
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

SDN applications - the intent-based Northbound

interface realisation for extended applications

Minh Pham

iNEXT: Centre for Innovation in IT Services and

Applications

University of Technology, Sydney

 Sydney, Australia

 Minh.Pham@student.uts.edu.au

Doan B Hoang

iNEXT: Centre for Innovation in IT Services and

Applications

University of Technology, Sydney

Sydney, Australia

Doan.Hoang@uts.edu.au

Abstract—The Northbound Interface (NBI) plays a crucial

role in promoting the adoption of SDN as it allows developers the

freedom of developing their revenue-generating applications

without being affected and constrained by the complexities of the

underlying networks. To do so the NBI has to allow applications

to express their requirements and constraints in their own

application specific language, and the SDN controller to translate

those requirements into SDN network specific language for

provisioning network resources and services to satisfy the

application requirements. The intent-based NBI is born from this

consideration and the Open Networking Foundation (ONF)

provides principles and guidelines to build such an intent-based

NBI. However, these principles do not lend themselves readily to

the design and practical realization of an intent-based NBI for

extended classes of business-like network applications. This

paper introduces a solution and its initial implementation in the

form of a novel architecture for realizing the intent-based NBI.

The new solution exploits the modularized and reuse features of

the micro services and service oriented architectures.

Keywords—intent-based NBI, Software defined network, micro-

service architecture, domain driven design, NBI application

architecture

I. INTRODUCTION

Software-Defined Network (SDN) is a network technology
that separates the control plane from data plane in network
devices and centralizes control in the controller. This leads to
major benefits: simple network devices, the control of the
networks is implemented in the software and via
programmability, allowing network virtualization and
automation, and the openness of SDN programming interfaces
to all service providers and network providers according to
Hoang and Pham [1]. SDN architecture consists of three
separate layers as shown in Figure 1: application layer, control
layer and infrastructure layer or data plane. SDN control layer,
which includes one or more controllers, plays an import role in
the SDN operations because it provides an abstraction to build
network applications to operate on the networks. The controller
provides an abstract topology for network devices, device
management, etc. It is considered as a network operation
system that provides network services via interfaces: the
southbound interface (SBI) to network devices and the
northbound interface (NBI) to applications [2], [3].

Figure 1: SDN architecture

Despite many benefits of SDN, its adoption depends

critically on the ability to support all types of applications via
the NBI. Currently, the NBI is yet to be standardized; existing
solutions are vendor-specific, ad hoc, and limited in capability.
Realizing this, the Open Networking Foundation (ONF)
established a Work Group (WG) called NBI WG to manage the
development of NBI in controllers. Tadepalli [4] identified two
types of NBI usages: prescribed usage, in which users dictate
what network services they want in their applications, and
intent-based usage, which is completely contrast with the
prescribed one. In intent-based NBI model, users describe their
requirements of network application in normal conversation
language and the controller becomes an intelligent black box
that integrate core network services to construct network
applications to serve users’ requests [5]. Our main concern is in
the fulfilling system because the more powerful it is, the more
powerful applications it can build. Figure 2 describes the
concept of black box controller in intent-based NBI.

NORTHBOUND API

SOUTHBOUND API

Distribution
Packet

Processing

Device

Manager

Topology

Manager

Routing

Processing

Interface

management
openflow

Device DeviceDevice

Routing
Load

balancer

Data center

networks

OS

components

Figure 2: Intent-based NBI, controller as a black box to serve

customers’ request [5]

Traditional SDN network applications and services are

built on top of SDN and mainly concerned with traffic
engineering, networking management, access control, network
security and data center networking [6]. However, these
applications represent only a small portion of network-enabled
resources encapsulated and offered as core services through
current generation by controllers. The spectrum of SDN
applications is much wider than that. Almost all applications
require network support to some degree, the real task of an
SDN controller is to understand the application requirements
and provision required services through the management of its
underlying network resources. In increased complexity,
Jarraya, et al. [7] and Rao [8] identified many applications
through use cases of SDN in cloud computing, information
content networking, mobile networks, network virtualization
(NV) and network function virtualization (NFV).

