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Abstract 
Accurate computer network traffic models are required for many network tasks 
such as network analysis, performance optimization and areas of traffic engineer-
ing such as avoiding congestion or guaranteeing a specific quality of service (QoS) 
to an application. Existing traffic modelling techniques rely on precise mathe-
matical analysis of extensive measured data such as packet arrival time, packet 
size and server-side or client-side round trip time. \Vith the advent of high speed 
broadband networks, gathering an acceptable quantity of data needed for the 
precise representation of traffic is a difficult, time consuming, expensive and in 
some cases almost an impossible task. A possible alternative is to employ fuzzy 
logic based models which can represent processes characterized by imprecise data, 
which is generally easier to gather. The effectiveness of these models has been 
demonstrated in many industrial applications. This work develops fuzzy logic 
based traffic models using imprecise data sets that can be obtained realistically. 
Optimizing the performance of a router requires the optimization of a number of 
conflicting objectives. A possible approach is to express it as a multi-objective 
problem. l\Iulti-objective evolutionary algorithms (:'.IOEA) can be used for solv-
ing such problems. This research proposes two fuzzy logic based traffic models: 
fuzzy group model and fuzzy state model. These models together with ~IOEA are 
used to propose a simple and fast router buffer management scheme. The devel-
oped fuzzy group model includes a parameter which is also useful for measuring 
the irregular traffic patterns known as burstiness. The experimental results are 
prormsmg. 
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Chapter 1 

Introduction 

The Internet is a complex network (105, 133). In a competitive market place, 
network designers, planners and managers need to analyze and optimize the per-
formance of networks to guarantee a specific Quality of Service (QoS) to end-users 
and to avoid network congestion resulting from variations in the rate of flow of user 
traffic. As Internet user bandwidth heads toward the Gigabit per Second (Gbps) 
range, network designers need to reexamine: high performance network protocols, 
routing protocols, switching techniques, congestion control mechanisms, network 
measurement, analysis and management tools, network topologies. All of these 
technologies require appropriate traffic modelling. 

Existing modelling techniques (discussed in Chapter 2} rely heavily on precise 
mathematical analysis and extensive measured data (65]. \Vith the advent of 
high-speed broadband neti.vorks, gathering an acceptable quantity of data needed 
for precise representation of the traffic is difficult, time-consuming and even, in 
some cases, an impossible task. An alternative might be to use fuzzy logic based 
models \vhich can represent systems characterized by imprecise data. 

In recent years, a variety of new applications such as video streaming and network 
interactive games have been introduced on the Internet. \Vith these new applica-
tions, the characteristics of Internet traffic (such as packet inter-arrival time, the 
distribution of packet sizes and application protocols) have also changed [123). 
Hence new network modelling approaches are needed to deliver efficient and so-
phisticated network router buffer management schemes that can avoid congestion 
and still be able to deliver a specific quality of service. 

1 



CHAPTER 1. INTRODUCTION 

Buffers in routers are valuable resources. For optimum performance, routers may 
temporarily store or even drop packets. Managing a router buffer requires the 
optimization of several conflicting objectives. For example, as the packet drop 
rate decreases, the queuing delay may increase. The optimization of computer 
network systems involves a number of such problems which are known as multi-
objective optimization problems. 

In recent years l\1ulti objective evolutionary algorithms (MOEAs) have received 
much interest for addressing these problems. These algorithms aim to encapsulate 
the possibly complex interactions of the various objectives of problems in such a 
way that the true dynamics and the full potential of the system being optimized 
may be explored. 

The main objectives of this study are to: 

1. develop appropriate traffic modelling and performance analysis schemes for 
high-speed computer networks. The approaches taken should allow reason-
ably accurate models of the traffic to be developed using data sets that 
can be obtained realistically. Such models should be simple to implement 
but still useful in traffic analysis (such as queuing performance analysis and 
burstiness analysis) and performance improvement. 

2. explore the suitability of fuzzy logic for building such models. 

3. develop a mathematical quantity to measure the burstiness of a traffic 
stream. 

4. explore the application of l\IOEAs for optimizing aspects of network per-
formance such as router buffer queue management. 

5. explore how the developed traffic models can be applied to examine other 
network problems such as traffic analysis. 

This thesis has eight chapters. Chapter 2 describes existing traffic modelling 
schemes. Existing traffic models are classified into three generations. The first 
generation models are Poisson based models suitable for modelling traditional 
tele-traffic. Second generation models aim to model data-traffic such as the early 
Internet traffic. Second generation models focus on capturing the self-similarity 
nature of network traffic. Recently, several researchers observed non-stationarity 

2 



CHAPTER 1. INTRODUCTION 

in modern Internet traffic making previous models inadequate (all previous mod-
els assume network traffic to be stationary). The models that focus on the non-
stationary characteristics of traffic are termed third generation models. Chapter 
2 also discusses the need for a new approach to modelling network traffic. It 
is argued that fuzzy logic based models are appropriate to model modern day 
heterogeneous traffic. 

Chapter 3 discusses some network measurement tools, various net\'\"Ork perfor-
mance parameters and network analysis and how they can be used in the com-
plex problem of dimensioning a router buffer. This chapter also describes Active 
Queue l\fanagement schemes such as Random Early Detection (RED) and some 
of its variations for managing the router buffer queue and the network congestion 
caused by the in-built TCP flow control mechanism and variation in the rates 
of flows. The router queue management is formulated as a Multi-Objective Op-
timization (l\10) problem and the design principles for the queue management 
scheme is discussed. 

Chapter 4 reviews soft computing and in particular: fuzzy logic and evolutionary 
computing. Soft Computing (SC) tries to resemble human reasoning. Unlike 
conventional computing (hard computing) which strives for exactness and relies 
on the mathematical capabilities of a computer, SC is tolerant of uncertainty, 
approximation and partial truth. The first part of this chapter reviews fuzzy 
logic and fuzzy logic systems. The second part of this chapter discusses the 
available solution methodologies (classical approach and evolutionary approach) 
for a l\IO problem. The idea of Pareto optimality and how it may be used to find 
an acceptable solution of a 1\10 problem is explored in this chapter. 

Chapter 5 contains our proposed fuzzy logic based traffic models. 1\yo such 
models are proposed. The first named fuzzy state model models the state of a 
traffic stream. This model can be used in a router to schedule its resources and to 
set up its control parameters (such as packet marking/dropping rate). The other 
model named fuzzy gro·up model is developed to assist performance analysis. This 
model introduces the R Parameter which can have multiple applications is used 
in the implementation of these models. 

Chapter 6 discusses the analysis of 84 publicly available network traffic traces 
using our fuzzy logic based traffic models. The value of the R parameter and H 
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CHAPTER 1. INTRODUCTION 

parameter (Hurst Parameter) of these 84 traces are computed and their relation-
ship with queuing performance and burstiness is discussed. Queuing performance 
is analyzed with the help of a trace-driven queuing simulator and the burstiness 
is analyzed with the help of energy plots. It is shown that the R parameter can 
be a valuable tool for exploring traffic characteristics. 

Chapter 7 proposes Fuzzy Adaptive Fair Random Early Detection (FAFRED), 
an active queue management scheme. FA.FRED is developed based on our pro-
posed traffic models. Various router performance indices, such as packet drop 
rate, average queue length and fairness indices are computed for FA.FRED and 
the results are compared with other active queue management schemes. The 
comparison results are promising, indicating that the performance of a router 
can be improved using FA.FRED. 

Chapter 8 contains concluding remarks. The results and limitations of this 
research work are discussed. Several recommendations for future research are 
made. 

Technical terms are defined in the text, where necessary and appear in the glossary 
(Appendix A). List of abbreviations and symbols used are given in Appendix B 
and F respectively. 

4 



Chapter 2 

Historical View of Network Traffic 
Models 

In this chapter models for characterizing Internet traffic are discussed. Section 
2.1 briefly introduces the Internet, network traffic and traffic models. l\Iost exist-
ing traffic models are statistical and mathematical models. Section 2.2 to Section 
2.8 reviews existing (statistical and mathematical) traffic models from a histor-
ical perspective. Section 2.9 summarizes the weaknesses of statistical models 
and describes the motivation on developing traffic models using a different ap-
proach. One aim of this research is to develop a relatively simple but accurate 
traffic model that can capture complex characteristics of network traffic. One 
such characteristic is the burstiness. Section 2.10 discusses existing techniques to 
measure the burstiness of a traffic stream. 

2 .1 Internet Traffic 

The Internet is built upon the TCP /IP protocol suite [30). In this context, a 
protocol is an agreed set of rules for data interchange. TCP /IP is a set of protocols 
particularly designed for inter-networking. An internetwork is a series of more 
than one network interconnected by routers (or other devices) that functions as 
a single logical network. 

On the Internet, millions of communications similar to the above scenario take 
place every second. These communications make up the flow of a very large 
number of packets over the physical media. This flow is known as Internet traffic. 
Internet traffic can be classified into two types: user traffic and aggregate traffic. 

5 



CHAPTER 2. HISTORICAL VIEvF OF NETv'10RK TRAFFIC MODELS 

User traffic is the traffic produced by a user application. Aggregate traffic is the 
aggregation of more than one stream of user traffic. That is, the traffic is aggregate 
t raffic when several user traffic streams are aggregated together and transmi tted 
over a common shared media. Figure 2 .1 shows a block diagram of user and 
aggregate traffic. User traffic is characterized by a network flow. A net,,·ork 
flow or simply a .fiow is a stream of packets of the same application transmitted 
from the source to the destination in a single session. Clear understanding of 

the characteristics of both aggregate and user traffic is cri t ical to the design and 
performance of a network. The characteristics of Internet traffic are described 
mathemat ically by traffic models which a re re,·iewed next. 

2.2 Application of Traffic Models 

A traffic model is a tool to anal.vze the ways in which traffic packets mm·e from 
host to host on the Internet. In recent .\·ears , a variety of new applications such 

as video st reaming and network interact i,·e games ha,·e been introduced on the 
Internet. \ \"ith these new applicat ions, t he characterist ics of Internet traffi c (such 
as packet inter-arrival t imes. packet sizes and applicat ion protocols) ha,·e also 
changed. 

Owing to the growth of the Internet. a router on the Internet might need to drop 
a number of packets clue to owrfiow of the router buffer. T he situat ion. when 
incoming traffic is so heavy that router buffer o\·erflow occurs. is called congestion. 
A net,vork can become congested clue to other reasons such as two or more packets 
arriving at a node and wanting to exit from the same outpu t interface at the 
same time. T he best way to tackle congestion is congest ion avoidance [61j. An 
alternative can be adopting a more resilient network architecture with built-
in optimum buffer capabili ties. Anv successful congestion control or arnidance 
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Figure 2 .1: User Traffic and Aggregate Traffic 
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algorithm requires an appropriate traffic model. 

l\fodelling Internet traffic is a complex task as traffic increa5ingly contains not only 
text messages or numerical data but also audio and video broadcasting. l\fodelling 
video traffic is more complex simply because the activity level is high and there 
is a higher variability in the packet size and the arrival distribution of packets 
1121. In this integrated multi-service, multimedia networking environment, one 
of the most important aspects of the design and management of networks is 
knowledge of the characteristics of network traffic. A traffic model should be able 
to capture these complex traffic characteristics so that it can be useful for many 
areas of computer networking, such as congestion notification and avoidance, 
traffic control an~ management, dynamic routing and control, network resource 
scheduling, network performance analysis and Quality of Service (QoS) based 
routing and billing. Some of these applications are discussed in Chapter 3. 

Traffic control, management and network resource scheduling are achieved by 
means of queue management schemes. Traffic control and queue management 
systems are a set of mechanisms by which packets are received, queued (if re-
quired) and forwarded to the appropriate interface of the router. In a queue 
management system, generally, if the network becomes too congested, packets 
may be dropped instead of being queued. The packet drop rate is dynamic and 
depends on the incoming traffic pattern and the network congestion state. The 
design of these systems depends on the traffic model. For example, a traffic con-
trol system that assumes traffic follows the Poisson distribution will require a 
smaller buffer size and a smaller packet drop rate than a model that assumes the 
traffic to be non-Poisson 121. This will be discussed further in the later sections 
of this chapter. 

One single traffic model might not be appropriate for all areas where an accurate 
traffic model is required. The aim of our research is to develop one or more traffic 
model(s) that can be used to analyze the complex characteristics of Internet traffic 
and to apply the model(s) to develop a queue management scheme \Vith excellent 
performance. 

7 



CHAPTER 2. HISTORICAL VIEW OF NETV\lORK TRAFFIC 1\fODELS 

2.3 Mathematical Representation of Traffic Streams 

A simple traffic stream is a sequence of arrivals of discrete entities such as packets 
or cells. Mathematically a traffic stream can be described in one of the follmving 
three ways (65J: 

1. as a point process 

2. as a counting process 

3. as an inter-arrival time process 

A traffic can be mathematically described as a point process consisting of a se-
quence of packet arrival times T1, T2 , • • • , Tn, · · · measured from the origin. It 
is a convention to assume the origin T0 to be 0. 

In a counting process representation, a traffic stream is expressed as a counting 
process {N(t)}~0 • This process is a continuous-time, non-negative integer valued 
stochastic process, where N(t) is the number of traffic (such as packet or byte) 
arrivals in the interval (0, t). 

In an inter-arrival time process representation, a traffic stream is expressed as 
a inter-arrival time process, which is a real-valued random sequence {An }~= 1 , 

\Vhere An = Tn - Tn-l is the length of the time interval bet\veen the n-th and the 
previous arrivals. 

An alternative to the above representations is a binning approach [74]. In this 
approach the duration of the traffic stream is divided into a finite number of 
non-overlapping time bins of equal length. Each bin is associated with a start 
time and an end time. The start time of a bin is equal to the end time of the 
previous bin and the end time of a bin is equal to the start time of the following 
bin. A traffic stream is then represented as a real-valued non-negative sequence 
{ N ( i)} ~ 1, where N ( i) represents the number of traffic (such as packet or byte) 
arrivals in the ith time bin. 

All the above representations express a traffic stream as a time series. Statistical 
models have long been used for modelling time-series. Consequently most existing 
traffic models are statistical models. Generally in a statistical model, the model 
for the time-series is developed first and then the model parameter(s) are adjusted 
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to fit the measured data. But if the nature of the time-series is complex and if the 
statistical properties of the time-series are changing over time, it may not always 
be possible to fit the model parameters accurately. An alternate approach could 
be to build the models directly from the measured data. 

Internet traffic models from a historical perspective are reviewed next. In this 
work, based on the time of development, traffic models are classified into three 
generations. Traffic models in each generation take different approaches and make 
different assumptions. The review discusses the limitations of existing models 
and the overall statistical approaches they use. In section 2.9, motivations for 
developing traffic models that use a measured data approach and do not make 
any statistical assumptions are discussed. 

2.4 First Generation Models - Non-Self-Similar 
Models 

Traffic models developed before the 1990s focused mainly on simplicity of analysis. 
They assumed non-self-similarity where a working definition of self-similarity is 
that a self-similar object is exactly or approximately similar to a part of itself. It 
looks or behaves the same when viewed at different scales on a dimension such 
as space or time. The models developed before the discovery of the existence of 
self-similarity in network traffic are classified as First Generation Models. 

Informally, burstiness means that the number of packets arriving in a short time 
interval is much higher than the average. First generation models assume that 
aggregated traffic 'vould smooth out these traffic bursts as the number of traffic 
sources increased. The earliest such models were based on Poisson distributions 
and ignored bursts completely. Later, burstiness was observed on network traffic 
and attempts were made to incorporate burstiness on top of Poisson distributions. 
The pure Poisson models are reviewed first. 

2.4.1 Poisson Models of Internet traffic 

The Poisson distribution expresses the probability of a number of events occurring 
in a fixed period of time, provided the events occur with a constant average rate 
and the occurrence of these events is independent of each other. If an event follows 
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a Poisson distribution, the probability that there are exactly k occurrences of the 
event during a time interval is given by 

(2.1) 

where k is a non-negative integer and >.. is the average occurrence rate of the 
event during the interval [116). A Poisson process is a stochastic process where 
the events during a time interval follow a Poisson distribution. 

Poisson models are the oldest and the simplest traffic models (49). This model has 
only one parameter, the mean arrival rate >.. Packet arrivals during an interval t 
follow a Poisson distribution with mean t>.. and packet inter-arrival times follow an 
exponential distribution (116J. The probability density function of an exponential 
distribution has the form 

{ 
>..e-AX 

f(x, >..) = 
0 

x>O 
x<O 

(2.2) 

A pure Poisson model can model only smooth traffic. A variation of pure Poisson 
models, known as a Compound Poisson l\Iodel tried to add burstiness to pure 
Poisson modelling (67). In this model, packets arrive in batches. The inter-batch 
arrival times are exponential and the batch size is geometric which means there 
can be an infinite range of batch sizes. This model requires two parameters, the 
batch arrival rate, >..and the batch parameter, p with 0 < p < 1. In this model, 

mean number of packets in a batch - p 
mean inter batch arrival time 1 - x 
mean packet arrivals over time period t - t), 

p 

2.4.2 Markovian Models 

Ordinary Poisson models exhibit too little burstiness to match real traffic. In 
order to incorporate burstiness, researchers began to consider the superposition 
of multiple types of traffic sources, each with a different packet generation rate. 
The result ·was the development of l\farkovian models [58). 

A process is said to have the J\,/arkov property (44), if the future state of the 
process is conditionally independent of the past states. A }..f arkov chain (44] is a 
stochastic process with the l\Iarkov property. At each point in time, the process 
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may have changed states from the previous state, or the system may have stayed 
in the same state. If the Markov chain is restricted to have two states, it is called 
a two-state Markov chain. 

In a l\farkovian model, packet arrival is a Poisson process where the instantaneous 
arrival rate is given by the state of a l\farkov chain, instead of being constant (as 
in an ordinary Poisson model). This type of arrival process is called a Markov-
modulated Poisson process (l\IMPP). In the case of a two-state Markov chain, 
the l\Il\IPP can be thought of as a switched Poisson process with two different 
arrival rates -X1 and .X2 and sojourn time (time spent in a state) Cl'1 and Cl'2 • \Vhen 
the process is in the first state, packets arrive with rate .X 1 and if the process is 
in the other state, packets arrive at a rate .X2 • That is, in a two-state Markovian 
model, the traffic arrival process is an Ml\IPP process defined by four parameters: 
A1, -X2, Cl'1 and a 2 • The mathematics of hmv to derive the parameters of a given 
traffic trace may be found in [58). 

By allowing two states, the l\ll\IPP model incorporates limited burstiness on top 
of a Poisson model. This burstiness is still insufficient to match real traffic [1, 38). 
The l\11\IPP model can be extended by allowing more than two states and the 
resulting process would be burstier than the simple two-state case. However this 
would increase the mathematical complexity of computation and was not studied 
by the authors, Heffers and Lucantoni in [58). 

