University of Technology, Sydney

Department of Chemistry, Materials and Forensic Sciences

INVESTIGATION INTO CLAY-BASED CONSOLIDANTS FOR CONSERVATION OF "YELLOW BLOCK SANDSTONES" IN SYDNEY'S HERITAGE BUILDINGS

PhD Thesis

Kin Hong Ip

2007

PhD THESIS

A thesis submitted in partial fulfilment of the requirement for the award of a PhD degree

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student

Production Note: Signature removed prior to publication.

Acknowledgement

I wish to express my greatest gratitude to my supervisors, Dr. B. Stuart, Prof. A. Ray and Dr. P. Thomas for their continuous support and guidance throughout this I am particularly grateful for their patience with me in difficult times. project. Their endless encouragement and belief in me have provided me with the confidence needed to complete this challenging task. I admire their resourceful ideas and valuable experience which have helped me understand many complex concepts and overcome unexpected encounters in the investigation. I would also like to thank staff from the New South Wales Department of Commerce and Gosford Quarry who provided me with sandstone samples for analysis. Great appreciation is given to the dedicated staff, at the Department of Chemistry, Materials and Forensic Sciences and the Microstructural Analysis Unit, who have helped me to run the experiments efficiently and smoothly. Last but not least, I would like to express my deepest appreciation to my husband, Ihab, who has given me endless support, particularly with the caring of our baby girl, Giana. So, I could concentrate on my thesis writing without disturbance.

Table of Contents

			Page number
List List List Abs	of Figu of Tabl of Acro tract	res es onyms	i vii viii ix
Cha	pter 1.	Introduction	1
Cha	pter 2.	Experimental methods	
2.1	Introdu	uction	11
2.2	Materi 2.2.1 2.2.2	als for sandstone weathering studies Origin of sandstone samples Sample preparation of historical samples	11 12
2.3	Materi 2.3.1. 2.3.2.	als for polymer-clay composite studies Clay mineral component Polymer component	14 16
2.4	Metho 2.4.1 2.4.2	ds for synthesis of polymer-clay nanocomposites Solution intercalation Melt intercalation	17 17
2.5	Analyt 2.5.1	ical techniques Fourier Transform Infrared (FTIR) Spectroscopy 2.5.1.1 Theory 2.5.1.2 Experimental method	19 20
	2.5.2	Nuclear Magnetic Resonance (NMR) Spectroscopy 2.5.2.1 Theory 2.5.2.2 Experimental method	21 22
	2.5.3	 X-ray Photoelectron Spectroscopy (XPS) 2.5.3.1 Theory 2.5.3.2 Experimental method 	23 25
	2.5.4	Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) 2.5.4.1 Theory 2.5.4.2 Experimental method	25 28
	2.5.5	X-ray Diffraction (XRD) and High Temperature XRD2.5.5.1 Theory2.5.5.2 Experimental method	28 29

	2.5.6	Environ	mental Scanning Electron Microscopy – Dispersive Spectroscopy (ESEM EDS) and	
		SFM (S	canning Electron Microscopy	
		2561	Theory	20
		2.5.6.2	Experimental method	30
		2.3.0.2		22
	2.5.7	X-ray N	fapping	
		2.5.7.1	Theory	34
		2.5.7.2	Experimental method	35
	2.5.8	Atomic	force microscopy (AFM)	
		2.5.8.1	Theory	35
		2.5.8.2	Experimental method	36
Cha	apter 3.	Review	of the Weathering of Sandstones	
3.1	Introd	uction		38
3.2	Types	of sandst	cones in Sydney	38
3.3	Sandst	tone degr	adation in Sydney's heritage buildings	
	3.3.1	Discolo	uration of sandstone	40
	3.3.2	Granula	r disintegration and pitting	42
	3.3.3	Biodete	rioration	44
3.4	Visual	observat	ion of sandstones in Sydney's heritage buildings	45
3.5	Review	w on rece	nt studies of natural and synthetic clays	53
3.6	Needs	for nove	l stone consolidants	59
Cha	pter 4.	Charac	terisation of the Weathering of Sydney Sandstones	
4.1.	Introd	uction		63
4.2.	Experi	imental a	nalysis	
	4.2.1	FTIR sp	ectroscopy	
		4.2.1.1	Results	64
		4.2.1.2	Discussion	68
	4.2.2	NMR sp	ectroscopy	
		4.2.2.1	Results	70
		4.2.2.2	Discussion	72
	4.2.3	XPS spe	ectroscopy	
		4.2.3.1	Results	7 4
		4.2.3.2	Discussion	76