In a particular mobile application delivery, over the cloud
on a global scale, Paul, et al. [9] identified the task list, which
includes service partitioning based on network or service
contexts and content, and service composition of detailed
components based on requirements. These and other business
applications represent a class of emerging applications.
Clearly, a well-defined NBI is needed to allow application of
all classes to express its requirements and constraints in their
own term, and to provide SDN controllers to translate the
application requirements to the underlying network
requirement and provision the required services. The intent-
based NBI is created for this purpose [5], the separation of the
fulfilling system enables us to build rich network applications
and services as other commercial systems. Currently ad-hoc
and application specific NBI are feasible to support traditional
applications that mainly use the core services from the
controllers. Existing NBIs, however, are not able to support the
emerging group of applications without proper definition and
well-design intent-based architecture for a unified NBI because
of the lack of functionality [9], including service partitioning,
network and service context checking, service composition
functionalities, etc.

This paper adopts the ONOS NBI intent framework and
proposed an intent-based NBI architecture that allows an
application to express its objectives, its policies, its
requirements and constraints without the need of a network-

specific language or the understanding of how the network is
being deployed to satisfy its request. Our intent-based NBI is
designed to reflect this understanding in order to support a
large class of applications. The proposed intent-based NBI
architecture is essential to translate diverse application needs,
expressed in application-specific language, to the expressions
the controllers can understand and function.

Our architecture supports not only traditional and emerging
applications but also allows them to create new services and to
compose, orchestrate, choreograph or split current services.
One of the innovative features of our NBI architecture is its
deployment of the micro service and service-oriented
architectures with divide-and-conquer domain driven design.

II. RELATED WORK

Following the work of Janz [5], several projects on intent-
based NBI were undertook in different controllers. ONF
initiated officially Boulder [10] to build a model of intent-
based NBI for Open Day Light (ODL) controller. The intent
model is similar to the intent framework in ONOS controller.
At HP [11] the Intent engine framework (NIC) supported multi
applications via detecting and resolving policy conflicts.
Project NEMO [12] at ODL concentrated on building a
language to translate intents into network processes and
services. Cisco designed and built the cloud infrastructure
using micro-services [13].

These projects addressed the missing NBI standards raised
in [6], [14], and [7] by focusing on the language for translating
intents and the framework to handle multiple applications
rather than the need of an architecture that is flexible and
robust to build extended network applications and services.

ONOS controller provides the application intent framework
as its NBI, in which an intent is an abstraction that describes a
network connectivity in the format of network policy. While
intent-based NBI is a usage that ONF identifies in the
controller NBI architecture, in ONOS, application intent
framework is a subsystem of the controller that serve
applications as NBI. Its purpose is to allow applications specify
networks as polices instead of low level rules, then intents are
compiled into network devices’ flow rules and installed into
the devices [15].

The intent framework is organized into an application
framework, which is a set of functions that are designed
specifically for an application domain so developers do not
need to code from scratch to build the application. The
framework usually provide access points that users can call or
customize, the rest of the framework is considered as a black
box and users do not need to know. Developers can customize
the application by deriving new classes and overriding required
functions of the framework [16].

Figure 3 summarizes the three main use cases of the
application intent framework in ONOS controller, the first use
case is when an intent is created and submitted via the NBI,
after that the framework will compile, store and install intent
flow rules on devices via the SBI. The second use case is the
result of the changes in the network environment itself, the
monitoring system identified the change and raised an event to

recompile the intent. The third use case is when users submit a
withdraw intent via the NBI, users need to provide intent id
and application id to identify the intent, the intent framework
will remove the intent and its flow rules from the store, and
from the devices. The application intent framework (below the
NB Interface) in figure 3 is invisible to users as these functions
operate under the framework’s controls.

Figure 3: Use cases of the ONOS intent framework

The application intent framework, ODL NBI or Floodlight

NBI, and others facilitate application development somewhat
but they are inadequate for constructing extended and
emerging applications and services because they lack
functionality for service partitioning, service composition,
service context checking and support for handling complex
business logic on top of core network services. In the next
section, we will describe our proposed solution architecture to
build extended applications and services.

III. THE PROPOSED SOLUTION ARCHITECTURE

The proposed solution must satisfy all requirements of an
intent-based NBI architecture that is described in the next
subsection.