The next section discusses "self-similarity", a characteristic of network traffic that 
was unnoticed in the first generation models, yet seems to have serious implica-
tions for designing and planning of high-speed networks. At first self-similarity 
is discussed and then how this discovery makes Poisson based first generation 
models obsolete is represented. 

2.5 The Discovery of Self-Similarity 

Self-similarity was first observed by Mandelbrot [89] in a wide range of physical 
(and mathematical) systems. He illustrated that it is an inherent property in 
many irregular and bursty systems. Self-similarity is a property of a particular 
type of stationary process. In this section stationarity, self-similarity and some 
of the characteristics and consequences of a self-similar process are discussed. 
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2.5.1 Stationarity 

Stationarity can be described in terms of probability theory 143], which is a branch 
of mathematics that deals with the phenomena of randomness. 

Let X(t1), · · · , X(ti) be a time series. Sometimes X(ti) is represented by Xi 
and the time series X(t1), • • • , X(ti) is represented by X 1, · • • , Xi or simply by 
{Xi} i>o· The mean, denoted by µ and the variance, denoted by CJ2 of a random 
process {Xi}i>O are defined by 

µ = E[Xi] 

u 2 = E [(Xi - /t)2) 

where E[Xd denotes the expected value of the random variable Xi. 

(2.3) 

(2.4) 

The lag k autocorrelation function, r(k) of the process {Xi}i>O is defined as 

r(k) = E [(Xi - µ) (Xi+k - 1i)] 
u2 (2.5) 

A time series X{ti), · · · , X(ti) is said to be stationary if the joint distribution of 
X(t1), · · · , X(ti) is the same as the joint distribution of X(t1 +t0 ), • • • , X(ti +to) 
for all ti,··· , ti, to. In other words, all the statistics, such as mean, variance and 
autocorrelation of X(t 1), • • • , X(ti) remain unchanged after any time shift. 

Another weaker form of stationarity, known as weak-sense stationarity or wide-
sense stationarity (\VSS) or covariance stationarity 1116] requires that the first 
two moments (mean, variance) and also autocorrelation do not vary with respect 
to time. 

Originally, it was believed for a long time that Internet traffic is a stationary time 
series 132, 125]. The first consequence of assuming the stationarity (or weak-sense 
stationarity) of Internet traffic is that the overall mean of any statistical property 
(such as byte counts or packet counts) does not change with respect to time. The 
same holds for higher moments (at least up to second order), such as variance 
and covariance. Since these moments remain constant, the stationarity (or weak-
sense stationarity) property of Internet traffic indicates stable behavior. It also 
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indicates that Internet traffic is not biased or influenced by the time of day or 
day of the week. 

2.5.2 Self-Similarity 

Self-similarity is described with the help of the autocorrelation function (equation 
{2.5)). Let {Xih>o be a weak-sense stationary (\VSS) process with meanµ and 
variance a2

• Let { Xi}i>O represent a traffic stream, where Xi is a measurement 
that represents the number of bytes that have arrived during the ith time interval. 
Each time interval can be thought as a time-bin of size equal to the interval. 

Using the process {Xih>o, let us define a new process {Xi(m)h>o, obtained by 
averaging the Xis over non-overlapping blocks of size m i.e., 

x<m) 1 - ! (X1 + ·· · +Xm) 
x<m) 2 - ! (Xm+I + · · · + X2m) (2.6) 

x~m) - ! {X(i-l)m+l + · · · + Xim) I 

The formulation of the process { xi(m) h>o from { Xi}i>O is known as the aggrega-
tion and m is the aggregation level (37]. Equation (2.6) shows that the construc-
tion of the aggregated process { xi(m) h>o is equivalent to widening the bin size of 
{Xi}i>O by m times and decreasing the number of bins by m times. If the Xis 
are random, for a large value of m, each Xi(m) will have very similar values and 
will tend towards /l. In that case, the autocorrelation function of equation (2.5) 
will be close to zero. This property is known as short range dependency (SRD) 
(37). I\fathematically, a process is SRD, if for all k, 

r(k)-+ 0 as m-+ oo (2.7) 

Equation (2. 7) shows that an SRD process has a finite autocorrelation function 
for all values of k. In other words, it is said that SRD processes have a summable 
autocorrelation function. That is, the summation of autocorrelation functions 
for all values of k is finite. On the other hand, the autocorrelation function 
never vanishes for a Long Range Dependent (LRD) process (37). Mathematically, 
the process {..Yi}i>O is said to be LRD, if for sufficiently large k (k -+ oo), its 
autocorrelation function has the form 
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r(k) "' k-(2-2H) (2.8) 

with 0.5 < H < 1. H is called the Hurst parameter or simply the H parameter 
(37J. For 0 < H < 0.5, the process is short range dependent. 

The process { Xi}i>O is called exactly second-order self-similar, if, for sufficiently 
large k ( k ~ oo), the autocorrelation function r<m) ( k) of the aggregated process 
{ Xi(m) }i>O holds the following condition 

r(m)(k) "'k-<2- 2H> for all m (2.9) 

The process {Xi}i>O is called asymptotically second-order self-similar or simply 
self-similar if for sufficiently large k ( k ~ oo), the following condition holds 

(2.10) 

Equations (2.8), (2.9) and (2.10) show that the Hurst parameter completely char-
acterizes LRD or self-similarity. The value of H indicates the degree of self-
similarity. 

Equation (2.10) shows that, for an asymptotically second-order self-similar pro-
cess, the autocorrelation decays so slowly with aggregation that no level of aggre-
gation can eliminate the autocorrelation within the process. Subsequent values 
at large scales (m ~ oo) retain some dependency on prior values even as the scale 
continues to increase. Because of this property, a self-similar process is called a 
long memory process. 

Equation (2.10) shows that the self-similar process has a non-summable autocor-
relation function. This implies that, for self-similar traffic, the traffic counts do 
not smooth out by widening the bin size. That is, burstiness at all time scales is 
an inherent property of self-similarity. 

2.5.2.1 Hurst parameter estimation 

Self-similarity is a phenomenon that is observed at large time scales. To observe 
self-similarity, a huge amount of data is required so that it can be aggregated to 
large scales (equation (2.6)). Thus, estimating the H parameter for a real traffic 
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trace requires a measurement of huge quantities of data and computation. There 
are several methods of estimating the Hurst parameter of a self-similar process 
such as a variance-time plot [32] or the Abry and Veitch method [3]. These are 
described below. 

Variance-Time Plot. Equation (2.10) can be used to estimate the H param-
eter. The product of the variance and autocorrelation of a process is called the 
autocovariance of that process. Therefore, denoting the lag by k and the lag k 
autocovariance by "l(k) equation (2.10) can be rewritten as 

asm-+oo (2.11) 

Equation (2.11) shows that the plot of (a<m>) 2 as a function of min a log-log scale 
should be a straight line with slope 2H - 2. The value of H can be estimated 
from the slope of the plot. 

Abry and Veitch Method. The Abry and Veitch Method (3, 111] computes H 
by a wavelet decomposition [63) of the time series. In this method a time series 
consisting of a sequence of packet counts or byte counts in a small time interval 
(typically in the order of a millisecond) is formed and the wavelet-spectrum (63] 
of this series is generated. The spectrum consists of the wavelet coefficients at 
each scale. The variance of the coefficients at a scale is plotted against the scale. 
The value of H is calculated from the slope of the plot (3). In this work due to 
their simplicity and accuracy this method is used to estimate H for real traffic 
traces (25). The algorithm is outlined in Appendix E and wavelet based energy 
plots are discussed later (section 2.10.1). 

2.5.2.2 Generating Self-Similar Traffic 

The two most commonly used self-similar processes are fractional Gaussian noise 
(fGn) and the fractional autoregressive integrated moving-average (ARll\IA) pro-
cess [96). Fractional Gaussian noise is exactly self-similar and ARlMA is asymp-
totically self-similar. 

In this work an ARHv'lA process is generated to compare the queuing performance 
of our models with real network traces (section 6.3). 
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ARIMA(O,d,O) is the simplest and the most fundamental of fractional ARI~'lA 
processes. ARI.MA(O,d,O) is defined as: 

Xn = t ( ~ ) Xn-k + 'n for n > 0 
k=l k 

(2.12) 

where ~ is Gaussian White Noise and ( ~ ) denotes the binomial coefficient. 

A Gaussian white noise process is a sequence of independent and identically-
distributed (i.i.d.) normal random variables (42). The parameter d is knmvn as 
the fractional difference parameter. It is related to the Hurst parameter as 

d= H-0.5 (2.13) 

If d is allowed to have values between -0.5 and 0.5, the process Xn in equation 
(2.12) is known as a fractional A.RH.IA (FARll\.IA) process. 

From equation (2.12), for a given value of d, an asymptotically self-similar process 
can be generated as: 

Xo - 'o 
X1 - '1 + dxo 
X2 - '2 + dx1 + ~d(l - d)xo 

(2.14) 

In our work equation (2.14) is used to generate self-similar traffic for use in traffic 
analysis (section 6.3). 

2.5.3 Evidence for Self-Similarity in Network Traffic 

In the early 1990s, a group of Bellcore researchers found the existence of self-
similarity in Ethernet data (124). In 1994, Leland, Taqqu, \Villinger and \Vilson 
in [79) showed the existence of self-similarity on network traces graphically. One 
of the graphs is given in Figure 2.2 (reprinted with permission of the author). 
The figure shows that self-similar traffic exhibits high variability at a scale as 
large as 100 seconds. 

Figure 2.2 also shows that at smaller time scales (0.1 second or smaller), both the 
self-similar and the Poisson traffic have spikes. The spikes mean that the packets 
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Figure 2.2: Packet count vs time of self-similar network traffic (on left) and 
Poisson traffic (on right) at various time scales. (Reprinted with permission from 
authors of (79]). Self-similar traffic exhibits high variability at all time scales. 
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come in a burst. For Poisson traffic, burstiness disappears and traffic becomes 
smooth for scales larger than 1 second. However, for self-similar traffic, burstiness 
does not disappear at scales as high as 100 seconds. 

2.5.4 Failure of Poisson Based First Generation Models 

All the first generation models are Poisson based and rely on the Central Limit 
Theorem. The Central Limit Theorem states that if more and more random 
variables with finite variance from a distribution or distributions are aggregated, 
the aggregate distribution tends to a normal distribution, and the aggregate mean 
will "smooth" toward a single mean. 
Self-similar traffic exhibits LRD, which cannot be removed by aggregation and 
hence the Central Limit Theorem does not hold. Since all the first generation 
models rely on Poisson processes, none of them can capture self-similarity. Thus 
the discovery of self-similarity made all the Poisson based models obsolete. 

The theoretical failure of Poisson based models \Vas confirmed in experimental 
results by Paxson and Floyd (104]. Their study shmvs the inability of Poisson 
based models to capture the burstiness of real self-similar traffic at various time 
scales. Their study also shmvs that, packet inter-arrivals cannot be modelled by 
a Poisson distribution. Paxson and Floyd then applied a Pareto distribution (82] 
to model packet inter-arrival time. Although the Pareto distribution is not self-
similar, it can match self-similar traffic for a small period of time (104] up to a 
time scales of tens of seconds. 

Since all the first generation models rely on Poisson processes, they cannot model 
real network traffic accurately. In a real network, packets may arrive in bursts. As 
a Poisson process is memoryless, this burstiness cannot be captured by Poisson 
based models and thus they fail to model the traffic at larger time scales (Figure 
2.2). Although the Ml\1PP processes are able to incorporate burstiness, the simple 
hm-state l\Iarkov chain is not enough to model real self-similar traffic (section 
2.4.2). A number of researchers have shown in practice that Poisson based models, 
that are termed as first generation are not suitable for modelling self-similar traffic 
(79, 103, 104}. 
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2.6 Second Generation Models - Self-Similar Mod-
els 

\Vith the evolution of the Internet, the characteristics of network traffic changed 
and new models were proposed. In the early to mid 1990s, several researchers 
confirmed the existence of self-similarity in various local area networks (LAN) 
and in Internet traffic [32, 54, 79, 103]. In this \Vork, the models proposed in 
the middle to late 1990s are classified as Second Generation Models. These 
models assume the traffic to be self-similar (and consequently to be covariance 
stationary). Several popular traffic models such as the chaotic map model and 
the Brownian motion model \Vere proposed during this period. They are reviewed 
below. 

2.6.1 Chaotic Map Model 

The chaotic behavior (52] of a process can be characterized by three criteria: 

1. It is deterministic, meaning it obeys some simple rule and its future dy-
namics is well defined by the initial conditions. 

2. It is highly sensitive to initial conditions, which means its behavior can be 
predicted only for short times. Because of this sensitivity, any small change 
in an initial condition leads to a significant change in future behavior. This 
property is known as Sensitive-dependence on Initial Condition (SIC). 

3. It has an underlying pattern. 

Chaotic maps [52] are the simplest form of system exhibiting chaotic behavior. 
A chaotic map is a function with chaotic behavior that maps a state variable 
to its next state. By iterating the mapping, any number of new states can be 
generated. 

Let us consider a chaotic map Xn+I = f (xn) and two trajectories with nearly 
identical initial conditions x0 and x0 + c, with c -+ 0. Sensitive-dependence on 
Initial Condition can be expressed mathematically as 

(2.15) 
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where JN is the map iterated N times. The parameter f. that describes the 
exponential divergence is called the Liapunov exponent (40J. 

A chaotic map model (40J uses chaotic maps to model packet traffic sources. In 
this model, the state variable Xn evolves over time according to a one-dimensional 
map: 

Xn+l = { 
Ji (xn) if 0 < Xn < Z 

h(xn) if Z < Xn < 1 
(2.16) 

where Ji(.) and J2 (.) are chaotic maps satisfying the SIC condition invocation 
(2.15) and z is the model parameter. 

A packet generation process is modelled by assuming that a traffic source is in a 

passive or active state at time n depending on \vhether Xn is below or above the 
threshold z. Each iteration of the map produces a new value of Xn· If Xn is higher 
than z, then the source is in the ON state and a packet (or a batch of packets 
where the batch size can be determined by another chaotic map) is generated. 
\Vhen Xn < z, the source is in OFF state. That is, the packet arrival process is 
described by Yn as 

Yn = { 
0 if 0 < Xn < Z 

1 if Z < Xn < 1 
(2.17) 

The main challenge in implementing a chaotic map model is to find suitable Ji (.) 
and f2(.). Erramilli, Singh and Pruthi in (40J successfully used the Intermittency 
map to model packet generation. The Intermittency map is defined by 

{ 
c + Xn + ex~ if 0 < Xn < Z 

Xn+l = x z i'f 1 
i°~z Z < Xn < 

(2.18) 

\Vhere c = 1-_:i-z and j is an integer. 

They studied the case of j = 2 and showed that the resulting series is self-
similar. In simulation, their chaotic map model successfully generated a self-
similar process that resembled real TCP traffic with no retransmission. However, 
they did not attempt to validate these results against real network traffic. 
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2.6.2 Brownian Motion Model 

Norros proposed a traffic model called the storage model [99). This model is 
based on Fractional Brownian Motion (ffim) which is defined below. 

A stochastic process { X ( t) I t E T} is said to be a Gaussian process, if any linear 
combination of X(t)s are normally distributed. That is, for any positive integer 
n < oo, aiE JR and any ti, · · · , tn ET, 

(2.19) 

is normally distributed. 

A Gaussian process {X(t) It ET}, for 0 < H < 1 satisfying: 

1. X(O) = 0 and X(t) is continuous 

2. for any t > 0 and a > 0, the increment X(t +a) - X(t) is normally 
distributed \Vith mean zero and variance a 2H 

is called Fractional Brownian Motion (ffim), where H is the Hurst parameter. 
If H = !, the process is called Brownian motion. The derivative of Brownian 
motion is called fractional Gaussian Noise (fGn). 

In the storage model, Norros studied a traffic storage system (such as a router) 
with LRD input. Input traffic is represented by a Norros process V(t). l\fathe-
matically, a Norros process is a stochastic process and is given by: 

V(t) =sup (A (t) - A (s) - C (t - s), t E (-oo, oo)) (2.20) 
s::;t 

where sup denotes the supremum operator [86) and A(t) is the process 

A(t) =mt+ yl(imZ(t), t E (-00,00) (2.21) 

and Z(t) is a fractional Brownian motion process with self-similarity parameter 
(Hurst parameter) HE [!, 1], m > 0 is the mean input rate of the Norros process, 
a > O is a coefficient of variance and C > m is the service rate of the storage 
system. 
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Norros studied the behavior and calculated analytical solutions for traffic origi-
nating from the ffim model. In [99), Norros also provided capacity planning and 
buffer dimensioning solutions for a router to serve self-similar traffic. Informally, 
these solutions determine the amount of buffer space that is required by a router 
for optimum performance. 

The application of the Norros model to a real network requires estimating the 
H parameter. The estimation of the H parameter is a difficult task (section 
2.5.2.1). The Norros model did not provide any mechanism for estimating the 
H parameter in a simple manner. This significantly limits the application of the 
model in real networks. 

2.6.3 Discussion of Self-similar Models 

Self-similar models are generally attractive as they can capture the burstiness of 
network traffic. But self-similar models are not ahvays applicable. Erramilli in 
[39J pointed out the limitations of self-similar models. They demonstrated that 
self-similar models are appropriate only under the following strict conditions: 

• there should be large-scale aggregation of network traffic sources; 

• there should not be any significant TCP congestion. Network controls 
should not significantly impact the flows over the scaling region; and 

• the scaling region should be large enough, so that LRD can impact the 
scaling region. For short samples, LRD might not be reflected. 

Another dra\vback of self-similar models is that the analysis of a queuing system 
with self-similar traffic is not analytically tractable. Therefore, these models 
might not be useful in network simulations. 

2.7 Evidence of Non-Stationarity 

In the early 2000s, a group of researchers from Bell Labs observed pervasive 
nonstationarity on an uncongested Internet link [15, 16). They found that, as 
the traffic load increases, the packet arrival rate tended toward a Poisson arrival 
rate and the packet size distribution tended toward independence. This was in 
clear contrast to the self-similarity property previously studied (Section 2.5.2). 
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Karagiannis, l\Iolle and Faloutsos then studied several backbone (a high-speed 
line that forms a major pathway within the Internet framework) traces from 2002 
and 2003 [71] and found some interesting characteristics, such as: 

• at milli-second time scales (up to a few hundred milliseconds), traffic ap-
pears to exhibit LRD; 

• at sub-second time scales, traffic appears to be Poisson; 

• at multi-second time scales, traffic appears smooth, but nonstationary; and 

• at a very large scale (such as a few hundreds or thousands of seconds) the 
global average of a traffic variable (such as byte count) may drift very far 
away from a local average (indicating nonstationarity). 

They found nonstationarity in the Internet traffic in two ways: 

1. As the TCP connection rate changes, the parameters of statistical models 
fitted to the traffic variable, such as the packet (or byte) count distribution 
change. Example of such parameters are min the Norros model (equation 
(2.20)) or j in the chaotic map model (equation (2.18)). 