	4.2.4	Thermal analysis	
		4.2.4.1 Results	77
		4.2.4.2 Discussion	81
	4.2.5	XRD and high temperature XRD	
		4.2.5.1 Results	83
		4.2.5.2 Discussion	86
	426	ESEM-EDS	
		42.61 Results	02
		42.62 Discussion	92
			101
	4.2.7	SEM-ZEISS	
		4.2.7.1 Results	105
		4.2.7.2 Discussion	109
	170	V roy Monning	
	4.2.0	A-ray Mapping	110
		4.2.8.2 Discussion	110
		4.2.8.2 Discussion	112
4.3	Summ	ary of results	116
			110
Cha	apter 5.	Review of Stone Consolidants	
5.1	Introdu	uction	119
5.2	Types	of existing consolidants	
	5.2.1	Waxes	119
	5.2.2	Inorganic materials	120
	5.2.3	Synthetic organic polymers	121
	5.3.4	Alkoxysilanes	123
	5.3.5	Surface conversion	126
5 3	New r	einforced composites for stone consolidants	126
5.5	5 2 1	Polymer clay papacomposites	120
	5.5.1	Polymer-clay hanocomposites	129
5.4	Conso	lidants for Sydney sandstones	133
CL		Durantian and Characterization of Detertich Stone Con	
Cna	ipter o.	rreparation and Characterisation of Fotential Stone Con	sondants
6.1.	Introdu	action	137
()	Caluta	- intercolotion	
0.2	Solutio	on intercatation	120
	0.2.1		138 146
	0.2.2		140
	0.2.3	λκυ	120
6.3	Melt ir	ntercalation	
	6.3.1	SEM	161
	6.3.2	XRD	167

6.4	5.4 Section discussion		
	6.4.1	Solution intercalation	171
	6.4.2	Melt intercalation	176
Cha	pter 7.	Conclusions and Future Work	180
App	oendix .	4	
Eler Sme	mental ectite in	Analysis of ActiveGel 150, Arumpo montmorillonite and Tixogel and Bentone SD	187
App	oendix [B	
Jou	rnal an	d Conference articles produced during the PhD project	188
Bib	liograp	hy	189

.

List of Figures

•

Figures	Titles	Page number
1.1a	A Sydney yellow block sandstone	2
1.1b	A schematic diagram of Sydney yellow block sandstone	2
1.2	Queen Victoria's Building 1	4
1.3	St Mary's Cathedral, Sydney	4
1.4	Main quadrangle of the University of Sydney	5
2.1	Flow chart for sample preparation of weathered and unweathered sandstones from Sydney's heritage buildings	14
2.2	The reflection of the incident radiation in DRIFTS	20
2.3	A schematic diagram of excitation of electron in XPS	24
2.4	Schematic diagram of an X-ray photoelectron spectrometer	24
2.5	Schematic diagram of a thermogravimetric analysis apparatus	27
2.6	Schematic diagram of a DSC instrument	27
2.7	Schematic diagram of a scanning electron microscope	31
2.8	Schematic diagram of contact AFM	37
3.1	Discolouration of Sydney yellow block sandstone in Royal Botanic Garden, Sydney	41
3.2	Granular disintegration of a sandstone wall in the Hyde Park Barracks in Sydney	43
3.3	Algae and lichens on a sandstone wall at St Francis Xavier Church, Berrima, NSW	45
3.4	Queen Victoria Building 2	47
3.5	Sydney Town Hall	47
3.6	Climbing plants on a sandstone facade of the University of Sydney	48

