Tfl) - K ~ TiP(O, Ji). {2.35) 

i=o+l 
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The part that we need to approximate is therefore 

JE[· [ ( K J: r,P(To,'.1')-(1-P(To,Tp)))+] = JE~o [(. ± 'hP(Tc:o 7i)-1)+]· 
i-a+l i=cr+l 

(2.36) 
As already discussed we will use now ;;p a,p(Tcx) to approximate 

{j 

2:: iiP(Ta, Ji). {2.37) 
i=cr+l 

Therefore we get a call type option: 

{2.38) 

Once again we introduce a pseudo strike price k to use the Fourier technique 
to calculate (2.38) and write Swaptna,p(O, K) to enable us to take the Fourier 
transform with respect to k: 

Swaptno,P( 0, k) "' s;;;;;pfu10 ,p(O, k) ~ P(O, T0 )icr• [ ( ;;p o,p(T0 ) - exp( k)) +]. 
{2.39) 

We now consider the call type payoff 

G1(x,k) := {exp(x)- exp(k))+. {2.40) 

Let Ca1 (k) denote the option price normalized by the price of the default free zero 
coupon bond of maturity equal to the maturity of the option corresponding to the 
payoff type (2.40) and let Ca1 (k) denote the Fourier transform of the dampened 
option price exp(a)Ca1 (k) with respect to the strike price k. The option price is 
then calculated through Fourier inversion(see (2.22)) as we can calculate Ca1 (k) in 
closed form. Thus from Lee (2004) we have 

oo-&i 

Ca1 (k) = R0:,a1 + ! J Re[Ca1 (z)exp(-izk)] dz 
o-&i 

(2.41) 
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R·c = a, 1 

<I>(Q, -i) - k, 
<I>(Q, -i) - k/2, 
<I>(Q, -i), 
<I>(Q, -1) 

2 
0, 

& < -1 
& = -1 

-1 < & < 0 

&=0 
&>0 
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(2.42) 

Since we now have to invert only one characteristic function of a quadratic form in 
Gaussian random variable, the calculation of s;;;;;;tnla,/3(0, K) fork= 0 is much 
faster than calculating s";;;;;ina,/3(0, K) which requires the inversion of several 
joint characteristic functions of two quadratic forms in Gaussian random variables. 
One expects Swaptna,/3(0, K) is more accurate than S;;;;;;tnla,/3(0, K) as we only 
use ;;p a,13(Tc11 ) to approximate the exercise region of the swaption. Numerical 
experiments show that this is indeed true but the value S~ln,/3(0, K) is close 
to the more accurate S~na,/3(0, K) when the tenor of the swap underlying 
the swaption is less than or equal to five years. \Ve now give the results of the 
numerical experiments conducted in a two factor quadratic Gaussian model where 
the relative errors of the approximations which are denoted by S~na,/3(0, 0) and 
S~ln,/3(0, 0) are calculated. The data set we use is the data given in chapter 
7 of Pelsser (2000). This data set consists of of 36 cap and floor prices observed 
on January 4, 1994. \Ve calibrate a two factor quadratic Gaussian model to this 
data. \Ve assume that the mean reversion matrix A given in (1.2) in chapter 1 is 
a 2 x 2 diagonal matrix: 

A~ [ a~1 a:] 
and the instantaneous correlation matrix E is assumed to be constant such that 

\Ve find that the prices of caps and floors do not depend on the value of the 
instantaneous correlation between the two factors which is given by p as calibration 
to the cap-floor data using p = 0.999, p = -0.999, p = 0 gave the same cap and 
floor prices. This confirms the fact that the price of caps and floors are not sensitive 
to correlation (see chapter 6 in Brigo and l\Iercurio (2006)). \Ve use the parameters 
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Cap Data Floor Data 
T K Mid QG2F T K Mid 
1 0.0325 54.0 59.4 1 0.0375 11.0 
1 0.035 38.0 44.5 1 0.035 4.5 
1 0.0375 25.5 32.13 1 0.0325 3.0 
2 0.05 47.0 46.0 2 0.045 74.0 
2 0.055 28.0 27.8 2 0.04 32.0 
2 0.06 16.55 16.5 2 0.035 8.5 
3 0.05 142.0 143.3 3 0.045 93.5 
3 0.055 99.5 100.8 3 0.04 41.0 
3 0.06 69.5 70.1 3 0.035 11.5 
4 0.05 277.0 275.5 4 0.045 110.0 
4 0.055 210.0 206.8 4 0.04 50.0 
4 0.06 158.5 154.0 4 0.035 16.0 
5 0.065 205.0 201.2 5 0.055 346.0 
5 0.07 160.0 154.4 5 0.05 226.0 
5 0.075 127.0 118.0 5 0.045 131.0 
10 0.065 661.0 711.2 10 0.055 510.0 
10 0.07 549.0 591.5 10 0.05 335.0 
10 0.075 457.0 491.3 10 0.045 196.0 

Tab. 2.1: Cap and Floor Data(price in bp) 

calibrated to the cap-floor data when p = 0: 

an = 0.1004623, a22 = -0.0118329 

au = 0.0065293 a22 = 0.0341270. 
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QG2F 
11.2 
5.4 
2.16 
74.8 
33.9 
10.2 
92.3 
41.8 
12.9 
106.6 
48.5 
15.4 
323.2 
209.8 
119.2 
495.8 
327.8 
194.0 

(2.43) 

The following data lists the cap-floor data and the prices of the caps and floors 
under the two factor quadratic Gaussian model for the calibrated parameters given 
in (2.43). The values in the column with heading QG2F represent the cap and floor 
prices under the quadratic Gaussian model while the column with heading Mid is 
the average of the bid and ask quoted prices. The maturity in years of the cap 
or floor is given under the column with heading T and the corresponding strike 
price is given under the heading K. The discount curve for this date is obtained 
from quoted rates of the 1,3,6 and 12 month US-dollar money market rates and the 
swap-rates for maturities 2,3,4,5,7,and 10 years which is obtained from Datastream. 
Since we were not able to get data on swap-rates for maturities greater than 10 
years, we extend the discount curve by extrapolation for the years 11 to 15. The 
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Zero Rates 
T Discount 
0. 1 
0.083 0.997299 
0.25 0.99163 
0.5 0.982499 
1. 0.962197 
2. 0.916818 
3. 0.866037 
4. 0.81372 
5. 0.761339 
6. 0.712561 
7. 0.664049 
8. 0.619654 
9. 0.576413 
10. 0.534408 
11. 0.492403 
12. 0.448412 
13. 0.400452 
14. 0.346536 
15. 0.28468 

Tab. 2.2: Discount Curve 
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discount curve is obtained by interpolation using a piecewise cubic polynomial. To 
see the accuracy of the approximations S~na,/3(0, 0) and S~nla,/3(0, 0) to 
the swaption price Swaptn0 ,13(0, 0) in the two factor quadratic Gaussian model for 
the calibrated parameters given (2.43), we consider three different strike levels as 
in Schrager & Pelsser (2006). The swaption is said to be at the money (ATM) if 
the strike level K is chosen to be the current swap rate (see chapter 1 of Brigo and 
Mercurio (2006) )i.e 

K = P(O, T0 ) - P(O, Tp) 
~~=a+l TiP(O, Ji) 

We choose two other strike levels beside the ATM strike rate. A strike rate which 
makes the swaption in the money (ITM) and a strike rate that makes the swaption 
out of the money (OTM). The swaptions that have the at the money strike rate 
are denoted by ATM. The in the money swaptions are denoted by ITM and their 
strike levels are chosen to be 85% of the strike rate of the corresponding at the 
money swaption. The out of the money swaptions are chosen such that their strike 
level is 1.153 of the strike level of the corresponding ATM swaption. Since we 
can calculate the distribution of the two dimensional Gaussian factor under the 
forward measure '.Ira (see lemma 1.40 in chapter 1), we can calculate the exact price 
of the swaption using the two dimensional integral given by: 

0000 /3 + 
Swaptna,,6(0, 0) = P(O, T0 ) ff ( 1 - P(Ta, T13) - K. ~ TiP(T0 , '.Ii)) 

i=a+l 
-00-00 

where .Af(O, T0 ) denotes the mean ofYr
0 

under'][' and V(O, Ta) denotes the variance-
covariance matrix of Yr,. under '.Ir. 

\Ve give this exact value in the following table together with the relative error in 
percentage of the approximate swaption price S~n0,13 (0, 0) next to it enclosed 
in parenthesis i.e. the value 

Swaptn 0 13(0, O) - Swaptn~ /3(0, 0) ' ~. • 100 
Swaptn0 ,13(0, 0) 

(2.45) 

and in the line below it the relative error in percentage of the approximate swaption 
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price S~nla,/J(O, 0) i.e the value 

(2.46) 

We see that from the numerical experiments that approximating the swaption 

Mat. Tenor 
T 1 3 5 10 
1 39.80(0.00%) 118.57(0.00%) 188.43(0.00%) 320.83(0.00%) 

(0.01%) (0.09%) (0.26%) (1.03%) 
3 68.88(0.00%) 194.12(0.00%) 301.14(0.00%) 505.5(0.003) 

(0.003) (0.163) (0.48%) (1.96%) 
5 78.88(0.00%) 221.02(0.00%) 342.44(0.003) 568.68(0.003) 

(0.003) (0.213) (0.613) (3.38%) 

Tab. 2.3: Relative Error(in 3) for ATM Swaptions(price in bp) 

Mat. Tenor 
T 1 3 5 10 
1 80.41(0.00%) 255.11(0.003) 421.89( 0.00%) 773.93(0.003) 

(0.003) (0.03%) (0.09%) (0.32%) 
3 110.51(0.003) 317.83(0.003) 502.29(0.00%) 900.52(0.003) 

(0.003) (0.083) (0.23%) (0.95%) 
5 115.44(0.00%) 328.68(0.003) 517.20(0.00%) 964.34(0.003) 

(0.013) (0.123) (0.35%) (1.76%) 

Tab. 2.4: Relative Error( in 3) for ITr..I Swaptions(price in hp) 

11at. Tenor 
T 1 3 5 10 
1 16.83(0.00%) 45.13(0.003) 66.86(0.003) 98.81(0.013) 

(0.023) (0.28%) (0.913) (4.22%) 
3 40.77(0.00%) 111.85(0.00%) 169.56(0.00%) 258.53(0.003) 

(0.03%) (0.323) (0.94%) (4.42%) 
5 52.47(0.00) 144.13(0.00%) 218.98(0.00%) 311.75(0.01 %) 

(0.033) (0.373) (1.08%) (7.033) 

Tab. 2.5: Relative Error(in 3) for OTM Swaptions(price in bp) 

price by S~n0,11 (0, 0) performs well while approximating the swaption price by 
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S~nI0,(J(O, 0) does not perform well for strike rates that are out of the money 
and for swaptions on swaps of tenors that are equal to ten years whereby the 
relative errors in the swaption prices increases with the maturity of the swap. The 
relative errors of S~l0,p(O, 0) can come from two sources. The first source of 
error is that we have replaced the weights wi(t), 1=a+1, ... , /3 by their time zero 
values. The second source of error is that the drift of ;;? a,f3 is different from the 
drift of P0 ,p(see (2.8) and (2.9) ). It appears from the results of the next section 
that the first source of error is more significant than the second source of error. 

2.3 Pricing Swaptions under the Swap Measure 

In this section, we shall give another approximation that will make it possible to 
approximate the price of a default free swaption. This approximation is based on 
a single payoff function and therefore the approximation formula of this section 
requires less computation and is faster but is generally less accurate than the 
approximation formulas given in the previous section. 

As in the previous section, we assume we have a standard interest rate swap 
with a tenor structure given by T = {T0 +1 , •.. , Ta+n = Tf3}· \Ve denote by 

f3 
P0 ,13(t) = 2: TiP(t, Ti) the present value of a basis point(PVBPOl) and Q 0 ,p 

i=a+l 
denote the swap measure which is the measure corresponding to using P0 ,p(t) as 
the numeraire. To lighten the notation, we assume in this section that a = 0 
and /3 = n. Using the change of numeraire technique (El Karoui, Ceman & Ro-
chet 1995), the following definition of the swap measure can be obtained (see also 
Musiela & Rutkowski (2005)) 

dQa,/3 2:~1 TiP(T, Ti) Po,,a(To) 
dQ = D(T) 2:~=1 P(O, Ti) = D(T)Pa,,a(O). (2.47) 

\Ve give an approximation method which is similar to d'Aspremont (2003). In 
d'Aspremont (2003), the method is applied to the lognormal market model while 
here we are looking at log-quadratic Gaussian processes in a quadratic Gaussian 
factor model rather than a market model. 

Theorem 2.6. At time t = 0 the value of a swaption is given by 

(2.48) 
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Proof. The proof is straightforward and can be found in (Musiela and Rutkowski 
2005) but we give a short proof for completeness. First note that we can write the 
price of the default free swaption as 

Now using the definition of the swap measure the proof is complete. 0 

Suppose we have a given set of discrete dates Ta,/3 = {Ta =To, ... , Tn = T13}. 
Let the forward libor rate L(t, 1i) = Li(t) be defined as follows 

L ·( ) ·= P(t, 1i) - P(t, 1i+1) it. ( ) . 
7H1P t, 1i+1 

(2.50) 

The forward libor Li ( t) is the simple interest rate that would apply over the 
period [Ti, 7i+1] as seen from the date t under no arbitrage conditions. In the 
quadratic Gaussian factor model default free zero coupon bond prices are log-
quadratic Gaussian and therefore ratios of zero coupon bonds can be written as 
log-quadratic processes. Recall the notation introduced in the previous sections 
Qi(t) =loge (P(t, Ti)), then we can give a closed form expression for Li(t) 

(2.51} 

From the above it follows that 

(2.52} 

Note that the difference 1 - P(T°' Tn) can be written as follows 

1 - P(Tc,, Tn) = P(Tcn Ta) - P(Tc., T1) + ... + P(Tc:l, 1i) - P(Ta, 7i) + ... 
+ P(Ta, Tn-1) - P(Ta, Tn). (2.53) 
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Using (2.52) we can write 

n-1 
1 - P(Ta, Tn) = L: 'Ti+1P(Ta, 1i+1)L1(To} (2.54) 

i=O 

Hence as in Rebonato (1998) we can write the swap rate as a weighted sum of 
Li(t) 

(2.55) 

Let vi(Ta) = r1:(~~T;>, i = 1, ... , n. Then (2.55) can be written as 
a,/J a 

n-1 

Swapa,{J(Ta) = 2: Vi+t (Ta)Li(Ta) (2.56) 
i=O 

We can now write the price of a swaption as 

Similar to the method used in Rebonato (1998) and d'Aspremont (2003) for de-
riving analytic approximations to the price of swaptions, we replace the weights 
vn(Ta) by their time t = 0 values. 

(2.58) 

We now have a basket pricing problem where the basket consists of a weighted 
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sum of log-quadratic processes and a new strike 

_ n-1 l 
K = K + 2:: -Vi+l (0). 

i=O Ti+l 

Next we approximate the sum of log-quadratic processes through the method in-
troduced in the first section. Let 

n-1 

Fa,/J(t) := 2:: VH1(0)-
1
- exp(Qi(t) - Qi+1(t)). 

i=O Ti+I 

First note that 

Using Ito's lemma we get 

( 
P(t, Ji) ) P(t, Ji) { ( T 

d P(t T.. ) = P(t T. ) 4YtC(t, 1i+1)EE C(t, 1i+i)Yt 
, i+l ' i+l 

Therefore 

+ 2B(t, 1i+1) TEET C(t, 1i+i)Yt + B(t, 1i+1) TEET B(t, 1i+1) 

- 4}tC(t, 1i+1)EET C(t, 1i)Yt - 2B(t, 1i+1)TEET C(t, 1i)Yt 

- B(t, 1i+d TEET B(t, 1i)) dt+ 

+ (2(C(t,1i+i)-C(t,1i))Yt + B(t,1i+i)-B(t,1i)) TEdiVi} 

{

n-1 Vi+1(0)P(t,Ti) 

dF0 ,{J(t) = Fa,{J(t) ~ Ti+;c,~·~; 1 ) ( 4}tC(t, 7i+1)EET C(t, 1i+i)Yt 

+ 2B(t, 1i+1)TEET C(t, 1i+1)Yt + B(t, 1i+1)TEET B(t, 1i+1) 

- 4YtC(t, 1i+1)EET C(t, 1i)Yt - 2B(t, 1i+1) TEET C(t, 1i)Yt 

- B(t, 1i+1) TEET B(t, 1i)) dt 

+ ( 2Yt(C(t, 1i+1) - C(t, 1i)) + B(t, 1i+1) - B(t, 1i) )EdlVi} 

Note we already used the empirical fact that the weights 2.?:i1PJ.'i!c~~T;) can be re-
placed by their time zero values. The empirical fact that the weights can be 
frozen is supported by approximations to the price of swaptions in market mod-
els of interest rate (see, e.g., Rebonato (1998) or d'Aspremont (2003)). In the 
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lognormal market model one can show that the weights have low volatility (see 
d'Aspremont (2003)). The case Ti = 1, i = 1, ... , n is a special case which gives us 
--(t) ·- P(t,Ti) Th £ f P(t,T;) h k. . Vi .- i:1-i P(t,T,). ere ore we can reeze L:f=t P(t,Ti) w en ma mg approxima-
tions. Since 

P(t, 1i) 
P(t, 1i+1) 

P(t, 1i) . P(t, 1i+i) 
n -=- n 
2: P(t, 1i) 2: P(t, 1i) 
i=l i=l 

vi(t) 
Vi+l (t) 

we will replace v~;~?t) by its time zero value when making approximations. It is 
therefore plausible to assume that for approximation purposes, we can also replace 

(2.59) 

by its time zero value. 
We now replace ui(t) by its time t = 0 value ui(O) in the dynamics of Fa,tJ(t) 

to get: 

dF0 ,p( t) "' F0 ,p( I} {'t. U;+ 1 (O} ( 4Y,C( t, T.+ 1}~~ T C(t, T.+ 1}Y, + 

+ 2B(t, '.li+1) TEET C(t, '.li+1)Yi + B(t, 1i+1) TEET B(t, 1i+1) 

- 4YiC(t, 1i+1)EET C(t, 1i)Yi - 2B(t, 7i+i) TEET C(t, 1i)Yi 

- B(t, '.li+i)TEET B(t, '.Ii)) dt 

+ ( 2( C(t, '.li+i) - C(t, 1i))Yi + B(t, '.li+i) - B(t, 1i)) T EdlVi} (2.60) 

As in the first section we look for a tractable process that approximates F0 ,13(t). 
The log-quadratic Gaussian process defined by 

n-1 
F0 ,{J(t) := exp(YiT ~ Ui+1(0)(C(t, '.li+i) - C(t, '.li))Yt 

i=O 
n-1 n-1 

+ ~ Ui+l (O)(B(t, 1i+1) - B(t, '.Ii)) Tyt + ~ Ui+1(0)(A(t, '.li+i) - A(t, '.Ii))). 
i=O i=O 
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has a dynamics that is close to the SDE given by (2.60). This can be supported 
by looking at the dynamics of F0 ,p(t). Using Theorem B.2 given in Appendix B, 
the SDE satisfied by F0 ,.a(t) is given by 

dFo.,p(t, T) _ ( TCF( ) ;.( )T ~ - Ye t, Ti, ... 'Tn Yi + B t, Ti, ... ' Tn Yi+ 
F0 ,p(t, T) 

AF (t, T1 , ••• , T.)) dt + ( 2 ~ "'(O)( C( t, T;+i) - C(t, T;) )Yi 

n )T + ~ ui(O)(B(t, 1i+1) - B(t, Ji)) E d1'Vi (2.61) 

where 

n-1 
cF(t, To, ... ' Tn) :=AT~ Ui+1(0)(C(t, 'li+i) - C(t, Ti)) 

i=O 

+ t. Ui+i (O) ( C( t, 1;+1) - C( t, T;))A + O, ( ~ U; (0) ( C( t, T;+i) - C( t, T;))) 

n-1 n-1 
+ 2~Ui+1(0)(C(t,1i+1) - C(t, Ti))EET ~ Ui+i(O)(C(t, 'Ii+1) - C(t, Ti)) (2.62) 

i=O i=O 

n 

BF(t, To, ... , Tn)T :=AT~ Ui+1(0)(B(t, Ti+1) - B(t, Ti)) 
i=l 

+ O, (~ Ui+i(O)(B(t, 1;+1) - B(t, T;))) 

n-1 n-1 
+ 2~Ui+1(0)(C(t,1i+1) - C(t, Ti))EET ~ Ui+1(0)(B(t, 1i+1)- B(t, Ti))T 

i=O i=O 
(2.63) 
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If we consider the quadratic term in (2.62), we can use the fact that C(t, Ti), i = 

1, ... , n, satisfy their corresponding Riccati equations to substitute the appropriate 
expressions for the term involving the partial derivatives with respect tot in (2.62) 
to get some cancelation of terms so that we have, 

Y,;T CF(t, Ti, ... , Tn)Yt = 

v.T ( ~ U;+i ( 0)(2C( t, 1i+1)EE T C(t, 1i+ 1) - 2C( t, T;)EE TC( t, T;)) 

+ 2~U;+1(0)(C(t,1i+1) - C(t, T;))EET t. U.+1(0)(C(t, T;+J) - C(t, T;)) Y,. 