2. As the TCP connection rate changes, the queuing characteristics of the 
traffic change. 

The discovery of nonstationarity makes self-similarity based second generation 
models inadequate particularly at sub-second or higher scales. This motivates 
the development of the next generation of models. The models proposed in the 
early 2000s are classified as Third Generation Models. 

2.8 Third Generation Models 

The observation described above of Poisson patterns at sub-second time scales 
makes traffic models even more complex. Third generation models try to add a 
Poisson component to LRD. Such models can be labeled "non-stationary Poisson 
r..Iodels" (71]. The most popular third generation models are the Fractional Sum 
Difference (FSD) model and its variants which are described below. 
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2.8.1 The Fractional Sum Difference-Moving Average (FSD-
MA) Model 

A moving average (MA) process of order k of a time series is the weighted mean 
of the previous k points. Let, Zu be a first order moving average process, defined 
by: 

(2.22) 

where~ is Gaussian white noise with mean 0 and variance (l+<p2)-1. According to 
the Fractional Sum Difference - l\Ioving Average (1) (FSD-l\IA(l)) model, traffic 
is modelled by the process 

(2.23) 

where, Xu is a FARI~IA process (equation (2.12)) and(} is the parameter of the 
FSD-l\IA(l) model with 0 < fJ < 1. 

Equation (2.23) shows that the traffic process Yu is a combination of t\vo compo-
nents. The first component Xu is a FARD.IA process. Since a FARE\IA process is 
LRD, the first component of Yu is the LRD part. The second component of Yu is 
Zui which is a moving average of white noise. Therefore, as () -+ 0, Yu :::::::: v'I=Bxu. 
Since xu· is self similar, Yu is also self-similar with H = d + 0.5 (equation (2.13)). 
As (} -+ 1, the LRD part equates to zero and Yu is a first order moving average 
of white noise. If, <p = 0 and () = 1, Yu is simply white noise and the model is 
known is known as a Fractional Sum Difference (FSD) model [15]. That is, FSD 
is a special form of FSD-MA(l). 

The FSD-~IA(l) and FSD models can capture both the LRD and the Poisson 
aspects of network traffic. For millisecond and smaller time scales, () is set to a 
value close to 0 and the traffic is primarily self-similar traffic. For multi-second 
and higher time scales, (} is set to a value close to 1. 

The FSD-MA(l) model is simple, attractive and promising. Open loop (conges-
tion free) Internet packet traffic [17] and HTTP source traffic [14] are modelled 
using the FSD-:ti.IA model with a great deal of success. 

Third generation models are promising, but still in their early stages. The popular 
FSD model has been applied to model only open loop traffic (section 2.8.1). 

24 



CHAPTER 2. HISTORICAL VIE\V OF NET\VORK TRAFFIC :MODELS 

2.9 The Need for a New Approach 

The observation that, at a multi-second time scale, Internet traffic tends towards 
Poisson, leads to questions such as: "is the traffic pattern reverting?" or "does 
LRD exist at higher than multi-second time scales (perhaps a thousand or million 
second scale)?" or "after how many months or years, will traffic characteristics 
change again?". The answers are not known. These questions pose challenges to 
statistical traffic models. The assumptions currently made by statistical mod-
els may prove to be wrong with the evolution of networks. For example, first 
generation models assumed network traffic to be Poisson (section 2.4). Second 
generation models made the assumption that network traffic is covariance sta-
tionary (section 2.6). Later it was found that these assumptions are not quite ac-
curate (section 2. 7). These developments provided a motivation for us to develop 
a traffic model which does not make any such assumptions based on statistical 
properties. 

Generally in the case of statistical models, the models are developed first and then 
model parameters are adjusted to fit the measured traffic data. An alternate 
approach can be building the models directly from the measured data. This 
"measured data approach" has the advantage that unlike statistical models, it 
does not require any assumptions to be made. Generally this approach is more 
adaptive than statistical models. The dynamic and complex nature of network 
traffic makes this approach attractive. 

The measured approach has the disadvantage that the measurement of data can 
add computational complexity. A further complication may arise due to the 
privacy of data. By making simple measurements and avoiding measuring any 
user sensitive data these problems can be overcome. These issues are further 
discussed in section 3.4. 

Another reason to use a different approach to modelling network traffic is that, 
existing and emerging traffic modelling techniques (section 2.4, 2.6 and 2.8) rely 
heavily on precise mathematical analysis of extensive amounts of data. \Vith the 
advent of high speed broadband networks, gathering the acceptable quantity of 
data needed for precise representation of traffic is a difficult, time consuming, 
expensive and in some cases, almost an impossible task. For example, in an 
ATivI network with 53 bytes cell length and with a transmission rate of 1 Gbps, a 
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router has at most 424 nanoseconds to take a routing decision and to forward it 
to an appropriate interface. \Vithin current processing speeds and facilities this 
is difficult. The Norros process (equation (2.20)), fractional Brownian motion 
(section 2.6.2) and chaotic maps (section 2.6.1) - all require a huge amount of 
mathematical computation. These are making mathematical (and statistical) 
models unattractive. 

!\lost of the existing traffic models depend on the Hurst parameter in some way. 
Estimation of H depends largely on the estimation method used 173, 110] and 
the estimated value of Hof a traffic trace can vary by as much as 33% (25]. The 
natural way to estimate H is the variance time plot that requires curve fitting 
(section 2.5.2.1). This indicates that estimation of H may be vague. In other 
\Vords, to date, most existing models that rely on the Hurst parameter are based 
on a parameter estimation method which can be imperfect or imprecise. 

Mathematical and statistical models are not the only tool to deal with imperfect 
or imprecise data. In science and technology, imprecise or uncertain ideas have 
generally been handled with probabilistic models for hundreds of years. But the 
difficulty with accurately estimating H makes these approaches inappropriate. 
An alternate tool for dealing 'vith imprecise data is fuzzy logic 188, 130]. Fuzzy 
logic based models can be valuable for representing processes characterized by 
imprecise data. Their effectiveness has been demonstrated in many industrial 
applications (9, 117]. 

Both fuzzy logic and probability theory are capable tools for dealing with imper-
fection. But they have some differences. Fuzzy logic is used mainly for processing 
and representation of vague data (ill-defined, fuzzy). Probability theory is mainly 
used for processing and representation of uncertainty (randomness). In probabil-
ity theory, P(A} is the probability that an ill-known variable x ranging on U hits 
the fixed well-known set A. On the other hand, when it fits fuzzy logic computes 
the membership of a well-known variable x ranging on U hits the ill-known set A. 
Fuzzy logic uses imprecise statements such as "packet arrival rate is high". It can 
be noted that, in this statement the variable "packet arrival rate" can be measured 
precisely and hence is well-known. The set "high" can not be defined precisely as 
it varies from nehvork to network. Therefore, fuzzy logic based models appear to 
be more appropriate to represent various states of a traffic stream. 
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Another difference between probability theory and fuzzy logic is that probability 
is measured before an event occurring. In fuzzy logic, membership of a variable 
in a set is computed after the event has occurred. Therefore, in developing a 
traffic model using a measured data approach, fuzzy logic appears to be more 
appropriate than probabilistic models. 

One of the aims of our work is to develop a router buffer management scheme. An 
efficient router buff er management scheme requires the prediction of a congestion 
state and sending some sort of control signal to the sender. In other words, a 
router buffer management scheme can be thought of as a control system. Fuzzy 
logic based models have been applied in control engineering with considerable 
success [60, 100, 117, 128]. Their main strength is adaptability and simplicity. 

Another motivation for using fuzzy logic for modelling network traffic is its ability 
to reduce mathematical complexity. By means of fuzzification (section 4.1.2), 
a fuzzy logic system converts a large range of values into a small number of 
categories. This greatly reduces the mathematical complexity. For example, 
traffic arrival rate in a router can range from 0 to a large value. By fuzzifying, 
this large range of values can be classified into "small", "medium" and "large". 
This reduces the number of values which need to be considered by the router to 
just three categories. In Chapter 4 fuzzy logic and fuzzy logic based systems are 
reviewed and in Chapter 5 fuzzy logic based traffic models are developed. The 
applications of the models are discussed in Chapters 6 and 7. 

Observation of self-similarity on network traffic implies that network traffic is 
bursty. The burstiness of a traffic stream may have significant effect on the 
performance of a system (such as a router) to which the stream is offered. Existing 
traffic models do not provide any mathematical measure of burstiness of a traffic 
stream. One of the aims of this research, discussed in the next section is to 
provide such a measure of burstiness of a traffic stream. 

2.10 Measuring Burstiness of Network 'fraffic 

In self-similar traffic, burstiness is characterized by the facts that there is no nat-
ural length for the bursts and that a burst can be within another burst, known 
as burst-within-burst [126J. This implies that, for self-similar traffic, traditional 
measures of burstiness such as peak-to-mean ratio or the coefficient or variation 
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(of packet inter arrival time) [64] are almost useless. This is because for a par-
ticular value of the peak-to-mean ratio (or coefficient of variation), the burst can 
have practically any value of peak or mean as long as the ratio is conserved. For 
example, let us consider two traffic streams {2, 4, 6, 3, O} and {3, 1, 8, 3, 5}. In 
both cases, peak to mean ratio is 2. But obviously the second stream is burstier 
than the first. 

An alternative measure of burstiness is to use the H parameter . However, es-
timating the value of the H of a real traffic trace is difficult (section 2.5.2.1). 
Furthermore, the H parameter is a property only of self-similar processes. Hence 
the recent discovery of non-stationarity in Internet traffic has made the H pa-
rameter an even weaker candidate as a measure of burstiness. 

One possible choice to measure the burstiness of a traffic stream is to apply the 
wavelet based l\Iulti Resolution Analysis (l\IRA) energy plots developed by Abry 
and Veitch l3J to the traffic stream. These energy plots can be a good measure 
of the burstiness of a traffic stream. Their accuracy has been demonstrated by 
many researchers [51, 70]. \Vavelet based l\IRA energy plots are reviewed below. 

2.10.1 Energy Plots 

Burstiness of a traffic stream means a traffic count such as packet counts or byte 
counts exhibits statistical variability at a given scale. However, burstiness can 
be characterized by wavelet based l\IRA (Multi Resolution Analysis) energy plots 
developed by Abry and Veitch [3]. Their method uses a wavelet decomposition 
(20] of a time series. In this method a traffic stream is treated as a counting 
process. In this method, the counting process at a time scale Ti = 2iTo (j = 
0, 1, ... ) is a \VSS time series Xi= {Xi,0 , Xi,b · · · , Xi,n}, where Xi,k is the byte 
count in the kth time interval ti,k of duration Y'j and T0 is the reference time scale, 
which is the minimum interval in which counts are measured. The traffic series is 
decomposed into corresponding wavelet coefficients. An l\IRA energy plot shows 
the variance of the wavelet coefficients of Xj as a function of j. 

The simplest form of wavelet is the Haar wavelet 133]. The Haar wavelet coeffi-
cients of xi at scale j are defined as 

(2.24) 

28 



CHAPTER 2. HISTORICAL VIE\\/ OF NET'\VORK TRAFFIC AIODELS 

The energy 'l/J1 of X1 at scale j is defined as the variance of its wavelet coefficients, 

'I/Ji - Var [WJ,k] 
- 2-i E [(XJ-1,2k - XJ-l,2k+i)2] (2.25) 
- 2-iv ar [6Xj-1,k] 

where, 6Xi-I,k = Xj-1,2k - XJ-1,2k+l· 

In equation (2.25), there are an infinite number of wavelet coefficients. In practice, 
the energy is computed from a finite Ni coefficients. That is, 

(2.26) 

If Xi is a Poisson process, due to the memoryless property it is independent at 
any scale j. Therefore, for the Poisson process, 

2Var [6Xi-d 
2iVar [X0] 

(2.27) 

For a Poisson process, Var [Xo] = >..T0 • Therefore, using equation (2.25), the 
energy of a Poisson process of rate >.. at scale j is given by, 

(2.28) 

Equation (2.28) shows that the energy of a Poisson process is constant and does 
not depend on j. Therefore, comparing the energy plot of traffic being measured 
to the energy plot of a Poisson process of the same arrival rate as the traffic, gives 
an estimate of the energy of the traffic. 

Energy plots have the advantage that they do not require a huge data set and 
they can measure the burstiness at any time scale. 

Although energy plots can be a good measure of burstiness, there is no suitable 
mathematical quantity to measure the burstiness. One of the aims of this research 
is to develop such a mathematical quantity that will not require a huge amount 
of data or computation. 
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2.11 Conclusion 

This chapter reviewed some existing traffic models. Starting from the formation 
of the Internet, some of the characteristics of the Internet and Internet traffic 
from its earliest inception to current models were discussed. Early traffic models 
followed Poisson based memoryless models ignoring the existence of burstiness at 
large time scales. Eventually they became obsolete. Self-similar traffic models 
can capture burstiness. But they are appropriate only under some strict condi-
tions (section 2.6.3). Observation of the existence of pervasive nonstationarity 
implies that self-similar models cannot be used to model Internet traffic without 
proper modification. Recent traffic models are more accurate but they rely on the 
Hurst parameter, estimation of which requires a huge amount of sample data and 
complex computation. \Vithout adequate efficient models to determine appropri-
ate traffic management parameters, we may see unstable Internet performance, 
overall low throughput and hence poor performance. The aim of this research is 
to develop a traffic model that is simple to implement and still useful in traffic 
analysis and performance improvement. Chapter 3 discusses some performance 
optimization issues and objecth·es. 
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Chapter 3 

Network Performance and 
Management 

This chapter discusses various issues and concepts that are related to network 
performance. In the Internet more than one networks are connected to each 
other by means of a router. Routers employs queues to temporarily buffer pack-
ets if required. Performance of a network is largely dependent on the proper 
dimensioning and management of the router queue [6, 8). Improper buffer setting 
and inefficient management can lead to an unstable router queue and the result is 
performance degradation. This chapter discusses some of the performance param-
eters and several existing buffer dimensioning and queue management techniques. 

3.1 Network Performance 

There are different aspects to network performance. From a simple user per-
spective or for many applications such as file transfer or email transfer, network 
performance may just be the speed of the network. However, there are other as-
pects of network performance. The Internet is a packet switched network, where 
packets may be sent along different routes, stored for a while before being for-
warded, or even dropped and retransmitted. There are applications where the 
nature of how the data is delivered is more important than how fast it is deliv-
ered. These applications may require a specific level of service, known as "Quality 
of Service" (QoS). Network performance is not only a measure of speed, it also 
reflects the quality of service of an application as seen by the end user. 
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3.1.1 Reasons for Performance Degradation 

Often networks do not perform to their peak capacity. Possible reasons for per-
formance degradation are: 

• Packet Loss. Packet loss means that one or more packets fail to reach 
the destination while traveling across the network. Packet loss can be con-
gestive or non-congestive. Congestive losses occur due to an over-saturated 
network link or as a result of inefficient router queue management. Non-
congestive loss may occur from improper network settings such as an inef-
ficient TCP stack implementation, hardware failure or signal degradation 
over the network media. 

• Delay. This is the amount of time taken by a packet to be transmitted 
from source to destination. 

• Jitter. Jitter in a data communication network is unwanted abrupt varia-
tion of delay. \Vhen packets are sent via different or alternate routes, jitter 
can be higher than the values of jitter in normal circumstances. This type 
of jitter is sometimes referred to as excessive jitter. 

• Out of order packets. TCP ensures reliable delivery of packets by assign-
ing a sequence number to each packet. Sometimes due to taking different 
routes or some other reason, packets may arrive out of order at a destina-
tion. Out of order packets sometimes cause duplicate acknowledgments and 
thus reduce overall throughput and goodput. 

• Duplicate packets. It can happen that a packet eventually arrives at the 
receiver but the sender sends the packet again due to timeout. Duplicate 
packets mis-utilize the network resource and hence reduce overall goodput 
(defined in the glossary). 

Packet loss causes TCP to retransmit and thus reduces overall throughput. It 
may cause dropouts in voice and video. Jitter and loss are the main problems 
that affect performance of real-time applications. Excessive jitter in such an 
application can cause a number of packets to be treated as lost causing dropouts 
and audio-video problems. Applications can be designed to cope with delay, but 
it is difficult to avoid jitter (121). A recent study showed that jitter caused more 
problems than loss in a Voice Over Internet Protocol (VOiP) session f13J. 
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Out of order packets may cause more problems than lost packets especially in 
streaming audio/video applications (13). For data-traffic, such as e-mail or file 
transfer, packet reordering is not a major problem, since the data is not delivered 
or used until all the packets have arrived. Streaming video data, particularly 
l\.lPEG video packets, have precisely defined structure, sequence and timing (76]. 
This timing and structure are required by the decoder to determine correctly 
where and when each pixel needs to be placed in the picture frame. If packets 
arrive out of order, they must be ordered in the right sequence before any image 
can be produced. This can cause video streams to stop momentarily. 

3.1.2 Performance Objectives 

Ideally a network should operate at its full capacity with no loss, no congestion 
and no queuing delay. That is, if r, p, q and v are the packet loss rate, utiliza-
tion of the link, average router queue size and variance of router queuing time 
respectively, ideally we want p to be 100% and r = q = v = 0. This is the 
extreme ideal scenario and it is impossible to achieve in real networks, even in 
over-provisioned links. To maintain full utilization with a small buffer size, the 
packet loss rate may be high. This may be unacceptable for certain applications 
such as a Voice Over Internet Protocol session. On the other hand, to keep the 
loss rate to a minimum with full utilization, might require a large buffer. This 
may lead to an unacceptable values of v and/or q. Higher values of q can cause 
excessive delay and can make interactive applications unusable. Higher values of 
v can cause excessive jitter, making audio/video applications unusable. 

Router design and setting up router buffer parameters have long been a critical 
issue (35, 72J. Setting up router buffer parameters is intimately related to the 
desired performance objectives. These objectives can be, and should be, different 
from network to network. For example, for a data network, maximum utilization 
may be a major performance objective. On the other hand, for an interactive 
session, small queuing delay and no packet loss are required. This research work 
classifies the performance objectives that can be achieved realistically into the 
following categories: 

1. Full utilization, small buffer size The objective is to be close to 100% 
utilization with a small buffer size and hence small variance in the queuing 
delay. In this case there will be no control on the packet loss rate. That is, 
utilization of close to 1003 and small buffer size is achieved at the expense 
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of high loss rate. Sometimes a threshold for the loss rate is set and this goal 
is achieved, compromising the utilization. But the main objective of this 
category is to have high utilization generally, this is the objective of data 
networks. 

2. Full utilization, small loss rate The objective is to be close to 100% 
utilization with a small packet loss rate. This is achieved at the expense of 
a large buffer and a high variance of queuing delay. Data networks where 
queuing delay is not an issue might aim to meet this objective. For example, 
in the case of email transfer or for bulk file transfer, queuing delay is not a 
significant issue. 

3. Small packet loss rate, small buffer size Time critical applications 
such as VOiP or streaming video normally aim for this objective. These 
applications cannot afford high loss rate, large buffer sizes or high jitter. 
HO\vever in order to maintain the quality of these applications, utilization 
may drop to a low value. 