3.7	Granular disintegration of a sandstone in the Hyde Park Barracks, Sydney	48
3.8	Iron rich Sydney sandstone – State Library of NSW	49
3.9	Detachment of brittle surface of iron rich Sydney sandstone – the Royal Botanic Gardens	49
3.10	Restoration of sandstone at Hyde Park Barracks	49
3.11	Repair of a sandstone fence at St Mary's Cathedral with quartz rich cement	50
3.12	Cracks and surface destruction of a sandstone post near St Mary's Cathedral	50
3.13	Gravestones at Rookwood Cemetery showing discolouration	51
3.14	Gravestone at Rookwood Cemetery showing a black deposit on the roof	51
3.15	Black deposit on the rooftop of Berrima Gaol	52
3.16	Black and red deposit on a retaining wall at Rookwood Cemetery	52
3.17	Schematic diagram of the crystal structure of kaolinite	54
3.18	Schematic diagram of montmorillonite	56
4.1	OH stretching region of the DRIFT spectra of weathered, unweathered cementing clay and standard kaolinite	65
4.2	Fingerprint region of the DRIFT spectra for the weathered, unweathered cementing clay and standard kaolinite	66
4.3	OH stretching region of the DRIFT spectra of the unweathered, weathered cementing clay and standard kaolinite after non-structural iron removal	67
4.4	Fingerprint region of the DRIFT spectra of the unweathered, weathered cementing clay and standard kaolinite after non-structural iron removal	68
4.5	Time relaxation plot of pore size distribution in weathered and unweathered yellow block sandstones from St Mary's Cathedral	71
4.6	Time relaxation plot of pore size distribution in weathered and unweathered yellow block sandstones from the Art Gallery of NSW	72

4.7	Low resolution XPS spectrum of weathered and unweathered cementing clay samples	74
4.8	High resolution XPS spectra of weathered clay sample before and after non-structural iron removal	75
4.9	TGA traces of standard kaolinite, weathered and unweathered cementing clays from St Mary's Cathedral before and after non-structural iron removal	78
4.10	DSC traces of standard kaolinite, weathered and unweathered cementing clays from St Mary's Cathedral before and after non-structural iron removal	79
4.11	DTG traces of standard kaolinite, weathered and unweathered cementing clays from St Mary's Cathedral before and after non-structural iron removal	80
4.12	XRD pattern of unweathered cementing clays	84
4.13	XRD patterns of weathered cementing clays	85
4.14	XRD pattern of standard kaolinite	85
4.15	XRD pattern of hot stage analysis of unweathered cementing clay before non-structural iron removal	88
4.16	XRD pattern of hot stage analysis of weathered cementing clays before iron removal	89
4.17	XRD pattern of hot stage analysis of unweathered cementing clays after iron removal	90
4.18	XRD pattern of hot stage analysis of weathered cementing clays after iron removal	91
4.19	ESEM image of unweathered cementing clay sample before non-structural iron removal	92
4.20	ESEM image of Impurity 1 found in unweathered cementing clay	93
4.21	EDS spectrum of Impurity 1 in unweathered cementing clay	93
4.22	ESEM image of Impurity 2 in unweathered cementing clay	94
4.23	EDS spectrum of Impurity 2 in unweathered cementing clay	94
4.24	ESEM image of weathered cementing clay before non-structural iron removal	95

4.25	ESEM image of Impurity 3 in weathered clay sample	96
4.26	EDS spectrum of Impurity 3 in weathered clay	96
4.27	ESEM image of Impurity 4 in weathered clay sample	97
4.28	EDS spectrum of Impurity 4 in weathered clay	97
4.29	ESEM image of unweathered clay after non-structural iron removal	98
4.30	ESEM image of weathered clay after non-structural iron removal	99
4.31	EDS spectrum of an unweathered clay after iron removal treatment	100
4.32	EDS spectrum of a weathered clay after iron removal treatment	100
4.33	SEM image of unweathered section of the Sydney sandstone from St Mary's Cathedral showing the impregnated polystyrene	105
4.34	SEM image of unweathered Sydney sandstone from St Mary's Cathedral	106
4.35	SEM image of clay platelets in unweathered cementing clay from St Mary's Cathedral, Sydney	107
4.36	SEM image of pores and voids in unweathered cementing clay from St Mary's Cathedral, Sydney	107
4.37	SEM image of weathered sandstone surface from St Mary's Cathedral, Sydney	108
4.38	High resolution SEM image of weathered cementing clay from St Mary's Cathedral, Sydney	109
4.39	X-ray maps of the white sections of Sydney sandstone from St Mary's Cathedral	113
4.40	X-ray maps of the orange section of Sydney sandstone from St Mary's Cathedral	114
4.41	X-ray maps of the red sections of Sydney's sandstone from St Mary's Cathedral	115
5.1	Polymerisation of tetraethoxysilane	124
5.2	Schematic diagram of macro/micro reinforced polymer-clay composite	130