(2.65) 

It appears that similar to what we have done in the proof of theorem 2.4 we could 
possibly argue that the drift terms in the SDE of F0 ,,a(t) are approximately equal to 
the drift terms in the SDE of F0 ,13(t). However, we have considered the dynamics 
of F0 ,,a(t) under the risk neutral measure Q but what we need is the dynamics 
of F0 ,,a(t) under the swap measure which we denoted by Q0 ,.13. The dynamics of 
F0 ,13 (t) under Q 0 ,.a can be obtained by using Girsanov's theorem. \Ve first use Ito's 
formula to derive the SDE satisfied by P0 ,,a(t) similar to what was done in (2.7). 
Thus we have 

dP •. p(t) ~ P •. p(t)(r,dt + f w;(t)(Y,C(t,T;) +B(t,T;))Edw.). 
1=0.+l 

(2.66) 

By Girsanov's theorem n~0•13 given by 

t 

dlVta,.B := lVi + r;r;T t f wi(t)(2C(u, 1i)Yu + B(u, Ti)) du 
t=l 0 

(2.67) 

is a standard Brownian motion under Q0 ,11 • Applying Girsanov's theorem we find 
that the drift term of F0 ,11 (t) is different from zero. In comparison if we assume in 
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(2.56) 'Ti = 'T, i = 1, ... , n, we get 

n-1 

Fa,13(t) = ~VH1(0)-1-exp(Qi(t)-QH1(t)) 
i=O 7i+l 

n-1 l 
~ ~ Vi+1(t)-exp(Qi(t) - Qi+1(t)) 

i=O 7 i+l 

1 
= Swapa a(t) + -. ,,.., 'T 
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(2.68) 

(2.69) 

(2.70) 

Therefore as Swap0 ,13(t) is a martingale under Qa,/3> the drift term of Fa,13(t) should 
be close to zero. However the drift of Fa,13 (t) under Q 0 ,13 is different from zero. 
We now assume that we can ignore the drift terms of Fa,13(t) such that under this 
assumption the SDE of F0 ,13(t) will be approximately equal to the SDE of F0 ,13 (t). 
We also have to examine the dynamics of Yi under Qa,/3· By Girsanov's theorem, 
the dynamics of yt is given by 

where Wt·13 is a standard Brownian motion under Q0 ,13 • Since wi(t), i = 1, ... , n 

are not deterministic, Yi is different from a Gaussian Ornstein Uhlenbeck pro-
cess. However if we replace wi(t), i = 1, ... , n by their time zero values, we get a 
Gaussian Ornstein Uhlenbeck process. Therefore the dynamics of Yi under Q 0 ,13 is 
close to Gaussian if we use the empirical fact (see Rebonato (1998)) that weights 
wi(t), i = 1 ... , n can be assumed to be constant for deriving analytic approxima-
tions. However we can find the exact mean and variance-covariance matrix of Yr0 

under Q 0 ,13 conditional on :Ft even though the exact dynamics of yt under Q 0 ,.B 

does not correspond to that of a Gaussian process. To do so first note that the 
mean of Yr

0 
under Q0 ,13 conditional on :Fi can be \\-Titten as 
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In (2. 72) the value 
P(Ta, 1i) - P(Ta, 7i) 

lE?Ta [P(Ta, 1i)] - ;(::~:) 

is the Radon-Nikodym density of 'JI'i with respect to the measure 1I'a so that we can 
just find the mean and variance of Yr

0 
under this measure but it is computationally 

more efficient to use the result in Cherif et al. (1994). First we can find the 
distribution of the quadratic Gaussian factors under the measure !Ilr

0 
in closed 

form. Suppose M(t, Ta) denotes the mean of Yr
0 

under Qr" conditional on :Ft,, 
and V(t, Ta) denotes the variance-covariance matrix of Yr

0 
under !Ilr

0 
conditional 

on :Ft. Under the quadratic Gaussian model the zero coupon bond price P(Ta, 7i) 
is log-quadratic Gaussian such that 

For i = 1, ... , n, let Afi(t, Ta) denote the mean and Vi(t, Ta) denote the variance--
covariance matrix of Yr

0 
under the measure whose Radon-Nikodym density with 

respect to the measure 'JI' a is given by 

Applying Lemma 1.14 given in Chapter 1, we get 

Vi(t, Ta) = [1 + 2V(t, Ta)C(Ta, 1i) ]-
1
V(t, Ta) (2.73) 

lvfi(t, Ta) = [I+ 2V(t, Ta)C(Ta, 1i) ]-I [ Af(t, Ta) - V(t, Ta)B(Ta, 1i)]. (2.74) 

Therefore we can calculate Afa,/3(t, Ta) in closed form. Similarly the variance--
covariance matrix of Yr

0 
under Qa,/J conditional on :Ft which we denote by V0 ,/3(t, Ta) 

can be calculated in closed form. Next we approximate yt by a Gaussian process 
with mean and variance-covariance matrix equal to A1a,/3(t, T0 ) and Va,/3(t, Ta) re-
spectively. Under this approximation, Fa,/3 is a log-quadratic Gaussian process. 
\Ve now define a new approximation of the price of the swaption Swaptn0 ,13(I<). 
Let the swaption price which is based on F0 ,13(t) be given by, 

(2.75) 
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To calculate S;;;;;;tn3a.,/3(f<), note that we only have a single payoff function of 
type 

G1 (x, k) := {exp(x) - exp{k))+. {2.76) 

Let Ca1 (k) denote the option price which has payoff type (2.76) and let Ca1 (k) 
denote the Fourier transform of Ca1 (k) with respect to the strike price k. For such 
a payoff function, Lee (2004) gives the Fourier transform of the option price4 • The 
Fourier transform with respect to the strike price is given by 

Ca
1 
{z) = ~(z - i) 

zz-z2 (2.77) 

where <I>{z) is the characteristic function of the random variable x. To obtain 
the price of the option from the transform by integrating along a contour passing 
through & we use 

OC>-&i 

Ca1 (k) = .!_ f Re[~(z -;)]dz. 
7r iz - z (2.78) 

o-ai 
For the quadratic Gaussian model we have the freedom to choose & to be equal 
to zero or any other positive or negative number because the characteristic func-
tion is defined everywhere and depending on the choice of&, one can minimize 
the error of the Fourier inversion(see Lee (2004) for a detailed discussion). \Ve 
do not investigate the effect of choosing different & on the swaption pricing but 
use & = 1 for numerical tests. To calculate S;;;;;;tn30 , 13(K), we have to use the 
one dimensional characteristic function of the quadratic Gaussian random variable 
Qp(t) := loge(F0 ,/J(t)). Therefore we have 

o-ai 
(2.79) 

In the following we conduct numerical tests to calculate the relative error of 
this approximation in a two factor quadratic Gaussian model. The parameters 
of the quadratic Gaussian model are obtained through calibration to the market 
data of the previous section(see Table 2.1 and (2.43) of section 2.2). \Ve give the 
exact value of the swaption by using two dimensional integration(see (2.44) in the 

4 Here it is meant as in previous sections ET[G1(x,k)] i.e. the option price normalized by the 
zero coupon bond of the option's maturity 
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following table together with the relative error in percentage of the approximate 
swaption price S:;;;;;;tn3a,/3(K) next to it enclosed in parenthesis i.e. the value 

(2.80) 

From the results given in Tables 2.6, 2.7 and 2.8, we see that we can get a good 

T Tenor 
1 3 5 

1 39.80(0.283) 118.57(-0.223) 188.43(-0.773) 
3 68.88(0.393) 194.12(0.233) 301.42(-0.033) 
5 78.88(0.173) 221.02(0.323) 342.44(0.003) 

Tab. 2.6: Relative Error(in %) for ATM Swaptions 

T Tenor 
1 3 5 

1 80.41(0.253) 255.11(0.063) 421.89(-0.133) 
3 110.51(0.353) 317.84(0.263) 502.29 (0.113) 
5 115.45(0.163) 328.68( 0.333) 517.2(0.153) 

Tab. 2. 7: Relative Error( in %) for ITM Swaptions 

T Tenor 
1 3 5 

1 16.83(0.303) 45.12(-0.753) 66.86(-1.933) 
3 40. 77(0.423) 111.85(0.193) 169.55(-0.223) 
5 52.47(0.163) 144.13(0.303) 218.97(-0.183) 

Tab. 2.8: Relative Error(in %) OTM Swaptions 

approximation of the swaption price using Fa,/3 to approximate Fa,/3· Therefore for 
maturities that are less or equal to five years and s\vap tenors less or equal to five 
years, we can use Fa,/3 to approximate the swap rate Swapa,f3(t) given by (2.2). 
The errors of the swaption approximation we considered in this section can be due 
to three reasons. The first source of error is that we replaced the weights in (2.57) 
by their time zero values in (2.58). The second source of error is that the drift of 
the approximation Fa,/3 is not equal to the drift of Fa,/3· The third source of error 
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T Tenor 
1 3 5 

1 39.80(-0.08%) 118.57(-0.59%) 188.43(-1.07%) 
3 68.88(-0.05%) 194.12(-0.17%) 301.42(-0.41%) 
5 78.88(-0.02%) 221.02(-0.133%) 342.44(-0.51%) 

Tab. 2.9: Relative Error(in 3) for ATM Swaptions using (2.81) 

T Tenor 
1 3 5 

1 80.41 (-0.03%) 255.11 (-0.2%) 421.89(-0.35%) 
3 110.51(-0.03%) 317.84(-0.09%) 502.29 (-0.21%) 
5 115.45(-0.01 % ) 328.68(-0.08%) 517.2(-0.31%) 

Tab. 2.10: Relative Error{in 3) for ITM Swaptions using (2.81) 

is that we have approximated YT°' which is a non-Gaussian process under Qa,/3 by a 
Gaussian process which has mean and variance-covariance matrix that is equal to 
the exact mean and variance-covariance matrix of YT .. under Q0 ,p. The fact that 
we get a good approximation of the swaption prices may be attributed to some 
error cancelation between the different sources of error. Hence we now consider 
removing the second source of error to see if we get a better approximation of 
swaption prices. -In order to find the contribution of the log-quadratic approximation F0 ,t'J to the 
error, we calculated the price of the swaption using Fa,/3· The price was calculated 
by integrating the payoff of the swaption using the probability density function of 
a two dimensional Gaussian random variable with mean and variance-covariance 
matriX equal to the exact mean and variance-covariance matrix of YT0 under Qa,t'J· 

Assuming that the year fraction is a constant equal to Ti = 0.25, i =a+ 1, ... , /3, 
this price is calculated by the following formula: 

-00-00 
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T Tenor 
1 3 5 

1 16.83(-0.153) 45.12(-1.233) 66.86(-2.31%) 
3 40.77(-0.07%) 111.85(-0.273) 169.55(-0.64%) 
5 52.47(-0.03%) 144.13(-0.193) 218.97(-0. 72%) 

Tab. 2.11: Relative Error(in %) OTM Swaptions using (2.81) 

The results for the approximate swaption price based on (2.81) are presented in 
Table 2.9, Table 2.10 and Table 2.11. From the results, we see that, (2.81) is more 
accurate for the swaptions with swap tenor equal to one year while it has higher 
error for swaptions with swap tenor equal to five years. Hence it appears that 
removing the second source of error introduced by using Fo.,{3 instead of Fo.,/J gives 
less accurate results because the error cancelation between the different sources 
of error is reduced5 • \Ve also tested if we can improve (2.81) by using the exact 
probability density of Yr" under Qa,{J using the formula: 

0000 

P(O, T0 ) J J P0 ,p (T0 ) ( Fo,p - (! + K) r 
-00-00 

1 ( 1 T -1 ) 
1 exp - -

2
(Yr

0 
- M(O, Ta)) V(O, T0 ) (Yr0 -1\'1(0, Ta)) dYr. . 

27rjV(O, Ta)l2 ° 
(2.82) 

The results for the approximate swaption price based on (2.82) are presented in 
Table 2.12, Table 2.13 and Table 2.14. From the results, we see that the price 
based on (2.82) does not improve on the price based on (2.81). In fact for the 
OTM swaptions where the swap tenor is equal to five years, we have more error 
in the pricing. This shows that by replacing Yr .. by a Gaussian process in (2.81), 
we actually have a better approximation of the distribution of the payoff of the 
swaption. It is clear from the numerical results given above that the first source of 
error which is the freezing of the weights in (2.58) is the significant source of error 
as removing the other sources of error does not improve the swaption prices. It 
appears that when approximations to swaption prices are calculated on the basis 
of the freezing of weights, we cannot ignore the volatility of the weights when the 

5 The third source of error does not appear to contribute significantly to the error of the 
approximation of swaption prices in numerical experiments conducted in Schrager and Pelsser 
(2006) for affine term structure models. 
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T Tenor 
1 3 5 

1 39.80(-0.083) 118.57(-0.593) 188.43(-1.083) 
3 68.88(-0.053) 194.12(-0.193) 301.42(-0.473) 
5 78.88(-0.023) 221.02(-0.173) 342.44(-0.623) 

Tab. 2.12: Relative Error(in %) for ATM Swaptions using (2.82) 

T Tenor 
1 3 5 

1 80.41(-0.033) 255.11 (-0.213) 421.89(-0.353) 
3 110.51(-0.033) 317.84(-0.13) 502.29 (-0.243) 
5 115.45(-0.013) 328.68(-0.113) 517.2(-0.383) 

Tab. 2.13: Relative Error(in %) for ITM Swaptions using (2.82) 

maturity of the swaption is more than a year and the swap tenor underlying the 
swaption has a tenor of more than five years. The error becomes higher when 
considering OT:tvl swaptions. 

T Tenor 
1 3 5 

1 16.83(-0.153) 45.12(-1.243) 66.86(-2.353) 
3 40.77(-0.083) 111.85(-0.33) 169.55(-0.743) 
5 52.4 7(-0.033) 144.13(-0.25%) 218.97(-0.9%) 

Tab. 2.14: Relative Error(in %) OTl\I Swaptions using (2.82) 

2.4 l\if ethod of ]\,foments Swaption Pricing 

The use of Edgeworth expansions in option pricing was intro~uced by Jarrow and 
Rudd (1982) and has since been a subject of research. Some of the research has 
been to improve the Black and Scholes model (see Black and Scholes (1973)} by 
using Edgeworth type expansions (see, e.g., Corrado and Su {1997)). Even though 
the multi-factor quadratic Gaussian model allows the closed form pricing of caps, 
the price of swaptions cannot be obtained in analytically closed form. Therefore re-
searchers have proposed different approximations based on approximating the risk 
neutral density of the swap rate using an Edgeworth expansion (Collin-Dufresne 
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and Goldstein 2002) or using a Gram-Charlier expansion (Tanaka et al. 2005). 
In this section we conduct numerical experiments to compare approximations of 
swaption prices which are based on orthogonal series expansions of the risk neutral 
density of the swaptions' payoff. The method used is an application of Provost 
(2005) where a general approach to the expansion of probability density function 
using general polynomials is given. This method similar to the Edgeworth and 
Gram-Charlier approaches requires analytically closed form formulas for the mo-
ments of the swap rate. From the numerical results obtained, we will show that an 
approach based on the density of a beta random variable is better than one that is 
based on a standard normal variable which corresponds to using a Gram-Charlier 
series. We will consider the pricing of swaptions in the multivariate quadratic 
Gaussian factor model as we can calculate the prices of default free zero coupon 
bonds even when the factors are correlated. Instead of the swap rate, we choose 
an orthogonal series expansion of the probability density of P0 ,p(T0 )(see (2.6)). 

Lemma 2. 7. The process P0 ,p(T0 ) is bounded. Specifically the following holds in 
general 

n-1 

0 < P0 ,p(T0 ) < ~ Ti+l· 
i=1 

(2.83) 

Proof First recall that P0 ,p(Ta) = l:~=a+t riP(T°' Ti). \Ve now use the property 
of default free zero coupon bonds in the quadratic Gaussian model. Specifically 
the zero coupon bond prices P(T0 , Ti), i = 1, ... , n satisfy 

0 < P(T0 ,7i) < 1,i = 1, . .. ,n. 

D 

For probability density approximations which are based on moments of random 
variables with finite support, the use of Legendre and Jacobi polynomials is rec-
ommended in Provost (2005). In this paper among the examples that were given, 
we see that for the finite support case that the use of beta densities and Jacobi 
polynomials is more efficient than using Legendre Polynomials. Motivated by this 
example we use a beta density which matches the first two moments of Pa,p(T0 ) 

and then a product of this beta density and Jacobi polynomials of increasing order 
to match the moments. One should note that we can calculate the moments of 
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P0 ,,a(Ta) in closed form but for the mth positive moment we are looking at 

(Pa,,a(Ta))m = ( ± P(T0 , 7i))m. 
i=a+l 

(2.84) 

Typically for quarterly payments n becomes larger with the maturity of the swap. 
For a ten year with quarterly payments, we have 40 terms in P0 ,,a(Ta)· Using the 
multinomial formula we can expand the mth power of Pa,.e(T0 ) but the number of 
terms in this expansion rises very rapidly. For example for a five year swap with 
quarterly payments, computing the 6th moment in Mathematica requires much 
more computational time than the 5th moment. One can get a better performance 
in terms of speed by using c++ but it clear that as m increases, calculating 
moments will be computationally intensive in any programming language. Hence 
getting a good approximation with fewer moments is important. However we will 
see that for orthogonal series expansions of the probability density of P0 ,,a(Ta) 
(see Tanaka et al. (2005) for the Gram-Charlier case and the Cox-Ingersoll-Ross 
(CIR) factor model) increasing the moments can lead to a worse approximation 
for some strike price values because the approximation of the density of P0 ,,a(Ta) 
through the orthogonal series leads to negative values for some parts of the domain 
of support. In fact using a large number of moments can lead to large errors in 
the approximation. We first briefly sketch the approximation method given in 
Provost (2005) and refer the reader to this reference for a detailed explanation. 
The expansion of the probability density of Y = P0 ,,a(Ta) can be done as follows. 
Let us denote by (a, b) the support ofY = Pa,,a(T0 ). \Ve first make a transformation 
of Y to X = Y -u. The choice of u E JR+ and s E JR+ is based on the support of the 

8 

base density denoted by '11 x[x]. If '11 x[x] has support (ao, bo), then we have 

a-u b-u 
ao = -s-' bo = -s-. 

Now the probability density function of X denoted by fx[x] can be approximated 
by 

n 

f Xn[x] = '11 x[x] ~ Elxl. (2.85) 
l=O 

The probability density function of Y denoted by 'l!y[x] is therefore approximated 
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by 

fyn[Y] = Wx [y - u] i: ez (y - u) z_ 
S l=O S S 

{2.86) 

Let /tx[k] denote the kth raw moment of X which can be obtained from the kth raw 
moment of Y denoted by µy[k]. Then the values ez, for l = 0, ... , n are calculated 
from the moments of X by first forming an (n + 1) x (n + 1) matrix.6 M whose i/h 
entry is µx[i - 1 + j - 1] and calculating 

Let f[z] denote the Euler Gamma function 

r[z] = LX> e-1 exp(-t) dt 

and let Beta[y, z] denote the Euler Beta function 

Beta[y, z] = f[y]f[z] = f1 tY-1 (1 - ty- 1 dt. 
f[y+z] Jo 

For the specific case of a beta density 

1 -
Wx[x] ·= x°'(l - x) 13 0 < x < 1 

· Beta[a + 1,{J+ 1] ' 

(2.87) 

{2.88) 

as the base density, we have a0 = 0 and b0 = 1 so that u = a and s = b -
a. Moreover Provost (2005) recommends that the following modified form of the 
Jacobi polynomials be used 

G [ ] ·- 1 f[n +a] J biP[ - - 1 2 -1] n a, T, X .- n. f( ] aco n, a T, 'T , X 2n +a 
(2.89) 

where JacobiP[n, a - T, T - 1, 2x - 1] is an nth-degree Jacobi polynomial(see 
Abramowitz and Stegun (1972)) and a = a+ P + 1 and T = a. The parame-
ters a and P are chosen such that the first central moments of the base density 

6 There are other ways of calculating the coefficients {1, for a detailed discussion see Provost 
{2005). 
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W x [ x] match the moments of X. Furthermore we have 

1 f Beta[ a+ 1, fl+ l]Gi[a, -r, x]Gh[a, 1, x] dx =Oh, when i = h, h = 0, 1, ... , n 
0 

and zero otherwise (2.90) 

where 
Bh = h!f[h +a+ l]f[h +a+ fl+ l]f[h + ,B + 1] 

(2h +a+ f3 + 1)r[2h +a+ f3 + 1]2 

Let 6hk denote the coefficient of xk in Gh[a, 1, x]. Then Provost (2005) gives the 
following density approximant of Y for the base density (2.88) and orthogonal 
polynomials {2.89) we have made: 

fr.[y] := w[Y s u] ~ ( t. s Beta[ a !"1, /H l]O, ~ d;,µx[k]) (Y s u)'. 
{2.91) 

In addition to using the beta density (2.88) as the base density, we also considered 
using the standard normal density 

(2.92) 

as the base density and the modified Hermite polynomials 

(2.93) 

where H ermiteH[k, w] is the kth degree Hermite polynomial (see Abramowitz and 
Stegun (1972) for the orthogonal polynomials). This corresponds to using the 
Gram Charlier A series similar to Tanaka et al. (2005) to approximate swaption 
prices. The swaption (2.3) that we considered for pricing is an option at time t = 0 
to enter a payer swap (2.2) starting after one year (To: = 1) and ending ten years 
after the start date (T10 = T13 = 11). \Ve assume that the frequency of payments is 
annual (7i+ 1 -1i = 1, i = 1, 9). vVe refer to this swaption as the 1 x 10 swaption. 
\Ve can calculate the conditional mean 1\.I(O, T0 ) and variance-covariance matrix 
V(O,T0 ) of YrQ under the default free forward measure 'II'°' in closed form (see 
Lemma 1.3 in chapter 1) and therefore we can use the probability density function 
of Yr under 'JI'°' to directly integrate the payoff function of the swaption. The 
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exact price of this 1x10 swaption under the two factor quadratic Gaussian model 
is calculated using cubature7 • Therefore we use the following double integral8 to 
calculate the exact swaption price 

00 00 {3 
Swaptn.,p ~ P(O, T.) I I ( 1 - P(T., Tp) - K .L: P(T., T,) r 

-oo -co i=a+l 

1 ( 1 T ) 
27rlV(O, Ta)I~ exp - 2(Yra - M(O, Ta)) V(O, Tcr)(Yr0 - M(O, Ta)) dYir"dY2T" 

00 co {3 + 

= P(O, Ta) f f ( 1 - --~ KiP(T0 , '.Ji)) 
_ 00 -co i-a+l 

2irlV(~, T.)J! exp ( - ~(Yr. -M(O, T.))TV(O, T.)(Yr. -M(O, T0 ))) dYir.dY2T. 

(2.94) 

where f<i = K, i = 1, 9 and K10 = 1 + K. 
Using the parameters that were obtained by calibrating a two factor quadratic 

Gaussian model to the discount and cap/floor price data given in Table 2.2 and 
Table 2.1, we computed the price of the 1x10 swaption. The results indicate that 
for these calibrated parameters the orthogonal series expansion based on the beta 
density has less error in pricing compared to the one based on a Gram Chartier 
A series. \Ve considered the pricing performance of the two methods based on 
using the first three moments, the first five moments, and the first seven moments 
of Pa,{3(T0 ). The error in the price of the swaption does not necessarily decrease 
when using additional moments in the orthogonal series approach(Tanaka et al. 
2005). However for this particular case considered, the error in pricing decreased 
when using additional moments. The following tables (2.15),(2.16) and (2.17) 
give the exact price of the 1 x 10 swaption9 with the relative error in % given in 
parenthesis next to the price. The values in the first column of tables (2.15),(2.16) 
and (2.17) are the difference between the at the money strike rate corresponding to 

7 For a description of algorithms for multidimensional integration based on cubature, see Cools 
and Haegemans (2003). Cubature is the method used by the Nlntegrate function of Mathe-
matica. 

8 Calculating the swaption price by directly integrating the payoff function using the proba-
bility density is feasible when the number of factors is 2 or even 3. However if the dimension of 
the vector Yr,. increases, this method becomes less efficient though it is still a more accurate and 
faster way to compute the swaption price compared to using Monte Carlo simulations. 

9 l\Iultiplying the prices by 104 will convert them into basis points. 
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the row with D..K = 0 and the strike rate obtained by adding D..K value to the at 
the money strike rate. From the numerical results given in the tables, we conclude 
that using an orthogonal series approach based on the beta density is better than 
one based on a Gram Charlier A series for approximating the price of swaptions. 

tl.K Exact Beta3 GC3 
-0.025 0.17403 0.17404(-0.013) 0.17405(-0.013) 
-0.02 0.13976 0.13978(-0.0.02%) 0.13981(-0.04%) 
-0.015 0.10691 0.10694(-0.033) 0.10698(-0.07%) 
-0.01 0.07712 0.07712(0.003) 0.07713(-0.02%) 
-0.005 0.05210 0.05206(0.08%) 0.05202(0.163) 
0 0.03288 0.03281(0.2%) 0.0327 4( 0.423) 
0.005 0.01938 0.01933(0.283) 0.01927(0.593) 
0.01 0.01071 0.01069(0.213) 0.01067(0.393) 
0.015 0.00557 0.00557(-0.16%) 0.00559(-0.42%) 
0.02 0.00273 0.00276(-0.97%) 0.00279(-2.01%) 
0.025 0.00128 0.00131(-2.4%) 0.00133(-4.39%) 

Tab. 2.15: Swaption price and relative error in% using 3 moments 

D..K Exact Beta5 GC5 
-0.025 0.17403 0.17403(-0.003) 0.17403(-0.00%) 
-0.02 0.13976 0.13976(-0.0.00%) 0.13977(-0.01%) 
-0.015 0.10691 0.10691(-0.00%) 0.10693(-0.02%) 
-0.01 0.07712 0.07712(0.00%) 0.07711(0.00%) 
-0.005 0.05210 0.0521(0.003) 0.05207(0.07%) 
0 0.03288 0.03288(0.00%) 0.03284(0.11%) 
0.005 0.01938 0.01939(-0.013) 0.01938(0.043) 
0.01 0.01071 0.01071(-0.013) 0.01073(-0.18%) 
0.015 0.00557 0.00557(-0.013) 0.00559(-0.49%) 
0.02 0.00273 0.00273(0.023) 0.00275(-0.68%) 
0.025 0.00128 0.00128(0.063) 0.00128(-0.45%) 

Tab. 2.16: Swaption price and relative error in% using 5 moments 
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iJ,.K Exact Beta7 GC7 
-0.025 0.17403 0.17 402(-0.00%) 0.17402(0.00%) 
-0.02 0.13976 0.13976(-0.0.00%) 0.13976(-0.00%) 
-0.015 0.10691 0.10691(0.00%) 0.10691(-0.00%) 
-0.01 0.07712 0.07712(0.00%) 0.07712(0.00%) 
-0.005 0.05210 0.05210(0.00%) 0.0521(0.01%) 
0 0.03288 0.03288(-0.00%) 0.03287(0.01 %) 
0.005 0.01938 0.01938(-0.00%) 0.01939(-0.02%) 
0.01 0.01071 0.01071(0.00%) 0.01071(-0.05%) 
0.015 0.00557 0.00556(0.01%) 0.00557(-0.053) 
0.02 0.00273 0.00273(0.03%) 0.00273(0.03%) 
0.025 0.00128 0.00128( 0.02%) 0.00127(0.17%) 

Tab. 2.17: Swaption price and relative error % using 7 moments 
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3. CREDIT DEFAULT SWAPS AND CREDIT DEFAULT 
SvVAPTIONS 

There is some work in the pricing of credit default swaps and options on credit de-
fault swaps. In Brigo & Alfonsi ( 2004) an extension of the Cox-Ingersoll-Ross( CIR) 
model known as CIR++ is used to model the short term interest rate and the inten-
sity of default. When the interest rate and the intensity of default are independent, 
closed form formulas for the price of single name credit default swaps are provided1• 

Moreover the independence enables the separation of the calibration of the short 
term interest rate to caps or swaptions from the calibration of the intensity of de-
fault to quotes of credit default swaps. However when there is correlation between 
the interest rate and intensity of default, the CIR++ reduced form model does not 
enable the calculation of the price of credit default swaps in closed form except 
for special cases, therefore the calibration of the model has to be done through 
the use of Monte Carlo simulation or through a Gaussian dependence mapping. In 
the reduced model adopted in this paper, the use of quadratic Gaussian processes 
enables us to calculate the price of credit default swaps in a closed form so that 
the calibration of the model to the default term structure and quotes of credit 
default swaps can be done through anal:ytic formulas and solving numerically an 
ODE. In fact we can even derive closed form approximations to the price of credit 
default swaptions. The assumption of a correlation between the interest rate and 
the intensity of default does not prevent us from obtaining the analytic formulas. 
The first section provides details of the pricing formulas for credit default swaps 
and the calibration of the quadratic Gaussian model to credit default swap quotes. 
vVe first give new results on how to extract the probability of default under the 
assumption of a stochastic intensity. \Ve then present a new result showing that 
the calibration of the quadratic Gaussian model to credit default swaps can be 
done analytically if we assume that we use different factors to model the interest 

1 For piecewise constant parameter case, closed form formulas for the price of default free 
bonds in the CIR model can be derived (see, e.g., Schlogl and Schlogl (2002), 11eza, A. and 
Satzschneider (2002)). 
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rate and the intensity of default and assume no correlation between the factors. 
Furthermore we show that the calibration can be done through a solution of a non 
linear ODE in the general case of correlation between the factors. In the second 
section we derive three different ways of approximating the price of options on 
credit default swaps. 