A. The requirements of a proposed solution for intent-based

NBI realisation

The extended applications and services need to response to
dynamic changes in the application context, and the ability to
implement complex service composition based on policy,
configuration or performance requirement. The intent-based
realisation system needs to handle the interpretation from the
intent natural language into the terms that are meaningful to the
network core services of the controller. It must be able to
handle the intent’s composability attribute via the service
composition. The architecture should allow creation of new
services, reuse of existing services and composition these into

new applications. The application should be user-friendly with
different user interfaces such as web UI or CLI. The
architecture should ensure the separation of application
environment from the controller environment so that
applications will not interfere with controller. For the
architecture, the composability is the main architecturally
significant requirement (ASR) [17], because it determines the
procedure that allows divide-and-conquer solution approach,
enables modular design, and reuse of components to compose
the application. Figure 4 visualises the architecture from the
user requirement view. Some requirements are linked together
for handling complex business rules allowing new service
creation, service reuse, and service composition or partitioning.

Figure 4: Visualized the requirements of the architecture

B. The proposed solution architecture

The proposed architecture is designed based on all
requirements identified in the previous section. We adopt the
micro service oriented architecture and construct a three-tier
application architecture for realizing our NBI solution. In this
section we describe components of the solution.

1) Micro Service Architecture (MSA) design
MSA is part of the service-oriented architecture that

promotes the service pattern of service provider, service
consumer and service discovery [18], [19], [20], and allows the
flexibility in managing applications with design principles.

 Data decentralised principle: in our design, each
application has its own database management system, to
ensure application independence from data perspective.

 Componentised application: web service components
constructs are used in the application to promote reuse
of existing services and applications.

 Process isolation: In our design, each application runs
separately in its own process, so if one application is
down, it will not affect other applications and the
controller.

 Application design robustness: to ensure is the
application robustness, our design is for both successful
and failure scenarios.

The proposed architecture takes into account the MSA
design pattern to facilitate service discovery and reuse. These
include pattern of self-registration whereby an application

CREATE INTENT

Compiling

intents

Saving

flow rules

successful

Installable

intents

Install on

devices

Failed

intents

Errors

SOUTHBOUND INTERFACE

DEVICE

Recompiling

intents

NETWORK

EVENTS

DEVICE DEVICE

Searching

for intent

WITHDRAW

INTENT

found?

removing

from

stores

Uninstall

on devicesINTENT FRAMEWORK

NORTHBOUND INTERFACE

Y
YN N

SERVICE

COMPOSITION

Language

Interpreter

Adapt to

context

changes

Service,

Application

Reuse

Service

Discovery

Ease of use,

User friendly

Handle

complex

business rules

Adapt to

Controller

Structure

Availability,

Scalability,

Modifiability

Use & Extend

Core Services

Create new

services

registers itself as a service when it starts up and service client
lookup whereby client applications use the registry to search
for their services.

2) The three-tier application architecture
The proposed architecture is a three-tier architecture for

network applications and services as it satisfies the
requirements of our solution and serves well the development
of rich commercial applications. The three tiers are the
database tier, the business logic tier and the presentation tier,
and they work cohesively to deliver results.

 The database tier stores application states. It can be
relational database, and no SQL database such as
Mongo DB, so application states can be stored and
retrieved in different contexts.

 The business tier handles requirements’ complex
business logic via service creation and service
composition. It includes the service registry to discover
existing services including core network services and
other services. The controller’s NBI and core services
are used as the atomic layer in the service orchestration
because the application wants to retrieve abstract
network topology provided by the controller. New
services are created as atomic service or composite
service. The service integration element integrates new
and existing services to create the application.

 The presentation tier accepts input from users and
provides different interfaces of the application: CLI, the
REST interface, and the programming interface. The
three tiers work independently to provide the most
flexibility: each tier can change its components without
effects to other tiers.

Figure 5: Component view of the proposed architecture

Figure 5 depicts the three-tier pattern architecture and its

components. The left most is the user interface tier with Rest
API, programming API and Command Line Interface (CLI),
business tier is in the middle with new component service
creation, core network services, other existing services, service
registry, service integration element and new composite
service; and database tier is the right most. The new composite
service is the application to be returned to the requester.