Other performance objectives can be specific to the application level. Examples 
of such objectives can be a high TCP throughput or a small end to end delay. 

3.2 Buffer Dimensioning 

Buffers in routers are a valuable resource. Determining the proper size of a 
buffer is required for the smooth flow of packets and hence is critical to overall 
router performance. Proper sizing of a buff er for optimum performance is known 
as buffer dimensioning and is a complex problem [6, 8, 35). No single router 
parameter setting can be acceptable for all possible performance objectives (35). 
Several approaches have been made to achieve acceptable solutions for sizing the 
router buffer. The most notable of them are; the Band\vidth Delay Product 
(BDP) model [120], the Stanford model [35} and the Buffer Sizing for Congested 
Link (BSCL) scheme [36]. 

The BDP model states that, to get optimum performance from a buffer, the 
buffer size should be equal to the product of the capacity of the link that can 
be congested and the round trip time (RTT) of the TCP connection that can be 
bottlenecked at that link. That is, if T is the RTT and C is the capacity of the 
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link, the required buffer size f3 is given by, 

/3= CT (3.1) 

This model is regarded as the "rule of thumb" in buffer sizing literature 1120). It 
was proposed in 1994 and was widely accepted by researchers until recently when 
it was challenged strongly by the Stanford i\Iodel [35]. 

The Stanford :Model (35] claims that, full link utilization can be achieved with a 
smaller buffer than in equation (3.1). The model states that the buffer require-
ment at a congested link decreases with the square root of the number of active 
"long" TCP flows, N. A flow is classified as "long" if it leaves the TCP slow-start 
process [4J. According to this model, the buffer requirement to achieve close to 
full utilization is given by, 

CT 
/3 = JN (3.2) 

Here it can be noted that for N = 1, this leads to the rule-of-thumb in equation 
(3.1). The main objective of this model is to maintain close to 1003 utilization. 
But Dhamdhere and Dovrolis in [35} showed that this can lead to a very high 
loss rate which might not be acceptable to applications such as a VOiP session, 
streaming video or other interactive applications. Loss rate is a crucial TCP /IP 
performance metric and should not be ignored in any buffer parameter tuning 
scheme. 

The BSCL performance objective is to achieve full link utilization while setting 
a threshold for the maximum loss rate. This model suggests that the buffer size 
should be increased proportionally to the increase in the number of active long 
TCP flows. The main dra\vback of this model is that even if it limits the loss rate 
and achieves high utilization, it may require a large buffer space especially when 
N is large. This large value of q may lead to a long queuing delay, especially in 
low capacity links and hence might not be acceptable to many applications. It 
may also increase the value of RTT and hence mislead other TCP functions. For 
example, if RTT is large, a TCP application may think that the packet is lost 
and subsequently retransmit the packet. Thus packet duplication may occur. 

Another approach [35] is to set up a constraint on the maximum queuing delay 
at a target link. For example, if we set the ma.."{imum queuing delay constraint 
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to 10 milliseconds for an OC-12 link ( C = 6201\Ibps), the buffer space for the 
link should be approximately 6.21\Ib. However, this may lead to a low utilization, 
especially in the presence of long TCP flows (35). 

3.3 Queue Management and Fairness 

Performance of a TCP /IP network may depend largely on the router queue man-
agement. Queue management algorithms (or simply queue management) are the 
algorithms that establish and manage the router queue. The module in the router 
that does the queue management is known as the Queue Manager (Ql\I). Queue 
l\Ianagers control the length of the queue by dropping packets if required. The 
main tasks of a Ql\1 are: 

• to establish a router queue; 

• to insert packets into the queue (if the queue is not full); 

• to discard packets (if required or if the queue is full); 

• to extract and dispatch packets from the queue; and 

• to manage the queue. 

Packet drops waste network resources by means of retransmission. Ql\1 schemes 
can use packet marking instead of packet dropping. Packet marking notifies the 
participating hosts about current congestion. This scheme is known as Explicit 
Congestion Notification (ECN) (106). ECN can be used only if both the commu-
nicating parties are ECN capable and agree to use ECN. \Vi th ECN, an extra bit, 
named an ECN bit is placed in the IP header. \Vhen a router receives an ECN 
capable packet and anticipates congestion, it sets the ECN bit. Thus the router 
notifies the sender to slow down the transmission rate by decreasing its window 
size. 

The selection of packets for dropping/marking may have significant impact on 
individual TCP performance. If packets to be dropped are chosen randomly, it 
can happen that the packets are not picked uniformly from the available flows 
thus making the dropping scheme "unfair". Fairness is the criterion that ensures 
uniform distribution of available resources among the available flows. Fairness in 
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a router can be measured by the Fairness Index, FI [66J, defined as: 

FI= (~throughput,)' 
N 

N"f:)hroughputr 
i=l 

(3.3) 

where, throughputi is the throughput of the ith flow and N is the total number 
of active flows. 

The primary goal of a Q:\l is to meet its performance objectives without sacrificing 
fairness. Queue management can be classified into t\VO categories: Passive Queue 
l\Ianagement (PQl\1) and Active Queue i\lanagement (AQi\l). 

3.3.1 Passive Queue Management 

Passh-e Queue i\Ianagement (PQ:\I) schemes do not do any preventative packet 
drops until the buffer is full. Once the buffer is full, all the arriving packets are 
dropped. Therefore, PQ:\I can either be in a "no packet drop" state or a "100% 
packet drop" state. It does not take any congestion avoidance steps nor does it 
send any congestion warnings. An example of PQl\I is the drop tail scheme where 
packets are dropped from the tail of the queue. 

3.3.2 Active Queue Management 

Active Queue Management (AQ~l) takes preventive measures to avoid congestion. 
These schemes perform packet drops before the queue is full. Generally the packet 
drop rate increases as the queue length increases. Preventive packet drops provide 
an implicit feedback mechanism to notify senders of the congestion state. :Many 
AQM algorithms have been proposed [57]. A fe\v of the more notable ones are 
discussed here. 

3.3.2.1 Random Early Detection 

The default AQM scheme recommended by the Internet Engineering Task Force 
{IETF) is Random Early Detection (RED) [47]. A router implementing RED 
does not drop any packets until the queue length reaches Af I Nth and \vhen the 
queue reaches Al AXth, it drops all packets. \Vhen the queue size is in between 
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these two thresholds, the drop probability is linearly proportional to the queue 
length. At time t, the average queue length q( t) is calculated as 

q(t) = (1 - w)ij(t - 1) + wq(t) (3.4) 

\vhere w is the weight parameter with 0 < w < 1. The packet drop probability p 
is calculated as: 

P = J.'1 AX drop-ii-'-( t-'-) _;_\1_1_N_t_h _ 
Al AX th - Al I Nth 

~ 1 ------·--------------:.0 
.2 
£ 
0. 
2 

Q 

Figure 3.1: Drop Probability of Random Early Detection. 

where ;\1 AXdrop is the maximum drop probability. 

(3.5) 

The drop function similar to equation (3.5) where the drop probability increases 
(or decreases) linearly is known as linear drop function. The drop probability of 
RED scheme is shown in Figure 3.1. 

The performance of RED depends significantly on its four control parameters 
1\1 I Nth, .i\[ AX th, Af AX drop and w. Floyd suggests that AI AX drop should not 
exceed 2% [45, 47J. He also suggests using 1UAXth,...., 31'.f !Nth [45]. 

In RED, the drop probability does not depend on per-flow band\vidth consump-
tion or buffer occupancy. Equation (3.5) shows that the drop probability p is 
same for all available flows. Since all the flows have the same loss rate, a flow 
using little bandwidth or occupying a small or no buffer space will still experience 
packet loss making it unfair to this type of flow. Several audio and video appli-
cations do not slow down even if a congestion is state is notified. These types of 
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congestion non-aware flows can make RED drop packets at a high rate from all 
flows. Hence RED is not a fair system for different types of traffic flows. 

3.3.2.2 Stabilized Random Early Detection 

Random Early Detection can suffer from unstable queue length (21, 84). Stabilized 
random early detection (SRED) makes a RED queue stable [101). It is a variation 
of RED that stabilizes the queue level with a load-dependent drop probability. 

Figure 3.2: Drop Probability of Stabilized RED 

Stabilized RED maintains a list of AJ recently served flows. On each packet 
arrival, the arriving packet's flow is compared with a randomly chosen flow from 
the list. If these two match, it is termed as a "hit", if not it is a "miss11

• From 
the recent hit-miss sequence the hit probability P(t) is computed. If there are a 
large number of active flows, the hit probability will be small. 

In SRED, different drop probabilities are used depending on the value of P(t). 
\Vhen P(t) is smaller than 2; 6 , the drop probability is given by 

{ 

Pmax 

Psred1 ( q) = ~":t• 

when 
when 
when 

~<q</3 
fi<q<!!. 6 - 3 

O<q<~ 

(3.6) 

\vhere Pmax is the maximum packet drop probability, q is the instantaneous queue 
size and f3 is the buffer capacity. Thus SRED uses a step drop function. The 
drop probability for SRED is shown in figure 3.2. 

Equation (3.6) is used when P(t) is small, i.e., when the number of active flows 
are large. Higher values of P(t) are associated with a relatively small number 
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of active flows. \Vhen P(t) is greater than 2i6 , SRED uses the following drop 
probability 

( ) _ Psred1 (q) (N )2 Psred2 q - 65536 a (3.7) 

where Na is the number of active flows. That is, the drop probability for SRED, 
Psred(q) is given by 

( ) _ { Psred1 (q) Psred q -
Psredz(q) 

when 0 < P(t) < 2i6 

when 2!6 < P(t) < 1 
(3.8) 

Unlike RED, SRED uses a drop function that can increase (or decrease) only in 
steps. It has the feature that over a wide range of load levels helps it stabilize 
its buffer occupation at a level independent of Na. However, like RED, SRED is 
still not a fair system. 

3.3.2.3 Fair Random Early Detection 

Fair Random Early Detection (FRED) [80] overcomes the fairness problems suf-
fered by RED and SRED. It uses per-active-flow accounting. A drop rate for 
each active flow is calculated based on the buffer space currently occupied by 
each flow. 

Fair RED introduces the parameters minq and maxq, the minimum and the 
maximum number of packets each flow is allowed to buffer. The parameter minq 
is calculated by dividing the average queue length by the current number of 
active flows. Fair RED allows a flow to buffer minq packets without dropping. 
All additional packets up to maxq are subject to RED's random drop. After 
a flow has already buffered maxq packets, all additional packets are normally 
dropped. 

As FRED computes per-flow drop probability based on the current buffer occu-
pancy, it is a fair system. Like RED, FRED also uses a linear drop function. 

From the above discussion it is evident that optimizing a router's performance 
requires addressing both buffer dimensioning and queue management. A correctly 
sized buffer with inefficient queue management or an efficient queue management 
scheme with an incorrect buffer size can lead to non-optimal router performance. 
In section 3.1.2, how the performance objective to be met can vary from network 
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to network is described. The criteria that we wish to optimize (such as high 
utilization or loss rate) can be in conflict with each other. This motivates us in 
section 3.5 to define the router performance optimization problem as a 1/lulti-
objective Optimization (:MO) problem. The main reason for formulating the 
router performance optimization problem in this way is that there exists a rich set 
of solution methodologies to solve such problems. These solution methodologies 
are discussed in Chapter 4. 

In the next section network traffic measurement is reviewed, which is a methodol-
ogy for collecting and analyzing traffic data. Network designers use the collected 
data for network performance analysis or to validate a traffic model. Evalua-
tion of a traffic model or a router performance optimization scheme also requires 
measurement of traffic data. 

3.4 Network Traffic Measurement 

Network measurement refers to the measurement of traffic parameters such as the 
number of bytes transmitted, the number of packets transmitted or link utiliza-
tion. Network measurement is the primary requirement for network monitoring 
and net\vork behavior analysis. Network measurement can be classified in several 
different ways. l\fost monitoring and behavior analysis requires the measurement 
of packet headers only. Some analysis requires inspection of the user data portion 
of a packet. Based on the content of measurement, network measurement can be 
of two types: content non-aware measurement and content-aware measurement. 
Based on the mode of measurement, network measurement can be classified into 
two types: active and passive. 

3.4.1 Content Non-aware Measurement 

l\fost traditional network applications (such as telnet, \V\V\V, FTP and email) use 
predefined TCP or UDP ports. These predefined port numbers are called well-
known port numbers. \Vell-known port numbers are assigned and maintained 
by the Internet Assigned Numbers Authority (IA.NA). l\fost traditional traffic 
measurement tools use port based recognition and classification. They can be 
referred to as content non-aware traffic measurement system. They are also known 
as port based measurements. Content non-aware tools can be classified as: 

• packet based; for example TCPDUl\IP [62] and Ethereal [29]; and 

41 



CHAPTER 3. NETlVORK PERFOR.MANCE AND JvIANAGEA1ENT 

• flow based; for example Cisco's Netftow [23] and CAIDA's CoralReef [23). 

3.4.2 Content-aware Measurement 

Many modern applications use either dynamic port allocation or use other proto-
cols (such as HTTP) as a wrapper to go through firewalls and filters. A wrapper 
is a software program that contains other software or data, so that the contained 
elements are disguised or hidden. An application can use non standard port 
numbers because: 

• some applications may want to bypass port based access rules and filters; 

• use of Network Address Translation (NAT) and port forwarding; 

• non-privileged or ordinary users are often restricted to use high port num-
bers (usually > 1024); and 

• some protocols are designed to use dynamic port allocations that cannot be 
known in advance (for example: Real Time Protocol, Passh·e File Transfer 
Protocol). 

Port based identification can lead to inaccurate identification of an application. 
As a result, content-aware methods, such as Cisco's NB.AR [23] have become 
more popular. Content-aware measurement tools capture both packet header 
and payload. 

Although these methods can identify applications and capture traffic character-
istics with higher precision, they require inspection of the payload [18, 83). As 
the payload of a packet contains user data, it might contain private and sensitive 
information. Also content-aware measurements require more computing power 
than content-nonaware measurements [85]. 

3.4.3 Active vs Passive Measurement 

Network measurement can be active or passive. In active net\vork measurement, 
the measurement system generates and injects packets to measure a network 
characteristic. Examples of such approaches are the ping and the traceroute 
utilities [871. Ping is used to estimate network latency or round tri~ time of 
a particular destination. The traceroute utility is used to determine network 
routing paths. 
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Passive measurement does not inject any packet to the network. A passive net-
work measurement or monitoring tool observes and records the packet traffic data. 
Examples of such measurement tools are NeTrar.Iet [10) and NG-MON (56). 

Active measurement uses network bandwidth as it injects packets to the net,vork. 
Active measurement can also be time consuming as it requires a packet to travel 
over a network. Another drawback of active measurements is that they can be 
sensitive to network performance and security [91). Therefore, in the proposed 
traffic model and router queue management scheme only passive measurements 
should be used. 

3.5 Router Performance Optimization: A Multi-
Objective Optimization Problem 

This section will show that a router performance optimization problem can be 
expressed as a Multi-Objective optimization (110) problem. In section 3.5.1 
the definition of an l\10 problem is reviewed and in section 3.5.2 the router 
optimization problem is formulated as an MO problem. 

3.5.1 Multi-Objective Optimization Problems 

The optimization of a function with. more than one (possibly conflicting) objec-
tive, it is called a multi-objective optimization problem (l\10 Problem or l\IOP) 
[48). Formally, a MO problem with n decision variables and ,,\! objectives is 
defined as [34]: 

minimize f m ( x), 
subject to 9i (x) > 0, 

hk(x) = 0 
x~L) < x· < x~B) 

I - i - l 

m = 1,2,··· ,;.\f 

J'-12··· J - ' ' ' 
k = 1, 2, ... '/{ 

(3.9) 

i=l,2,···,n 

where the solution x* = (xi, x2 , • • • , Xn)T is a vector of n decision variables. The 
functions gi(x) > 0 are J inequality constraints and hk(x) = 0 are K equality 
constraints. The last set of constraints, the variable bounds, restrict each decision 
variable Xi to take a value in between x~L) and x~B). 
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In equation (3.9), f(x) = (J1(x), h(x), · · ·, h.-r(x))T are the A! objective func-
tions. A solution x that satisfies all the (J + K) constraints and all of the 2n 
variable bounds (n lower bounds and n upper bounds) is called a feasible solution. 
If a solution does not satisfy all of these constraints and variable bounds, it is 
called an infeasible solution. 

In equation (3.9), the minimization problem can be transformed to a maximiza-
tion one by multiplying the objective function by -1 (34). Therefore, the objective 
functions can be of mixed type. 

3.5.2 Router Performance Optimization as an MO Prob-
lem 

The router performance optimization may be formulated as a multi-objective 
optimization problem because it involves optimizing a function of more than one 
(conflicting) objectives. For example, we want to achieve close to full utilization 
of a link with small queues and minimal packet drops. ~Iinimal packet drops tend 
to increase the queue length in a congested link. Similarly, higher utilization may 
be accompanied by longer queues. 

Let 
p be the utilization of the link 
l be the average packet drop rate 
q be the average queue size 
v be the queuing time variance. 

An AQM scheme requires optimization of the following objectives: 

• maximize p (or minimize -p) 

• minimize l 

• minimize q 

• minimize v. 

In this f\IO problem, the decision variables p, l, q and v can be functions of 
other variables. In the case of RED, these decision variables are functions of 
model parameters Af I Nth, Af AXth' AI AXdrop and w. Therefore, in the case of 
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RED, a feasible solution is to find the values of these parameters so that the four 
objectives above are met. Chapter 4 discusses existing methodologies to find such 
a feasible solution. 

Performance of a router depends on both the buffer dimensioning and queue 
management scheme. In section 3.2 and 3.3 it has been reviewed that, historically 
these two problems have been treated separately. A buffer dimensioning method 
does not determine the queue management scheme that should be used, nor does 
an AQ1I scheme determine the optimum buffer size. This can make a buffer 
management scheme inefficient. For example, the BDP model in equation (3.1) 
or the BCSL scheme specify a larger buffer than the Stanford model (section 
3.2). In section 3.3.2.2, it was mentioned that SRED starts dropping packets 
when the queue size reaches ~· Therefore, if a router with a buffer size equal to 
the size specified by BDP or BCSL uses SRED, a large portion of the buffer will 
be under-utilized. Similarly, if a router with a small buffer size (as specified by 
the Stanford model) uses drop-tail, the buffer might become full after buffering 
few packets. Both these cases may lead to inefficient management of a router 
buffer. 

Performance objectives (section 3.1.2) are addressed in the buffer dimensioning 
problem. This work argues that the objectives should also be addressed in the 
queue management scheme. Buffer dimensioning is implemented in router hard-
ware. At the time of its manufacture, the performance objectives of the network 
for the router are unknown. On the other hand, AQ~I is implemented in the 
router by means of software. The parameters of an AQ~l implementation in a 
router can be adjusted. Thus addressing the performance objectives in the queue 
management scheme makes a router's performance flexible, adaptive and scal-
able. The next section addresses the design principles of the queue management 
scheme which is proposed in Chapter 7. 