3.1 Pricing of Credit Default Swaps 

In this section we first show how we can calculate the price of a domestic credit 
default swap in a closed form under the quadratic Gaussian factor model. We first 
extend the procedure to extract the probability of default from quotes of credit 
default swaps in a reduced form model of credit risk where the intensity of default 
is deterministic given in Martin et al. (2001) to a reduced form model of credit risk 
where the intensity of default is stochastic. \Ve then give a calibration procedure 
that will be used to calibrate the drift term of the intensity of default to quotes 
of credit default swaps. This calibration can be done using closed form formulas 
if we assume that the short term interest rate rt and the intensity of default At 
are independent. If we assume that there is correlation between rt and At, the 
calibration can be carried out by solving an ordinary differential equation. vVe 
assume in this section that we have a quadratic Gaussian factor model for default 
free and defaultable securities2 as described in chapter 1. Therefore the default 
free interest rate rt and the intensity of default At are modeled through quadratic 
Gaussian processes (see equations 1.6 and 1.7 in chapter 1.) In the following we 
describe a bilateral financial contract between two participants which we refer to 
as the payer and the receiver. 

Definition 3.1. A Credit Default Swap(CDS} is a contract that guarantees the 
payment of a deterministic fraction Z of a notional amount to the payer from the 
receiver at default timer of a corporate if default occurs at or after an agreed time 
Tn ~ 0 k"nown as the start time and before or at an agreed time T = TN > Tn Jmov.m 
as the maturity time. We will call the payment Z at default t·ime as the protection 
payment. In return the payer pays a constant premium J( on the notional amount 
at specified dates T = {Tn+li Tn+2, ... , Ji, ... , TN-1, TN} provided that default has 
not occurred before the premium payment date 1i E T. If the corporate defaults at 
time r where 1i < r ::::; 1i+ 1 and n ::::; i ::::; N - 1 1 then the contract is terminated 

2 See the discussion of the model at the beginning of this chapter 
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Payer. 

Fig. 3.1: CDS over [TcH T,a] 

after a payment of ( r - 7i)K of the notional amount by the payer to the receiver. 
This amount is referred to as the accrued premium. 

In the discussions that follow we will assume that the notional amount upon 
which the CDS contract is based is equal to one unit of currency. Let ( ( r) = 

max[i : n + 1 ~ i ~ N, 7i < r] and /3i = 7i -7i-i . Then the price of a CDS at 
time t ~ Tn is given by the following formula (see Bielecki and Rutkowski (2002), 
p. 224) 

CDS(t, T,T,K,Z) = EQ[ exp ( - [ T 8 ds)z lrn<r~r-

exp (- r Ts ds) (r -T((r))K lrn<T~T-. £ exp (-IT" Ts ds)/3i K lr>r.lgt] Jt i=n+l t 

Under the proper assumptions of a reduced model of default where the default 
time r is the first jump time of a conditional Poisson process, \ve obtain 

c DS( t, T, T, K, Z) ~ J.,>,z s:. E'1 [exp ( - I.' Tk + >.. dk) >., J.r-,] ds-

T s 

- lr>tK f EQ [exp ( - f Tk + Ak dk )As I.Ft] (s - T((s>) ds-
Tn t 

Using the defaultable bond lr>tP(t, s), 
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as the numeraire and denoting the corresponding defaultable forward measure by 
1' 8 the price of a CDS is given by3 

TN 

CDS(t,T,T,K,Z) = L->tZ f P(t,s) m:t•[Asl.1t]ds-

~ N 

-L->tK f P(t,s) lET"[AslFt](s-T((s))ds-L->tK ~ /3iP(t,7i). (3.1) 
Tn i=n+1 

As explained in chapter 1 we can get P(t, T) in closed form4 • \Ve only need to 
know how to calculate JET•[Asl.1f]. This can also be obtained in closed form under 
the quadratic Gaussian model using Lemma 1.36 of chapter 1 as the defaultable 
bond P( t, s) is a log-quadratic Gaussian process. 

We now show how we can calibrate the drift term of At using credit default swap 
quotes for the corporation whose default time is denoted by r. Under independence 
of the interest rate and the intensity of default, the probability of default is given 
by 

(3.2) 

In order to calibrate At, we need the term structure of default probabilities. Let 
c and d represent positive integers such that {ii, ... , ic} and {ji, ... ,jd} represent 
disjoint subsets of {1, ... , n} where here n refers to the dimension of yt. Now let 

·and 

be used to model rt and At respectively where we assume that the instantaneous 
correlation matrix of Yi1 and Yi2 is a diagonal matrix. Therefore rt and At are 
assumed to have zero correlation and this means Yi1 and Yi2 are independent. If 
there is a liquid market for defaultable zero coupon bonds for a range of maturities 
as in the case of a default free bond, then we can extract the default probabilities 

3 See Bielecki and Rutkowski (2002), p.224 or the discussion given in Chapter 4 for more detail. 
4 The discussion in Chapter 1 is for the case of default free bonds but it equally applicable for 

defaultable bonds by just considering the instantaneous rate to be rt+ At. 
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and calibrate the drift term of z; through a 2(t). In general the market for de-
faultable bonds issued by a corporate is not liquid. The market for credit default 
swaps where a corporate is the reference name underlying the credit default swap 
contract has better liquidity. However the maturities of credit default swaps traded 
are usually one year, three years, five years and ten years. Practitioners assume 
a piecewise constant intensity and use a bootstrapping procedure to extract the 
term structure of default probabilities. We can use these term structure of default 
probabilities to calibrate our model but this is in contradiction to the assumed 
stochastic intensity of default. Moreover this bootstrapping procedure has some 
disadvantages such as not being robust to unreliable quotes for some maturities. 
A better method for extracting the term structure of default probabilities is given 
in Martin et al. (2001). We give a brief description of this method. The method 
described in Martin et al. (2001) is for a time dependent deterministic At· Here 
we extend this method to the case of a stochastic intensity of default At under the 
assumption of independence between the default free short rate of interest and the 
intensity of default. We later show how we can still modify this method to the case 
where the short rate of interest and the intensity of default are not independent. 
Ignoring the accrued premium, the value of a credit default swap of maturity T to 
the seller at time t = 0 is given by 

N TN 

K ?:,Bi P(O, Ji) - Z f P(O, s) JETa[A.sl.Ft] ds 
i=O O 

where O = T0 , ••• , TN= Tare the premium payment dates. The quoted CDS rates 
are chosen so that the value of the CDS is equal to zero at time t = 0. Therefore 
the premium K is chosen to be 

TN _ 
Z S P(O,s)JB:Ts[A.slJ=i]ds 

R1(T) := 0 N - (3.3) 
I; ,Bi P(O, 1i) 
i=O 

where we assume a notional of one unit of currency and a constant recovery rate 
8 such that z = 1 - 8. Assuming independence between Tt and At, we can write 
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(3.4) 

As described in Martin et al. (2001), we can discretize the interval [O, TN] by 
choosing D. > 0 and considering a set of dates (0 = T0 , ••• , 7j, ... , TM= T), D. = 

7j - Tj-1, j=l, ... ,M. \Ve can now approximate R1(T) by 

Let G(O, t) denote the risk neutral probability of survival i.e. the probability there 
is no default between time zero and time t as seen with respect to the trivial 
filtration F 0 . Under the reduced form model we are considering, we can express 
G ( 0, t) by the following formula 

(3.6) 

Let the probability of default over (7j, 7J+i) conditional on survival up to time 7j 
be denoted by 9i which is given by 

IEQ[T >Ti] - IEQ(T > Tf+1] G(O, 7J+i) (3.7) 
9i := JEQ[T > 7j] = 1 - G(O, 7j) . 

Then we have 

G(O, T;+1) = G(O, 7j) - G(O, 7j)gii G(O, 0) = 1 (3.8) 
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or as originally formulated in Martin et al. ( 2001) in terms of the risk neutral 
probability of default 

T 

H(O, T) := JEQ[r < T] = 1 - JEQ [exp-( f As ds)] (3.9) 
0 

we have 
H(O, 1J+1) = H(O, 1j) + {1 - H(O, 7j))gi, H(O, 0) = 0. (3.10) 

Therefore the probability of default between 1j and 7J+i can be expressed in terms 
of G(O, 7j) and gi 

T;+i s 

lEQ [ f As exp ( - f Au du)] = G(O, 1j) - G(O, 1J+1) = G(O, 1j)gi. (3.11) 
T; 0 

Therefore 
M z L ~(P(O, Tj) + P(O, 1J+1))G(O, Tj)gj 

R1(TN) = 
0 

N {3.12) 
L /Ji P(o, 1i) 
i=O 

The ratio in the right hand side of (3.12) is a function of gi such that for a given 
maturity Tk, 

k-1 z L HP(O, 1j) + P(O, 1j+1))G(O, 'lj)gj 
F(go, ... , 9k-1) := 0 

k (3.13) 
L /Ji P(O, 1i)G(O, 1i) 
i=O 

If we assume that the CDS quotes R1(Tk), k = 1, ... , rare subject to a Gaussian 
error of ak, k = 1, ... , r, the procedure suggested in Martin et al. {2001) is to 
minimize 

where 

d(g
1

;g)= (g'-g)Ioge(~)+(g-g')Ioge(~-=.~) (3.15) 
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and v is a positive constant which gives more smoothness for the default probability 
curve for higher values. The authors Martin et al. (2001) consider the case v = 

10, v = 10, 000 and O'k = 10-4 , k = 1, .. r and time discretisations of ~ = 0.5 
and ~ = ~ corresponding to 6 months and 2 months. Thus we can extract the 
term structure of the probability of survival given by G(O, T). Now under the 
assumption of independence between rt and .At, we have 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Similar to the default free case(see equation 1.50 and theorem 1.8 in chapter 1) we 
calibrate the drift term of .At using 

- j' -or lo& P(O, T) = E [rr + .Ar]. (3.20) 

Under the assumption of independence equation (3.20) can be reduced to 

(3.21) 

The drift term of rt is calibrated using a closed formula starting from the equation 

(3.22) 

Therefore (3.21) simplifies to 

(3.23) 

Now the conditional mean and the conditional variance of the multivariate Gaus-
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sian factor Yt under the defaultable forward measure f' which are denoted by 
M(t, T) and V(t, T) respectively satisfy the ODE's given in lemma 1.3 as the de-
faultable bond P(t, T) is a log-quadratic Gaussian process. Under the assumption 
of independence we can rearrange the factors }';1 and Y? used to model Tt and At 
respectively such that V(t, T) is a block diagonal matrix. Therefore the ODE's 
given in lemma 1.3 can be solved separately for the conditional mean and condi-
tional variance( under T) of Y? and Y? which we denote by M 1(t, T), V1(t, T) and 
A12(t, T), V2(t, T). Note that under the assumption of independence Ji,f1 (t, T) is 
the same as the conditional mean of Y/ under 'f and V1 (t, T) is the same as the 
conditional variance of Yi1 under 'f. Here we only need to use the fact that we 
can solve M 2(t, T) independently from M 1(t, T). Thus if we assume for ease of 
exposition that 

Tt = (y;1 +a1(t))T(y;1 +al(t)) 
At= (y;2 + a2(t))T(y;2 + a2(t)), 

(3.24) 

(3.25) 

we can proceed to calibrate the drift term of At as in the proof of lemma 1.8 in 
chapter 1. 

Assuming correlation between the factors used to model r, and the factors used 
to model At, will require additional approximations to extract the term structure 
of probabilities of default under the forward measure 'f corresponding to using the 
default free bond of maturity T as the numeraire. Moreover each of the system of 
ODE's given in lemma 1.3 do not separate into two independent systems and we 
shall see that we have to resort to numerically solving a first order system of non-
linear ODE's in the general case. First we assume that we have a discretisation 
as in the above so that the time interval T is divided into J\.1 subintervals of equal 
length ~. 1foreover if default occurs between Ti < T ~ 1J+1 payment of the 
constant amount Z is made at T;+ 1 for j = 0, ... , AJ - 1. Under this assumption 
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we can write (see Bielecki and Rutkowski (2002), p.224) 

ZEQ[ exp-(f r.du)to<T~T] = z % EQ[ exp ( - Jr.du)1T;<T~TJ+,] 
M-1 T;+1 T;+1 

= Z ~ EQ[ exp ( - J r.du )t,>7) )- E<l[ exp ( - J r.du )1,>T;+,] 
0 0 

= z % EQ [exp ( - r Tu + Au du) exp ( - Tr" du))-
o T; 

T;+1 

- IEQ [exp ( - f r u + Au du)] 
0 

= Z ~1 EQ[ exp ( - r ru +A.du) exp ( - Jr.du))-
J O 0 T· ] 

T;+1 

- P(O, 1J+i)JET;+i [exp ( - f Au du)]. (3.27) 
0 

The value P(T;, '.Tj+1) is stochastic when seen from time t = 0, however if ~ is 
close to zero, P(T;, '.Tj+1) is close to 1. Therefore it is close to being deterministic, 

T;+1 

and hence we would not introduce much error by assuming exp ( - S Au du) and 
0 
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P(71, 71+i) are independent under the 'lfi. We therefore approximate (3.27) by 

M-1 T; 

Z ~ P(O,'.lj)ET'[ exp (-I A.du) ]ET'[P('lj,T;+i)]-
o 

T;+i 

- P(O, 71+i)JETj+i [exp ( - I Au du)] 
0 

(3.28) 

Let 
T 

G(O,T) :=JET[ exp ( - I Au du)] 
0 

denote the probability of survival up to time T under the default free forward 
measure 'Il'. Then 

M-1 
Z ~ P(O, 71+1)(G(O, Ti) - G(7J+1)) 

R1(T) = i=O k (3.29) 
~ !3i P(O, '.li)G(Ti) 
i=O 

Let the conditional default probability of default over (1j, 71+1) under the forward 
measure 'Il' be denoted by Yi which is given by 

_. ·= JET, [r > 1j] - JE:Tj+I [r > 7J+1] = 1 _ G(O, 71+1) 
91 . JET; [r > 71] G(O, 71) . (3.30) 

Then we have 

G(O, 71+1) = G(O, 1j) - G(O, T;)9;, G(O, O) = I (3.31) 

and R1(T) can be seen as a function of (go, ... , YM) and we can use an opti-
mization procedure similar to the one that was used to extract G(O, T) in case of 
independence between Tt and At to extract G(T). 

Once we have extracted G(T), we can obtain P(O, T) by using P(O, T) = 

P(O, T)G(O, T). We can now use P(O, T) to calibrate the whole of n(t). Let us 
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assume that Tt and At are given by equations (3.24),(3.25) where we now assume 
that Ylt and Y2t are not independent. Then as in the case of the default free 
market(see (1.50) we have 

-or loge P(O, T) =1Et[rr +.Ar] 

=tr(V(O, T)) + (M(O, T) + o:(T)) T (M(O, T) + o:(T)) {3.32) 

where M(O, T) is the mean vector under the defaultable forward measure5 if of 
Yi = (Yli, Y2t) used to model Tt and At and V(O, T) is the corresponding variance-
covariance matrix. Let 

F(O, T) := -or loge P(O, T) {3.33) 

denote the defaultable forward rate for maturity T at time t = 0. Hence (3.32) 
can be written as 

F(O, T) = tr(V(O, T)) + (A1(0, T) + o:(T)) T (A1(0, T) + o:(T)) {3.34) 

which is equivalent to 

F(T) := .J F(O, T) -Tr(V(O, T)) = (A-1(0, T) + o:(T))T (NI(O, T) + a(T)). (3.35) 

To simplify the discussion we will now consider a two factor quadratic Gaussian 
model i.e. Yi = (Y1t, Y~!t) in (1.3). The first factor is used to model the short term 
rate of interest rt so that we have rt = (Yit + a 1 ( t)) 2 • The second factor is used 
to model the intensity of default At so that we have At = (Y:u + a 2(t))2. However 
the discussion that follows below can be easily extended to a multifactor quadratic 
Gaussian model where more than two factors are used for Tt or At provided that the 
factors used to model Tt are not used to model At and vice versa. In chapter 1, we 
were able to calibrate a multifactor quadratic Gaussian factor model to the default 
free forward rate term structure in closed form. Hence we can first calibrate a 1 (t) 
to the default free forward rate term structure at time t = 0 using a closed form 
formula(see lemma 1.8. Next we need to calibrate to the defaultable forward rate 
term structure at time t = 0 through a 2 (t). To continue our calibration procedure, 
we now have to consider how to linearize (3.35). Recall that in the case of the 

5 this is measure that corresponds to using P(O, T) as the numeraire 
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default free quadratic Gaussian factor model, we stated that in (1.62) that one 
way of defining F(T) was to assume 

F(T) = v F(O, T): V(O, T) 1. 

We cannot do a similar procedure when we try to linearize (3.35). Specifically let 

F(T) = ( ~i(T) ) 
F2(T) 

denote a vector such that 

F(T) T F(T) = .J F(O, T) - Tr(V(O, T)) 

is true. 
If we define 

::: - ( F1 (T) ) - ( J F(O,T)-T;(V(O,T)) ) 
F(T) - p2(T) - ~.-F-(0-,T-)--~-r(-V-(O,-T-)) (3.36) 

and proceed to derive the associated ODE for a(t) using the same techniques as 
in the proof of Theorem 1.8, we get the following system of linear ODE's 

d - -
dTa1 (T) = an 0:1 (T) + ai2 0:2(T) - au F'i {O, T) - a12 FHO, T) 

- :::: - :::: d -
+2Vi1 (0, T)F1 (0, T) + 2Vi2(0, T)F2(0,T) + dTF1(0, T) (3.37) 

d - -
dTa2(T) = a210:1(T) + a22 0:2(T) - a21 F1(0, T) - a22 F2{0, T) 

- ::: - :::: d -
+2Vi2(0, T)F1(0, T) + 2V22(0, T)F2(0, T) + dTF2(0, T) (3.38) 
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whose solution is given by 

T 

a1(T) = F1(T) + 2 exp(au T) f exp(-an r)(V11 (0, r) F1(r) + V12 (0, r) F2(r)) dr 
0 

(3.39) 
T 

a2(T) = F1(T) + 2 exp(a22 T) f exp(-a22 r)(\li1 (0, r) F1(r) + \li2(0, r) F2(r)) dr. 
0 

(3.40) 

Using the result of Theorem 1.8, we can find the value of a 1 (T) that can be used 
to calibrate the quadratic Gaussian model to the default free forward rate term 
structure. This formula is given by 

T 

a1(T) = F(T) + 2 exp(a11 T) J exp(-a11 r)Vi1(0,r)F(r)dr 
0 

(3.41) 

where F = -yf F(O, T) - V(O, T). The problem with defining F(T) as in (3.36) is 
that the solution of (3.37) given in (3.39) does not guarantee that a 1 (t) is equal 
to (3.41). Therefore we have to define Fin such a way that the a 1(t) obtained 
through the calibration procedure to the default free forward rate term structure 
does not change. In fact this leads to a unique way of defining a vector F(T): 

F(T):= ( ~ ) 
-yiF(O, T) -Tr(V(O, T)) - H(T) 

(3.42) 

for some function H(T) which we need to solve for in the following. Using the def-
inition given in (3.42), we can linearize (3.35) and proceed to derive the associated 
ODE for a(t) by using procedure that was used in the proof of Theorem 1.8. This 
gives us the ODE given in (3.37) whereby we now use the new definition (3.42) for 
F(T). If H(T) was a known function at this point, we can then proceed to solve 
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(3.37) using the same steps used in the proof of Theorem 1.8 to obtain 

T 

a1(T) =.../iiff) + 2 exp(an T) f exp(-a11 r)(Vi1(0,r) ~+ 
0 

+ Vi2(0, r) V F(O, r) - Tr(V(O, r)) - H(r) dr 

a2(T) =V F(O, T) - Tr(V(O, T)) - H(T)+ 
T 

+2 exp(a22T) f exp(-a22r)(Vz1(0,r)~+ 
0 

+ Vz2(0,r) VF(O,r)-Tr(V(O,r))- H(r) ,dr. 
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(3.43) 

(3.44) 

Since H(T) is not known but a 1 (t) is known, we can regard (3.43) as an integral 
equation for H(T). Once we solve this equation we can give the solution for a 2(t) 
using (3.44). _Since a solution of (3.43) is also a solution of the ODE given in 
(3.37) with F(T) defined now as in (3.42), we will obtain an exact calibration 
to both the default free and defaultable term structures. The equation given in 
(3.43) is a nonlinear Volterra integral equation of the second kind in the unknown 
H(T). We can convert (3.43) into a nonlinear first order differential equation using 
differentiation as the proof of the following theorem shows. 

Theorem 3.2. In a two factor quadratic Gaussian factor model, we have a perfect 
calibration to the default free term structure given by the price of default free zero 
coupon bonds through a closed form formula as given in theorem 1. 8 and a perfect 
calibration to the term structure of survival probabilities which are extracted from 
CDS quotes through the numerical solution of the fallowing first order non-linear 
ODE: 

1 d ( - d -'2 dTH(T) + (2 Vj1 (0, T) - a11 )H(T) + (a11 - 2V(O, T))F(T) - dTF(T)+ 

+ 2 Vi2 (0, T)V F(O, T) -Tr(V(O, T)) - H(T)).../iifi) = o (3.45) 

H(T) > 0, Te [O,T*], H(O) = 01(0)2. 
If we assU1ne independence between rt and At, the exact solution of (3.45) is 

given by 
H(T) = F(T) = ..j F(O, T) - V(O, T) 
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where F(O, T) is default free instantaneous forward rate and V(O, T) is the default 
free variance of Yit under 'Il'. 