3) Domain driven design
In the analysis process, the proposed architecture selects

domain driven design (DDD) principle over other software

designs because DDD matches well with the composition
attribute of the intents in the intent-based NBI, and fits in with
MSA principles [21]. Applying DDD, the requirements is
decomposed into smallest problem subdomains (i.e., a
composite intent can be decomposed into based intents), and
then solutions of each subdomain are built (base intents
composed into a solution intent). The solutions of subdomains
can be the core services in the controller or other existing
service and new services that NBI builds for the application
[22].

Figure 6 demonstrates the DDD process: the problem
domain is divided in three sub domains SD1, SD2 and SD3.
Using the skill and experience of the domain expert the
solution domain is designed with different business contexts
that is represented by bounded contexts.

Figure 6: Domain driven design example

4) The controller platform OSGi
Popular controllers written in Java like Beacon, ODL

Floodlight, and ONOS are built on the OSGi platform. The
core architecture of OSGi technology is a dynamic component
system in Java [23]. OSGi has different layers and figure 7
describes its layers.

Figure 7: the OSGi platform [23]

Developers divide application into logical components

called bundles and develop the bundles using core java
language. Each bundle has a manifest file to describe about it.
In each bundle, the bundle context is the only interface to
connect to the OSGi framework. To resolve the dependencies
between bundles, OSGi framework allows bundles to export
and import for reference. A bundle can be registered as a

Experts +

Dev Team

SD1 SD2

SD3

Problem

domain

Domain

Knowledge

Bounded

Context 1 Bounded

Context 2

Bounded

Context 3
Bounded

Context 5

Bounded

Context 4 Solution

domain

Sub problem

domain

Rest

API

CLI
New

service

creation

Service

Integration

element

Service

registry

Core network

services

Other

existing

services

New

composite

service

DB TIERBUSINESS TIERUI TIER

Progra-

mming

API

service via the service registry. A bundle retrieves the service
from the registry; and then calls its functions. Life cycle is used
to install, start, stop, update and uninstall of bundles and
services. Module defines how bundles can import and export
code for code dependencies. OSGi framework has enterprise
OSGi to connect to services and framework developed by Java
EE / Spring technology by wrap Java EE function / service in
OSGi service. OSGi also provides blueprint that is used for
service definition.

In the next section we will describe the prototype of the
proposed architecture in ONOS controller to build an
application called dynamic resource management [24].

IV. PROTOTYPE

In this section, the prototype to build the DRM application
based on the proposed architecture is used to evaluate the
hypothesis described in section I. The evaluation information
will be gathered in two groups: the steps to build DRM using
the proposed architecture and the results of running DRM
application in ONOS. We describe the DRM application setup
in the next subsection.

A. DRM application setup

Mijumbi, et al. [24] proposed a solution to network
virtualisation that emphasized the efficient management of
networks’ resources. In data centre, users’ request for virtual
networks (VN) comes randomly, and the mapping to the
substrate networks creates the required networks. This
gradually depletes switches and links’ resources. If resources
are not well managed, they will be too fragmented that results
in further users’ request will be rejected and revenue loss. [24]
used SDN to provision virtual networks. It also based on a
resource database that records the nodes’ and links’ resources
and the VN cost. And each VN is provisioned based on the
least cost path: of the available paths, the one with least ratio of
usage resource over available resource is chose. It proved that
the dynamic resource management solution improved the
request acceptance ratio by 40%.

The DRM application is originally implemented in
Floodlight controller. We applied our proposed architecture
and design principles presented in section III to implement the
DRM application. The three tier application architecture and
the DDD were used to build the DRM. The DRM requirements
were decomposed into the resource management element and
the virtual network creation element.

The resource management used database tables to store
usage and available resource of switches and links in the
substrate network.

The virtual network creation element used ONOS topology
service to search for paths between the two endpoints in input
parameters.

The service registry used the built-in OSGi service registry.
The service composition element is the program itself. The
programming interface and Rest API were used to integrate
services, and then the resource management was called to
determine the path with the least ratio.

The result path could be empty if it does not satisfy the
bandwidth requirements, and if the path exists, the application
created an intent for it and returned the result to users.