3.6 Design Principles for a Queue Management 
Scheme 

As argued above performance objectives should be addressed in the queue man-
agement. Ideally an ideal queue management scheme should be adaptive so that 
any performance goal can be met and the performance objectives should be met 
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in the queue management scheme rather than in buffer dimensioning. Therefore, 
the first design principle for the router management scheme is adaptability. 
\Ve want a queue management scheme that is adaptive so that any performance 
objective can be met by adjusting a minimal number of parameters. 

The next design principle for our queue management scheme is stability. In this 
context, the design choice is whether to use a linear drop function or a step drop 
function. Most AQ!\1 schemes use a linear drop function (section 3.3.2). These 
drop functions are dependent on buffer capacity. The linear drop function that is 
used in the original RED can make the queue unstable. SRED keeps the queue 
stable by using a step drop function {section 3.3.2). Hence it is decided to use a 
step drop function rather than a linear drop function. 

Fairness (section 3.3) is another issue that has to be addressed by any AQ~I 
scheme. Both the original RED and SRED are not optimally fair. FRED (section 
3.3.2) approaches fairness by selecting the flows for packet dropping according to 
their proportion of buffer occupancy. It can achieve fairness, but the number 
of packets dropped might not be the minimum. To illustrate, let us consider 
the case where two flows, one with a constant arrival rate and the other with a 
continuously increasing arrival rate are occupying equal amounts of buffer space. 
To maintain a small queue, if two packets need to be dropped, it is likely that 
FRED will drop one packet from each flow. This affects the performance of both 
the flows. The same level of queue length might be maintained by dropping one 
packet from the second flow at an earlier stage. In that case, the second flow 
would have slowed down earlier. Thus a similar queue level might be maintained 
by dropping one packet instead of two. Therefore, our design goal is to use some 
other suitable traffic characteristics to select a flow for packet dropping so that 
fairness is achieved by dropping the minimum number of packets. 

In section 3.3.2.3, it is showed that FRED uses per-flow accounting to make 
it fair. Another design principle of our queue management scheme is, if it has 
to use per-flow accounting it will be restricted to content-nonaware passive 
measurements only. 
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3. 7 Conclusion 

This chapter discussed some key technologies for performance and measurement 
in computer networking. The in-built flow control mechanism of TCP can lead 
to network congestion. Routers use many queue management techniques to avoid 
such congestion. This chapter highlighted several AQr..I algorithms (RED, SRED 
and FRED). This chapter also discussed content-mvare and content-nonaware 
measurement technologies. 

This chapter formulated router performance optimization as an MO problem. The 
design principle of an efficient queue management scheme was also discussed. In 
theory, a router can improve the overall QoS by inspecting the payload of the 
packets using some content-aware measurement techniques. But due to privacy, 
security and performance issues, this cannot be followed by routers in many 
situations. Active measurements waste network resources. Therefore, ideally a 
router queue management scheme should achieve its performance objectives along 
with fairness and QoS without using content-aware or active measurement. This 
is one of the main aims of this research. Soft computing optimization algorithms 
can be useful in this context. In section 2.9 motivations for developing a fuzzy 
logic based traffic model is stated. Chapter 4 reviews fuzzy logic and discusses 
the available tools to deal with an MO problem. 

47 



Chapter 4 

Soft Computing 

Chapter 2 discussed the motivation for developing a fuzzy logic based traffic model 
(section 2.9). Fuzzy logic is a branch of Soft Computing (SC). Soft Computing 
[129J resembles human reasoning. It is tolerant of uncertainty, approximation 
and partial truth. Soft Computing exploits this tolerance to produce robust scr 
lutions to different types of complex problems including modelling and analysis 
of complex phenomena. Soft Computing is a collection of such tolerant, adap-
tive and flexible computational techniques including fuzzy logic and evolutionary 
computing. The first part of this chapter reviews fuzzy logic and a fuzzy logic 
system. In Chapter 3 the router optimization problem was formulated as a multi-
objective optimization problem. The second part of this chapter reviews available 
approaches and, in particular, evolutionary computing approaches to solving r..10 
problems. 

4.1 Fuzzy Logic 

Fuzzy logic (FL) is a branch of mathematics conceived by Zadeh [132). He argued 
that mathematically precise input is not needed to maintain acceptable control 
of a system. A fuzzy logic system can accept imprecise data and still be capable 
of producing highly adaptive solutions. It is a simple but powerful way to an-
alyze and control complex systems. \Vith fuzzy logic a statement (proposition) 
is represented with degrees of "truthfulness". For example, the statement "today 
is hot", can be 100% true (i.e., truthfulness is 100%) if the temperature is more 
than 35 degrees, can be 70% true (i.e., truthfulness is 70%) if the temperature is 
30 degrees, and 0% true (i.e., truthfulness is 0%) if the temperature is -2 degrees. 
Much literature [93, 122J exists on FL systems and FL control systems. All the 
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definitions in this chapter are written following [93] and [131]. 

4.1.1 Fuzzy Sets, Membership Functions and Linguistic Vari-
ables 

~fathematically, a fuzzy set F is a mapping of a domain to [O, 1]. The domain is 
called the Universe of Discourse and is denoted by U. For example, it may be 
that the temperature of a place cannot be lower than -70 degrees or higher than 
GO degrees. Therefore, the universe of discourse for the temperature of that place 
is the range !-70, 60). The mapped value is called the grade of membership or 
the degree of membership and is denoted by µF. Unlike conventional sets (known 
as crisp sets), the µF can have any value between 0 and 1. Let us consider the 
fuzzy sets Cold, \Varm and Hot. A temperature of 27 degrees can be warm to 
some people and can be hot to others. In fuzzy logic, the variable temperature 
can be a member of both \Yarm and Hot fuzzy sets with corresponding grades of 
membership. It can be said that a temperature of 27 degrees is warm with 60% 
"truthfulness" and is hot with 40% "truthfulness". This is equivalent to saying, 
temperature is \Varm with degree of membership 0.4 and is Hot with degree of 
membership 0.6. In the "crisp" case (or in ordinary Boolean logic), a temperature 
of 27 degree can either be warm or hot. 

~ ·---- universe of discourse __ ..,.. 
~- universe of discourse 

__ ..,. 
(a) (b) 

Figure 4.1: 1\vo Popular Shapes of Membership Functions. (a) Triangular (b) 
Trapezoidal 

The variable temperature can have any value in U (-70 to 60 degrees) and can 
be a member of more than one fuzzy set (e.g. both \Varm and Hot) at the same 
time with corresponding grades of membership (0.4 and 0.6 respectively). Such 
a variable is called a linguistic variable. 
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\Var111 Hot 

Figure 4.2: Fuzzy Sets Cold, \Varm and Hot with Triangular .Membership Func-
tion 

Often the grade of membership of such a linguistic variable of a fuzzy set is repre-
sented by a suitable mathematical function. This function is called a membership 
function. In other words, a membership function is a graphical {or tabulated 
numeric) function that assigns membership values between 0 and 1 to the crisp 
values of an input variable over its universe of discourse. The most popular 
choices for the shape of membership function are triangular and trapezoidal as 
shown in Figure 4.1. Perhaps the simplest one is the triangular one. Figure 4.2 
shows how the crisp value of 27 degree is mapped to a fuzzy domain using a 
triangular membership function. 

The support of a fuzzy set Fis the crisp set of all values in U such that µp(x) > 0. 
In Figure 4.2, the \Varm fuzzy set can have non-zero membership value if the 
temperature is between 0 and 40 degrees. Therefore, the support of fuzzy set 
\Varm is 0 to 40 degrees. If the support of a fuzzy set is a single point x' in U 
and JLF(x') = 1, it is called a fuzzy singleton. 

The core of a fuzzy set Fis the crisp set of all values in U such that µF(x) = 1. 
In Figure 4.2, the core of the \Varm fuzzy set is 20 degrees. 
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4.1.2 Fuzzy Logic Systems 

A fuzzy control system or a fuzzy logic system or a fuzzy model consists of three 
basic steps: fuzzification, inferencing and defuzzification (77, 127]. For a given 
set of input variables, the goal of a fuzzy logic system is to produce an output 
control variable. The structure of a fuzzy control system is shown in Figure 4.3. 
Fuzzification is the process of mapping from the measurable crisp input to the 
fuzzy sets defined in the corresponding universe of discourse. Fuzzy inference is 
the decision making logic. It determines the fuzzy output based on a fuzzy rule-
base. Defuzzification produces crisp outputs of the control variable. The fuzzy 
logic system of Figure 4.3 is described below. 

4.1.2.1 Fuzzification 

In a fuzzy logic system, the inputs are given as crisp values. In order to make 
them usable in a fuzzy logic system we need to fuzzify them. Fuzzification assigns 
linguistic values to a variable using a (relatively small) number of membership 
functions. Preprocessing of a large range of values into a small number of fuzzy 
categories greatly reduces the computational complexities for a given problem. 

There can be at least two types of fuzzification method: singleton and non-
singleton [93]. The simplest and the most commonly used fuzzifier is the singleton 
fuzzifier which is essentially a singleton (section 4.1.1). In a singleton fuzzification, 
the fuzzifier maps a crisp input point to a fuzzy singleton. If A' is a fuzzy singleton 

I I I ( I I with support x, then µA1(x) = 1 for x = x and ftA' x) = 0 for x-/:- x. 

The non-singleton fuzzifier [97] assumes that the inputs are corrupted by noise. 
Each input crisp value is treated as a fuzzy number and hence has a corresponding 
membership function. Conceptually, the non-singleton fuzzifier implies that the 
given input value x' is the most likely value to be the correct one. Hmvever as 
the input is corrupted by noise, neighboring points may also be a correct value, 
but to a lesser degree. In our work fuzzy logic is used to model network traffic. 
The input crisp values are packet or byte counts, where there is not normally any 
corruption by noise. Hence, in this work only the singleton fuzzification is used. 

In general fuzzification requires: 

1. Identification of the universe of discourse for each linguistic variable; 
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Crisp Values in U 

Fuzzification +---~ Fuzzy 
Inference 

Crisp Control-Output Values in V 

+----1..i Defuzzification 

.... Computational Flow 

_,.. Information Flow 

Figure 4.3: The modules in a Fuzzy Logic based Control system. The Fuzzifica-
tion module maps the crisp value to fuzzy sets. The Inference Engine produces 
fuzzy output based on a rulebase. The defuzzification module produces crisp 
output. 

2. Choice of input fuzzy sets; 

3. Determination of support and core for each fuzzy set; 

4. Choice of membership function; and 

5. Fuzzification method. 

In the temperature example of the previous section~ 

1. The universe of discourse for the temperature is identified to be -70 to 60 
degrees; 

2. The input fuzzy sets are Cold, \Varm and Hot; 

3. Support for the \\'arm fuzzy set is 0 to 40 degrees ( <0 is Cold and >40 is 
Hot) and the core of the \Varm fuzzy set is 20 degrees; 

4. The triangular membership function is chosen. In Figure 4.2, the member-
ship function of the fuzzy set \Varm is defined to be 

0 x<O 
x 0 < x < 20 

/tp(x) = 20 (4.1) 
40-x 20 < x < 40 20 
0 x > 40 
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5. Singleton fuzzification is used. 

4.1.2.2 Fuzzy Inference 

The Fuzzy inference process does the actual decision making based on a set of 
rules, known as a fuzzy rulebase. The rule-base is composed of a set of if-then 
rules of the form 

R(I) : if x 1 is Ff and ······and Xn is F~ then y is G1 (4.2) 

where l = 1, 2, · · · , m and m is the number of rules. xi (for j = 1, 2, · · · , n) are 
the inputs to the fuzzy system, y is the output variable, FJ are the input fuzzy 
sets, G1 is the output fuzzy set and n is the number of input linguistic variables. 
The "if' part of a rule is called an antecedent and the "then" part is called the 
consequent of the rule. Each "if x1 is FJ" part of the antecedent is known as a 
term. 
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Figure 4.4: Fuzzy Inferencing and defuzzification of the Router Buffer Control 
Problem using min Inference and centroid defu zz ification. The dashed line cor-
responds to the min operation , as in (a) min (O..! , 0.7)= 0.4 and in (b) min(0.6 , 
0.3) = 0.3. (c) is the defuzzificat ion. 

The inference process computes the grade of membership for each term of the 
antecedent . Then, the "degree is fu lfi llment" of the entire antecedent is computed 
by using a fuzzy AND , which is simply the smallest value of all the grades of 
membership of the n terms. Finally, the grade of membership of the consequent 
is computed from the grade of membership of the antecedent by using a suitable 
operator. The most popular operator is the min operator, which is simply the 
minimum of the membership values of all the terms of a rule. 

4.1.2.3 Defuzzification 

Defuzzification is the mechanism for converting the output fu zzy sets of the in-
ference engine into nonfuzzy or crisp values. The objective is to derive a single 
numeric crisp value that best represents the output of the inference engine. The 
defuzzification method to be used depends on the ent ire fu zzy system design. 
Perhaps , the most popular defuzzifier is the centroid defuzzifi er f 19, 93J, where 
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the output of the defuzzifier is calculated as 

y= 
[tH,µc•(y)] 
[t1<c.(v)] 

I Packet Arrival Rate (,.\) I Queue Length (q) I Packet Drop Rate (r) I 
High Small l\ledium 

~ledium l\ledium Small 
R(l): if ,.\ is High and q is Small then r is Medium 

R<2>: if ,.\ is :Medium and q is J\Iedium then r is Small 

Figure 4.5: Inference rules for a Fuzzy Logic Controlled Router Buffer 

(4.3) 

where, m is the number of rules, /tc1 (y) is the membership value of the consequent 
part of the zth rule for y and If1 is the center of (the support of) the output fuzzy 
set of the zth rule. 

To illustrate the entire process, let us consider the fuzzy logic control system of a 
router queue management system. The queue manager drops an arriving packet 
with a drop probability r. The drop probability is calculated based on the packet 
arrival rate and the current queue length. The inference rules for this system are 
shown in Figure 4.5. Suppose at any time instant, the packet arrival rate,.\ is 20 
and the queue length q is 5. The fuzzy logic system needs to calculate r. The 
steps are described below. 

Step 1: Fuzzification. Suppose these values are fuzzified using the membership 
function of Figure 4.5, so that, the arrival rate of 20 is assigned 0.4 High and 0.6 
.tvledium. Similarly, the queue length of 5 is assigned 0.7 Small and 0.3 l\Iedium. 

Step 2: Fuzzy Inference. The first rule R(l) states that, if the packet arrival 
rate (,.\) is High and the queue length (q) is Small, then the drop rate (r) is 
i\1edium. The rule has two terms: the first term is "' ,.\ is High" and the second 
term is "q is Small". The first term has the membership value 0.4 (since, ar-
rival rate is 0.4 High) and the second term has membership value 0.7 (since the 
queue length is 0.7 Small). Therefore, the membership value for the antecedent 
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is min(0.4, 0. 7) = 0.4. That is, the degree of fulfillment of rule R(l) is 0.4. Con-
sequently, the output of the fuzzy inference will be 0.4 :Medium, i.e., packet drop 
rate is Medium with membership 0.4. The fuzzy inferencing process of R(l) and 
R(2) are shown diagrammatically in Figure 4.4a and 4.4b respectively. In this 
example, the support for the 1\Iedium fuzzy set is assumed to be [0.05, 0.15] and 
the center of the support to be 0.1. Similarly, the support of the Small fuzzy set 
is assumed to be [O, O.lJ and centered at 0.05. 

Step 3: Defuzzification. In this example (Figure 4.4), m = 2. For the first 
rule, the output fuzzy set (G1) is :\Iedium, µc1(y) = 0.4 and the center of ~fedium 
is 0.1. Similarly, for the second rule, the output fuzzy set ( G2) is Small, µc2 (y2 ) = 
0.3 and the center of Small is 0.05. Therefore, according to the center of gravity 
defuzzification rule in equation (4.3), the crisp output packet drop rate is given 
by, 

0.1x0.4+0.05 x 0.3 
p = 0.4 + 0.3 = 0.0786 (4.4) 

That is, the queue management system of the example 4.5 will set a packet drop 
probability of 7.86%. 

In section 3.5 the router performance optimization problem was formulated as 
a multi-objective optimization problem. Next some solution methodologies for 
such a problem is discussed. 

4.2 Approaches to Solving MO Problems 

!\Iulti-objective optimization problems can be solved using two approaches: classi-
cal approaches and evolutionary approaches [34]. In this section these approaches 
are reviewed. This section also describes why the evolutionary approach is more 
appropriate for solving an MO problem such as the router performance optimiza-

tion. 

Solutions to a multi-objective optimization problem may be explained by means 
of"Pareto optimality". In section 4.2.1 the notion of Pareto optimality is reviewed 
and in sections 4.2.2 and 4.2.3, classical and evolutionary approaches to solving 
1\10 problems are reviewed. 
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4.2.1 Pareto Optimality 

In a single objective optimization problem, the goal is to achieve the best single 
solution. But for an 1\10 problem, with several possibly conflicting objectives, 
there may be no single optimal solution. Therefore, the solution is chosen from 
a set of solutions by making a "trade-off'' or compromise. Therefore, the notion 
of "optimality" is different in the case of multi-objective optimization problems. 
This type of "compromised" optimality may be addressed by Pareto optimality 
(48]. 

Let F denote the global set of all vectors that satisfies all the constraints and 
the variable bounds of an 1\10 problem in equation (3.9). A vector x* E F of 
decision variables is Pareto optimal if there exists no other x E F such that 
frn(x) ~ f m (x*) for all m = 1, 2, · · · iU and that fh (x) < fh (x*) for at least one 
hEm. 

Pareto optimal solutions are solutions within the search space whose correspond-
ing vector components cannot be improved simultaneously. In other words, a 
solution x* E F of the 110 problem in equation (3.9) is Pareto optimal if there 
exists no feasible solution x E F which \vould decrease some objective functions 
without causing a simultaneous increase in at least one other objective. 
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Figm e -1.6: The Pareto Optimal Set for t he motor manufacturer problem. The 
cheapest solu t ion makes the highest Pollution and the costliest solu t ion makes 
the lowes t pollution. The ideal solu t ion (I) is unattainable. 

For a gi,·en 1'10 problem. Pareto optimality can provide more than one solu tion. 

The set of solu t ions that sat isfies the Pareto optimalit.v is known as the Pareto-

optimal set. All the solutions in the Pareto-optimal set are called non-dominated 

or non-inferior or effici ent solutions. A solution that is not Pareto-optimal is 
called a dominated solu t ion. 

Let us consider as an example a problem of a car manufacturer. Their production 
record shows that it is cost liest to manufacture a car that makes the least pollution 
and that the cheapest car makes the highest pollu t ion. The manufacturer wants 

to make a low cost car that makes less pollut ion . This is a ~IO problem \\·here 

the objectives are conflicting. A possible solu tion scenario is shown in Figure 
-1.6. The figure shows that the solu tion marked I is the ideal but unattainable 
solu tion. A, B, C and D are the Pareto-optimal solutions. The solutions E, F 
and G are dominated solu tions . 