Proof As the discussion preceding this theorem shows, we only need to solve the 
Volterra integral equation of the second kind given in (3.43). \Ve now show that 
(3.43) is equivalent to the solution of the first order non-linear ODE given by 
(3.45). From (3.43) we get the following equality 

T 

a1(T) -y'If(T) = 2 exp(an T) f exp(-an r)(i/i1(0,r) .Jll(T) 
0 

+ i/i2(0, r) V F(O, r) -Tr(V(O, r)) - H(r) dr. (3.46) 

We now differentiate both sides of the integral equation (3.43) to obtain 

T 
d fr.H(T) f --a1(T) = y'If(T) + 2an exp(a11 T) exp(-a11 r)(Vi1(0, r) .Jll(T) 

dT 2 H(T) 
0 

+ Yt2(0, r) V F(O, r) -Tr(V(O, r)) - H(r)) dr + 21/i1 (0, T)y'If(T) 

+ 211i2(0, T)V F(O, T) - Tr(V(O, T)) - H(T). (3.47) 

Using (3.46) to simplify (3.47), we get 

~ + an ( <>1 (T) - v'If(T5) + 2 Vi1 (0, T)v'If(T) 
2 H(T) 

+ 2 i/i2(0, T)V F(O, T) -Tr(V(O, T)) - H(T) - d~a1(T) = o. (3.48) 

We can further simplify (3.48) by using 

!£a1(T) = _:!._F(T) + a 11 (a1(T) - F(T)) + 2 V(O, T)F(T) (3.49) 
dT dT 

which can be obtained from theorem 1.8 by differentiation and using the fact that 

T 

a 1(T) - F(T) = 2exp(a11 T) f exp(-a11 s)V(O, s)F(s)ds. (3.50) 
0 
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This gives us 

-JrH(T) .~ - .~ 
2 vlH{T) - au v H(T) + 2 Vi1(0, T)v H(T)+ 

+ 2 Vi2(0, Th/ F(O, T) -Tr(V(O, T)) - H(T) - d~F(T)+ 
+ a11F(T) - 2 V(O, T)F(T) = o. {3.51) 

Assuming H(T) is a positive function, we now multiply both sides of {3.51) by 
y'II(T5 and rearrange the terms to get {3.45) given in the lemma. In general 
(3.45) can be solved efficiently using numerical methods for first order ODE's. If 
we assume that the instantaneous correlation p between Y1t and Y2t is equal to 
zero i.e. the Brownian motions used to model Yit and Y2t are independent, then 

Vi1{0, T) =V(O, T) 

Vi2{0, T) =0. 

is true. Therefore (3.45) becomes a simpler equation given by 

1 d -"2 dTH(T) + {2 Vi1{0, T) - an)H(T)+ 

{3.52) 

{3.53) 

+ ((a11 -2V(O, T))F(T) - d~F(T))v'H{T) = o (3.54) 

It is easy to verify that 

H(T) = F(O, T) - V(O, T) = F(T) 2 

is a solution of (3.54) by substituting this value into the ODE. Substituting F(T) 2 

for H(T) in {3.44), we obtain a 2 (T). Note that in this case 

F(O, T) = F(O, T) + G(O, T) 

and 

V F(O, T) - V(O, T) - V22(0, T) - F(T) 2 = V G(O, T) - V22 (0, T). 

Hence a 1 (T) is calibrated to the default free forward rate term structure while 
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0:2(T) is calibrated to the term structure of survival probabilities G{O, T). 0 

Remark 3.3. Assuming that we use different factors to model rt and At, we can 
extend Theorem 3.2 to a quadratic Gaussian model where more than two factors 
are used to model rt and At· From the discussion preceding Theorem 3.2, we can 
see that we have to consider a vector H(T) and using the method used in the proof 
of Theorem 3.2, we obtain a system of non-linear ODE's which have to be solved 
numerically. 

We now give numerical results to show that we can calibrate the drift terms of 
rt and At using CDS quotes and the default free term structure extracted from zero 
coupon bonds and default free swap rates. We still consider the two factor model 
where rt = (Yit+o:1 (t)) 2 and At = (Y2t+o:2(t))2 to carry out the numerical work. In 
the case of independence between Tt and At we can use closed form formulas to do 
this calibration. Therefore we consider the case when Tt and At are not independent 
where we have to numerically solve the nonlinear scalar ODE given by (3.45) in 
lemma 3.2. We use the default free zero coupon bond data given in Table 3.1 and 
the CDS quotes data given in Table 3.2 which is obtained from Martin et al. {2001) 
to test the calibration. \Ve assume that the recovery rate is 30% and therefore the 
default payment Z is equal to 1 - 0.3 = 0. 7. For example the first row of Table 
3.2 states that the market CDS rate for a one year protection against default is 
0.0045 which is equivalent to a quote of 45 basis points. Using the optimization 
procedure described in this section{see {3.26) and the following paragraphs), we 
can extract the probability of default under the default free forward measure which 
we denoted by G{O, T) by using just the default free zero coupon data and the CDS 
quotes. The probability of default under 1I' is obtained by just assuming·correlation 
between Tt and At without having to specify a specific value. \Ve assume that the 
premium payments are made annually and therefore /3i = 1, i = 1, ... , r for a 
CDS with maturity of r years. Since requiring a smoother G(O, T) will make 
the optimization procedure favor smoothness instead of matching exactly the CDS 
quotes, we need to have a higher level of discretization of the integral corresponding 
to the default leg of the CDS( see (3.3) and the paragraph before {3.26)). Therefore 
we chose ~ = 0.0625 which is smaller than the values used for .6. in l\Iartin et al. 
(2001) where At is assumed to be deterministic. The value of v = 10 was chosen for 
the smoothness parameter and ak = 10-4, k = 1, ... , r in the objective function to 
minimize which is given in equations (3.14) and (3.15). In the case of correlation 
between rt and >.ti we have to make more approximations to the CDS rate as 
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demonstrated in (3.26). Therefore what we are calibrating to is not the exact CDS 
rate but an approximation. In Table 3.3 we give this approximation next to the 
exact CDS quotes under the column with heading "Calib CDS". In the last column 
of table 3.3, we give the value of the CDS rate in a two factor quadratic Gaussian 
model whereby we use the formula given in (3.3) to calculate this value. To use 
(3.3) we have to assume specific values for the speed of mean reversion matrix A, 
the instantaneous volatility E and the correlation p in the two factor model we are 
considering: 

dZt = (a:(t) + Ayt)dt + EdWt (3.55) 

where A and E are constant square matrices given by 

A= [au 0 ] , 
0 a22 

In practice these parameters are obtained by calibrating to default free option data 
such as caps, floors or swaptions as well as options on credit sensitive securities 
such as options on credit default swaps. However this task is made difficult by the 
fact that options on credit sensitive securities is not liquidly available. Here we 
would like to show that for a high value of instantaneous correlation between Yit 
and Y2t, we can still calibrate well to CDS quotes. vVe know that we have exact 
calibration to the default free term structure under the quadratic Gaussian model 
and hence this shows that we can also calibrate to the defaultable term structure 
even if Tt and At are not independent. The specific parameters chosen are: 

au = 0.01, a22 = 0.09, an = 0.04, a22 = 0.04, p = 0.9. (3.56) 

Unlike the multifactor affine factor model for default free and defaultable mar-
kets where we do not have closed form formulas for calibration, the multi factor 
quadratic Gaussian model for default free and defaultable markets inable us to 
calibrate exactly to the default free and defaultable term structures as the results 
in Table 3.3 and Figure 3.5 show. However for a numerical procedure of calibrat-
ing multifactor affine model to default free bonds and CDS quotes see Brigo and 
Alfonsi {2004). 
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T P(O, T) 
0. 1 
1 0.93182 
2 0.866762 
3 0.806772 
4 0.750876 
5 0.699114 
6 0.650255 
7 0.604807 
8 0.562855 
9 0.523594 
10 0.487314 

Tab. 3.1: Zero Rates 

P(O, T) Zero Curve 

0.93182 

0.750876 

0.604807 

Fig. 3.2: Discount curve 

T CDS rate 
1 0.0045 
2 0.0055 
3 0.0065 
4 0.0070 
5 0.0095 
7 0.0105 
10 0.0115 

Tab. 3.2: CDS quotes 
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CDS Rate CDS Rate Quotes 
0.011 • 

0.01 • 
0.009 • 
0.008 
0.007 • • 0.006 • 0.005 

2 4 6 8 10 
Maturity 

Fig. 3.3: CDS quotes given as basis points* 10-4 

DefProb Probabilityof Survival 
I 

0.975 
0.95 

0.925 
0.9 

0.875 
0.85_.___~-~-~-~---...i.. Maturity 

2 4 6 8 10 

Fig. 3.4: Extracted Survival Probability Under Correlation .6.. = 0.0625 

1fat. CDS Quote Calib CDS QG CDS 
1 0.0045 0.00448017 0.00448906 
2 0.0055 0.00547543 0.00548332 
3 0.0065 0.00647092 0.0064748 
4 0.007 0.00696875 0.00696499 
5 0.0095 0.00945755 0.00944627 
7 0.0105 0.010453 0.0104067 
10 0.0115 0.0114484 0.0113335 

Tab. 3.3: Calibration results to CDS quotes 
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CDS rate 1 Year Cap . Mar et 
0.011 • • Calib 

• QG 
0.01 • 

0.009 
ii 

0.008 
0.007 • 
0.006 • 
0.005 • 

• Maturity 
2 4 6 8 10 

Fig. 3.5: Calibration results to CDS quotes 

3.2 Pricing Credit Default Swaptions 

In this section we discuss the pricing of an option on a CDS also known as a credit 
default swaption by some members of the financial market. First we show how 
we can calculate the price of a credit default swaption accurately in a multivariate 
quadratic Gaussian factor model. We then derive different analytic approximations 
for the price of a credit default swaptions. In order to get closed form formulas, 
we will assume as in previous sections that the dynamics of the Gaussian Ornstein 
Uhlenbeck process yt is given by 

dyt = Ayt dt + L: dH't (3.57) 

where A is a constant diagonal matrix and L: is a constant matrix and the state 
variables are given by Zt = a(t) + yt. 

Definition 3.4. An option to enter a credit default swap at a future time Tn 
gives the buyer of the option the right" but not the obligation to enter into a CDS 
agreement with the receiver at time Tn by paying a premium of K at times 'Fn,N = 

Tn+b ... , TN in return for a protection payment of Z ifthe referenced credit defaults 
before the maturity TN > Tn of the credit default swap. At default time Tn < T ~ 

TN the contract is terminated and the receiver receives the accrued amount T - 1i 
where ~ is the payment immediately preceding T. This option contract is only valid 
if the reference credit does not default until time Tn. If the reference credit def a·ults 
by time Tn, the option contract is terminated with no exchange of payments. 

Only if at the time of maturity of the Tn the prevailing market CDS rate R1(Tn) 
is above K will the buyer of the option find it beneficial to exercise this option. 
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The market CDS rate is set in such a way such that 

Hence at time Tn, the value of the CDS underlying the option which is given by 

CDS(Tn, 'Tn,N, T,K, Z) (3.58) 

will be positive if K < R1(Tn)· Therefore the payoff of the option at time Tn 

CDS(Tn, 'Tn,N, T, K, Z) (3.59) 

will need to be positive so that the buyer of the credit default swaption finds it 
beneficial to exercise the option. Let the value of the credit default swaption be 
denoted by CDSop(t, Tn, Tn,N, T,K, Z), then at time t < Tn 

CDSop(t, Tn, Tn,N, T, K, Z) := JEQ[ exp ( - iT,. Ts ds) 
(CDS(Tn, 'Tn,N, T, K, z))+l.rt] (3.60) 

Ignoring the accrued premium term this becomes 

Tn 

CDSop(t, Tn, 'Tn,N, T, K, Z) = JEQ [exp ( - f rs ds) 
t 

Tlv N + 
1.,>r. ( Z 1 P(T., s) Et.[>., IFr.] ds - K ;~~ /' P(T., T;)) l.r.] 

Tn TN 

= lr>t1EQ[ exp (- f rs+ Asds) (z f P(Tn,s) 1Et"'[-'slFT,.]ds-
t Tn 

. TN - /(. £ ,Bi P(Tn, 11)) +I.rt] = lr>tP(t, Tn)JETn [ ( z f P(Tn, s) lEt"[AslFT,.] ds-
t=n+l Tn 

- K ;~~• p, P(T., T;)) +l.r,] (3.61) 
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where Tn is used to denote Tr,.. 
The value of the CDS underlying the credit default swaption in (3.61) is given 

by 
TN TN 

Z f P(Tn,s)JETa[-\slFrN]ds-K ~ /3iP(Tn,Ji). 
Tn i=n+l 

(3.62) 

The value (3.62) is random as seen with respect to the filtration :Ft since Yr,. 
is part of the formulas for P(Tn, s), P(Tn, Ti) and JET•[-\slFrnJ. However given 
Yr,., we can calculate (3.62) to a great degree of accuracy in the quadratic Gaus-
sian factor model. Since Yr,. is a Gaussian Ornstein Uhlenbeck process and we 
know the mean and variance-covariance matrix of Yrn under the defaultable for-
ward measure Tn(see lemma 1.4), we can use Monte Carlo simulation to calculate 
CDSop(t, Tni Tn,N, T, K, Z). In Brigo & Alfonsi {2004), it is indicated that we need 
a large number of Monte Carlo simulations because a CDS has a large variance. 
The conditional distribution of Yr,. under t n and conditional on :Ft is multivariate 
Gaussian and we know the mean and variance in closed form. Therefore if the 
dimension of the Yrn is of low order, we can calculate CDSop(t, Tm Tn,N, T, K, Z) 
much faster using multidimensional integration by directly integrating the pay-
off (3.62) times the multivariate normal distribution representing the probability 
density function of Yr,. under 1rn: 

0000 TN 

CDSop(t, Tn, Tn,N, T, K, Z) = P(t, Tn) ff ( Z f P(Tn, s) 1Et"[-\sl:Fr,.] ds 
-00-00 Tn 

~ )+ - K L.J /3i P(Tm Ti) 
i=n+l 

--1-~1 exp (-~(Yr,. - Af(O, T0 ))TV(O, T0 )-
1 (Yr0 - Af(O, To))) dYr,. 

2nlV{O, T0 )!2 2 
(3.63) 

where we have to discretize the integral 

TN f P(Tni s) JEt•[.\slFr,.] ds. (3.64) 
Tn 

The multidimensional integral (3.63) can be done efficiently by using cubature 
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techniques as shown in Cools and Haegemans (2003). 
We have indicated how we can calculate the price of a credit default swaption 

to a great degree of accuracy if we use multidimensional integration or Monte 
Carlo simulation. However this task can be computationally demanding for a . 
multifactor model where the number of factors used to model the interest rate and 
intensity is more than two. Even in the case of a two factor model it is better to 
find an analytic approximation for the price of a credit default swaption instead 
of using multidimensional integration or Monte Carlo simulation. \Ve now show 
how to approximate the price of a credit default swaption using closed formulas 
involving the numerical inversion of Fourier transforms. To derive the first analytic 
approximation, we first rewrite (3.61) as 

CDSop(t, Tni Tn,N, T, K, Z) = 

i=n+l 

(3.65) 

We now approximate the integral 

TN f P(Tn,s) JETs[A.slFrn]ds (3.66) 
Tn 

using a right Riemann sum. Hence we divide the interval [Tn, TN] into Af subin-
tervals by choosing b = TNA-;Tn and Tn+i = Tn + bj,j = 1, ... , AI to get 

N 
'5Z ~ P(Tni1J) JETi[..\r;IFrn]ds 

j=n+l 
TN _ 
~ /3i P(Tni 7i) 

(3.67) 

i=n+l 

where ii'i is used to denote if T;. Using 

(3.68) 
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and ignoring the error introduced by the discretization (3.67), we can now express 
(3.65) as 

CDSop(t, Tn, Tn,N, T, K, Z) = 

l,.>,P( t, T.)Et• [ £ ,B, P(T., T;) ('5 Z . £ wi (Tn)IET; [ >.rJrrn] - K) + l:F,.] 
i=n+l 3=n+l 

T,. N 

= lr>tEQ [exp ( - f rs+ As ds) . ~ f3i P(Tn, 7i) 
t i=n+l 

( t5Z . £ wi(Tn)EtJ [>.r; IFr,.] - K) +l:Ff.]. (3.69) 
3=n+l 

Let D(t) denote the default free savings account (see {1.8)) which is given by 

t 

D(t) =exp (J T8 ds). 
0 

In the following we consider a change of measure that would simplify the calculation 
of (3.69). First we define the defaultable present value of a basis point(DPVBP) 
by 

N 

Un,N(t) := lr>T,. ~ /3iP(t, 7i). {3.70) 
i=n+l 

Consider the measure that is absolutely continuous to Q which is defined by the 
Radon-Nikodym density: 

D(O) {3.71) 

Now using the abstract Bayes formula and (3.71) we can rewrite (3.69) as 

CDSop(t, Tm T°n,N, T, K, Z) = 

u.,N(t)Ev[ (sz jf 1 W;(T.)Et'[Ar,IFT.]- K) +,.r,]. (3.72) 
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We now show how we can calculate 

(3.73) 

Under the assumption of a multifactor quadratic Gaussian model, the interest rate 
and the intensity of default are quadratic forms in YT. We partition the vector 
YT into two disjoint parts consisting of Yf. and Y,f and for ease of exposition 
assume TT and AT are given by (3.24) and (3.25) respectively. \Ve denote by 
Mi(t, T) and Vi(t, T), i = 1, 2 the conditional mean and variance-covariance matrix 
of Y~, i = 1, 2 under the measure TT and with respect to the sigma field :Ft. Using 
lemma 1.4, we can find the mean and variance-covariance matrix of YT under 
the measure TT and conditional on Ft which are denoted by M(t, T) and V(t, T) 
respectively: 

- - - 1 V(t, T) =Pv(T - t)Qv - (T - t) (3.74) 
T 

M(t, T) =Qv-1(t, T)Tyt + 2Qv-1 (t, T)T J Pv(t, s)T a(s) ds (3.75) 
t 

where ( Qv(T), Pv(T)) T is the solution of the following system oflinear differential 
equations 

( 
iJTQv(T) ) = ( -AT 21 ) ( Qv(T) ) . 
iJTPv(T) EET A Pv(T) 

So if in particular t = Tn and T = 7j, we can find the mean and variance-
covariance matrix of Yf. under the measure Ti, 7j > Tn and with respect to the 

J - - -
sigma field :FTn which we denoted by l'v12(Tn, T;) and V 2(Tn, T;) from Af(Tn, 7j) 
and V(Tn, 7j). This shows that we can find the value of (3.73) in closed form. The 
mean and variance-covariance matrix of YTn under 1U can be calculated explicitly. 
In fact similar to (2.72) in chapter 2, using (3.71) and the abstract Bayes formula 
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we have 

(3.76) 

(3.77) 

We can calculate 
JETn [ _ P(Tn, 1i} ] 

t JETn [P(Tn, 1i)] YT; (3.78) 

by applying lemma 1.14 (see (1.118) and (1.119)) as P(Tn, 1i) is log-quadratic 
Gaussian and therefore (3.76) can be calculated in closed form. Note however as 
in (2.71) in chapter 2, we can use Girsanov's theorem to show that the dynamics 
of Yi does not correspond to a Gaussian process under the measure 1U. \Ve can get 
the mean and variance-covariance matrix of Yi under lU using the weighted mean 
and variance-covariance matrix of yt under each ti because yt is a Gaussian vector 
under each ti. To facilitate the derivation of an analytic approximation to (3.72), 
we now replace the weights wj(Tn) by their time zero values. This freezing of the 
weights has been used to derive analytic approximations in the valuation of default 
free securities (see Rebonato (1998)) and in the valuation of defaultable securities 
(see Brigo and 1\lercurio (2006)). Therefore 

N N 

Q>.(Tn) := '5Z ~ w;(O)Q>.i = 8Z ~ w;(O)JET; [>.T; IFTn] (3.79) 
j=n+l j=n+l 

is a quadratic form in YT" = (Yf,., Y:fJ. \Ve now made an additional approximation 
by replacing yt under U by a Gaussian process Yt which has mean and variance--
covariance matrLx equal to the exact mean and variance-covariance matrix of Yi 
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under lU. Therefore an approximation to the credit default swaption can be given 
by 

CDSop(t, Tn, Tn,N, T, K, Z) ~ Ci5Sop(t, Tn, Tn,N, T, K, Z) = 

Un,N(t)Eu[ (Jz ;t;., W;(O) Qp(Yr.) - K) +IF,] (3.80) 

where the Qp(YTn) denotes the quadratic form in YTn which is obtained from (3.80) 
by replacing YT" in (3.79) by Yrn· This approximation is an efficient one since we 
only have to work with the characteristic function of a single quadratic form in 
Gaussian random variables6 • Under this assumption (3.79) can be approximated 
by a quadratic form in Gaussian random variables. Since we can calculate the char-
acteristic function of quadratic forms in Gaussian random variables(see lemma B.1) 
we can now apply the Fourier transform method which is based on transforming 
the approximate price of the credit default swaption which is given by (3.80) with 
respect to the strike price(see Carr and Madan (1998),Lee (2004)). This is similar 
to what we have done in approximating the price of swaptions in chapter 2 but 
here we do not have to approximate a sum of log-quadratic Gaussian processes by 
a log-quadratic process but only freeze the weights wi(t) and approximate the non 
Gaussian dynamics of Yt under 1U by a Gaussian process with matching mean and 
variance-covariance matrix. For ease of exposition we now discuss how to calcu-
late (3.80) fort= 0. Let .Q denote a quadratic form in Gaussian random variables 
<JiU(.Q, z) denote the characteristic function of .Q under U 

(3.81) 

The payoff function associated with (3.80) is of type 

(3.82) 

For such a payoff function Lee (2004) gives a method to calculate the inverse 
transform with error bounds. First we give some definitions and notations similar 
to the ones given for pricing default free swaptions. Let & > 0 and C&,c2 (I<) denote 

6 'When discussing the numerical results later in this section, we will show that we can find the 
exact characteristic function of (3.79) under U but it turns out in addition to be computationally 
less efficient, the approximation tends to have generally more error. 
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the dampened price of the option7 with payoff G2 (x, k) 

(3.83) 

Let Ca2 ( z) denote the Fourier transform of the damped option price with respect 
to the strike price K 

(3.84) 

Then from Lee (2004) the option price can be obtained by the following Fourier . . mvers1on 

where 

oo-&i 

Cc2(K)=Ra,c2 + ! J Re[Cc2 (z)exp(-izK)]dz 
0-&i 

l-¥(0) - K~(O), & < 0 
R· G = -<I>'(o)-K.f.(o) ~ = 0 a, 2 2 , .__. 

0, &>0 

If & = 0, Lee (2004) suggests that we use 

00 

Cc2 (K) = R&,c2 + ! J ( Re[Ca2 (z) exp (-izK)] + : 2 ) dz 
0 

(3.85) 

to avoid convergence problems8 . The characteristic function of a quadratic Gaus-
sian variable exists everywhere and therefore we can choose to dampen the option 
price or not. This enables us a choice of methods to minimize the error in the nu-
merical inversion of the Fourier transform. For further details see Lee (2004). Thus 
we can calculate (3.80) in closed form up to an inversion of a Fourier transform. 

vVe now derive another approximation which uses the quadratic form given in 
(3.79) to approximate the exercise boundary of the credit default swaption. From 
the first approximation to the price of a credit default swaption which is given by 

7 \Ve mean here the price of the credit default swaption divided by the predefault value of the 
defaultable present value of a basis point. 

8 Numerical experiments show that there is still some difficulty \vhen using & = 0. 
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(3.80), we can see that the credit default swaption is exercised if 

N 

CJn,N(Tn) := 8Z ~ Wj(O)Eti[.\rilFrn] (3.86) 
j=n+l 

is greater than the exercise price K. vVe have already seen in the derivation of 
the first approximation that On,N(Tn) is a quadratic form in Tn which can be 
calculated in closed form(see the discussion after (3.80)). Ignoring the accrued 
term, the exact price of the credit default swaption is given by (3.60). If we now 
discretize the integral corresponding to the default leg using a Riemann sum as 
in (3.67), we can approximate9 the exact price of the credit default swaption(see 
(3.60)) under i'n by 

CDSop(t, Tn, Tn,N, T, K, Z) ~ 

t,.>,P( t, T.) IE t • [ J Z f: P(T., '.lj) Et; [A r;l.1'r.l-
i=n+ 1 

- K •~~/· P(r.:m) +l.r.]. (3.87) 

As (3.87) is close to the exact price of the credit default swaption, we can ap-
proximate the exact price of a credit default swaption with maturity Tn = T by 
approximating the exercise boundary through (3.86). Therefore we get a second 
approximation to the price of the credit default swaption which is given by: 

CDSop(t, Tn, Tn,N, T, K, Z) ~ Ci5S'2op(t, Tn, Tn,N, T, K, Z) 

= lr>tP(t, Tn)JETn [8z f P(Tn, 1j) ET; [AT; IFrn] IQn.N(Tn)>K-
j=n+l 

- K ·~~· /3; P(T., T;) lq.,N(T.)>K) +IF·]. (3.88) 

We have already seen that we can calculate the exact value of 

(3.89) 

9 We can assume that this error can be ignored as we can approximate the integral with high 
degree of accuracy for a value of the discretization level 6 which is close enough to zero. 
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which is a quadratic form in YTn. The price of defaultable zero coupon bond prices 
in the quadratic Gaussian model are log-quadratic Gaussian and therefore we can 
write 

where 

Hence in (3.88) the value 

N 

8Z ~ P(Tn/lJ)IQn,N(Tn)>K JETi[,\T;IFrn] 
j=n+l 

is a sum of payoffs of type 

where bo, b1 and b-i are appropriately chosen. In particular 

bo = (0, 0, 1), b1 = (1, 0, 0), b-i = (0, 1, 0), 

x = (x1,X2,X3) = (QJ(Tn),Q",(Tn),Qn,N(Tn)). 