In ONOS UI views, the intent was displayed and we could
view the traffic in the created intent. The resource of switches
and links of the substrate network were used as variable for the
testing: the virtual network created between two switches was
varied when resources of network elements along its path were
changed.

B. Network setup

We set up the Geant network in Mininet as in the DRM
project. The Geant network includes 40 switches and 122 links
between switches across different countries in Europe; it is the
main network to promote research and education between
involved nations [25]. Based on the Internet topology zoo data
in .gml format, we extracted the switches and links between
switches, then we created these switches and links in Mininet
using python programming language and python’ Mininet code
libraries. The last step of the setup was deploying the DRM on
to ONOS controller running on top of the Geant Mininet
network using Mininet commands.

C. Results

The results are divided into two categories: the applying of
the proposed architecture and the result of the running DRM on
the Geant network based on resources setup in the database as
explained in the following sub-sections:

1) Applying the proposed archiecture
We have successfully implemented the prototype. The

architecture promotes modularity via the three tier architecture
pattern, decentralised data management and componentised
application thus enhances the modifiability of the architecture
if compared to service oriented architecture. It removed the
mystery in intent-based NBI and make the realisation of
extended application as straight forward as other business
applications. It promotes the economic values of service-based
architecture via the maximum reuse of existing components
and services that are available in the controller as well as
outside. The three-tier architecture promotes a neat architecture
and ensures that applications have their own components in
three-tier and will not interfere with controller’s components,
architecture and frameworks. With any type of requirements,
the steps in DDD in the architecture can be applied to integrate
into the required application. The application is also robust
because the design always concerns of success and failed
scenarios. Finally, using the controller core service as the
atomic layer, it ensures the realisation process always exploit
fully the topology abstraction provided in the controller.

2) Running DRM in ONOS controller
When the DRM application was running on the ONOS

controller, the available resources were uploaded into the
database. Available resources include the available and usage
resource for switches and links based on Geant network, they
are organised into two separate tables: available resource and
usage resource. We used Rest client to run the test cases on the
browser and used ONOS UI to check whether the intent was
created and its details. The log data was useful to follow the

trace of the program. The actual results were matched with the
manual calculations in the expected results and were recorded
in the table 1.

Table 1: Test results of running DRM on ONOS
Test case 1

details
Source: switch 09, Destination: switch 04, Bandwidth: 50

Resource

setup
ONOS returns two paths between 09–04

Path 1: 09-08-04: average usage / availability ratio: 102/600,
Path 2: 09-29-04: average usage / availability ratio: 102/270

Expected

result
Path 1 with the least average ratio

Actual result An intent was created for Path 1
Test case 2

details
Source: switch 00, Destination: switch 31, Bandwidth: 50

Resource

setup
ONOS returns two paths between 00–31
Path 1: 00-04-31: average usage / availability ratio: 102/200

Path 2: 00-02-31: average usage / availability ratio: 102/600

Expected

result
Path 2 with the least average ratio

Actual result An intent was created for Path 2
Test case 3

details
Source: switch 04, Destination: switch 12, Bandwidth: 50

Resource

setup
ONOS returns one path between04-12
Path 1: 04-29-15-12, all links are >=100

Expected

result
Path 1 should be returned

Actual result An intent was created for Path 1

V. CONCLUSIONS

In SDN network paradigm, NBI plays an important role
because it is the base to build innovative network applications,
and it lowers the barrier for new comers to enter the network
application market to generate more products for consumers. In
this paper we studied the NBI architecture and the intent-based
NBI guidelines by ONF WG. The intent-based NBI approach
is what needed to develop extended and business-like network
applications but there existed hardly a practical architecture to
realize the NBI. We have proposed an architecture based on
micro service and service-oriented design principles and three
tier application architecture to realise the intent-based NBI. We
deployed ONOS and OSGi platform to build our prototype.
We used the prototype to construct the Dynamic Resource
Management application. The results demonstrated that the
proposed architecture is appropriate, effective and realizable
for extended, business-like network applications for SDN with
the an intent-based NBI. In this SDN domain, we believe that
the proposed architecture is the first of its kind and presents a
step forward in promoting modularity, service reuse,
robustness and flexibility in managing controller and
applications. The proposed solution suggests a practical
methodology for building business-like network applications
and services in an intent-based NBI. It also provides a business
case for the standardization of NBI in SDN controllers.