Using the notion of Pareto optimali t,v classical and evolu tionary approaches fo r 
soh·ing :dO problems are now discussed. 
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4.2.2 Classical Approach 

Classical multi-objective optimization methods have been proposed for the last 
forty years (28, 75]. Cohon in [27] classified them into the follmving two types: 

• Generating methods 

• Preference based methods 

Generating methods do not use any prior knowledge of the relative importance 
of objectives. These methods use a heuristic approach to find a single optimum 
solution. At first a few non-dominated solutions are generated by observation 
and then the decision maker chooses one solution from the generated solutions. 

In preference based methods, some preferences of the relative importance of the 
objectives are known. These preferences are used in the optimization process. In 
these methods an interaction with the Decision Maker (D:M) is generally required 
during the optimization process. 

Deb in [34] classified the classical methods for solving 1\10 problems into the 
following two groups: 

• Direct methods 

• Gradient-based methods 

In direct methods, only the constraint values and the objective function are used 
to guide the search method to find an optimum solution. 

In the gradient based methods, first and/ or second order derivatives of the ob-
jective function are also used in the search procedure. 

Many researchers have shown that classical approaches are not suitable for solving 
I\10 problems [34, 90]. The main disadvantages of classical approaches, as stated 
in [34] are: 

1. l\Iost classical algorithms tend to become stuck in a suboptimal or domi-
nated solution; 

2. Some classical methods require interaction with the Decision :Maker; 
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3. Convergence to an optimal solution depends on the initial generated solu-
tions; 

4. They are not efficient in dealing with ~IO problems that have a discrete 
search space; and 

5. They are usually slow. 

Because of these problems it is decided to use an evolutionary approach to solve 
the router optimization problem. But evolutionary approaches may also suffer 
from problems 1 and 3 mentioned above. This is further discussed in section 
4.2.3.1. The next section reviews the evolutionary approach for solving an l\IO 
problem. 

4.2.3 Evolutionary Approach 

Evolutionary Computing (EC) 17, 59] is a subfield of Artificial Intelligence (AI). 
Evolution is a biological term. In biology, evolution is a change of heritable traits 
of a population over successive generations. Evolutionary Computing is a general 
term for several computational techniques that are often biologically inspired. 

In the arena of AI, an Evolutionary Algorithm (EA) is a subset of EC. A typical 
EA normally uses mechanisms that resemble biological evolution such as repro-

duction, mutation, recombination, selection, crossover and survival of the fittest. 
These are called genetic operators and are defined in Appendix C. Evolution-
ary Algorithms are particularly suitable for search and optimization problems 
134, 53). In this work a popular form of EA called a genetic algorithm (GA) [53] 
is used to optimize router performance. An example of a GA is given in Appendix 
c. 

Evolutionary Algorithms have been applied to solve l\10 problems with a great 
deal of success [26, 48, 115, 134]. The EAs to solve l\10 problems are called 
Multi-Objective Evolutionary Algorithms (l\IOEA). 

An l\IOEA is an extension of an EA. The objective of an MOEA is to converge to 
the Pareto Optimal Set of the problem. To achieve this convergence, the selection 
process has to be able to select the individuals such that non-dominated solutions 
are preferred over dominated ones. Therefore, the simple roulette wheel method 
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(defined in Appendix C) might not be appropriate. Some sophisticated methods 
that are specially developed for selection in :MOEA have been proposed [31, 26]. 
Most of them use some form of Pareto ranking. The original Pareto ranking 
based selection method was proposed by Goldberg (53] in which the population 
of the EA is sorted, based on Pareto dominance, such that all non-dominated 
individuals are assigned the same rank. All non-dominated individuals are given 
the same probability for reproducing and this probability is higher than that of 
dominated individuals. 

4.2.3.1 MOEA: Aggregating Approach 

The simplest way to deal with an :MO problem is to combine or aggregate multiple 
objectives into a single scalar function. These techniques are known as "aggre-
gating functions" since they aggregate multiple objectives into a single scalar 
value. According to this method, an MO problem becomes 

M 

min L Wmfm(x) (4.5) 
m=l 

\Vhere the Wm \'alues are non-negative and represent the relative weights (impor-
tance) of the .A! objective functions. Usually the weights are normalized to unity, 
i.e., E wi = 1 (34]. 

Aggregating functions methods have the advantage that they produce a single 
compromised solution requiring no further interaction from the decision maker 
(48). Like classical approaches, this method can also get stuck in a suboptimal 
or dominated solution. But if the Wm values in equation (4.5) are positive for all 
objectives, the solution attained by this method \Yill be Pareto optimal (94]. On 
the other hand, the solution obtained by this method might not be acceptable 
because of inappropriate settings of the "~eights. l\Iaking a proper choice of the 
weights might also be difficult. This is further discussed in section 4.3. 

Alternatives to the aggregating approaches are population based approaches. 
In population based approaches (known as Vector Evaluated Genetic Algorithm 
(VEGA)) (55, 112], if there are l\1 objectives, Af sub-populations of size F/l,,f 
( F is the population size) are selected (by means of a suitable selection process) 
from the whole of the old generation according to each of the objectives separately. 
These Af sub-populations are shuffled together and then normal crossover and 
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mutation are applied. The major drawback of VEGA is, that if there is an 
individual that is a good compromise solution for all objectives but not the best 
in any single objective, it will be discarded [48, 135). Among the categories of 
~IOEA, the aggregating approach is the simplest. Another advantage of this 
approach is its adaptability. By proper adjustments of the weights, it can adapt 
to diverse performance optimization objectives. 

Owing to the simplicity, adaptability and the ability to converge to a Pareto 
optimal set of the aggregating approach, in this work it is decided to use it in 
dealing with the router performance optimization problem as described below. 

4.3 Review of the Router Optimization Problem 

This section discusses how the aggregating approach can be used to approach 
the router optimization problem. Although aggregating approaches are simple to 
understand, their implementation requires handling two major challenges. These 
are the scaling of the objective functions and the proper setting of the weights. 
They are discussed below. 

It is likely that different objectives will have values of different units and orders of 
magnitude. For example in the car manufacturer problem in section 4.2.1 (Figure 
4.6}, the cost of production of a car is in dollars and the pollution can be the 
amount of polluted wastage material (in kilograms) it produces. Hence, direct 
aggregation might not be possible for these two objectives. A possible solution is 
to "scale" the objective functions so that they have the same range of acceptable 
values. 

In our router optimization problem, let us consider the performance optimization 
objective of ma.-ximizing utilization and minimizing the packet drop rate. In both 
cases the range is [O, I). However a utilization of 0.5 might not be comparable to a 
packet drop rate of 0.5. This is because a packet drop rate of 0.5 is very high and 
might not be acceptable to many networks. In this case we can set up thresholds 
for acceptable values for utilization and packet drop rate. For example, let us 
assume the range of the packet drop rate is in (0, 0.02]. In this case a packet drop 
rate of 0.02 is scaled to be 1 and a packet drop rate of 0.01 is scaled to 0.5. Thus 
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the fitness function for this simple router optimization problem becomes 

(4.6) 

where l' and p' are the scaled values of packet drop rate and utilization respec-
tively. Similarly to land p, the other objectives q and v in our router optimization 
problem can be scaled. 

The scaling of objectives depends largely on the system requirements. A scaling 
that is appropriate in one system might not be appropriate to other systems. It 
depends on the performance objective for a particular network. In this work an 
AQl\l system is developed and the aggregating approach is used to simulate the 
performance of the developed scheme (Chapter 7). 

The second challenge is to set up the weights. Setting up an appropriate weight 
vector also depends on the scaling function used for each of the objectives. There 
is no simple \Vay to determine the most appropriate weight vector. But if the 
scaling is done properly, the complexity of setting up a proper weight vector 
can be reduced. In the case of the router optimization problem, the weight 
vector depends on the system requirements. For example, in a data network, the 
main optimization objective may be utilization. In a VOiP net\vork, the most 
important objective function may be the drop probability. Therefore, in case of 
a data network, w2 should be greater than w 1 in equation ( 4.6). On the other 
hand, in case of a VOiP network, w1 should be greater than w2. 

4.4 Conclusion 

This chapter reviewed fuzzy logic and evolutionary computing, two kinds of soft 
computing technique. In the first part fuzzy logic and fuzzy logic systems were 
reviewed. In the second part classical approaches and evolutionary approaches 
for solving 110 problems were reviewed. The use of multi-objective evolutionary 
algorithms for solving the router performance optimization problem was explored. 
In chapter 7 an AQ11 system based on the fuzzy logic based traffic models that 
are developed in chapter 5 is proposed. 
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Chapter 5 

Fuzzy Logic Based Traffic Models 

5 .1 Introduction 

In this chapter two models: a fuzzy state model and a fuzzy group model of 
network traffic are proposed. As stated in Chapter 2, traffic models have many 
applications. They are used extensively in traffic control and performance opti-
mization. Some router queue management techniques were discussed in Chapter 
3. 

The Fuzzy State Model models the current state of network traffic at an obser-
vation point and can be used to generate control signals for traffic sources. It is 
used to develop an Active Queue l\Ianagement (AQ::\I) scheme. 

The Fuzzy Group ~Iodel models traffic flows of any duration. It models both 
single user and aggregate traffic. This model introduces a parameter named R 
that reflects the overall characteristics of the traffic. The group model, along 
with the R parameter is used in the analysis of network traffic. In order to keep 
these models simple, fast and secure this work restricts to data sets measured by 
port based passive measurements (section 3.4.l and 3.4.3) only. For reasons of 
privacy, no user sensitive data such as packet payload (section 3.4.2) is used. 

5.2 The Fuzzy State Model 

This model represents network traffic as a fuzzy time series. This work presents 
a novel approach to modelling Internet traffic using fuzzy state information and 
fuzzy trend information. Depending on the packet arrival rate, the state of 
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a traffic stream is described using natural linguistic terms such as "very quiet", 
"greedy" and "in burst". The trend of a traffic stream is also described with human 
understandable terms, such as "rising", "falling", "rising sharply" and "constant". 
In the rest of this thesis, linguistic variables and fuzzy sets are named with upper 
case letters. Packet arrival rates at present and in the recent past, determine the 
trend and the state of the traffic stream. For example, at time t, t-1 and t-2, the 
number of packets of a traffic stream arriving at an observation point is Nti Nt_ 1 , 

Nt-2 respectively. If Nt > Nt-l > Nt_2, this indicates that number of packets 
arrived at the observation point is increasing. In this case it can be said that, the 
trend of the traffic stream is increasing. If Nt < Nt-l < Nt_2 , this indicates that 
the number of packets arrived at the observation point is deceasing. This means 
the trend of the traffic stream is decrea5ing. Similarly, if Nt-Nt-1 > Nt-1 -Nt-2, 
it can be said the trend of the traffic stream is rising sharply. 

Let the linguistic variable TREND represent the trend of a fuzzy series. In our 
capital letter notation, "the trend is constant" is equivalent to the fuzzy statement: 

µcoNSTANr(T REND) = 1 (5.1) 

Equation (5.1) says, the linguistic variable TREND is a member of the fuzzy 
set CONSTANT with degree of membership 1. Similarly, let the linguistic vari-
able STATE represent the state of a fuzzy time series. "The traffic is quiet" is 
equivalent to 

µQurEr(STATE) = 1 (5.2) 

Equation (5.2) means, the linguistic variable STATE is a member of fuzzy set 
QUIET with membership 1. The state and the trend information are represented 
by state fuzzy sets and trend fuzzy sets respectively. That is, the variable TREND 
can be a member of any number of trend fuzzy sets and the variable STATE can 
be a member of any number of state fuzzy sets. In equation (5.1), CONSTANT 
is a trend fuzzy set and in equation (5.2), QUIET is a state fuzzy set. 

65 



CHAPTER 5. FUZZY LOGIC BASED TRAFFIC MODELS 

?ack"1Cowm 
.V0 . . v1 ,X~ 

Determmat1on of 
state Fuzzy Sets 

Fuuification of 
Packet Counts 

Figure 5. 1: Logical Block Diagram of t he Fuzzy State :..Iodel 

The goal of the fuzzy state model is to compute t he membership of the variable 

STATE for the state fuzzy se ts for a given series {Ni}i>O' where Ni represents 
the packet counts at the ith time interrnl. The input of the model is the packet 
arrival statistics. That is. t he system only measures the packet counts. It then 
computes the membership rnlues of nu"iable TRE'.\JD in corresponding t rend fu zzy 
sets. Final l:v from TRE:ND and the current packet arrival pattern the membership 
values of STATE in state fuz z.v sets a re determined . 

The trend and the state information of a traffic stream can be useful in a router 
queue management scheme. As discussed in sect ion 3.3, most of the act ive queue 
management schemes predict congestion based on the instantaneous or aYerage 

queue size. This approach ma.v lead to inefficient management of the buffer. For 
example, let us consider two cases: 

• case one: the packet arrival rate is increasing and the router buffer becomes 
half occupied . 

• case two: the packet arrival rate is decreasing and the router buffer is also 
half occupied. 

66 



CHAPTER 5. FUZZY LOGIC BASED TRAFFIC 1VIODELS 

In both cases, existing AQ~'l schemes will use a similar drop function. However, 
it may be that in the second case, where the packet arrival rate is decreasing, 
the traffic arrival rate will decrease further and the queue length will be smaller 
automatically. In our fuzzy state model, however, our aim is to model the trend 
and the state of a traffic stream so that the queue management scheme can use 
the trend and the state information to determine a more appropriate packet drop 
probability. In a high speed network, a router has a very little time to make 
queuing and routing decisions. This is why our state model was developed so 
that it minimizes the number of complex mathematical calculations. 

The block diagram of the state model is shown in Figure 5.1. The input of the 
model is a stream of arriving packets. At first a difference \Yindow is constructed 
from the arriving packet counts. This difference window and the packet counts are 
fuzzified to determine the trend fuzzy sets and then by means of fuzzy inferencing, 
the state fuzzy sets are determined. The entire process is described below. 

5.2.1 Construction of Difference Windows 

I I I J4 I 
No Nl N,, N3 N. .... I 

> 

Nt-No! N,-Nj N3-N2! N 4-N3! Hi-NH! 
jl 

I I I 
2 d3 d4 d, 

> 

di-di l d;-d:!l d,-d;l d1 -dH! 
d' d' d' ....... d' 2 3 4 l 

> 

Figure 5.2: Construction of difference windows from the arriving packet counts. 

Difference window values are simply the difference between two consecutive packet 
counts. The differences between two consecutive packet counts determine the first 
order difference windows and are denoted by variables { dt}. The second order 
difference windows, denoted by { da, are the difference between t\vo consecutive 
dt. That is, 

dt = Nt - Nt-1 
d~ = dt - dt-1 
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where Nt is the packet count at the tth time bin. Figure 5.2 shows how the 
difference window for a given traffic trace is constructed. In the next step the Nti 
dt and d~ are fuzzified. 

5.2.2 Fuzzification of Difference Windows and Packet Counts 

Fuzzification is the first step of any fuzzy logic based system (Figure 4.3). The 
crisp values di, d~ and Ni are fuzzified using suitable membership functions (sec-
tion 4.1.1). Because of its simplicity and wide acceptance, in this work a trian-
gular membership function is used. 

Using triangular membership functions, di and d~ are mapped into POSITIVE, 
ZERO and NEGATIVE fuzzy sets. The membership function for fuzzy set ZERO 
is given by 

µz(u) = 

0 u < Z2 
Zru Z2 < U < 0 

Z2 
Z1-u 0 < U < Z1 

Z1 

0 u > Z1 

Similarly the membership function for the fuzzy set POSITIVE is given by 

JLp(u) = { Ou 
P1 

1 

NEGATIVE 

u<O 
0 < 'U <Pi 
u > P1 

POSITIVE 

0 

(5.4) 

(5.5) 

Figure 5.3: Triangular ~fombership Function for POSITIVE, ZERO and NEGA-
TIVE Fuzzy Sets for di and d~. 
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and the membership function for NEGATIVE is given by 

(5.6) 

The membership functions for the ZERO, POSITIVE and the NEGATIVE fuzzy 
sets are shown in Figure 5 .3. 

Similarly to di and d~, Nis are mapped into the SMALL, t..IEDIUM and LARGE 
fuzzy sets as shown in Figure 5.4. Mathematically, they are given by 

µs(u) ~ { 1 u <Vi 
Vo-u Vi<u<Vo Vo-Vi 

0 u >Vo 
(5.7) 

0 u < V2 
u-V? V2<u<Vo 

µM(u) = i--0-i-2 
V3-u \'(i<u<V3 V3-\.'{i 

(5.8) 

0 u > V3 

µ (u) ~ { o~-v, u <Vo 
Vo<u<\'4 L \.4-Vo 

1 u > V4 
(5.9) 

By fuzzifying, each of the three (fuzzy) categories is able to represent a large 
range of values of di, d~ or Ni. This greatly reduces the computation complexity. 
Once di, d~ and Ni are fuzzified, the next step is to determine the membership 
values of TREND in corresponding trend fuzzy sets. 

SMALL 

v 1 

µ 
j 
l MEDIUM LARGE 

i·j V. packet count 

Figure 5.4: Triangular Membership Function for S~lALL, 1\IEDIUM and LARGE 
fuzzy sets for Ni 
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5.2.3 Determination of Trend Fuzzy Sets 

Table 5.1: Rule-base for Fuzzy Inference !\fodule to Determine the Trend Fuzzy 
Set~r:;-;---.-~---;-~~-.~~-:-~~..--~~,.--~-.-~~~~~~~--. 

I No I di-1 di d~ TREND 
1 POSITIVE POSITIVE NEGATIVE RISING SLO\VLY 
2 POSITIVE POSITIVE ZERO RISING 
3 POSITIVE POSITIVE POSITIVE RISING SHARPLY 
4 POSITIVE NEGATIVE NEGATIVE CREST 
5 NEGATIVE NEGATIVE NEGATIVE FALLING SHARPLY 
6 NEGATIVE NEGATIVE POSITIVE FALLING SLO\VLY 
7 NEGATIVE NEGATIVE ZERO FALLING 
8 NEGATIVE POSITIVE POSITIVE TROUGH 
9 ZERO ZERO ZERO CONSTANT 

The trend of a traffic time series at any time instant is determined with the help 
of the fuzzified values of difference windows and the arriving packet counts. 