(3.90) 

(3.91) 

(3.92) 

Since we know the characteristic function of a quadratic form in Gaussian random 
variables under Tn in closed form(see (2.23)), we can now calculate (3.91) using 
the Fourier transform method given in Lee (2004). For a payoff of type (3.92), Lee 
(2004) gives different ways of calculating the price of the corresponding option. 
The method is based on transforming the dampened option price with respect to 
the strike price K. The most efficient way of numerically inverting (3.96) is to use 
the result given in Lee (2004). For the particular case x = (x1 ,x2 ,x3 ) let us denote 
by Ca4 ( K) the option price which is normalized by the price of the defaultable zero 
coupon bond with maturity equal to the maturity of the option where the payoff is 
of type (3.92). Let Ca4 (z) denote the Fourier transform of Ca4 (K)(see Lee (2004) 
for details) 

(3.93) 

where <P(xi, x2 , x3 , w1i w 2 , w3 ) represents the joint d1aracteristic function of three 
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quadratic Gaussian random variables xi, x 2 , x3 (see (2.23)) evaluated at 

The problem of obtaining the option price through Fourier inversion is given by 
Lee (2004) for the payoff of type (3.92) and it is: 

where 

oo-&i 

Ca4(K) = Ra,c4 + ! f Re[Ca4 (z)exp(-izK)] dz 
0-&i 

(3.94) 

a<O 
a=O 
a>O 

(3.95} 
The choice of the dampening factor a is not restricted by the domain of existence of 
the characterisitc function since the characteristic function of a quadratic form in 
Gaussian random variables exists everywhere. Hence we can choose not to dampen 
the option price by choosing a = 0. However there are advantages in dampening 
the option price by different values of a depending on the strike price in order to 
minimize the error in the Fourier inversion which is needed to calculate the price 
of the option (see Lee {2004) for a detailed discussion). \Ve do not investigate the 
error differences obtained by choosing different a for the dampening factor but use 
a uniform value of a = 1 for the different range of strike prices in our numerical 
experiments to be presented later in this section. Therefore we can find the Fourier 
transform of the dampened value 

co N f exp( C.K)ET• [ J Z ;~ 
1 
P(T., T;) lq •. N(T.)>K ET; [AT; IFr.] IF,] exp (izK) dK 

-00 

(3.96) 

with respect to the strike price K in closed form and numerically invert the Fourier 
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transform using (3.94) and (3.95). The calculation of the dampened value 

oo N 1 exp(&K) IE1
" [ K ,f /• P(T., 'I!) lq,,N(T.)>K l.r,] exp ( izK) d[{ (3.97) 

involves payoffs of type 

(3.98} 

where 

\Ve have already discussed in chapter 2 in the context of the approximation of the 
price of default free swaptions how to calculate option prices involving payoffs of 
type (3.98). Therefore we refer the reader to the discussion following (2.17) in 
chapter 2. Thus we have shown how to calculate the numerical inversion of the 
Fourier transform with respect to the strike price K of (3.88) which is formally 
given by: 

-Ci5S2op(t, Tm Tn,N, T, K, Z)(z} = 
00 f exp (izK} exp(oK} Ci5S2op(t, Tn, Tn,N, T, K, Z) dK. (3.99) 

-00 

The approximation of the price of the credit default swaption given by (3.88) is 
given by the numerical Fourier inversion and removal of the dampening10 through 
. the following formula: 

Ci5S2op(t, Tn, Tn,N, T, K, Z) = 
oo-oi f Re[G§2op(t, Tn, Tn,N, T, K, Z)(z) exp(-iKz)] dz. (3.100) 
o-oi 

We have discussed above how we can calculate (3.100} through the numerical 
inversion of several Fourier transforms and therefore we can now claim that we 
can calculate (3.88) in closed form 11 • Note however that we have to invert several 

1o For a detailed discussion see Lee (2004) 
11 Ily closed form, we mean up to a numerical inversion of the closed form Fourier transform 
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Fourier transforms depending on the discretization level 8 of the integral given 
in (3.87) and on the coverage /3i for the premium leg in (3.97). Therefore this 
method takes more time to compute the approximate price of a credit default 
swaption. For numerical experiments we took a discretization level of 8 = 0.0625 
in (3.67) which requires a larger number of numerical Fourier inversions. \Ve can 
take 8 = 0.25 to obtain a price that differs from that of a finer discretization by a 
couple of basis points and therefore the computation can be speeded up. Moreover 
we believe that instead of using quadrature to do the numerical inversion of the 
Fourier transforms, we can use the discrete Fourier transform or the fast Fourier 
transform to obtain significant speed up of the inversion. Moreover as the number 
of factors increases to more than 2, the dimension of the multidimensional integral 
in (3.63) also increases by the same amount and cubature methods are slower while 
the approximation (3.88) can still be implemented efficiently through the numerical 
Fourier inversion. From numerical experiments given later in this section, we can 
see that the implementation of (3.88) through the Fourier technique discussed is 
much more accurate than (3.80) especially when the maturity of the credit default 
swaption is far from the present date t = 0. 

vVe now give a third approximation for the exact price of a credit default 
swaption as given in (3.60) by using the formulation given in (3.80). Instead of 
making the assumption that we can approximate (3.79) by a quadratic form in a 
Gaussian random vector such that the Gaussian random vector has a mean and 
variance-covariance matrix equal to the exact mean and variance-covariance matrix 
of Yrn under llJ, we calculate 

CDSop(t, Tni Tn,N, T, K, Z) = 

u.,N(t) Eu [ (sz ;i;_ 
1 

W;(O)JE1';[.>.TJ1"r.l - K) +IJ'•J. (3.101) 

using a Gram Charlier series (see the discussion given in section 2.4 of chapter 2). 
The Gram Charlier series is used to approximate the density of (3.79). Therefore 
we calculate the exact higher moments of (3.79) as in (3.76) through a weighted 

of the option price which can be done efficiently. 
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sum as follows 

where we can calculate 

(3.103) 

by applying lemma 1.14 (see (1.118) and (1.119)) and the discussion given in 
Mathai and Provost (1992) regarding the efficient calculation of higher moments 
of quadratic forms in Gaussian random variables. Note that (3.103) corresponds 
to finding the higher moments of (3. 79) under ti which is the defaultable for-
ward measure12 for maturity '.li(see the proof of lemma 1.14 for another way to 
show (3.79) is a quadratic form in Gaussian random variables under the change of 
measure given by the log-quadratic Gaussian process P(Tn, T;) in (3.103)). Even 
though (3. 79) is not a quadratic form under lIJ, it is a quadratic form under each 
forward measure ,:t for i = n + 1, ... , N. 

We now present numerical results for the different approximations given in this 
section. vVe assume the default free discount and CDS data is as given in Tables 3.1 
and 3.2. Since we would like to test the performance of the approximations for the 
price of credit default swaptions with maturities up to five years with an underlying 
CDS of maturity that can be fifteen years, we extended the discount data given 
by Table 3.1 through extrapolation. We give this additional default free discount 
data in Table 3.4. \Ve extracted the probability of survival under the default 
free forward measure 'JI' which we denoted by G(O, T) as described in the previous 
section (see Figure 3.4). The survival probabilities have also to be extended by 
extrapolation for years 10 to 15 since we extracted the survival probability based 

12 We use ti to denote 'fr; to lighten the notation. 
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T P(O, T) 
11 0.451034 
12 0.410806 
13 0.362682 
14 0.302714 
15 0.226954 

Tab. 3.4: Zero Rates for years 10 to 15 

DefProb 
1 

0.9 

0.8 

0.7 

Probabilil)of Survival 

0·6~------------i... Maturity 
2 4 6 8 10 12 14 

Fig. 3.6: Extracted Survival Probability with Extrapolation for years 10 to 15 

126 

on ten years default free discount data and CDS quotes of maximum maturity 
ten years. We give the figure for the extrapolated G(O, T) in Figure 3.6. As in 
the previous section we assume a two factor quadratic Gaussian model(see (3.55) 
and use the parameters given (3.56). There is no particular reason we use these 
parameters, our objective is to test the performance of the approximations for 
these parameters. The exact value of the price of the credit default swaption is 
calculated based on the double integral given in (3.63). In tables (3.5) to (3.13), 
the maturities for the credit default swaption are given in the rows and range from 
T = 1 to T = 5 years. The tenor of the CDS underlying the credit default swaption 
range from 1 to 10 years and the price of the corresponding credit default swaption 
are given along the columns. For each maturity tenor pair, we give next to the 
exact value the value obtained through the approximation (3.80) in parentheses 
and below it the relative error for the approximation expressed as a percentage. 
For each of the maturity tenor pair, we consider three strike prices. The first strike 
price is the at the money strike price which is the strike price that would make the 
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value of a forward starting CDS equal to zero and is obtained by solving for Kin 

~ N Tj 

EQ[ exp ( - [ r, +A, ds) (6z I: JE'l[ exp ( - Jr,+>., ds )>.r,IFr. ]-
T,.. 

- K t..B• P(Tn. T;))] = O. (3.104) 

Therefore the at the money strike price for the credit default swaption of maturity 
Tn with an underlying CDS of tenor equal to TN - Tn years is given by 

(3.105) 

We then consider an in the money strike which is taken to be 0.85 x KDATM and 
an out of the money strike which is taken to be 1.15 x KvATM· 

Tables 3.5, 3.6 and 3.7 give the results for the approximation of the price of 
credit default swaptions based on (3.80). As we can see from these results the 
approximation has an error of a few basis points when the maturity of the credit 
default swaption is one year. For the five year maturity credit default swaption, 
we have an error that increases with the tenor of the underlying CDS such that 
for a CDS of tenor length equal to 10 years, we have a large error. There are two 
assumptions that could be the cause for this error. The first possible cause for the 
error is that we approximate yt by a Gaussian process with the same mean and 
variance-covariance matrix when deriving the approximation (3.80). The second 
possible reason is that we replace the weights wi(t) by their time zero values. The 
first error can be eliminated by using the exact characteristic function of (3.79) as 
it can be calculated as the weighted sum of the characteristic functions of Gaussian 
quadratic forms similar to what we did in (3.102). Numerical tests using the exact 
characteristic function of (3. 79) had in general more error in the approximate prices 
of the credit default swaptions obtained in comparison to the first approximation. 
We therefore can conclude that the error is mainly due to the fact that we replaced 
the weights wi(Tn) in (3.79) by their time zero values. It appears replacing yt 
which has a non-Gaussian dynamics under 1IJ by a Gaussian process with the 
same mean and variance-covariance matrix has the effect of canceling some part of 
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the error introduced by the freezing of the weights wi(t). This observation is also 
supported by the results obtained for the approximation based on a Gram Charlier 
series which does not replace Yt by a Gaussian process but calculates the exact 
moments of (3.79) using (3.102). Since the only assumption when calculating the 
higher moments is that the weights wi(t) are frozen, the source of error can come 
from this assumption or from the lack of accuracy by the Gram Charlier series in 
approximating the probability density of (3.79). The more likely source of error 
is the freezing of the weights since from the numerical experiments conducted for 
the approximation of swaption prices through the Gram Charlier series method, 
we found out that the Gram Charlier series method approximates the swaption 
price well if a limited number of moments are used. As the results of Tables 3.11, 
3.12 and 3.13 show the Gram Charlier series approach, where the density of (3. 79) 
under 1IJ is approximated through an orthogonal series expansion, has less error 
compared to the first approximation but has similarly large errors for maturities of 
the credit default swaption equal to five years when the CDS tenor is equal to 10 
years. This shows that freezing of the weights w(t) by replacing them by their time 
zero values leads to large errors for the prices of credit default swaptions when the 
underlying CDS tenors are more than five years. This observation is also supported 
by the results of Tables 3.8, 3.9 and 3.10 which are based on the approximation 
given by (3.88). The results for this approximation are very accurate as we only 
approximate the exercise region of credit default swaption. However the errors for 
the longer maturity credit default swaptions are relatively larger. 

Mat. Tenor 
T 1 3 5 10 
1 17.50(16.81) 51.23(49.29) 95.3(94.72) 152.73(155.93) 

(3.92%) (3.78%) (0.61%) {-2.13) 
3 27.65(25.85) 107.97(102.03) 156.2(146.10) 254.79(268.09) 

(6.51 %) (5.50%) (6.46%) (-5.22%) 
5 45.77(41.07) 110.5(99.40) 170.9.44(157.92) 262.82(365.60) 

(10.26%) (10.04%) (7.59%) (-39.11%) 

Tab. 3.5: Relative Error of Approximation given by (3.80) for I<= I<vATM 
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Mat. Tenor 
T 1 3 5 10 
1 21.18(20.49) 64.09(62.17) 126.23(126.91) 217.72(220.75) 

(3.25%) (2.983) {-0.54%) (-1.39%) 
3 31.30(29.5) 127.98(122.04) 185.5( 175.44) 321.50(335.02) 

(5.76%) (4.643) (5.42%) (-4.20%) 
5 51.94(47.24) 125.27(114.15) 195.84(182.99) 351.45( 455.58) 

(9.05%) (8.883) (6.573) (-29.633) 

Tab. 3.6: Relative Error of Approximation given by (3.80) for K = 0.85 x Kv1TM 

Mat. Tenor 
T 1 3 5 10 
1 14.4(13. 72) 40.69(38.79) 70.25( 69.65) 104.99(107.87) 

(4.68%) (4.66%) (0.86%) (-2.74%) 
3 24.44(22.65) 90.94(85.06) 131.38(121.42) 201.22(213.58) 

(7.31%) (6.46%) (7.58%) (-6.14%) 
5 40.34(35.69) 97.59(86.58) 149.24(136.32) 196.07(292.21) 

(11.55%) (11.28%) (8.66%) (-49.033) 

Tab. 3. 7: Relative Error of Approximation given by (3.80) for K = 1.15 x KvorM 

Mat. Tenor 
T 1 3 5 10 
1 17.50(17.47) 51.23(51.39) 95.3(95.27) 152.73(152.59) 

(0.18%) (-0.32%) (0.03%) (0.09%) 
3 27.65(27.71) 107.97(108.0) 156.2(155.99) 254.79(254.69) 

(-0.23) (-0.03%) (0.14%) (0.04%) 
5 45.77(45.81) 110.5(110.67) 170.9.44( 171.46) 262.82(260.79) 

(-0.08%) (-0.15%) (-0.33%) (0.77%) 

Tab. 3.8: Relative Error of Approximation given by (3.88) for K = KvATM 
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Mat. Tenor 
T 1 3 5 10 
1 21.18(21.19) 64.09(64.09) 126.23(127.52) 217. 72(217.46) 

(-0.083) (-0.003) (-1.033) (0.123) 
3 31.30(31.26) 127.98(127.85) 185.5(185.35) 321.50(321.40) 

(0.133) (0.103) (0.083) (0.033) 
5 51.94(52.06) 125.27(125.05) 195.84(195.44) 351.45(349.46) 

(-0.233) (0.173) (0.203) (0.573) 

Tab. 3.9: Relative Error of Approximation given by (3.88) for K = 0.85 x Kn1TM 

Mat. Tenor 
T 1 3 5 10 
1 14.4(14.5) 40.69(40.65) 70.25(70.29) 104.99(104.83) 

(0.723) (0.093) (-0.053) (0.153) 
3 24.44(24.44) 90.94(90.81) 131.38(131.94) 201.22(201.1) 

(-0,013) (-0.143) (0.433) (0.063) 
5 40.34(40.51) 97.59(97.57) 149.24(149.4) 196.07(192.59) 

(-0.423) (0.023) (-0.113) (1.783) 

Tab. 3.10: Relative Error of Approximation given by (3.88) for K = 1.15 x KnoTM 

Mat. Tenor 
T 1 3 5 10 
1 17.50(17.35) 51.23(50.89) 95.3(96.95) 152.73(160.32) 

(0.843) (0.663) (-1.723) (-4.963) 
3 27.65(28.2) 107.97(107.43) 156.2(155.83) 254.79(286.88) 

(-1.983) (0.53) (0.243) (-12.593) 
5 45.77( 44.12) 110.5(109.49) 170.9.44(174. 76) 262.82(397.54) 

(3.613) (0.923) (-2.26%) (-51.263) 

Tab. 3.11: Relative Error of Approximation based on a Gram Charlier series{based on 3 
moments) for K = KnATM 
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Mat. Tenor 
T 1 3 5 10 
1 21.18(21.07) 64.09( 63.95) 126.23(129.46) 217.72(225.84) 

(0.47%) (0.21%) (-2.563) (-3.723) 
3 31.30(31.96) 127.98(127.86) 185.5(185.87) 321.50(355.26) 

(-2.093) (0.09%) (-0.203) (-10.53) 
5 51.94(50.44) 125.27(124.64) 195.84(200.52) 351.45( 489. 76) 

(2.893) (0.50%) (-2.39%) (-39.35%) 

Tab. 3.12: Relative Error of Approximation based on a Gram Charlier series(based on 3 
moments)for K = 0.85 x KDITM 

Mat. Tenor 
T 1 3 5 10 
1 14.4(14.26) 40.69(40.40) 70.25(71.95) 104.99(112.43) 

(0.93%) (0.69%) (-2.423) (-7.083) 
3 24.44(24.97) 90.94(90.42) 131.38(131.06) 201.22(232.28) 

(-2.193) (0.57%) (0.24%) (-15.433) 
5 40.34(38.70) 97.59(96.60) 149.24(153.05) 196.07(323.62) 

(4.08%) (1.02%) (-2.55%) (-65.053) 

Tab. 3.13: Relative Error of Approximation based on a Gram Charlier series(based on 3 
moments) for K = 1.15 x KDoTM 



4. A TWO-COUNTRY REDUCED FORM MODEL 

There is some work in the pricing of default free bond options in a two country 
setting or more generally in an international economy. The treatment of options 
under an international setting was first formalized in Amin and Jarrow (1991) and 
Amin and Jarrow (1992). Since then, there has been some work on the valua-
tion of options whose underlying is a foreign default free bond (see for example 
Andreasen (1995), Bensaid and Bottazzi (2001), Cherif and El Karoui (1993), Fra-
chot (1995), Frey and Sommer (1996), Jamshidian (1993) and Mellios and Poncet 
(2001)). \Vhile there is also a lot of literature that considers the pricing of credit 
default swaps in a single economy(see for example Brigo and Alfonsi (2004) and 
Schonbucher (2000)), the literature on the valuation of a quanto credit default 
swap or more generally credit sensitive securities involving currency risk is rare. 
Using hedging arguments Vaillant (2001) considers the valuation of a foreign de-
faultable bond. A numeraire independent framework for the valuation of credit 
derivatives is provided in Jamshidian (2004) and subsequently used to value credit 
default swaptions. The most relevant work on default in a two country setting1 has 
been Levy and Levin (2002), Finkelstein (2000), Anderson (2003) and Ehlers and 
Schonbucher (2006). In this chapter we consider a two country model of default 
which accounts for currency risk. In the first section, we consider a default model 
involving a single corporation which has issued defaultable bonds in both the do-
mestic and foreign country. Assuming cross default2 

1 we show how the domestic 
forward credit spread and the foreign credit spread are related with each other. 
\Ve also derive a quanto adjustment formula that can be used to determine the 
probability of default of the corporation in the foreign economy from the proba-
bility of default of the corporation in the domestic economy or vice versa. This 
generalizes the quanto adjustment formula given in Finkelstein (2000) and Vail-

1 I would like to thank Dr. Leif Anderson for the private communication regarding quanto 
adjustments to probabilities of default. 

2 Cross default means here that the default of the corporation in one economy triggers its 
default in the other economy. 
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lant (2001) for the case of an intensity of default that is of the Gaussian type. In 
subsequent sections we assume no cross default and give an extension of an HJM 
drift condition for the forward credit spread in a contagion model of default. We 
also discuss how we can tractably value a quanto default swap under a contagion 
model of default assuming a quadratic Gaussian factor model. 

4.1 The Framework 

We assume that we have a filtered probability space (fi, :F, JP><') where JP><' is the 
risk-neutral measure for the domestic economy. Thus JP><' is a measure under which 
any domestic tradeable security which does not pay coupons or dividends follows 
an :F-martingale process. We assume the filtration :F = (Ft)co~t~T*) is generated 
by n independent Brownian motions Wtd = iv;~, i = 1, ... , n and satisfies the usual 
conditions. The time horizon is assumed to be finite so that T* > 0 is some 
finite number. We now assume that there is a corporate that has issued debt in 
the form of zero coupon defaultable bonds in the domestic and foreign economy. 
Let T denote the default time of the corporate defined on a probability space 
(0, Q, Qd) where Qd denotes the domestic risk neutral measure for the extended 
domestic market which now includes defaultable securities. Let Ht = I,.~t and 
1i = (1lt)o~t~T* be the filtration generated by H i.e. Ht = a(Hu ; u ~ t) which is 
completed by the null sets of (Qd, Q). We assume that gt= Ht v :Ft. For a specific 
construction of filtered probability space satisfying this property see chapter 13, 
section 13.1.5 of Bielecki and Rutkowski (2002). \Ve denote by pd(t, T) the price 
of a domestic default free zero coupon bond and by Pf(t, T) the price of a foreign 
default free zero coupon bond. \Ve denote by I,.>tf>d(t, T) the price of a domestic 
defaultable zero coupon bond and by I,.>tpl (t, T) the price of a foreign defaultable 
zero coupon bond. The values P(t, T) are referred to as the predefault values of 
the ith economy defaultable zero coupon bond where i = d (!)corresponds to the 
domestic (foreign) economy. \Ve define the domestic continuously compounded 
default free instantaneous forward rates Jd(t, T) by 

(4.1) 
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Similarly we define the foreign continuously compounded default free instantaneous 
forward rates Jl(t, T) by 

d 
Jf(t,T) := - dTiogePf(t,T). (4.2) 

The domestic continuously compounded instantaneous defaultable forward rates 
fd(t, T) are defined by 

f-d( ) ·- d -d t, T .- - dT loge P (t, T), (4.3) 

while the foreign continuously compounded instantaneous defaultable forward rates 
Jl(t, T) are defined by 

-1 ·- d -1 f (t, T) .- - dT Io& P (t, T). (4.4) 

Given the default free and defaultable forward rates we define the domestic con-
tinuously compounded instantaneous forward credit spread sd(t, T) by 

(4.5) 

and the foreign continuously compounded instantaneous forward credit spread 
sf (t, T) by 

sf (t, T) := ff (t, T) - f 1 (t, T). (4.6) 

The Qt-intensity of Ht in the ith economy is denoted by .A! and has the property 
that 

(4.7) 

is a Q-martingale under Qi for i = d (f) corresponding to the domestic (foreign) 
economy. Again we refer the reader to p.394 of Bielecki and Rutkowski (2002) for a 
specific construction of a default time T in an HJM model of default such that ( 4. 7) 
holds for i = d i.e. the domestic economy. An alternative construction of T such 
that ( 4. 7) is true can be based on a Cox process approach (see chapter 8, section 
8.6.1 of Bielecki and Rutkowski (2002)). \Ve now assume that :Ft martingales 
are also gt martingales. This is known as the martingale invariance property or 
the H hypothesis (see chapters 6 and 8 of Bielecki and Rutkowski (2002)). vVe 
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also assume that the intensity At is an F- measurable process. Thus the (F, Qi) 
martingale hazard process in the ith economy (see Chapter 6,6.1 of Bielecki and 
Rutkowski {2002)) which is given by 

t 

A!= f >.~du {4.8) 
0 

is absolutely continuous. The F-hazard process of T under Qi which is denoted by 
rt satisfies the following equality 

(4.9) 

and is useful in calculating expectations involving Ht. Thus it is important to 
identify this process whenever possible. Using the H hypothesis and the fact that 
the filtration F supports only continuous martingales, we have by Proposition 6.2.2 
of Bielecki and Rutkowski (2002) that the hazard process is equal to the martingale 
hazard process i.e r = A. For brevity of notation we \\<ill use the following: 

for any g measurable random variable Y and M in JEM is the measure under which 
we are calculating the expectation. Using the fact that r =A we have the following 
valuation formula (see Bielecki and Rutkowski (2002), p. 230). 