5.3	Schematic diagram of intercalated polymer-clay nanocomposite	131
5.4	Schematic diagram of exfoliated polymer-clay nanocomposite	132
5.5	Schematic diagram of interaction between proposed consolidant and heritage stone wall	136
6.1	ESEM image of PVAlMMTu30 composite	139
6.2	ESEM image of PVAIMMTu50 composite	139
6.3	ESEM image of refluxed PVAlMMTu10	140
6.4	ESEM image of CaSO ₄ found in acidified montmorillonite	141
6.5	EDS results for CaSO ₄ found in acidified montmorillonite	141
6.6	ESEM image of acidified PVAIMMTu10	142
6.7	SEM image of acidified PVAIMMTu20	143
6.8	Higher magnification SEM image of acidified PVA1MMTu20	144
6.9	SEM image of acidified PVAIMMTu30 (cross section)	144
6.10	SEM image of acidified PVAIMMTu80	145
6.11	AFM image of acidified PVAIMMTu60	147
6.12	AFM image of diluted and acidified PVAIMMTu0	148
6.13	AFM image of diluted and acidified PVAIMMTu0	148
6.14	AFM image of diluted and acidified PVAIMMTu 25	149
6.15	AFM image of diluted and acidified PVAIMMTu25	149
6.16	AFM image of diluted and acidified PVAMMTu60	150
6.17	High resolution AFM image of diluted and acidified PVAMMTu60	151
6.18	AFM image of diluted and acidified PVAIMMTa60	152
6.19	High resolution AFM image of Arumpo montmorillonite particle embedded in PVAI matrix	153
6.20	AFM image of Arumpo clay in poly acrylic acid matrix in PAAMMTa20	154

6.21	AFM image of Arumpo clay in poly acrylic acid matrix in PAAMMTa20	154
6.22	AFM image of Arumpo clay in poly acrylic acid matrix in PAAMMTa20	155
6.23	XRD patterns of acidified PVA1MMTu polymer-clay nanocomposites	157
6.24	XRD patterns of acidified PVAIMMTa nanocomposites	158
6.25	XRD patterns of PAAMMTa20 nanocomposite	160
6.26	SEM image of PEOBEN0 disc	162
6.27	SEM image of PEOBEN10 disc	162
6.28	Higher magnification SEM image of PEOBEN10 disc	163
6.29	Low magnification SEM image of PEOBEN50 disc	163
6.30	Low magnification SEM image of PEOBEN100 disc	164
6.31	ESEM image of PEOTIX20 disc	165
6.32	ESEM image of PEOTIX30 disc	165
6.33	ESEM image of PEOTIX30 disc	166
6.34	XRD patterns of PEOBEN nanocomposites before heating	168
6.35	XRD patterns of PEOBEN nanocomposites after heating	168
6.36	XRD patterns of PEOTIX nanocomposites before heating	1 69
6.37	XRD patterns of PEOTIX nanocomposites after heating	170

List of Tables

Tables	Titles	Page number
4.1	Peak position in DSC traces of standard kaolinite, weathered and unweathered cementing clay from St Mary's Cathedral	80
4.2	Peak position on DTG traces of Standard kaolinite and cementing clay from St Mary's Cathedral	81
6.1	XRD peak positions present in PVAIMMTu samples	157
6.2	XRD peak positions present in PVAIMMTa samples	159
6.3	XRD peak positions present in PAAMMT samples	160
6.4	XRD peak positions present in PEOMMT samples	169