Once di, d~ and Ni are fuzzified, the trend fuzzy set can be determined using fuzzy 
inference rules. Perhaps the oldest and the most popular inferencing technique is 
min inferencing. There are other modern and sophisticated inferencing rules such 
as transductive knowledge based fuzzy inferencing (114], adaptive neuro-fuzzy 
inference system (ANFIS) (78]and Sequential Adaptive Fuzzy Inference System 
(SAFIS) (109]. Among all the inferencing techniques, min inferencing which 
requires computing the minimum of two membership values is the fastest. In this 
work min inferencing is used. This is because, as it is intend to use the model in 
router buffer management scheme, the quickest method possible should be used. 
The rule matrix for fuzzy inference is shown in Table 5.1. The trend of the series, 
expressed by the linguistic variable TREND is the output of the fuzzy inference 
of Table 5.1. 
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Figure 5.5: Various Trend Fuzzy Sets 

Table 5.1 shows that there are 9 possible trend fuzzy sets. These are: RISING 
SHARPLY, RISING SLO\VLY, FALLING SHARPLY, FALLING SLO\VLY, RIS-
ING, FALLING, CREST, TROUGH and CONSTANT. These state are graphi-
cally shown in Figure 5.5. These are determined from the values of di, di-l and 
d~ by observation. For example in Figure 5.5, the TREND is RISING SLO\VLY, 
if both di and d2 are positive and d~ is negative. The term "di is positive" means 
di has non-zero membership in the POSITIVE fuzzy set. Similarly other fuzzy 
sets are determined. If the packet arrival sequence at a time does not match any 
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rule, the TREND is assumed to be unchanged. 

To illustrate the inferencing, let us consider the following example 

Let 
The number of packets arriving in a sequence - 40, 60, 70 

- { 40, 60, 70} That is {No, N 1, N2} 

Therefore, 
d l = 60 - 40 = 20 and µz(di) = 0.2, ttp(di) = 0.8 (Fig 5.6) 
d2 = 70 - 60 = 10 and µz(d2) = 0.6, µp(d2) = 0.4 (Fig 5.6) 
d~ = 10 - 20 = -10 and µz(d~) = 0.6, tt,v(d~) = 0.4 (Fig 5.6) 

µ 

t 
1 NEG~~Tl\'E ZERO POSITl\'E 

0.8 

0.2 

-40 

• • • • • 

40 
Figure 5.6: Membership functions and grade of membership for the fuzzification 
of { 40,60, 70} traffic stream 

The membership values of TREND in trend fuzzy sets are computed from Ta-
ble 5.1. In this example, d1 and d2 have non-zero memberships in ZERO and 
POSITIVE fuzzy sets. Similarly, d~ has non-zero memberships in ZERO and 
NEG AT IVE fuzzy sets. Therefore, there can be eight different combinations of 
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(di, d2, d~). Among these eight combinations the only combinations to fire rules 
in table 5.1 are: 

(ZERO, ZERO, ZERO); 

(POSITIVE, POSITIVE, ZERO); and 

(POSITIVE, POSITIVE, NEGATIVE). 

These combinations match rules 9, 2 and 1 respectively. 

Hence TREND is, 
CONSTANT with membership (rule9) - min(µz(d1), µz(d2), µz(d~)) 

- min(0.2, 0.6, 0.6) = 0.2 
RISING with membership (rule2) - min(µp(d1), µp(d2), µz(d~)) 

- min(0.8, 0.4, 0.6) = 0.4 
RISING SLO\VLY with membership (rulel) - min(µp(d1), ftp(d2), flN(d~)) 

- min(0.8, 0.4, 0.4) = 0.4 

In the above example, the variable TREND of the traffic stream { 40,60,70} is: 
CONSTANT with membership 0.2, RISING with membership 0.4 and RISING 
SLO\VLY with membership 0.4. 

Once the trend fuzzy sets are determined, the next step is to find the state of the 
traffic stream. 

5.2.4 Determination of State Fuzzy Sets 

The membership values of variable TREND in trend fuzzy sets and the current 
packet count are used to determine the state fuzzy sets. At first a compound label 
is formulated. The compound label consists of current trend information and 
current packet arrival information. The compound label is a pair of membership 
values of two terms. The first term is the value of TREND with corresponding 
grade of membership. The second is the fuzzy set that represents the packet 
counts with corresponding grade of membership. One example of such a label is 
{O.G RISING SHARPLY, 0.9 LARGE}. This label indicates that the TREND is 
RISING SHARPLY with membership 0.6 and the number of packets which has 
arrived is LARGE with membership 0.9. The label can be viewed as an "event". 
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\Vhen such an event acts on a traffic stream, the state of the traffic is transformed 
into a new state. 

The state of the traffic is represented by the linguistic variable STATE. The 
variable STATE reflects the activity level of the traffic. STATE can be a member 
of more than one state fuzzy set. The state fuzzy sets have easily understandable 
linguistic terms, such as QUIET or BURST. 

The compound label acts on a traffic stream and transforms it into new state. For 
example, the compound label {RISING SHARPLY, LARGE} acting on QUIET, 
transforms it into BURST. Denoting the acting operator by symbol It), this rule 
becomes, 

{RISING SHARPLY, LARGE} l±J QUIET =? BURST (5.10) 

There can be many rules similar to equation (5.10). The rules may vary from 
system to system. The system designer can define any number of such rules based 
on the system requirement. One major aim of this research is to use the model 
for traffic analysis and router performance optimization. The states and rulebase 
used in this work are given in equation (5.11). In (5.11), the symbol X indicates 
"DON'T CARE" or any value and XB indicates any value other than BURST. 
This work calls the rules in (5.11) the state transition rules. 

Rl: {RISING SHARPLY, LARGE} It) XB 
R2: {RISING SHARPLY, LARGE} ltJ BURST 
R3: {FALLING SHARPLY, MEDIUM} ltJ X 
R4: {FALLING SHARPLY, S~IALL} ltJ X 
R5: {CONSTANT, SMALL} ltJ DO\VN\VARD QUIET 
R6: {RISING SHARPLY, l\IEDIU:M} It) QUIET 
R7: {X, l\IEDIUM} ltJ UP\VARD ALARM 

=? 

=? 

=? 

=? 

=? 

=? 

=? 

BURST 
GREEDY 
DO\VN\VARD ALARM 
DO\VN\VARD QUIET 
QUIET 
UP\VARD ALARM 
ALARM 

(5.11) 

Equation(5. ll) shows that there are seven different states fuzzy sets that are used 
in this work. These are: BURST, GREEDY, DO\VN\VARD ALARM, DO\VN-
\VARD QUIET, QUIET, UP\VARD ALARM and ALARM. \Vhen traffic is in 
the QUIET state, this indicates that the traffic has low activity, or equivalently, 
the TREND is constant and Ni is Sl\IALL. Similarly, if suddenly a large num-
ber of packets arrives in a relatively short amount of time, the traffic stream 

74 



CHAPTER 5. FUZZY LOGIC BASED TRAFFIC AfODELS 

is in the BURST state. The ALARM state indicates that traffic activity is in-
creasing alarmingly. The state DO\VN\VARD QUIET indicates that the packet 
arrival rate is decreasing and the current packet count is small. In this case an 
AQJ\I scheme might think of stopping packet dropping. The state DO\VN\VARD 
ALAR!>.I indicates that the packet arrival rate is decreasing and still the current 
packet count is not small enough to termed as QUIET. 

Fuzzy inference rules are used to compute the membership of the variable STATE 
to each of the state fuzzy sets. For example, using min inference, according to rule 
(5.10), if the label {0.6 RISING SHARPLY, 0.9 LARGE} acts on a QUIET state 
with membership 0.7, it will transform the STATE into BURST with membership 
= min(0.6, 0.9, 0.7) = 0.6. That is, 

{0.6 RISING SHARPLY,0.9 LARGE} l±J {0.7QUIET} =::;. 0.6BURST 
(5.12) 

The state transition diagram associated with the rules in (5.11) is shown in Figure 
5.7. 

Let us consider the state transition rule 

{RISING SHARPLY, LARGE} l±J BURST=::;. GREEDY (5.13) 
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Figure 5. 7: Various State Fuzzy States and Their Transitions 

This states that the traffic is already in BURST and within this state the trend is 
RISING SHARPLY and the number of packets which has arrived is large. This 
reflects the burst-within-burst which is a common phenomenon in self-similar 
traffic (section 2.10). Burst-within-burst is not observed in a Poisson traffic. 
That is for Poisson traffic, this rule is unlikely to be matched. 

In equation (5.11), the third rule states that, ifthe trend is FALLING SHARPLY 
and the number of packets which has arrived is :MEDIUM, the state of the traffic 
stream is changed to DO,VN\VARD ALARM. This state represents the situation 
\vhen the packet arrival rate in a traffic stream is decreasing but still not low 
enough to be considered as QUIET. If the trend is FALLING SHARPLY and the 
number of packets which has arrived is Sl\IALL, the traffic state is DO,VN\VARD 
QUIET. The state of a traffic stream modelled in this way can be used by a 
router in its queue management scheme. For example, if the state of an incoming 
traffic stream is DO\VN,VARD ALARl\f, the router may lower its packet drop 
probability or if the state is DO\VN\VARD QUIET, the router may not need to 
drop any packets. 
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5.2.5 Discussion of the State Model 

One of the main characteristics of the state model is its simplicity. As it is de-
signed to be used in the router optimization scheme, it has to be simple and quick 
so that it can be implemented in the framework of a router \Vithout significantly 
increasing the router's load. The state model does not perform any complex com-
putation. Both fuzzification and inferencing use simple arithmetic. The use of 
min inferencing also helps it to be simple. 

The state model uses only the packet counts. It does not make any active or 
content-aware measurements. It does not even capture packet headers. Thus it 
is simple, fast and secure. 

The traffic state can be an important parameter for a router Queue i\Ianager. 
For example, if the traffic state is QUIET, the Queue Manager does not need 
to drop any packets. In Chapter 7 the application of this fuzzy state model to 
assist Queue ~Ianagers to determine an appropriate packet drop probability is 
discussed. 

5.3 The Fuzzy Group Model 

No suitable mathematical formula or quantity that can be used as a measure of 
the burstiness of a traffic stream exists. Section 2.10 discusses some of the then 
available approaches for measuring burstiness. Although the energy plot (section 
2.10.1) can be a useful measure of burstiness, it produces a graphical presentation 
only, not a mathematically derived parameter of the traffic stream. One of the 
aims of this research is to develop a fuzzy logic based traffic model which can 
provide a mathematical quantity that can be used to characterize traffic streams 
and can also be used as a measure of burstiness and an indicator of queuing 
performance. In this work this model is named as fuzzy group model. 

A packet is the smallest building block or unit of a traffic trace. In a TCP /IP 
communication, headers are added to the user data by means of encapsulation. 
In a TCP /IP network, a packet can be identified by the follmving six attributes: 

1. source port (added in the transport layer); 

2. destination port (added in the network layer); 
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3. transport protocol used (added in the transport layer); 

4. source IP address (added in the network layer); 

5. destination IP address (added in the network layer); and 

6. time-stamp (added in the datalink layer). 

That is, a packet is identified by six attributes: time-stamp (t), source address 
(sa), source port (sp), transport protocol (proto), destination address (da) and 
destination port (dp). 

p = ( t, sa, sp, proto, da, dp) (5.14) 

In order to be a valid packet all six attributes must be present. 

Suppose a source sends a number of packets to a destination. After some idle 
time, the source sends more packets to the same destination. The second set of 
packets is considered to be in the same flow as the first if the idle time between 
them is smaller than a threshold TJ. If the idle time is greater than or equal to TJ, 

flow time-out occurs and the two sets of packets are considered to be in different 
flows. The threshold Tf is known as the flow time-out threshold. 

A flow is a sequence of packets in a traffic trace that have the same source and 
destination addresses and ports, same transport protocol and the difference in 
time-stamp of any two consecutive packets is less than TJ. 

J = {Pi I Pi( sa, sp, proto, da, dp) = Pi-1 ( sa, sp, proto, da, dp) , ti - ti-I < TJ} 

(5.15) 

where {} denotes a sequence of packets, Pi is the ith packet and TJ is the flow 
time-out threshold expressed in time-unit. 

A value of TJ can be anything over 1 minute [11, 41, 67). The authors in [11, 22, 41) 
studied flow time-out values of 5 minutes, 15 minutes and 20 minutes and found 
little difference in. Jain and Routhier in [67) used a value of 500 milliseconds. In 
this work, the value of Tf is assumed to be 10 minutes. 
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In real traffic, packets may come in batches. The fu zzv group model t reats a 

ba tch as a group. A packet group is the largest possible sequence of packets in a 

stream so that t he time in ten-a l between any two consecu t i ,.e packets wi thin the 

sequence is smaller t han a t hreshold . T his \rnrk has defin ed two types of groups: 

f-group and T-group . These groups are shown graphicall~· in Figure 5.8 and are 
defined belovv. 

f- group 

\ \' hen consecut i,·e packets in the same fl ow form a group it is called in an f-

gro11p. Suppose t he sequence of packets {Pk I k = 1. 2. · · ·} fo rms a flow fn. T he 

j th f- group , gJ, in fn is defin ed as 

- ~ 

9J = {p; E ! 11 I (ti - t i- l) < Tg } 

packets 

D flow l 
D flow2 

J':P f 
4H HHHF~ 

\/ 
T-group f-group 

Figure 5.8: Packets , T-groups and f- groups. 

(5. 16) 

--;::::: 
-· 

---
where T9 is t he f- group time-out threshold. This indicates t hat if t he difference in 
t ime-stamps of two consecut i,·e packets in a flow is greater t han or equal to T9 . 

t he packets belong to different f-groups. 

T-group 

\ \'hen consecut ive packets in the aggregate traffic stream form a group. it is called 

in a T -group . Suppose t he sequence of packets {p1 I l = 1. 2, · · ·} fo rms a t raffi c 
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stream r. AT-group Gi in r is defined as 

(5.17) 

where Tc is the T-group time-out threshold and is expressed in time unit. This 
indicates that if the difference in time-stamps of two consecutive packets in a 
trace is greater than or equal to Tc, the packets belong to different T-groups. 

The nature and the characteristics of traffic or even a flow change dynamically. 
A flow consists of packets and the distribution of these packets determine the 
characteristics of the ft.ow. Due to the inherent mechanism of TCP, the packet 
transmission rate can vary largely over time. Our aim is to "capture" the instan-
taneous dynamics of the ft.ow /traffic with the help of the group model. The traffic 
is modelled as a sequence of T-groups and a flow as a sequence off-groups. The 
distribution of these groups determines the characteristics of the traffic and the 
performance of the traffic on a router. For example, let us consider a traffic trace 
consisting of a large number of T-groups passing through a router. If the time 
spacing between these groups is smaller than the time required by the router to 
serve the packets in a group, there will be packet loss or queuing delay in the 
router. On the other hand, traffic passing through the router with small groups 
with sufficient and uniform spacing will be processed smoothly by the router, 
resulting in little or no queuing. These distributions of the groups are modelled 
using fuzzy logic and then a per/ ormance index that reflects the performance of 
traffic on a router is introduced. 

5.3.1 Modelling a Flow 

A single user traffic ft.ow is modelled as a sequence of £-groups. That is, 

(5.18) 

where gi is the ith £-group within the trace. 

Each gi is characterized by 3 parameters, as: 

(5.19) 
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where ti is the time-stamp of the first packet of the ith f-group. bi and di are the 
byte count and the duration of the ith f-group. The duration of the f-group is the 
time required by the group to "pass" an observation point. This is the difference 
between the time-stamps of the last packet and the first packet of the f-group. 

5.3.2 Modelling Aggregate Traffic 

A traffic trace is modelled as a sequence of T-groups. That is, 

(5.20) 

where Gi is the ith T-group within the trace. In our model, the value of re 
(T-group time-out threshold) is chosen so that it is smaller than or equal to the 
average time required by a router to serve one packet. That is, if c.p is the average 
time required by the router to serve one packet, then re holds the condition 

(5.21) 

Each Gi is characterized by 3 parameters, as: 

(5.22) 

where~ is the time-stamp of the first packet of the ith T-group at an observation 
point (such as the router). Bi and Di are the byte counts and the duration of the 
ith T-group. The duration, Di, is the difference in time-stamps of the last packet 
and the first packet of the T-group. 

\Vhen a T-group goes through a router it can undergo one or more of the following 
transformations which have been named: 

• NULL Transformation. The group undergoes no packet loss and no queuing. 
That is, there is no change in Bi and Di. 

• L Transformation. One or more packet(s) is(are) lost due to congestion. Bi 
is changed. Di and~ are also changed. 

• Q Transformation. Ti is changed due to queuing. Bi is not changed, Di 
may or may not change. 
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• Ql\1 transformation. The group is merged with another group due to queu-

ing. To understand the Ql\I transformation, let us consider a T-group en-

tering into a router queue. where another T-group is already queued . It can 

happen that the router dispatches the two T-groups ·'back-to-back". making 
the two T-groups merge together to form one large T-group. In the case of 

a Ql\I transformation, all model parameters are likelv to change . 