Proposition 4.1. Let Y be an F measurable random variable, then we have: 

JEQ' [exp ( -f.\ •du )),>T ylg,] - ),>,JEQ' [exp ( -r Tu + ,\,.du) Yl.rj l 
(4.10) 

Thus calculations involving lr>T can be reduced to one involving 

Assume that the foreign exchange rate St which is the value of one unit of foreign 
currency in terms of the domestic currency is an Ft-measurable continuous process 
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which solves the following SDE 

dSt = St(rf - r{) dt + af dWl (4.11) 

where af is bounded and adapted to the filtration Ft,. In our discussions in 
this chapter we assume that we are given the domestic filtered probability space 
(0, F, 1P'1). We obtain the foreign filtered probability space (0, F, J?f) using a 
change of measure technique. We define the foreign risk neutral measure Qf by 

(4.12) 

Applying Proposition 5.3.1 of Bielecki and Rutkowski (2002) we get 

t 

wt = ivl - fa! du (4.13) 

I 0 

is a standard Brownian motion under the foreign risk neutral measure Qf and 

(4.14) 

is a gt-martingale under Qf. But we also have by the property of the intensity>..{: 

(4.15) 

is a gt-martingale under Qf. Now by the uniqueness of the predictable versions of 
the g-compensator, we must have >.{ = >..1 and thus we drop the exponent3 and 
write simply At· 

Definition 4.2. The forward exchange rate which is denoted by X(t, T) is the 
forward price in domestic currency of one unit off oreign currency in a forward 
contract with maturity T which is initiated at t·ime t. Using a replication argument 
one can show that X(t, T) is given by the following formula {see Afusiela and 

3 Note here we have a single default time r and hence we are assuming that default in one 
economy implies default in the other economy. 
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Rutkowski {2005} or SchlOgl {2002}}: 

X(t T) = St pl(t, T) 
' Pd(t, T) . (4.16) 

The change of measure between the domestic forward measure ']['d and the 
foreign forward measure ']['I (see Schlogl (2002)) is given by 

<llfl I - X(t, T) 
d1fd gt X(O, Tf (4.17) 

Thus given a g measurable random variable Y, we have by the Bayes formula 

(4.18) 

Let fi denote the defaultable forward measure for the ith economy (see Schonbucher 
(2000) and Bielecki and Rutkowski (2002), p. 471). 

Definition 4.3. The defaultable forward measure 1I'i is given by the following 
Radon-Nikodym density 

afi I P(O, T)f>i(T, T) 
<lJfi gT* = lr>T pi(T, T)pi(O, T). (4.19) 

Definition 4.4. The defaultable forward exchange rate which is denoted by X(t, T) 
is the forward price in domestic currency of one unit of foreign currency in a 
defaultable forward contract with maturity T which is initiated at time t. Using a 
replication argument involving only defaultable bonds, one can show that X(t, T) 
is given ·by the following formula: 

-1 v( T) ·= StP (t, T) .. /\. t, . d( ) P t,T 
(4.20) 

Using {4.19) and (4.17) we can show that the change of measure between the 
domestic and foreign defaultable forward measures is given by the following Radon-
Nikodym density 
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We first state a result on the dynamics of si(t, T) which is similar to the drift 
condition for default free forward rates (see Heath et al. (1992)). Assume that the 
dynamics of the forward credit spread si(t, T) under Qi for i = d, f is given by the 
following SDE: 

dsi(t, T) = a!(t, T) dt + a!(t, T) dl-V/. (4.22) 

The following proposition can be found in Bielecki and Rutkowski (2002) (see 
Proposition 13.1.1) and Schonbucher (2000). 

Proposition 4.5. Under the risk neutral measure for the ith economy, the drift 
term of the forward credit spread si(t, T) in the SDE (4.22) satisfies the following 
equality: 

a!(t, T) = a!(t, T)ai•(t, T) + (a!(t, T) + ci(t, T))a!*(t, T) (4.23) 

where ai(t, T) denotes the volatility of Ji(t, T), a!(t, T) denotes the volatility 
of si(t, T), 

We shall refer to the drift condition for si ( t, T) given in ( 4.23) as the HJl\11 condition 
when it is clear from the context that we are referring to the forward credit spread. 
For computational tractability or empirical work, it is sometimes convenient to 
have an HJM model of default where the default free forward rates and forward 
credit spreads satisfy the default free HJlVf drift condition and the HJM condition 
( 4.23) respectively under the corresponding risk neutral measure of the economy to 
which the rates belong to. However we will see in the following that we are not free 
to specify the different forward rates and the foreign exchange rate independently 
from each other. \Ve now consider the relationship between the forward credit 
spreads sd(t, T) and sf(t, T) for the special case sd(t, t) = >-..t and sf(t, t) = >..{ 
to show the link between the volatilities. To simplify the discussion, we assume 
that the short term interest rates rf and r{ are independent of At- Under this 
assumption we have 

(4.24) 

Under the assumption of independence between the default free forward rates 
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Ji(t, T) and the forward credit spreads si(t, T), the HJM condition given by (4.23) 
simplifies to 

T 

a!(t, T) = cr!(t, T) f a!(t, u) du. 
t 

Therefore assuming independence ( 4.22) is given by 

T 

dsi(t, T) = a!(t, T) f a!(t, u) du+ a!(t, T) dW/ 
t 

(4.25) 

for i = d (f) corresponding to the domestic (foreign) economy. Under the measure 
Qi we have 

(4.26) 

for i = d, f. Now using dWtd = dWf + a8 (t) dt we get from (4.26) for i = d the 
·following 

t 

>.t = sd(O, t)+ f a:(u, t)o-8 (u) du+ Lt a:(u, t)a;d(u, t) du+ s: a:(u, t) cnv,t. (4.27) 
0 

Under the assumption that the foreign exchange rate St is a diffusion we have 
At = >.1 = >.{ (see equation (5.39) of Bielecki and Rutkowski (2002)). Therefore we 
can equate ( 4.27) to the equation we get from ( 4.26) for i = f to get the following 
equality 

sd(O,t) +it a:(u,t)a8 (u)du+ it a:(u,t)a;d(u,t)du+ Lt u:(u,t)dvV! 

= sf(O,t) +it a{(u,t)a;'(u,t}du+ S: a{(u,t}dlV.f. (4.28) 

Now we can collect the terms involving the Brownian motion on one side of the 
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equation to get 

r t 
sd(O,t)-s1(0,t)+ Jo (a:(u,t}a;d(u,t)-a{(u,t)a;'(u,t))du+ l a:(u,t)a5 (u)du 

=Lt (a{(u, t) - a!(u, t)) dW!. (4.29) 

Now the on the left side of the above equation we have predictable terms while the 
right hand side is a martingale. The only predictable martingales are constants. 
As the martingale on the right hand side of (4.29) has value zero at time t = 0, 
the constant in question must be equal to zero. This implies that the quadratic 
variation of the term on the right hand side of the equality in ( 4.29) is zero: 

Lt (a{ (u, t) - a:(u, t))2 du= 0. 

This in turn implies that 
a{(u, t) = a:(u, t). 

Therefore ( 4.29) can be simplified to the following condition: 

(4.30) 

Hence we see that volatilities for the instantaneous forward rate spreads si(t, T) in 
the domestic and foreign market and the exchange rate volatility a 5 (t) cannot be 
chosen independently from each other. 

In the following discussion we assume that we have a zero rate of recovery. Let 
the probability of survival of the obligor in the ith market under 1fi be defined by 

T 

(;i(t, T) := JEf [exp ( - f ,\~du)] 
t 

= ~(:,T)E?' [exp ( - Jr~+ Au du)] = ~i!:~~ · (4.31) 
t 

For most corporations who are operating in both the domestic and foreign eco4omies, 
it is usually the case that liquid quotes of CDS rates are not available in both 
economies. Hence if we extract the default probabilities in the economy with the 
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more liquid quotes, it is useful to know how to modify these default probabilities 
in order to find the default probabilities in the other economy. Such an adjust-
ment factor is known as a quanto adjustment. In the context of a Gaussian factor 
model, these adjustments can be derived in analytically closed form (see Anderson 
(2003), Vaillant (2001) and Finkelstein (2000)). We assume without loss of gen-
erality that the domestic economy has CDS quotes that are liquid. Hence using 
the method described in Chapter 3, we can extract the term structure of default 
probabilities {;d(t, T) in a model independent way. Hence we are looking for a 
quanto adjustment of {;d(t, T) which would give us {;! (t, T). 

Theorem 4.6. Assume we can calculate or approximate the following covariances: 

1. Covr(lr>rSr, .:X.r] which represents the covariance4 between the value of a 
defaultable foreign zero coupon bond at time T measured in domestic currency 
i.e. lr>TST and the intensity of default AT . 

2. covr [exp(-AT ), r}] which represents covariance between the F-survival pro-
cess of T 

Then 

Gr:= Qd[T > TIFr] = exp(-AT) (4.32) 

and the domestic( foreign) short term interest rate under the domestic{foreign) 
forward measure for i = d( i = f). 

1 
Gl(t,T) 

is the exact solution of the following Bernoulli ODE: 

4 Note that the covariance is calculated under the domestic defaultable forward measure which 
is denoted by 'fd. 
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Proof. First note that using (4.19) we have for i = d, f 

From 

and 

Er [ri ] ~ ET' [ f>i (T, T) i ] t T P'(t,T) t lr>T .Pi(T T) TT 
lr>t pi(t,T) ' 

_ 1 T' [ P(T, T)] T' / 
- -. J>i(t,T) Et lr>T pi(T T) Et [rT] 

.a.r>t P'(t,T) ' 
pi(t, T) r [ P(T, T) i] 

+ lr>t.Pi(t, T) Govt lr>T .Pi(T, T), Tr 

-Ji( T) pi(t, T) C T' [ i] 
- t, + lr>t.Pi(t, T) ovt 1r>T1 'T . 

T 

Ef[lr>r] =~>tEf [exp ( - f Au du)] 
t 

we can get 

Using (4.37), we can write (4.34) as 

T 

fi [ i ] i ( ) pi ( t' T) c T' [ ( I ) i ] lEt 'r = f t, T + .Pi(t, T) ovt exp - Au du , Tr . 
t 
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(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 
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The expectation of At under']['! can be calculated using (4.21) as follows 

lEr[Ar] = lr>t;(t, T)JEt[lr>TX(T, T)AT] 

= JEt[AT] + lr>t;(t, T) Govr[lr>TX(T, T), AT] 

lEi'd[ d l td[ d] 1 i'd -
= t rT +AT - JEt rT + 1,.>tX(t, T) Govt [lr>TX(T, T), AT] 

i d( ) d( ) 'fd [ d] 1 '£d [ - ] = t, T + s t, T - JE.t rT + X( T) Govt lr>TX(T, T), AT 
1,.>t t, 

= Jd(t, T) + sd(t, T) - JEt[r~]+ 
T 

X(:,T)Govrd[ exp ( - I A1'du)x(T,T),AT] (4.39) 
t 

where the equality 

T 

Govi[lr>TX(T,T),>.T] =lr>tGovr[ exp ( - I A1'du)x(T,T),AT] 
t 

can be obtained using the arguments used to show (4.37). Using {4.38) for i = d, 
( 4.39) can be simplified to 

tf d ) pd(t, T) yd [ ( IT ) d] lEt [>.r] = s (t, T - pd(t, T) Govt exp - Au du , rT + 
t 

T 

+ X(~T)Govi[ exp ( - I Audu)x(T,T),>..Tl {4.40) 
t 

Another way of calculating JE.t1[>.T] is to use the following equation5 : 

Therefore 
{4.41) 

5 This equation can be shown to be true using similar arguments that were used to obtain 
(1.50) in Musiela and Rutkowski (2005). 
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Now using (4.38) for i = f, (4.41) can be written as 

T 

ti[ ] f( ) pf(t,T) Tl[ ( f ) '] lEt AT = s t,T - Pf(t,T)Covt exp - Au du ,rr . 
t 

Using the equality X(T, T) = Sr and equating (4.42) to (4.40), we get 

T 

f pf (t, T) Tl [ ( f ) f] s (t, T) - Pf(t, T) Govt exp - Au du , rT 
t 

T 

d( ) pd(t, T) ~ [ ( f ) d] = s t,T - pd(t,T)Covt exp - Au du ,rT + 
t 

From (4.2), (4.4) and (4.6), we get 

f _ d (Pf(t,T)) 
s (t, T) - dT loge Pf(t, T) 

=Gf( T)_!:__(P'(t,T)) 
t, dT Pl(t, T) 

=Gf(t, T) d~ (Gf(~, T)) 

Substituting (4.44) in (4.43) and using (4.31), we now have 
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(4.42) 

(4.44) 

T 
1 Covi [exp (- f Au du) ST, A.r]. ( 4.45) X(t, T) 

t 
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Dividing (4.45) by {;l(t, T), we get 

; (GI(!, T))- covr [exp ( -I A.du),rf] GI(:, T)' 
t 

~ sd(t, T) (Gt(!, T) )- Gd(!, T) Gov;"' [exp ( -J A.du), r~] (Gt(!, T))+ 
t 

T 

+ Gf(~,T)X(:,T)covr[ exp ( - J .-\udu)sr,-Xr]. (4.46) 
t 

Using (4.20) and (4.16), we get 

1 1 1 -d 1 
Gl(t, T) X(t, T) - Gl(t, T)2G (t, T) X(t, Tf (4.47) 

Substituting (4.47) in (4.46) and using the definition for At gives the result of the 
theorem. 0 

Theorem 4.6 provides us a method of getting the probability of survival {;I ( t, T) 
from the extracted survival probability given by (;d(t, T) and the forward exchange 
rate provided we can get the covariances given by the theorem. Therefore we can 
interpret the covariances as the quanto adjustments. 

We now give another method for calculating a quanto adjustment formula which 
can be used to calculate the survival probability of the obliger in the foreign market. 
Let us assume that we have a model where the default free short term rates, the 
foreign exchange rate and the intensity of default are :Ft measurable i.e. continuous 
stochastic processes. Using the fact that the price of securities discounted by the 
savings account are martingales under Qi, it follows that the dynamics of .P(t, T) 
is given by 

where r/(t, T) denotes the instantaneous volatility of Pi(t, T). Similarly the price 
of defaultable securities discounted by the defaultable savings account: 
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is a martingale under Qi so that we have 

dPi(t, T) = (r! + >-t) dt + if(t, T) dWf 

where if(t, T) denote the instantaneous volatility of P(t, T). Let < F > denote 
the quadratic variation process of a stochastic process F then the Doleans-Dade 
exponential of Fis denoted by Et(F) and defined by 

Et(F) =exp (Ft - ~ < F >t). 
Theorem 4. 7. The following quanto adjustment of {Jd(t, T): 

T 

JEGd [exp ( f a;(u, T)aM(u, T) du) IFt] (4.48) 
t 

can be used to obtain Qf(t, T) i.e. 

T 

(Jf (t, T) = JEGd [exp ( J a;(u, T)aM(u, T) du) IFt]ad(t, T) 
t 

where 
a;(u, T) = ft(u, T) - r/(u, T) 

and aM(t, T) is the volatility of the forward exchange rate and (";d is a measure 'IJJi,th 
the following Radon-Nikodym density with respect to the foreign foruiard measure 
']['I 

~;I =Et (f a;(u, T) dWJ
1
). 

gT* 0 

(4.49) 

Proof Since r/(t, T) is the volatility of P(t, T) and if (t, T) is the volatility of 
pi(t, T), we can use Ito's formula to show that the volatility of {;i(t, T) which is 
denoted by a;(t, T) satisfies the following equality: 

a;(t, T) = ft(t, T) - r/(t, T). (4.50) 

We now consider 

(4.51) 
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which is shown to be a martingale under 'Jri by the following argument. Let s ~ t 
then using the property of expectations, we have 

T 

JET' [N~IFt] =JET [JET [exp ( -f Au du) IF8 ] I.rt] 
0 

= E" [exp ( -J ~.du )l:F,] = N;. 
0 

We can express the martingale Nf by 

t 

Nt =exp ( f Au du) CJi(t, T). 
0 

Now using Girsanov's theorem 

t 

wt:= tVti _ f r/(u,T)du 
0 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

is a standard Brownian motion under the 1fi measure. Hence using ( 4.50) the 
following can be shown: 

' 

(4.56) 

The solution to ( 4.56) is the Doleans-Dade exponential which is given for 

by 

Therefore we have 
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We can now show the relationship between 

by using the above and (4.17) which gives us that 

durTI yd ""t =dWt -aM(t,T)dt 

is a standard Brownian motion under 1fl where 

aM(t, T) := r/ (t, T) - TJd(t, T) + a5 (t) 

is the volatility of the forward exchange rate process. Therefore we have 

ET' [exp ( - J A.du )IF,] 
t 

= ET'[E~[ exp ( - l A0 du )IF.Jt:, (I u;(u,T) dWt) IF,] (4.58) 

= (;d(t, T)JET1 [ct (L a;(u, T) (div;-1 + aM(u, T) dt) I.rt] 
= G'(t, T)ET' [ £, (I u;( u, T) dw;}xp ( l u;( u, T) uM( u, T) du) IF,] 

T 

= G'(t, T)E"' [exp (f ug(u, T) uM(u,T) du) IF, l (4.59) 
t 

D 

In a Gaussian setting where the volatilities ag(t, T) and are deterministic func-
tions, it is clear that we have a deterministic quanto adjustment as 

T T 

E"' [exp (f u;(u, T) uM(u, T) du) IF•] =exp (f u;(u, T) UM(u, T) du). 
t t 

In a more general setting, the values ag(t, T) and a1H(u, T) are stochastic. Suppose 
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we have a multi-factor model based on an-dimensional continuous stochastic pro-
cess Zt = (Zit, ... , Znt) and the volatilities ag(t, T) and aM(u, T) are continuous 
stochastic processes such that 

dag(t, T) = µi(Zt, t) dt + a1(Zt, t) dWtTf 

daM(t, T) = µ2(Zti t) dt + a2(Zt, t) dWtTf. 

Then the quanto adjustment 

T 

IEGd[ exp (f ag(u,T)aM(u,T)du)IFt] 
t 

is similar to the formula for a default free bond price where 

-ag(u, T) aM(u, T) 

{4.60) 

{4.61) 

can be seen as an equivalent interest rate. \Ve can now use approximation schemes 
that have been suggested in the context of valuation of interest rate contingent 
claims such the asymptotic expansion approach of Kunitomo and Takahashi (2001) 
to approximate the quanto adjustment provided that µi, µ2 , a 1 and a2 are measur-
able, bounded and smooth functions. Another approximation is to consider the 
process 9t with the dynamics 

(4.62) 

and the orthogonal projection in the least squares sense onto the closed subspace 
of all square integrable martingales with deterministic covariation as described in 
Jamshidian (2004). We therefore have to make some assumptions with regard to 
the dynamics of default free and defaultable bonds as well as the foreign exchange 
rate process in order to obtain a quanto adjustment. If we are only interested in a 
quanto adjustment of default probabilities, it is convenient to assume a multi-factor 
model which leads to a tractable approximation of the quanto adjustment. 

4.2 Valuation of Quanto Default Swaps 

\Ve now consider a two country defaultable market model based on state variables 
that follow a Gaussian Ornstein-Uhlenbeck process as in Chapter 3. Let Yi be a 
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multivariate Ornstein-Uhlenbeck process such that 

dyt = A yt + E dWl (4.63) 

where 
yt = (Yit, ... , Ynt)T, Yo= {O, ... , 0) 

and a(t) is a vector time dependent function used to calibrate to the default free 
and defaultable term structures. 

We assume that rt, r{, At are quadratic forms in Yi 

r~ =(Yi+ a(t))T Jd(yt + a(t)) 

rf =(Yi+ a(t))T JI (yt + a(t)) 

At =(Yi+ a(t))T 1-\(yt + a(t)). {4.64) 

The matrices Jd, JI and/.\ are taken to be diagonal matrices with 1 or 0 along the 
diagonal depending on which factors or coordinates of yt are used to model the 
process. The foreign exchange rate St is assumed to be a log-quadratic process as 
in Chapter 1. Thus St is the solution of the following SDE: 

~ = (rf- r{)dt + (2C8 (t) yt + (B8 (t))TE dvVtd 
t 

Under this assumption yt remains an Ornstein-Uhlenbeck process under the foreign 
risk neutral measure QI. Therefore using the results of Cherif et al. (1994), the 
defaultable bonds P{t, T) for i = d, f are log-quadratic Gaussian. The default 
free bonds P(t, T) for i = d, f are also log-quadratic Gaussian. 

Definition 4.8. A domestic quanto credit default swap (QCDS} is a security that 
guarantees the payment of a deterministic amount Z in foreign currency to the 
payer from the receiver at default time T of a corporate if default occurs after 
Tn ~ 0 and before or at maturity T = TN > Tn. This is called the default leg 
of the QCDS . In return for the default leg the payer pays a constant premium 
J( in domestic currency at specified dates T = Tn+Ii ..• , TN if default has not 
occurred by time 1i for i = n + 1, ... , N. Assume ((1) is chosen from the index 
set {n + 1, ... , N - 1} such that T((r) is the premium payment date immediately 
preceding 1 ~ T. Then if there is a default at time 1 before the maturity T of the 
contract, then the contract is terminated after an accrued payment of (1 -T((r>)K 
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is made in domestic currency by the payer. We call this the premium leg of the 
QCDS. 

In practice defaultable bonds do not have a value of zero upon default of the 
corporate. The value of the defaultable bond upon default will be assumed to 
be a fraction 8 of the par value. The value 8 is called the recovery rate of the 
defaultable bond and the deterministic amount Zin QCDS is generally assumed 
to be equal to 1 - o where 8 is the recovery rate of the foreign defaultable bond. 
Let ((7) = max[i: n + 1~i~N,1i < 7] and /3i = 7i- 7i-1. Then the value of a 
domestic quanto QCDS at time t ~ Tn to the payer is given by the following 

QCDS(t,T,T,K,Z) = StlEQ'[ (exp ( - [ r£ ds)ztrn<T~rlFt] 

- lEQd [exp ( - [ r: ds) ( (7 - Tt;(T))K lrn<T~TN 

-. £ exp (- iT; r: ds) f3i K ~>T;) lri] · 
"&=n+l Tn 

As in the case of standard credit default swaps the value of K in QC DS is chosen 
in such a way that QCDS(O, T, T, K, Z) is equal to zero. This is because there are 
no payments exchanged at the initiation or start of the swap. Even though there 
are quanto credit default swaps that are traded at time t = 0 in some markets, 
these trades are not liquid enough to be quoted on Bloomberg or Reuters. Under 
the assumptions of this section we can use the martingale hazard process of r 
which is equal to the hazard process of r i.e. 

t 

At = ft = exp ( - f Au du) 
0 
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to give the value of QCDS: 

QC DS( t, T, T, K, Z) = !,>,St Z I:.N IEQI [exp ( -r >{ + .A• dk) .A.1.r,] ds 

TN s 

- lr>tK f 1EQd [exp ( -f rt+ Ak dk) AslFt] (s -Tees>) ds 
Tn t 

-1,.>tK. £ {Ji EQd [exp (- ir. rt+ Ak dk) l:F't] 
i=n+l t 

Using the defaultable forward measure ~ corresponding to using the defaultable 
bond of the ith economy 

as the numeraire, the price of a domestic quanto CDS is given by 

TN 

QCDS(t, T,T,R,Z) = lr>tStZ f P1(t,s) 1Et![AslJ=i] ds 

N 

-1,.>tl( ~ fli frl(t, 7i). (4.65) 
i=n+l 

Under the assumption made in this section where we model rf, r{, At and St using 
quadratic Gaussian and log-quadratic Gaussian processes respectively, we can get 
pi(t, T) and JEi'![Asl:F't] in closed form. Since As is a quadratic form in Gaussian 
random variables, we can use the fact that we can calculate the mean and variance-
covariance matrix of As under i'! using (1.118) and (1.119) from Chapter 1. The 
value of JET~[.A.slFt] can be obtained using the closed form formulas given by (1.40) 

and (1.41). 
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4.3 A Two-Country Contagion-Type Reduced Form Model 

We now consider a reduced form model of credit risk where corporations operat-
ing in the domestic and foreign economy might default in one economy but not 
necessarily in the other economy. We assume that a single corporation has issued 
defaultable bonds in the domestic economy and in the foreign economy and that the 
defaultable bonds issued by the corporation do not have a cross default provision. 
Hence we have two default times Ti, i = d, f representing the default of the corpo-
ration in the domestic economy for i = d and the default of the corporation in the 
foreign economy for i = f. Once again we postulate the existence of a background 
filtration IF such that lF = (Ft)(o:s;;t:s;;T*) is generated by n independent Brownian 
motions Wd(t) = Wi(t), i = 1, ... , n and satisfies the usual conditions. The initial 
filtration F0 is taken to be trivial and the time horizon is assumed to be finite so 
that T* > 0 is some finite number. In the following statements involving subscripts 
or superscripts which are represented by i apply to both economies and we some-
times omit saying "for i = d(J) corresponding to the domestic(foreign) economy'' 
when it is clear that this is the intended implication. Let Ht = l,.i:s;;i, i = d, f and 
H; = a(H! : u ~ t), i = d, f. Let gt denote the enlarged filtration such that 

gt = Ft v Ht v 1i{. 