List of Acronym

AFM:	Atomic Force Microscopy
CRT:	Cathode Ray Tube
DRIFT:	Diffuse Reflectance Infrared Fourier Transform
DSC:	Differential Scanning Calorimetry
DTG:	Derivative Thermogravimetry
DTGS:	Deuterated Triglycine Sulfate
EDS:	Energy Dispersive Spectroscopy
ESCA:	Electron Spectroscopy for Chemical Analysis
ESEM:	Environmental Scanning Electron Microscopy
FTIR:	Fourier Transform Infrared
IR:	Infrared
NMR:	Nuclear Magnetic Resonance
PAA:	Poly acrylic acid
PAAMMT:	poly acrylic acid – montmorillonite
PEO:	Poly ethylene oxide
PEOBEN:	poly ethylene oxide - Bentone
PEOTIX:	poly ethylene oxide - Tixogel
PVAl:	Poly vinyl alcohol
PVAIMMTu:	Poly vinyl alcohol – montmorillonite from Unimin
PVAIMMTa:	Poly vinyl alcohol. – montmorillonite from Arumpo
SEM:	Scanning Electron Microscopy
TG:	Thermogravimetry
XPS:	X-ray Photoelectron Spectroscopy
XRD:	X-ray Diffraction

Abstract

Many of the 19th century heritage buildings, located in Sydney, were built from locally quarried sandstone. After more than a century of natural weathering, a number of the sandstone buildings are showing signs of deterioration. In order to ascertain the appropriate preservation techniques of such buildings, an understanding of the mechanisms of degradation of these buildings stones must first be sought before consolidation treatment is carried out. The objectives of the thesis are to first characterise the degradation processes of selected heritage yellow block sandstone, followed by the synthesis and characterisation of potential polymer-clay nanocomposites as stone consolidating systems. In order to target particular degradation problems in heritage sandstones, a thorough understanding of the degradation mechanisms of the sandstone is essential before suitable materials are synthesised to prevent or slow down further damages to the stones. The novel approach of this thesis is to use a large range of analytical techniques for the characterisation of degraded yellow block sandstone samples. The methods of preparation of a series of novel polymer-clay nanocomposite consolidating systems can then be optimised according to the characteristics of each stone, and potential consolidant systems can be identified. Although various materials have been employed as stone consolidants in the past, the proposed use of polymer-clay nanocomposites as potential stone consolidants is a novel approach.

A number of analytical methods including FTIR, NMR, XPS, XRD, SEM and thermal analysis were used to characterise the sandstone and to determine the degradation mechanisms of the sandstones in Sydney's heritage buildings. The yellow block sandstones were found to be composed of sand grains (60 - 68%) bound together by a kaolin-based cementing material (16 - 25%). As the silica sand is essentially

ix

inert, the study focused on the clay component of the stone. An increase in iron concentration on the stone surface contributed to the discolouration of the stone and provided a source of Fe^{3+} for the isomorphous substitution of Al^{3+} in the octahedral sites and possible Si^{4+} in the tetrahedral sites of the aluminosilicate layers in the cementing clay. The substitution resulted in the brittleness of the stone, but preserved the layered structure of the clay binder and retained the overall integrity of the sandstone. A change in pore size distribution was observed on weathering of the sandstone, with an increase in population of large pores providing greater access to atmospheric pollutants, soluble salts and rainwater to the sandstone core, making the already weathered stones more vulnerable to further degradation.

Based on the model of degradation, the physical properties of Sydney sandstones and the aim to produce consolidants for easy application, hydrophilic polymer-clay nanocomposite systems were prepared. Montmorillonite was used as the clay component for its similar layer structure as the kaolinite presented in the cementing materials in the yellow block sandstone samples, while poly(vinyl alcohol), poly(acrylic acid) and poly(ethylene oxide) were used as the polymer component for their hydrophilic nature. AFM and XRD analysis were used to investigate the polymer-clay interactions in these composites. While the AFM analysis reveals the topography of the synthesised polymer-clay film without melting the samples, XRD analysis indicates the degree of separation of the montmorillonite clay platelets by the polymer chains through the detection of the shift of the XRD peaks. The intercalation and partial exfoliation of montmorillonite platelets in different hydrophilic polymer matrices was observed in both the solution and melt intercalation methods. PAAMMTa samples were found to be the best intercalated/exfoliated nanocomposites in the solution intercalation method. Although better separation of clay platelets was demonstrated in the XRD results using the melt intercalation method, it would not be considered a

х

preferred method at present time due to the impractical nature of using solid products as stone consolidants. However, further research may provide solution for the dissolution of such materials in suitable solvents without affecting its consolidating ability. The hydrophilic nanocomposite materials investigated in this project show great potential as a new class of sandstone consolidants for the binding of porous weathered sandstones in Sydney's heritage buildings.

Î.