REFERENCES

[1] D. Hoang and M. Pham, "On Software-defined networking and the
design of SDN controllers," presented at the Network of the Future
2015, Montreal, Canada, 2015.

[2] P. Goransson and C. Black, Software Defined Networks. USA: Morgan
Kaufmann, 2014.

[3] D. Hoang, "Software Defined Networking - Shaping up for the next
disruptive step?," Australian Journal of Telecommunications and Digital
Economy, Vol 3, No 4, pp.46-62, December 2015.

[4] R. Tadepalli, "NBI _ Northbound Interface Framework".

[5] C. Janz, "Intent NBI - Definition and Principles," 2015.

[6] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, "Software-Defined Networking: A
Comprehensive Survey," IEEE Proceedings, vol. 103, pp.14-76, Jan
2015

[7] Y. Jarraya, T. Madi, and M. Debbabi, "A Survey and a Layered
Taxonomy of Software-Defined Networking," Communications Surveys
& Tutorials, IEEE, vol. 16, pp. 1955-1980, 2014.

[8] S. Rao, "SDN and Its Use-Cases NV and NFV," Nec Technologies India
Limited, India2014.

[9] S. Paul, R. Jain, J. Iyer, and D. Oran, "Mobie applications on global
clouds using openflow and software-defined networking," in Network
Innovation through Openflow and SDN, ed: CRC Press, 2014, p. 19.

[10] OpensourceSDN. (2015, 12 January). Boulder Intent-based NBI.
Available:
https://www.google.com.au/search?q=NBi+project+boulder&ie=utf-
8&oe=utf-8&gws_rd=cr&ei=31CUVuq5MsOf0gT5kZPICA

[11] ONFSummit. (2015, 12 Jan). What is the intent anyway [Video].
Available: https://www.youtube.com/watch?v=QvEK_CFIGik

[12] ODL. (2015, 12 January). NEMO. Available:
https://wiki.opendaylight.org/view/NEMO:Main

[13] Cisco. (2015, 12 January). Microservices Infrastructure. Available:
https://github.com/CiscoCloud/microservices-infrastructure

[14] T. Zhang and F. Hu, "Controller Architecture and Performance in
Software-Defined Networks," in network Innovation through OpenFlow
and SDN, ed The United States: CRC Press taylor & Francis Group,
2014.

[15] T. Vachuska. (2014, 18 January). ONOS overview. Available:
https://www.youtube.com/watch?v=3lya-MY1cZw

[16] P. Arpaia and V. Inglese. (2014). Flexible Test Automation : A Software
Framework for Easily Developing Measurement Applications.
Available: http://UTS.eblib.com.au/patron/FullRecord.aspx?p=1911813

[17] L. Bass, P. Clements, and R. Kazman, Software Architecture In
Practice. Upper Saddle River, NJ: Addison-Wesley, 2013.

[18] M. L. Fowler, James. (2014). Microservices. Available:
http://martinfowler.com/articles/microservices.html

[19] J. Lewis. (2012, 11 September 2015). Micro services - Java the UNIX
way. Available:
http://2012.33degree.org/pdf/JamesLewisMicroServices.pdf

[20] C. Richardson, "Microservice Architecture Patterns," 2014.

[21] C. Richardson, "Developing Functional Domain Models with Event
Sourcing," presented at the Javazone 2015, Oslo, Norway, 2015.

[22] S. Millett, Patterns, principles, and practices of domain-driven design:
Wrox, 2015.

[23] OSGi. (2007, 3 December). Architecture. Available:
https://www.osgi.org/developer/architecture/

[24] R. Mijumbi, J. Serrat, J. Rubio-Loyola, N. Bouten, F. De Turck, and S.
Latre, "Dynamic resource management in SDN-based virtualized
networks," in Network and Service Management (CNSM), 2014 10th
International Conference on, 2014, pp. 412-417.

[25] University_of_Adelaide. (2012, 12 January). The internet topology zoo.
Available: http://www.topology-zoo.