The filtration gt consists of the default free market information and whether the 
corporate has defaulted in one or both of the economies. The intensities of Hf 
which we denote by ).i(t), i = d, f which are gt adapted have the property that 

fl\ Ti 

.l\It = n: - f ).~ du (4.66) 
0 

is a gt-martingale under Qi for i = d, f. We assume that the intensities have the 

following form: 
(4.67) 

where 77; is an :Ft adapted process. The quantity o:d is a constant representing the 
jump of the intensity 77f upon the default of the corporation in the foreign economy. 
Similarly the constant quantity o:f represent the jump of the intensity 77{ upo:p the 
default of the corporation in the domestic economy. Hence this is similar to a 
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contagion model6 of default for two obligors. The construction of default times 
Ti, for i = d, f such that ( 4.66) is true can be achieved using the method specified 
in Yu {2004). We assume that ai are positive numbers and hence default of the 
corporation in one economy will lead to an increased intensity of default in the 
other economy. The foreign exchange rate St is assumed to be a diffusion process 
that is :Ft measurable as in the previous section (see equation 4.11). Also as in the 
previous section, the change of measure between the domestic risk neutral measure 
Qd and the foreign risk neutral measure QI is once again given by 

We use the same notation used in the previous section for the price of default 
free and defaultable bonds. Under the 'no jump condition at 1i' of Duffie et al. 
{1996)(see also Jeanblanc & Rutkowski (2000)) we can use the intensity -X! for 
valuation purposes. In fact we have under the risk neutral measure Qi 

lEQ' [exp ( -r r. du) l,.»r YIY,] = 1,.»,JE<!' [exp ( -r r. + A. du) YIYt] 
(4.68) 

where Y is a g integrable random variable and i = d(f) corresponding to the 
domestic(foreign) economy. If the 'no jump condition at 1i' does not hold there 
is a more general valuation formula given in Duffie et al. (1996) and Jeanblanc & 
Rutkowski (2000). Under the assumptions of this section the 'no jump condition 
at ri' is not satisfied. However we can still use the formula given in ( 4.68) provided 
we use a different probability measure than the risk neutral measure Qi as shown 
in Collin-Dufresne et al. (2004). \Ve denote once again by Ya g integrable random 
variable representing the payoff of a defaultable security at time T provided the 
obligor has not defaulted by time T. Let 

( 4.69) 

6 The phrase contagion model is used here to describe the model of default where a default of 
an obligor will lead to an increase in the intensity of default of the other obligor (see for example 
Jarrow and Yu (2001)). 
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and (t the absolutely continuous measure defined by the following Radon-NikodY'm 
density 

(4.70) 

for i = d, f. Furthermore let Qi' := (Q;')t;;;.o be the augmentation of g by the null 
sets of Qi. Then the following result is established in Collin-Dufresne et al. (2004) 

Proposition 4.9. The exdividend price of a security that pays Y at time T pro-
vided there is no default by time T in the ith economy which is denoted by lit is 
given by 

lit= lt<Tl,.i>tEQi' [exp ( - iT r! + A~du )ylgr]. (4.71) 

Moreover any local g martingale under Qi that does not jump at ri remains a 
Qf local martingale under !Ct. In particular Wl remains a Brownian motion under 
Qi' according to the Lenglart-Girsanov absolutely continuous change of measure 
theorem 7 • Using the property that appropriately discounted values of tradeable 
securities are martingales under the risk neutral measure, the price of default free 
zero coupon bonds are now given by 

and the price of defaultable zero coupon bonds are given by 

(4.73) 

Instead of specifying the short term rate of interest rate and the intensity of default, 
we can also start from the specification of the default free forward rates and the 
forward credit spreads. However if we want to consider an HJl\11 model of default 
we need to find the HJl\1 condition that has to be satisfied by the forward credit 
spread process. In the following we derive the HJM condition for the forward 
credit process in a contagion model based on the work of Elouerkhaoui (2002). 
Let Gi(t, T) be the probability of survival under r which is represented by the 
following formula 

7 See Collin-Dufresne et al. (2004) for more detail where exact conditions are given. 
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In order to calculate Gi(t, T) using the intensity .AL we define the absolutely con-
tinuous measure Ti' through the Radon-Nikodym density 

(4.74) 

Furthermore let gi' := (g;)t;;?;O be the augmentation of g by the null sets of Ti'. 
Then using the result of Collin-Dufresne et al. (2004), we have 

(4.75) 

In Elouerkhaoui {2002) the quantity considered is the probability of survival under 
the risk neutral measure Qi which is given by the formula 

(4.76) 

Moreover Elouerkhaoui (2002) considers the forward intensity associated with the 
probability of survival under the risk neutral measure which is given by 

(4.77) 

Here we consider the forward credit process si(t, T) similar to the one in the pre-
vious section. 

Definition 4.10. If Ti > t, the forward credit spread process si(t, T) is a bounded 
process which is defined by 

. d . )) s'(t, T) := - dT loge(G1(t, T . 

If Ti < t we set si(t, T) = oo so that Gi(t, T) = 0. 

vVe have on the set Ti > t 

s' ( t, T) = - ::r log,( d(t, T)) = - ::r log, (ET', [exp ( - r A~ du) lg',])· 
(4.78) 

Since Gd(t, T) jumps if Tl < t the dynamics of si(t, T) should have a jump com-
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ponent8 • Hence the dynamics of si(t, T) for Ti > t is assumed to be 

dsi(t, T) = a!(t, T) dt + u!(t, T) dWf + (1 - H;)T/ii(t, T)dMf. (4.79) 

If Ti~ t we do not need to consider the dynamics as we can assume that si(t, T) = 

oo. Thus the forward credit spread si(t, T) jumps by a quantity T/ij(t, T) at time 
Ti, (j =I= i) which is the time of default of the corporation in the /h economy. We 
assume that T/ii(t, T) are positive deterministic functions. We now assume that 
ai, u!, T/ii and >.. i satisfy conditions that allow measurability, integrability, and the 
interchangeability of the order of integration (see Elouerkhaoui (2002) for more 
detail). Using the dynamics of si(t, T) given in (4.79) the following can be shown 
to be true by the derivation given in Elouerkhaoui (2002) 

where 

and 

d( - f.T s'(t, u) du) = s'(t, t) - f.T ds'(t, u) du 

= .X~ dt - a!*(t, T) dt - u!*(t, T) dlVf 

- ~(1 - Hi(t))17ij(t, T)dlv!{ 
j,,,,i 

T 

a!*(t, T) = f a!(t, u) du, 
t 

T 

u!* (t, T) = f u!(t, u) du. 
t 

T 

ryij(t,T) = f r/i(t,u)du. 
t 

(4.80) 

(4.81) 

(4.82) 

( 4.83) 

(4.84) 

(4.85) 

As in the previous section let Ji(t, T) denote the default free forward rate of 
the ith economy for maturity T. We assume that fi(t, T) is a diffusion process 
and hence according to (Heath et al. 1992) the dynamics of Ji(t, T) under the risk 
neutral measure Qi is given by 

(4.86) 

8 Similarly QI (t, T) jumps if Td < t. 
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where 
T 

ai*(t, T) = f ai(t, u) du. (4.87) 
t 

and we assume certain measurability, integrability conditions are satisfied by ai(t, T) 
that also allow interchangeability of the order of integration(see Heath et al. (1992) 
for more detail). Moreover similar to (4.80) we have 

First note that 

~G'(t, T) - Er' [~exp ( -r >.~du) lg',] (4.89) 

- Er' [ - >.'(T) exp ( - f >.~du) lg'•] (4.90) 

and therefore 

On the other hand 

~G'(t, T) - d~ exp ( -r s'(t, u) du) - -s'(t, T) exp ( - iT s'(t, u) du) 
(4.91) 

is true so that 
d . I . dTG'(t, T) T=t = -si(t, t) (4.92) 

is true. Therefore 
(4.93) 

In the following we derive the HJM condition for the forward credit spread 
si(t, T) which is similar to the HJM condition for the forward credit spread given 
in Schonbucher (2000) and Proposition 13.1.1 of Bielecki and Rutkowski (2002) 
except for an additional term depending on the default behavior of the corporation 
in the /h economy where j -:/= i. In Elouerkhaoui (2002) the HJJ'.vI condition for 
the dynamics of h,i(t, T) (see equation (4.77)) is derived. Here based on some of 
the results in Elouerkhaoui (2002), we derive the HJM condition for si(t, T). In 
case of independence between the short term interest rate rt and the intensity of 
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default At the quantities hi(t, T) and si(t, T) are equal while in the case of non 
zero correlation between Tt and At they are different from each other. Note that 
we consider the more general case of a time and maturity dependent jump size 
which is equal to 'T/ii(t, T) instead of just a constant jump size one as in (4.67). 
Hence the forward credit spread in the ith economy jumps by 'T/ii ( t, T) upon the 
default of the corporation in the jlh economy. 

Theorem 4.11. Under Qi, we have 

a!*(t,T) = ~lla!*(t,T)ll2 - iT ui(t,u)Tui*(t,u)du+~llai*(t,T)ll2 

+ ai*(t, T)T a!*(t, T) + 2:CI - H{)[TJij(t, T) + exp(-11ij(t, T)) - 1]>.{. (4.94) 
j#i 

We can differentiate the above with respect to T to get 

a!(t, T) = ai(t, T)T a!*(t, T) + (a!(t, T) + ai(t, T)) T a!*(t, T) 

+ 2:(1- Hf)[TJii(t, T)(I - exp(-riij(t, T))p{ ( 4.95) 
Ni 

Proof. First note that the appropriately discounted price of the defaultable bond: 

t 

exp ( - fr~+ >.~du)Pi(t,T) (4.96) 
0 

is a g martingale under Qi and therefore the drift term in the SDE of P(t, T) 
must be equal to 

er;+ >.D dt. 

\Ve have 
t 

f>'(t, T) ~E'l; [exp ( - fr~ du }1.Mlg,] 
0 

= pi(t, T)JET'[lr»Tlgt] 

== pi(t, T)c:Ji(t,T) 
T 

==exp ( - f f(t, u) + i(t, u) du)· 
t 

(4.97) 

(4.98) 

(4.99) 

(4.100) 
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Using (4.80), (4.88) and applying the multivariate version of Ito's formula for 
jump diffusions, we can give the SDE that is satisfied by .f>i(t, T). 

T 

df>i(t, T) = f>i(t, T) [ (r: + >.~ - a:!*(t, T) - f a(t, u)ai*(t, u) du+ ~llai*(t, T)ll2 

t 

+ ~lla!*(t, T)ll2 + ai*(t, T) T a!*(t, T)) dt - ai*(t, T) dWti - o!*(t, T) dWf 

+ 2:(1 - Hf)(exp(-TJij(t, T)) - l)(dH/ - >.f dt) 
Ni 

+ ~(1 - Hf)(exp(-77ij(t, T)) - 1 + TJij(t, T))>.{ dt. (4.101) 
j#i 

Since we know the the drift of .f>i(t, T) is equal tor;+>.:, it follows from (4.101) 
that 

T 

-a:!*(t, T)-J o(t, u)T ai*(t, u) du+~llai*(t, T)ll2+~11a!*(t, T)ll2+ai*(t, Tr u!*(t, r: 
t 

+ 2:(1- Hf)(exp(-11ij(t, T)) - 1+11ij(t, T))>.{ dt = 0. (4.102) 
j#i 

Solving for a:!*(t, T) gives the result of the theorem. 0 

The drift condition for a:!*(t, T) given in (4.95) of Theorem (4.11) is similar 
to the one derived in Proposition 13.1.1 of Bielecki and Rutkowski (2002) and 
Schonbucher (2000), the only difference being the existence of an additional term 
that depends on on the default behavior of the corporation in the other economy 
where j =/: i in H/ represents the default indicator function of the corporation in 
the other economy. 

4.4 Pricing Quanta Default Swaps in a Contagion-Type Model 

We now consider the price of a domestic quanto default swap(see definition 4.8) 
assuming no cross default holds. vVithout loss of generality we assume that the 
notional on which the payments are made is equal to one. Hence if the corporation 
defaults in the foreign economy an amount equal to Z units of foreign currency is 
paid to the payer from the receiver in return for premium payments in domestic 
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currency at times T = {Tn+b . .. , TN} provided the corporation has not defaulted 
in the foreign economy i.e. Tf > Ji. Under the assumption of zero recovery on 
defaultable bonds Z is equal to one unit of foreign currency. We denote by St 
the value of one unit of foreign currency in terms of domestic currency consistent 
with notation used in previous sections. Therefore Z = Sri which is the value 
of St at the time of default of the corporation in the foreign economy. A quanto 
default swap is useful for an investor holding the foreign defaultable bond of the 
corporation whereby the investor's income is denominated in domestic economy. 
Therefore the default leg of the domestic quanto CDS has the following value 

Tl 
St Z1EQ1 

[exp ( - fr! du )it<Tl~TNlgt] (4.103) 
t 

in terms of domestic currency. The intensities of default of the corporation are 
assumed to be as in ( 4.67) which is given at the beginning of this section. Hence 
the intensity Tf jumps by a constant amount a.I upon the default of the corporation 
in the domestic economy. 

The value of the default leg can be decomposed into two parts depending on 
whether the corporation has not defaulted in the domestic economy by time T or 
the corporation has defaulted in the domestic economy by time T: 

Tl 
StZ1EQ1

[ exp (- f r!du)It<Tl~Tlgt] = StZ(vt + lVi) (4.104) 

t 

where Tl 
V. - E'l' [ l,•>TN exp ( - Jr! d1}•<T' .;TN lg,] 

t 

(4.105) 

and Tl 
IV. - JE<!' [i•<T'~TN exp ( - J r[du)i,<,l~TNlg.]. 

t 

(4.106) 

Recall that Qf' denote the measure that is absolutely continuous with respect to 
QI and g!' = (g{\~0 is the augmentation of g by the null sets of Qf' (see (4.70)). 
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To calculate \1t in ( 4.105) we use Proposition 4.9 to get 

TN u 

V. =l,-1>,~ [ l,-•>TN J exp ( - Jr{+ 17{ ds }1£ dulg{'] (4.107) 
t t 

TN TN u 

=l,-1 •«>tlEQ
1 [exp ( - J 17; ds) J exp ( - Jr{+ rl, ds )17£ dulgf'] (4.108) 

t t t 
TN u TN 

=l,-1 •«>tlEQ
1 [f exp ( - Jr{ + ry{ ds - J ,,; ds) ry[ dulg{'] ( 4.109) 

t t t 

The equality (4.107) follows from the assumption 1-r-d>TN which implies that the 
intensity of Tl does not jump up to time TN while the equality (4.108) is obtained 
using the fact that under QI' we can consider the intensity of rd to be 11f since 
under this measure the set Tl< TN is a set of measure zero. To calculate (4.109) 
we use Fubini's theorem to exchange the integral and expectation signs since the 
integrand in (4.109) is positive. Let 

u TN 

pf1(t, u, TN):= EQI' [exp ( - fr!+ 1J! ds - f 1/: ds) lgf'] (4.110) 
t t 

which can be viewed as the predefault value of a defaultable bond where the short 
term rate of interest rl is equal to zero after time u and the intensity up to time u is 
1J{ + 11f but after time u it is equal to 7Jf. Let i['/I denote the absolutely continuous 
measure with respect to QI' with the following Radon-Nikodjm density 

diJ'fl 

1 

l,-•>T" exp ( - Ir! + 17{ ds) 
dQI' g'TN - ]EQ1' [ 1-r-d>TN exp ( - I rf + ri! ds)]. 

(4.111) 

. , an.1' Using the abstract Bayes theorem we can wnte for any 9rN measurable an ~ 
integrable random variable Y 

(4.112) 
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Hence using (4.112) and Fubini's theorem we have 

TN 

vt =lrfArd>t f pfl (t, u, TN )JE'j'/l [ 17{,g{'] du. (4.113) 
t 

We can calculate Wt in a similar way: 

TN u 

W, = l,-1 <tlEQ
1
' [ lt<«~T N f exp ( - f rt+ 'It+ of l,-• ~· ds) ( '1£ +of 1,.-.u) du lg{] 

t t 
TNTN u 

= Ir1 l\rd>tJEQ'' [ f f exp ( - fr{ + 77{ + o/Iw,.;s ds) (TJ! + a/Iw~u) du 
t t t 

w TN w u 

exp ( - f 1/: ds }1! dwlg{] = 1,-,,,.>,EQJ' [f (f exp ( - fr! + rl, ds }I. du+ 
t t t t 

TN u w 

f exp ( - fr£+ 'I{ ds -of (u -w)) ('I!+ of) du) exp ( - f 11: ds )'I! dwlg{] 
w t t 

(4.114) 

The first equality in (4.114) follows from Proposition 4.9. Similarly the second 
equality in (4.114) follows from the fact that under QI', we can consider the in-
tensity of Td to be 77f since under this measure the set Tl <TN is a set of measure 
zero and this implies there is no jump in the intensity of Td. \'Ve now use again 
Fubini's theorem to exchange the expectation and integral sign in (4.114) since the 
integrand is positive: 

TN w u w 

Wt = 1r1 l\rd>t (ff JEQ'' [exp ( - fr!+ 11! ds - f ri: ds )T/~11!lgf'] du dw+ 
t t t t 

~~ u w 

f f JEQ'' [exp ( - f r{ + ri{ ds - of ( u - w) - f 77: ds) ( 17~ + of )11! I g{'] du dw). 
t w t t 

(4.115) 
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Let 
u 

P12(w, u) := IEQI' [exp ( - fr! + rl, ds) lg/} (4.116) 
w 

We now can write (4.115) as 

TN w u w 

W, = 1,1 AT'>• (f f EQI'[ exp ( - fr{ + 11! ds - f ,,: ds) 11! ,,;! lgf}u dw+ 
t t t t 

TNTN w w 

ff EQ''[ exp ( - fr!+ rl, ds-al(u-w) - f 11:ds) 
t w t t 

u 

IEQ''[exp ( - Jr! + rl. ds) lg!,' J (if. + a1)11*f}u dw) 
w 

TN w u w 

= 1,1 AT'>• (f f IEQI' [exp ( - fr{ + 11! ds - f ,,: ds) 11! 11*( J du dw+ 
t t t t 

TNTN w w 

f f exp(-a1 (u- w))IEQI' [exp ( - fr!+ 11{ ds - f 11: ds) 
t w t t 

J512(w,u)(TJ£ +o:f)TJ!lgf']dudw )· (4.117) 

We now use the following notations: 

u w 

J511(t, u, w) :=lEQ'' [exp ( - Jr£ + 11£ ds - f T/: ds) lg{'] for u < w ( 4.118) 
t t 
w w 

P11 (t,w,w):=1EQ''[exp(- f r£+11{ds- f 11:ds)lgf'] forw<u. (4.119) 
t t 

Note that (4.118) is the predefault value of the defaultable bond of maturity w 
which was introduced in (4.110). The value ( 4.119) is also the predefault value 
of the defaultable bond of shorter maturity which was introduced in (4.110) but 
here w < u and hence the maturity is wand to avoid confusion we used a different 
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notation. We define 1'l1 and tf} similar to (4.111) by: 

(4.120) 

di' 11 

1 

~d>w exp ( - Ir{ + TJ! ds) 
dQ~' g: - --, ;::-[---(~-w--_.:._-=-)-=-] for w < U. 

JEQf ~d>w exp - I r! + 17{ ds 
(4.121) 

Therefore we can claim 

TN w 

w, ~ 1,.1 ATd>t (I I P11 (t, u, w)Etl' [ 1J[,4;r] dudw 
t t 

TNTN 

+ J J exp(-a/(u-w))P11 (t,w,w)JEtD[p12(w,u)(11! +a/)77~1gf'] dudw) 
t w 

(4.122) 

as by an application of the abstract Bayes theorem (4.122) is equivalent to (4.115). 
We now consider the calculation of the premium leg of the quanto default swap. 

Ignoring the accrued premium, the premium leg consists of payments of f3i K in 
domestic currency at times 

provided the corporation has not defaulted by time 1i for i = n + 1 ... , N where 
/3i .:_ 1i+1 -Ji and K is a constant premium amount set at time Tn = T. \Ve value 
the premium leg in the foreign economy using the foreign exchange to convert 
the premium payments and finally converting the total value of the premium leg 
into domestic currency using the foreign exchange. The value of the premium leg 
can be decomposed into two parts depending on whether the corporation has not 
defaulted in the domestic economy by time TN or the corporation has defaulted in 
the domestic economy by time TN: 

(4.123) 
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where 

(4.124) 

and 

(4.125) 

To calculate 

T, 

Vit := JEQ' [Ii-d>TN exp ( - Jr! du )Ii-1>r, ;'.li l9t] (4.126) 
t 

we proceed in a similar fashion to the calculation of vt in (4.107) by using once 
again Proposition 4.9 to obtain the following 

Ti 

\I;, ~ l,1>1EQJ' [ l,'>TN exp ( - fr! + >I. ds) ;,Jr] 
t 

(4.127) 

(4.128) 

Let 1i 

j>f3(t, '1l) :~ EQI' [exp (-fr{+ 1J! + 1}; ds) lg{] (4.129) 

t 

and let the measure if.'{3 which is absolutely continuous with respect to QI' be 
defined by the following Radon-Nikod'ym density 

(4.130) 
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Furthermore let 

TN 

G13(7i, TN) := EQ'' [exp ( - f TJ! ds) lgf]. (4.131) 
Ti 

We can now claim that 

T. 

'Vit = lrt l\Td>tEQ
1
' [exp ( - Jr! + TJ! + 7]: ds) 

t 

(4.132) 

To calculate 

T, 

w;, ~ Fl-' [ i.<r'~TN exp ( - fr! du) l,l>T; ~. ,g,] 
t 

(4.133} 

we proceed similar to (4.114) using Proposition 4.9. Thus 

(4.134} 

(4.135) 
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r. 
= 1,.1 "rd>tlEQI' [exp ( - fr!+ TJ! ds) Jr,. 

t I 

TN u f exp( -a/ (TN - u)) exp ( - f 11: ds) T/~ du\gf'] 
t t 

TN 

= 1,.1 "rd>t f exp(-o/ (TN - u)) 
t 

r. 
= 1,.1 "rd>t ( f exp(-oJ (TN - u)) 

t 

TN 

+ f exp(-o/(TN -u)) 

T; 

= l,.iArd>t ( f exp(-a/ (TN - u)) 
t 

'U 

IEQI' [ ;T; exp ( - fr{ + ii, + 11: ds) 
t 

T; 

IE<!1' [exp ( - fr{ + '1! ds) lg[] 1J~1g{] du 
'U 

~ r. 
+ f exp(-af (TN - u))IEQI' [ ;T, exp ( - fr{+ '1{ + 7]: ds) 

n t 

168 

JE<!1' [exp ( - J 1/: ds) lgf] 1J~1gf}u) ( 4.136) 
T; 
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- /4 . ,, [ ( fu ) I '] P (t, u) .=lEQ exp - r{ + ry{ + 'f/: ds g{ where u ~ 1i 
t 
T; 

Pl5(u, T;) :=JE'l'' [exp ( - fr{+ 1J{ ds) lg[ J 
u 

u 

G16(T;, u) :=EQ,. [exp ( - J ,,: ds) lgf]. 
1i 
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(4.137) 

(4.138) 

(4.139) 

(4.140) 

and let the measures i'l4 and i'f~ which are absolutely continuous with respect to 
Qf' be defined by the following Radon-Nikod'ym density 

(4.141) 

We can now claim that 

T,: 

w;, = l,1 "'>t (I exp(-a1 (TN - u ))Pf4 ( t, u )Et!' [ s~ pt• ( u, 1i)1J*(] du 
t 

TN 

+ J exp(-a1(TN-u))Pf3 (t,1i)JE'f{3 [s~.cf6 (1i,u)ry~1gf']du) (4.142) 
Ti 

as an application of the abstract Bayes theorem to (4.142) gives us {4.136). Note 
iVi in (4.115) requires the evaluation of a double integral with an integrand term 

containing JET11 
[ rJ!11!19f'] which is the expectation of a nonlinear function of T/t 

for varying t. In Kwok and Leung (2005) the valuation of a similar problem as the 
one considered here is shown to be possible with closed form formulas for the credit 
default swap premium under the assumption of constant rl,>J and A.d. However 
as can be seen here when we assume that rl, )./ and A. d are stochastic, obtaining a 
closed form formula requires that we are to calculate the expectations involved in 
calculating Vt and especially i-Vt which is generally difficult to do. In the following 
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we will show that the calculation of the expectations in \It, Wt, Vit and VVit can 
be accomplished in analytically closed form where by closed form we mean up to 
numerical integration. 

Let Yi be a multivariate Ornstein-Uhlenbeck process such that 

dyt = A Yi + ~ dW / (4.143) 

where 

Yi = (Yiti · · · , Ynt)', Yo = (0, ... , 0) 

and a(t) is a vector time dependent function used to calibrate to the default free 
and defaultable term structures. Note unlike previous sections, we use constant 
parameters to specify the dynamics of the underlying Gaussian factor in the foreign 
economy but specifying constant parameters for the factor Yi in the domestic 
economy can also be done with the same degree of tractability. \Ve assume that 
rf, r{, )..t, >..{ are quadratic forms in Yi 

r~ =(yt + a(t)f Id(yt + a(t)) 

rf =(yt + a(t)f 11 (Yi+ a(t)) 

)..f =(yt + a(t)f I,\\yt + a(t)) 

)..{ =(yt + a(t)) T 1,\1 (yt + a(t)). (4.144) 

The matrices Jd, JI, I,\d and J)/ are taken to be diagonal matrices with 1or0 along 
the diagonal depending on which factors or coordinates of Yi are used to model 
the process. The foreign exchange rate Sc is assumed to be a log-quadratic process 
as in Chapter 1. Thus St is the solution of the following SDE: 

Under this assumption Yi remains an Ornstein-Uhlenbeck process under the foreign 
risk neutral measure Qf. \Ve will first discuss how to calculate 

u TN 

pfl(t, u, TN) = JEQ'' [exp ( - fr!+ TJ{ + TJ! ds - f TJ! ds) lg{' l (4.145) 
t u 

Note that pfl(t, u, TN) can be regarded as the predefault value of a zero coupon 
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defaultable bond in the foreign economy where the short term interest rate is equal 
to zero after u and the intensity of default is equal to 

f de 17s + T/8 1or t ~ s ~ u 

and is equal to 

Therefore even though we started out by specifying constant parameters for the 
matrix defining the quadratic form for the short term rate of interest 

and the intensities of default 

we now have to regard a piecewise constant matrix defined as follows 

(4.146) 

(4.147) 

Thus for calculating pfl ( t, u, TN) we can assume the short term interest rate is 

given by 
(4.148) 

and the intensity of default is equal to 

(Ys + a(s))T I{1(s)(Yt + n(s)) (4.149) 

in order to calculate Pf1(t,u,TN)· vVe can still calculate the value J511(t,u,TN) 
in analytically closed form using the results of Theorem 1.20 in Chapter 1 but 
this would require more computation than the constant parmeter case where If1 
and I { 1 are not time dependent. In the following we will see that we can avoid 
computing pf1 (t, u, TN) and therefore we start with a discussion of defaultable 
forward measures. So far we have considered the defaultable zero coupon bond 
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of maturity TN, in the following we need to introduce additional notations for 
defaultable zero coupon bonds of shorter maturity and the as.gociated measures 
corresponding to using the bond values as the numeraire. Let 

dtJI I 1-rd>u exp ( - Ir£+ TJ{ ds) 1-rd>u exp ( - l r{ + TJ{ ds) 
dQ~' Q~. - -,-, [ _____ (_u_/--/--)-] - Pf1(0, u, u) 

- JE«l 1-rd>u exp - ~rs + T/s ds 
(4.150) 

From the definition of the Radon Nikodym density which is given by (4.111) we 
have 

1-rd>TN exp ( - l r{ + TJ! ds) 
- Pf1(0, u, TN) 

and hence we can get the following 

dtJI dif/l dQf' j5fl(Q, U, u) 
dtl1 = dQf' dtl1 = 1-rd>TN Pf1(0,u,TN)" 

(4.151) 

Moreover we have 
_ - pfl(t,u,TN) 

d'Jrf1 I t [ pf1(0, u, u) I /'] - 1-rd>t pfl(t,u,u) 
_iii.fl 1 = lE u 1-rd>TN p!I(O U 'n ) Qt - pfl(O,u,TN) 
UJLu g{ ' ' N pfl(O,u,u) 

(4.152) 

Therefore for any g( measurable random variable Y we can use the abstract Bayes 
theorem to get the following equality 

(4.153) 

(4.154) 

(4.155) 
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whereby we have used 

TN 
=lEQJ'[ 1 ex (-f dds)1g1']- pfl(u,u,TN) 

pfl(u,u,u) p 17s u - lr>u pfl(u,u,u) 
u 

(4.156) 

to get the last line (4.155). Note that we have 

(4.157) 

so that the Radon-NikodY"m density in (4.155) can be written as 

(4.158) 

Therefore we have 

(4.159) 

which has the same structure as the change of measure in the default free case. 
\Ve have just demonstrated how to change measures between the defaultable for-
ward measures of different maturities. The first step is to calculate the mean and 
variance-covariance matrix of Yu under 1I'l1• \Ve can calculate the mean and vari-
ance of Yu under the the default free forward measure of maturity u i.e. the measure 
corresponding to using the default free bond of maturity u as the numeraire using 
lemma 1.3 from chapter 1 but this lemma is not immediately applicable to find-
ing the mean and variance-covariance matrix of Yu under the defaultable forward 
measure for maturity 1I'!1 • However we can still apply lemma 1.3 by changing to a 
different measure as follows. \Ve define a measure that is equivalent to Qf' by the 
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following Radon-Nikodym density 

(4.160) 

Therefore for any Q( measurable and QI' integrable random variable W, we can 
apply the abstract Bayes formula to get the following equality 

u 

Erl
1
[WIQ{] = EQf'[pft(t~u,u) exp ( - Jr! +11! +ry:ds)ivlgf']. (4.161) 

t 

We now apply the definition of if £1 to change measure back to Qf' and then to 1f £1 
which gives us the following: 

(4.162) 

_ Qf
1 

[ 1 ( Ju f f d ) I r] - lr>tE pfl(t, u, u) exp - rs + TJs + 1/s ds Yu Qt 
t 

(4.163) 

ffl !' 
= lr>tE u [Yul9t ]. (4.164) 

From Collin-Dufresne et al. (2004) we know that iv/ in (4.63) remains a Brownian 
motion under Qf' and therefore the dynamics of Yu under 1'!1 can be determined 
similar to the default free case by use of Girsanov's theorem. Therefore finding the 
mean of Yu under if !1 can be accomplished by finding the mean of Yu under 1'!1

• 

To find the mean and the variance-covariance matrix of Yu under 1f £1 we can apply 
lemma 1.3 from chapter 1. Now we can calculate the mean and variance-covariance 
matrix of Yu under if/l by substituting Yu for T)u in (4.159) to get 

(4.165) 

(4.166) 
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and changing measure to j fl as follows u 

(4.167) 

We now can show that we can calculate Vi in closed form avoiding the calculation 
of the more computationally intensive f>/I ( t, u, TN). Specifically 

(4.168) 

(4.169) 

(4.170) 

Therefore since we know the mean and variance-covariance matrix of Yu under 
1I'l1 and f>l1(u, u, TN) is log-quadratic Gaussian, we can apply lemma 1.14 from 
chapter 1 directly to the last line of (4.167). Note the calculation of f>11 (t,u,u) 
can be done easily since now the short term interest rate r{ is 

(Yt + a(t)f 11 (Yt + o(t)) 

and the intensity of default TJ{ + TJf is given by 

and we can see that the matrices If, JTJ1 and fTJd are now constant matrices. The 
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calculation of PI 1 ( u, u, TN) also involves constant parameters as 

TN 

P11 (u,u,TN) =lEQ''[ exp ( - f TJ:ds)lgf'] 
u 

and we can see only the intensity rl is used. We could have also established (4.170) 
from 

u TN 

~'>tEQI' [exp ( - fr! + 11! ds - f 11: ds) Y,.lg{'] 
t t 

(4.171) 

through the following calculations 

u TN 

~'>tEQI' [exp ( - fr! + 'l! ds - f 1): ds) Y,.lg{'] 
t t 

u ~ 

~ ~'>•JE'l'' [exp ( - fr{ + '7{ + 11: ds) EQI' [exp ( - f 1): ds) lg£}£1g{'] 
t u 

u 

=lrd>tlEQ''[ exp ( - fr{ +rJ{ +TJ!ds)P11 (u,u,TN)Yulgf'] 
t 

_ - fl c ) l:l' [-fl c ) I /'J - lrd>tp t, u, U lE P U, u, TN Yu Qt (4.172) 

but this does not make it clear how to change measure between the defaultable 
forward measure of different maturities. In general it is useful to establish how to 
change measures between defaultable forward measures of different maturities as 
this can be useful to simplify valuation. By introducing the defaultable forward 
measures 'f[1 and the change of measure from 'f£1 to 'fJI we have shown that the 
formula is an exact analog of the change of measure for forward measures in the 
default free case (see Cherif et al. (1994) for the default free case). For the purposes 
of calculating expectations of random variables iv which are Q[ measurable and 
QI' integrable we can then use the measure T[1 which is absolutely equivalent 
to QI' and hence we can apply the results established in Cherif et al. (1994) for 
calculating the mean and variance-covariance matrix in the defaultable case. It is 
now clear how to calculate 
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as TJl is a quadratic Gaussian random variable and therefore can be determined 
from the variance-covariance matrix of Yu. The calculation of Wt in ( 4.122) involves 
the expectation 

(4.173) 

We now discuss how to calculate (4.173). First similar to (4.163) we can calculate 

{4.174) 

in analytically closed form. Since 11! is a quadratic form in Gaussian random 
variable under 1fl1, we can obtain {4.174) from the variance-covariance matrix 
of Yu {see lemma 1.3 in chapter 1). Thus (4.174) consists of a part which is a 
quadratic function of Yu and another part which is a deterministic function of u. 
Since (4.173) can be written as 

(4.175) 

it is clear that to calculate ( 4.173), we need to calculate not only first and second 
order moments of Yu but also higher order moments of Yu under 'tl1 . This can be 
achieved by first noting that we can calculate the mean and the variance-covariance 
matrix of Yu= (Yiu, ... , Ynu) under 'tl1 by changing measure to 'tl1 and using Tl1 

similar to what we did in (4.159). Hence it is sufficient to discuss how to calculate 

q TI Yl~ for j = 1, ... , n and r 1 + ... + r q = k 
j=l 

under t l 1 • Thus we need to calculate 

n d> Pf1(u,u,w) q I ] 
JEyl,I [ Tiq Y~ lgt] = JEtll [ r pfl~u,u,u) TI Yl~ g{' 

'=1 JETu r >w ' ' g j=l 1 -11 [n 4 pfl(u u w) I /'] 1 pfl(u,u,u) t 

- pfl ( t, u, u) JEt!l [, p-fl ( ) Tiq y~i lg!'] 
- .JL.rd>w U 1 U, W JU t 

Pf1(t, u, w) i=l 

= p::(t, u, u) JET!1 [pf1(u, u, w) CT }j~lgf']. 
P (t, u, w) i=l 

(4.176) 

(4.177) 

( 4.178) 

First note that we can find the mean and the variance-covariance matrix of Yu under 
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the measure corresponding to using f>11(u, u, w) as the numeraire by applying 
lemma 1.3. Calculating 

(4.179) 

involves finding higher moments of a multidimensional Gaussian random variable 
under the measure corresponding to using f:>/t ( u, u, w) as the numeraire. The 
higher order central moments of a multidimensional Gaussian random variable( or 
a multidimensional Gaussian random variable with zero mean vector) can be found 
in closed form in an efficient manner as shown in Triantafyllopoulos (2003). Hence 
we can find higher order moments of 

and therefore we can also find the noncentral higher order moments of Yu which 
means we can calculate 

(4.180) 

We now discuss how to calculate the expectation in (4.122) given by 

(4.181) 

Let 
"'11 exp ( - Sr£ + 11! + 77~ ds) 

d1l'w I o dQf' g£: = EQ1' [exp ( -1 r{ + ,,{ + 1f, ds)] 
(4.182) 

where w < u. We can now change measure back to QI' in (4.181) and apply the 
abstract Bayes formula (see for example (4.163)) to get the following equality, 

(4.183) 

:Moreover we can use the tower property of expectations (see, e.g., Karatzas 
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and Shreve (1991)) to rewrite (4.183) in the following form 

IF.Tl' [Pf2(w, u)(11£ + a1)11*(] = IF.Tl' [Pf2(w, u)(-r/.11~ + a111:)19(] 
= lEil,

1 [.P12(w,u)(77£lE'fl,
1 [11:IQCJ + 0/11!,)jgf']. (4.184) 

Once again 
(4.185) 

consists of a part that is a quadratic function of Yw and a part that is a deterministic 
function of w. Therefore we need to calculate higher order moments of Y10 but we 
have already discussed how to perform this calculation in the context of how to 
calculate (4.173). 

The calculation of Vit involves determining 

(4.186) 

Let 

d'if{: 
1 

:= l,.•>T, exp ( -1 r{ + '1{ + 11: ds) . 

dQf gf; JEQI' [exp ( -1 r! + 11! + TJ~ ds)] 
(4.187) 

Then by an application of Bayes formula (4.185) is equal to 

(4.188) 

Since we can use Lemma 1.3 in chapter 1 to calculate the mean and variance-
covariance matrix of Yu under T{3 and Gf3 (1i, TN) s~. is a product of log-quadratic 

' Gaussian terms and therefore log-quadratic Gaussian, we can use Lemma 1.14 to 
calculate (4.188) in analytically closed form. The determination of iVit requires 
the calculation of the following two expectations expectations: 

JEt!4[;n _p1scu,1i)TJ!jgt] 

JF.Tf' [ ;T, Gf"(T,, u )1J~1g( l 
(4.189) 

( 4.190) 
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Let 

iif £41 ·= exp ( - Ir£ + 11! + 11: ds) 
dQf' /1 

• / [ ( U ) ] gu JEQI exp - ~ r! + 17{ + 171 ds 
(4.191) 

Then changing measure to QI' and applying the abstract Bayes formula, we can 
rewrite (4.189) and (4.190) into 

(4.192) 

(4.193) 

Using lemma 1.3 from chapter 1 we can find the mean and variance-covariance 
matrix of Yu under T£4 (and also 1f{3 as discussed in the valuation of (4.186)). 
Since the foreign exchange rate s~. is log-quadratic Gaussian as well as p/5 ( u, Ji) 
and Gf6 (7i, u), the products s~. pis(u, Ti) and s~. Gf6 (7i, u) are also log-quadratic 

1 • 

Gaussian. \Ve can use (1.149) from chapter 1 to find the mean and variance-
covariance matrix of Yu under 1f £ 4 as well as 1f {3 • 

Therefore if we assume the quadratic Gaussian model given in (4.144), we 
can calculate all expectations involved in the calculation of the default leg and 
the premium leg of a quanto default swap in analytically closed form even if we 
assume a contagion model of default. The determination of the default leg involves 
a double integral as well as well as a single integral with the expectations as the 
integrands(see (4.122)). These integrals can be discretized and converted into 
sums. The determination of the premium leg involves only single integrals with 
the expectations al? integrands and therefore can also be converted into sums. 
Though we have considered a single obligor, these calculations indicate what type 
of calculations are necessary in a contagion model of default where we have two 
different obligors. If we increase the number of obligors in a contagion model of 
default, then calculating the value of credit sensitive securities involves considering 
all permutations of the possible default sequences 

'Tu(l)> • • • 1 'Tu(n) 

where a is an element of the permutaion group of order n. Thus we have to 
consider n! default sequences and for each such sequence, we will generally have to 
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consider n-dimensional integrals whose integrands are higher order expectations of 
the factor Yu under some defaultable forward measure. It seems that calculations 
for the different default sequences is a bigger challenge as we have to consider n! 
such sequences. 



APPENDIX 



A. MATRIX RICCATI EQUATIONS 

In this appendix we provide two theorems which are given in the survey article 
of Freiling (2002) (Theorem 3.1 and Theorem 3.5 of this reference). For more 
detail regarding matrix Riccati differential equations (RDE), we refer the reader 
to Freiling (2002). 

Definition A.1. Let M11 (t), M12 (t), .l\'121(t) and M22(t) be piecewise continuous( or 
locally integrable), time-dependent real or complex square matrices of dimensions 
n x n, n x m, m x n and m x m respectively. Furthermore we make the assumption 
that the matrix initial value differential equation which is given by 

is known as a matrix Riccati equations{RDE). 

Let 

and 
Y(t) = ( Q(t) ) 

P(t) 
(A.2) 

where Q and P are real or complex matrices with dimensions n x n and m x n 
respectively. \Vith (A.l), we associate the following linear ODE: 

Y = 1\f(t)Y. (A.3) 

According to Freiling (2002), the solution of (A.1) was first given in Radon (1927) 

and Radon (1928). 

Theorem A.2 (Radon's lemma-version 1). {i} Let I be then x n identity ma-
trix and let iv be on some interval Jc JR a solution of (A.l) with l-V(to) = 
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Wo. If Q is for some t E J the unique solution of the initial value problem 

Q = (Mu (t) + Mi2(t)W(t))Q, Q(t0 ) =I, (A.4) 

and P(t) := W(t)Q(t), then Y(t) = ( Q(t) ) defines fort E J the solution 
P(t) 

of (A.3) with Y(t0 ) = ( ~o ) . 

(ii) If Y(t) = ( ~~:; ) is on some interoal Jc JR the solution of (A.3) such 

that the determinant of Q(t) =I= 0 fort E J, then 

W: J ~ cmxn, t ..- P(t)Q(t)-1 =: 1-V(t) 

is a solution of (A.I); in particular l-V(t0 ) = P(t0 )Q(t0 )-1• 

Radon's lemma which is given above by Theorem A.2 is for the solution of initial 
value RDE. \Ve can adapt Theorem A.2 to solve terminal value RDE. A terminal 
value RDE is a matrix Riccati differential equation where as in Definition A.1, we 
have 

for some value t 1 representing the terminal end point of an interval J c R. In this 
case we are looking for a solution of (A.5) over an infinite interval (-co, t I) or a 
finite interval ( t0 , t I] for some finite to E R. Provided a solution exists, we can also 
solve (A.5) by considering the associated terminal value linear ODE which is given 

by 

Y = .l\1(t)Y, (A.6) 

where Af(t) and Y(t) are defined as in (A.2). 

Theorem A.3. If Y(t) = ( Q(t) ) is on some interval J = [to, t1] or J = 
P(t) 

(-oo, t1), the solution of (A.6) such that the determinant of Q(t) =I= 0 fort E J, 

then 
lV(t) := P(t)Q(t)-1 
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is a solution of (A.5); in particular W(t1) = P(t1 )Q(t1 )-1 . 

Proof Differentiating W(t) = P(t)Q(t)-1 with respect to t shows that it is the 
solution of (A.5). O 

Sufficient conditions on the initial value l:V(t0) guaranteeing the existence of 
a solution of the initial value RDE given by (A.l) are not knovm in the general 
case. For some particular cases, a summary of the results that have been obtained 
so far is given in Freiling (2002). Here we consider a special case of RDE knmvn 
as hermitian (or symmetric) matrix Riccati differential equation where sufficient 
conditions for the existence of a solution can be given. Let A* denote the conjugate 
transpose of the matrix A. Consider the terminal value RDE given by 

P = -A*(t)P - PA(t) - Q(t) + PWS(t)P, P(t1) = P1 1 (A.7) 

where Q, S and P1 are hermitian (or real symmetric) matrices. The terminal 
value RDE given by (A.7) is known as a hermitian (or symmetric) matrix Riccati 
differential equation (HRDE). The following theorem which is given in Freiling 
(2002) gives sufficient conditions for the existence of the solution of HRDE. 

Theorem A.4. Assume that S(t), Q(t) and P1 are positive semi-definite, piecewise 
continuous and locally bounded fort ~ t,. Let A(t) be piecewise continuous and 
locally bounded fort~ t,. Then the {unique) solution P of (A.7) exists fort~ t1 
with 

0 ~ P(t) ~ P(t) fort~ tfi 

where P(t) is the solution of the linear equation 

P = -A*(t)P - P A(t) - Q(t), P(to) =Po. (A.8) 



B. SOME RESULTS FOR MULTI-FACTOR QUADRATIC 
GAUSSIAN MODELS 

In this appendix we first provide the characteristic function of a quadratic form in 
Gaussian random variables (see, e.g., Mathai and Provost (1992)). We then give 
some of the results that are given in Cherif et al. (1994) regarding multi-factor 
quadratic Gaussian factor models. 

Lemma B.1. Given a quadratic form in Gaussian random variables, 

where ~ is a square symmetric matrix, ~ is a vector and 2l is a constant, the 
moment generating function of .Q under the measure 1r and conditional on :Ft is 
given by 

<I>(.Q, z) :=I I - 2 z ~ V(t, T) 1-4 exp ( - ~(.NI(t, T)V(t, T)- 1 AJ(t, T) - 2 z2l)+ 

~(M(t, T) + zV(t, T)~)T (J -2 z ~ V(t, T))- 1V(t, rr1(A1(t, T) + z V(t, T) ~)). 
(B.l) 

Proof We assume that E in {1.3) is positive definite and therefore V(t, T) is pos-
itive definite for t # T. Then we can use Theorem 3.2a.l given in l\fathai and 
Provost (1992) to find the moment generating function. 0 

Let rt denote the instantaneous rate of interest for an economy. Let D(t) denote 
the savings account which is the value of investing one unit of currency at time 
t = O and rolling over the account at the default free instantaneous rate of interest 
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Let Q denote the risk neutral measure which is the measure under which the value 
of a default free security discounted by the savings account is a martingale. Let 
Wt denote an n-dimensional standard Brownian motion under Q. We now assume 
that we have an Ornstein-Uhlenbeck Gaussian process Yi of dimension n which is 
a solution of the following SDE under the risk neutral measure: 

dyt = (µ(t) + A(t)Yi) dt + E(t) dWt. (B.2) 

Hence in this appendix Yi denotes a process with a non zero time dependent drift 
function given by µ(t). The matrices A and E are assumed to be time dependent. 
The first theorem gives the dynamics of a log quadratic Gaussian process. 

-Theorem B.2. Let Et be a stochastic process that is given by 

where CE(t) is a symmetric matrix, BE(t) is a vector and AE(t) is a scalar that 
are assumed to be differentiable with respect to t. Then Et is the solution of the 
following SDE: 

-
d~t = (YiT cE(t)Yi + BE(t) Tyt + AE(t)) dt - (2 y;T c.E(t) + BE(t)T)E dWt (B.3) 
Et 

where 

CE(t) = - A(tf CE(t) - C.E(t)A(t) - otC.E(t) + 2 C.E(t)E(t)E(t) T C.E(t) (B.4) 

Bs(t) = - 2c.E(t)µ(t) - A(tf B.E(t) - atB.E(t) + 2c.EE(t)E(t)T B.E(t) (B.5) 
- - - 1 -

JiE(t) = -Tr[E(t)E(t)T CE(t)] - BE(t)µ(t) - OtAE(t) + 2IE(t)T BE(t)l2
- (B.6) 

Theorem B.2 is proved in Cherif et al. (1994) using Ito's formula (Ito {1946)). 
\Ve now consider securities whose payoff at time T is log quadratic Gaussian. For 
such payoffs, we have the following lemma that is given in Cherif et al. (1994) (see 

also Cheng and Scaillet ( 2004). 

Theorem B.3. Let the payoff a security be equal to 
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at time T, then the discounted price1 of the domestic security which is denoted by 
Rt is log quadratic Gaussian and is given by 

where CR(t) solves the following terminal value symmetric matrix Riccati differ-
ential equation: 

! cn(t) = -AT cn(t) - cR(t)A + 2cn(t)~~T cR(t) - 1, cn(T) = cn(T) 

(B.7) 

and BR(t) and AR(t) solve the following ordinary differential equations 

1 Here when we say discounted, it means by the savings account of the economy. 
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