__.. 
1~ 1-----1 OOo QOO q 

~ "" Router 
(a) Router 

T -gm"J" B"IT" r 
~~~~,r~ ~~~·~~ """\ id (b) 

Dropped 

I ---
( c) 

Figure 5.9: \ 'arious Transformations in a Router. (a) Two T-groups arrive at a 
router. (b) :\.packet is dropped and other packets are que ued (c) A new T-grot tp 
is form ed . 

Figure 5.9 shows how a new T-group can be formed bv undergoing such trans-

formations. 

When an f- group goes through a router, one or more of the abow' transformations 
may also take place. For an f-group , in the above transformat ions. Ti. B ; and D ; 

will be t i , bi and di respecti \·el:v. 

These transformations in T-groups play a maj or rnle in t he performance of the 

network . The L transformation is responsible mainl~' for drop-outs and retrans-
mission. On the other hand , Q and Ql\I transformations are responsible mainly 
for jitter and extreme jitter. 

New parameters can be introduced to represent the measm e of probabili ty of 
a group undergoing t hese transformations. In a router wi t h an infinite buffer. 
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the dominant type of transformations related to performance are Q and QM 
transformations. A new parameter, R, is introduced to represent the measure 
of likelihood of undergoing a Q (and/ or QM) transformation in such a system. 
The higher the value of R, the higher the probability that traffic will undergo 
queuing delay. 

5.3.3 Determination of R 

Let the inter-arrival time between the (i- l)th and ith T-groups be denoted as 8i. 
According to the group model, a traffic trace is a sequence of T-groups (equation 
(5.20)). The distribution of t5is will affect the router's overall performance. To 
illustrate, suppose that at time Ti, a T-group of size B 1 bytes arrives at a router. 
Let s be the service rate of the router in bytes per second. That is, the router 
requires 1/ s seconds to serve 1 byte of data. The router will require Bi/ s seconds 
to serve the T-group. Let the next group arrive at the router at time T2 (b2 = 
T2 - T1). Therefore, if b2 < Bi/ s, it will cause the size of the queue of the router 
to increase, simply because the second T-group arrives before the first T-group 
has been served. Thus, the distribution of the bis and Bi, along \Yith the router 
service rate s will determine the overall router performance. Let us consider the 
following three special cases: 

• case 1: bi >>Bi-ifs 

In case 1, the router has sufficient time to serve the (i - I)th T-group before the 
ith T-group arrives. Hence, there will be little or no queuing in the router, but 
the system achieves low throughput. 

In case 2, a T-group arrives before the previous T-group has been dispatched 
causing the router queue to increase. The overall system throughput is high in 
this case. 

In case 3, the router operates almost at its optimum performance. The queue 
should be moderately small and the throughput should be high. 
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__.,. Information Flow 

Figure 5.10: Fuzzy Logic System to Determine R 

\Ve want the R parameter to reflect the overall traffic characteristics of traffic 
from a performance point of view. In order to make it easily comparable to the 
Hurst parameter, the value of R is restricted to be between 0 and 1. Therefore, 
ideally R should be defined to have a value close to 0 in case 1 mentioned above 
'vhere the router is likely to do the least amount of queuing. Similarly, in case 
2 where the router is likely to have a large queue, R should have a value close 
to 1 and in case 3, R should have an interim value bet,veen 0 and 1 (preferably 
around 0.5). In this way, looking at the value of R, we can quickly gain an idea 
of the characteristics of a traffic trace from a performance point of view. Smaller 
values of R indicate that if the traffic is fed to a router, there will be a little or no 
queuing. Similarly, higher values of R indicate that there may be large queuing 
of packets. If traffic with a high value of R is fed to a router with finite buffer, it 
is likely that there will be significant amount of queuing and packet drops. 

To determine R, a fuzzy logic system similar to the one described in section 4.1.2 
is used. The general fuzzy logic system of Figure 4.3 is redrawn (Figure 5.10) to 
show the steps of determination of R. 
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SfvIALL MEDIUM LARGE 

(c) 

Figure 5.11: 11embership Function of (a) B and (b) 8 for aggregate traffic. 

The first step is the fuzzification of 8 and B. They are fuzzified with a triangular 
membership function. Each Bi and 8i can be a member of fuzzy sets Si\IALL, 
1IEDIU~I and LARGE. Setting up the support (section 4.1.1), core and the 
universe of discourse of the fuzzy sets depends on the system. For example, a 
value of B which can be large for a 1 i\lbps link can be too small to be considered 
large in a 100.\lbps link. One possible approach to determine the support and 
universe of discourse of the fuzzy sets is to relate B and 8 to the buffer capacity 
/3. 

Several of the AQM schemes (section 3.3.2) such as SRED [101] aim to keep 
the router queue to less than ~ [101). This value can be used as a reference 
point. That is, if B is smaller than ~' it can be considered as fuzzy "S~IALL". 
Using this approach, one possible triangular membership function for Si\IALL, 
MEDIUi\l and LARGE fuzzy sets for Bis shown in Figure 5.11. i\fathematically, 

µs(B) = l b 3 6 

0 

µ.u(B) = 

JlL(B) = l kt 2 3 

1 

85 

B < !!. - 6 

f!.<B<f!. 6 3 

B > !!. - 3 

B <fl. - 3 

f!.<B<f!. 3 2 

B>fi - 2 

(5.23) 

(5.24) 

(5.25) 
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Similarly to B, the SMALL, MEDIUl\1 and LARGE fuzzy sets for o can be 
determined in relation to the router service rates and the buffer capacity /J. The 
router service rate is the number of bytes the router can serve in one second. 
A router with service rate s requires {is seconds to serve a T-group of size ~· 
Therefore, if t5 is smaller than ts, it can be considered as fuzzy "SI\IALL". Using 
a triangular membership function, mathematically the Sl\IALL, 1\IEDIU.rvI and 
LARGE fuzzy sets for 8 are defined as 

µ5(6) = I 1 8 < .f!_ 
- 6s 

~-t5 
.f!_ < 0 < .f!_ +-T 38-s; 6s 3s 

0 8 > .f!_ 
- 3s 

(5.26) 

0 t5 < .§_ 
- 6s 

5_2.. _§_<8<_§_ ~ 
µM(8) = ~-6 .. 

6s - 3s 
--t5 _§_<8<_§_ J'_ iJ 3s 2s 

2s 3s 

(5.27) 

0 t5 > ./!_ 
- 2s 

µL(O) = I 0 t5 < .f!_ 
- 3s 

t5-2- _§_ < 8 < !!.. ~ 
2s-3s 3s 2s 

1 0 > .f!_ 
- 2s 

(5.28) 

Table 5.2: Rule-base for Fuzzy Inferencing to Compute Output Fuzzy Sets for R 
I B I 8 I R I 

LARGE S.MALL LARGE 
LARGE l\IEDIUl\1 i\'IEDIUl\I 
LARGE LARGE Sl\IALL 

l\IEDIUJ\I SivIALL MEDIUM 
l\IEDIUl\I MEDIUM Sl\IALL 
l\IEDIUM LARGE SMALL 
Sl\IALL Sl\IALL SMALL 

l\IEDIUJ\I LARGE Sl\IALL 

Once B and o are fuzzified, we require a set of IF - TH EN rules for fuzzy 
inference. Like the state model, min inference is used. The rule-base used in this 
work to determine R is shown in Table 5.2. Most of the rules are self explanatory. 
For example, the first rule states that, if B is LARGE and o is SMALL, R is 
LARGE. This is the case when the router does not get enough time to serve the 
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incoming group. The last two rules state that, if B is SMALL or 8 is LARGE, 
R is small. This is because in both cases a router has enough time to serve the 
incoming group. 

µ 
t 
1 

0.6 
0.4 

YOUNG 

. . . . . . . . . . . . . . . . 

l'vllDDLE 
.~GED 

0 20 28 40 

OLD 

60 ~R 

Figure 5.12: Triangular Membership Function of Output Fuzzy Sets for R: 
Sl\IALL, MEDIUl\I and LARGE. 

The final step is the defuzzification to output fuzzy sets for R to produce a crisp 
R. The inference module produces the output fuzzy sets Sl\IALL, MEDIUl\·'1 and 
LARGE for R along with the membership values. If R is allowed to have values 
bet\veen 0 and 1, one possible triangular membership function for R is shown in 
Figure 5.12. R is then calculated using centroid defuzzification (equation (4.3)). 
Appendix E has the pseudocode to compute R. 

5.3.4 Discussion of the Group Model 

In section 2.9, the general limitations of statistical and mathematical traffic mod-
els are discussed. The first reason that motivated us to develop a fuzzy logic 
based traffic model is that statistical models make some assumptions. The group 
model does not make any such statistical assumptions. A traffic trace originating 
from any type of network or traffic originating from any level of aggregation can 
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be modelled by the group model. This is the advantage of using a measured 
approach. 

The group model does not perform any active or content-aware measurement. It 
uses packet counts and byte counts only. Hence it is fast and secure. 

The group model does not perform any complex mathematical computation. It 
uses a singleton fuzzifier, min inference and a centroid defuzzifier, all of which 
are are relatively simple and quick to compute. 

Unlike the estimation of H, the estimation of R does not require any data at 
large scales. Hence estimation or R does not require a huge data sets. 

The determination of R involves setting up the core, support and universe of 
discourse of Sl\IALL, :MEDIUM and LARGE fuzzy sets for the fuzzification of 
B, 8, and R. The values for these parameters that are used to determine R for 
traffic analysis are described in section 6.2.2. 

5 .4 Conclusion 

This chapter demonstrated how a fuzzy logic based formulation can be used to 
model network traffic. One of the developed models introduced the R parameter. 
Traffic analysis using the R parameter is discussed in Chapter 6. The R parameter 
is defined in a way that it is related to the queuing performance. In Chapter 6 
queuing performance of 84 real traces and the use of R as an indicator of queuing 
performance are studied. 

One of the aims of this research is to develop a mathematical quantity that can be 
a measure of burstiness of a traffic stream. Chapter 6 also studies the burstiness 
of traffic traces with different R values. 

A router buffer queue management scheme based on the state model is proposed 
in Chapter 7. 
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Chapter 6 

Traffic Analysis Using Our 
Proposed Traffic Model 

6.1 Introduction 

Internet traffic exhibits high variability across a wide range of scales (Section 
2.5.3). If we record packet counts or byte counts at an observation point on a 
network link on a short time scale (10 milli-seconds or less), we observe a highly 
variable process where packet counts or byte counts are constantly changing. It 
might be expected that if we increase the time scale to the seconds range, the 
counts would be smoother. But instead of observing a smoother pattern, we 
always observe that the counts are almost as variable as the finer time scales. 
Qualitatively, this property is termed self-similarity. 

The observation of the existence of Self-Similarity (SS) and Long-Range Depen-
dency (LRD) in both LAN and \VAN traffic was a landmark which made Poisson-
based computer network traffic models obsolete (section 2.5.4). The significance 
of this discovery is that SS and LRD have a large impact on queuing perfor-
mances and traffic prediction. For example, self-similar traffic requires a larger 
router buffer memory than is needed for traffic following a Poisson arrival rate 
[119]. Higher values of H, the Hurst parameter indicate higher degrees of self-
similarity. Therefore, a traffic trace with a higher H value should require a larger 
buffer than traces with smaller H values. In this chapter the queuing performance 
of several real traces with different H and R values are studied. 

89 



CHAPTER 6. TRAFFIC ANALYSIS USING OUR PROPOSED TRAFFIC 
l\IIODEL 

The existence of self-similarity indicates that Internet traffic is bursty (section 
2.5.3). This burstiness can be characterized by wavelet based MRA (Multi Res-
olution Analysis ) Energy Plots developed by Abry and Veitch (section 2.10). 
Although there is no precise mathematical definition of the term ~'burstiness", 
there are some statistical techniques to measure the burstiness (some were men-
tioned in section 2.10). Because of their simplicity and accuracy, ~IRA energy 
plots are used to measure the burstiness of the traffic in the work described below. 

In this chapter the fuzzy group model (and the R parameter) that was developed 
in Chapter 5 is used to perform traffic analysis. The R parameter is defined in a 
\Vay that it can be a measure of burstiness and of the queuing performance of a 
traffic stream. In this chapter the queuing performance and burstiness analysis 
of real traffic traces with different H and R values are studied. Specifically the 
following are examined: 

1. Experiment 1: A comprehensive analysis of 84 real computer network 
traffic traces available from the world wide web collected at different time 
of the day and days of the week. Among these 84 traces, 28 traces are from 
2001, 28 from 2003 and 28 from 2005. The purpose of this analysis is to 
visualize the Hand R values of traffic traces of different years (section 6.2). 
This study gives an overview of how H and R values are changing with the 
evolution of the network. H and R values are studied as a function of link 
utilization for the 84 traces. This study also examines the relationship of 
H and R values with the total number of active connections and examines 
the stationarity of the traces. 

2. Experiment 2: Trace driven queuing analysis of nine out of 84 real traces 
(three each from 2001, 2003 and 2005). Queuing performance graphs of 
several other A~IP 2005 traces are shown in Appendix D. The queuing 
performance of two generated self-similar traffic traces are also studied. 
The traces are generated using the method of section 2.5.2.2. The queuing 
performances of traces with different H and R values are studied. 

3. Experiment 3: ~IRA energy plots of six real traces. The traces from 
AMP 2005 are used in this experiment. Energy plots are used as a measure 
of burstiness (section 2.10.1). The purpose of this study is to find any 
relationship between the burstiness of a trace with H or R. 

The next three sections describe these experiments. 
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I Name 
Table 6.1: Traces Used for the Analysis. 

I Year I Source URL I Access Date I 
Auckland IV 2001 http: J J pma.nlanr .net /Traces /long/ auck4.html 04-01-2006 
Auckland VIII 2003 http://pma.nlanr.net/Traces/Traces/long/auck/8/ 04-01-2006 
Al\lPI 2005 http://pma.nlanr.net/Traces/Traces/long/apth/1/ 22-04-2006 

6.2 Experiment 1: H and R Parameters for Real 
Traces 

In this experiment the H and R values of publicly available traffic traces are 
computed. But publicly available traces with empirical data are now becom-
ing more and more limited. This is mainly because network link speeds have 
increased dramatically in recent years from 10 l\lbps to 1 Gbps or even higher. 
Capturing even just the packet headers from such high speed links requires a huge 
amount of processing power and disk storage. Another reason is privacy. Service 
providers are increasingly concerned about disclosing the operational properties 
of their networks. Because of these issues, publicly available traces for analysis 
are limited. But thanks to NLANR [98) we have a sufficient number of traces to 
study the various characteristics of the fast evolving network traffic. Table 6.1 
shows the traces used in this experiment. Full details of the traces are given in 
Appendix G. 

6.2.1 Determination of the H parameter 

The Hurst parameter of a trace is calculated in l\lATLAB using the Abry and 
Veitch method (section 2.5.2.1). A l\IATLAB script by the authors is used. This 
method is a wavelet decomposition of a time series that can be used to compute 
H. The input of this method is packet counts or byte counts in a small time 
interval (byte counts in 10 millisecond intervals are used) and the output is a 
v:avelet-spectrum of the input series. The value of the H parameter of the input 
series is computed from the plot of variances of the output wavelet coefficients. 
The complete MATLAB script used to compute H is given in the Appendix E 

(section E.3). 
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6.2.2 Determination of the R Parameter 

In all three experiments, the R parameter is sued for analysis of traffic traces. 
The fuzzy group model (section 5.3) is used to determine the R parameter of 
a traffic trace. To apply the model, a few initial parameters needed to be set. 
These are: 

1. appropriate value for Tc (equation ( 5.17)) 

2. membership functions of c5, B (Figure 5.11) 

3. membership function of R (Figure 5.12). 

By definition (equation (5.17) ), if the time difference between two consecutive 
packets is less than or equal to Tc, they belong to the same T-group. The value 
of Tc can be set to any value by the system designer according to the design 
requirements. In this work, Tc is used to be equal to the service time of a packet 
of the router. This means that, if the difference between time-stamps of two 
packets is smaller than or equal to the time required by the router to serve the 
packet, the t'1rn packets are in the same T-Group. 

Let A be the byte count (i.e., sum of length of all the packets within the trace), 
P be the packet count (total number of packets within the trace) of the trace and 
l be the link speed, then Tc is given by, 

A 
Tc= Pl (6.1) 

For a given trace, A, P and l are known. Therefore, using equation (6.1) Tc can 
be computed. This equation shows that the value of Tc can differ from trace to 
trace. 

For 8 and B, triangular membership functions similar to Figure 5.11 are used. 
The figure specifies the support and core for SJ\IALL, MEDIU:M and LARGE 
fuzzy sets in terms of buffer capacity {3. The value of (3 can be specified as bytes 
or as a number of packets that can be buffered. For optimum performance, the 
buffer size should be between 10 to 100 packets [24J. The default value for all 
Cisco interface cards is 40 packets and for all Cisco routers are 75 packets [118]. 
So a buffer size of 40 to 75 packets is a reasonable choice. In this work a buffer size 
of 48 packets is used. To define the membership function for B (Figure 5.ll(b)), 
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the value of s is needed, where s is the time required by the router to serve one 
byte of data. For a given trace s is computed as: 

Vp 
S=-

A (6.2) 

where V is the duration of the trace in seconds, A is the byte count of the trace 
and p is the utilization. 

For R, the triangular membership function of Figure 5.12 is used. 

Once the membership functions for 8 and B are defined, R is computed using the 
Fuzzy Group ~Iodel (section 5.3). 

6.2.3 Experimental Results and Discussion 

This section contains the results of experiment 1. At first the visual summary 
of H and R parameters of the 84 traces used are shown. Then Hand R values 
as a function of various traffic characteristics such as the number of connections 
and the link utilization of the trace are represented. The stationarity property of 
the traces is also studied. The results and the discussion on the results are given 
below. 

6.2.3.1 Visual Summary of Hand R Parameters 

Figure 6.1 is the visual summary of the H parameter of all 84 traces of Table 6.1. 
Appendix G contains a summary table of all the traces used in this analysis. The 
interesting feature of this graph is that the H parameter is about the same for the 
2003 and 2001 traces, but is lower for the 2005 traces. It has been demonstrated 
by several researchers that LRD originates due to the inherent TCP mechanism 
[5, 50J. This means that the existence of a large percentage of non-TCP (UDP 
and others) packets can be responsible for smaller values of the H parameter. 
The trace table in Appendix G shows that, in general, the 2005 traces have a 
higher percentage of UDP traffic than 2003 or 2001. This might be the reason 
for the smaller H values of the 2005 traces. 

Figure 6. 2 is the visual summary of the R parameter of the same 84 traces. The 
2001 traces have very small R values. In general, the 2005 traces have higher R 
values than the 2001 and 2003 traces. The 2003 traces have higher R values than 
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Figure 6. 1: Hurst parameter of 2001 , 2003 and 2003 traces at different t ime of 
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Figure 6.2 : R Parameter of 2001 , 2003 and 2005 traces at different t ime of da.Y 
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the 2001 traces. The R parameter is constructed in a way that the higher the 
value of R the longer the queue require<l (this is further studied in experiment 
2). The 2001 traces have very small R values indicating that the traffic in these 
traces is likely to have caused little queuing on the router. The R values of the 
2005 traces indicate there is likely to have been a significant amount of queuing. 
This is further studied in experiment 2. 

6.2.3.2 H and R values at different time of day and day of week 

Figure 6.1 shows that, there is no apparent relationship between the day of the 
week or the time of day and the H parameter. Apart from two 2005 traces, 
the H values during weekdays and weekends are similar. Also, H appears to be 
independent of the time of day. 

In Figure 6.2, R is also plotted against day and time of the day for the 2001, 
2003 and 2005 traces. Unlike the H parameter, the R parameter appears to be 
dependent on the day /time of \veek. In general, weekday traces have a higher R 
values then weekend traces, especially for 2005 traces. Apart from weekends, the 
midday and afternoon traces have higher R values than the night time or early 
morning traces. This indicates that there are likely to be longer queues during 
the weekday day times than weekends or night times, at least for this mix of 
traffic. In 2005 traces this variation in R values is higher. This indicates that 
the traffic pattern is becoming more and more time dependent. Therefore time-
dependent load balancing or regulation might be required for optimum network 
performance. 

6.2.3.3 Stationarity 

Self-similarity is a property of a weak-sense stationary process (section 2.5.2). 
For self-similar traffic, the value of H can be within 0.5 to 1. Figure 6.1 shows 
2 out of 28 traces from 2005 have an H value of greater than 1. This indicates 
that traffic is not (weakly) stationary for these two traces. The non-stationarity 
of these traces observed during the weekdays indicates that there might be an 
upward trend on the traffic byte count series. That is, the average byte count of 
the traffic trace at that time is becoming higher than the global average. Apart 
from these two, all the remaining 82 traces from 2001, 2003 and 2005 appear to 
be st~tionary (0.5 < H < 1). 
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6.2.3.4 H and R as a function of the number of connections 
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F igures 6.3. 6A and 6.5 show the rnlues of the H parameter as a funct ion of 

t he total number of connect ions fo r 2001.. 2003 and 2005 traces , respect i\·el.\'. If 
t he number of connect ions in a traffi c trace is \·ery large , due to a high lewl of 

aggregation, a non-self- similar traffic should be smooth and hence t he H rnluc 

might be small. T hat is, fo r non-self-similar traffic H would rnry \\·it h t he total 

number of connec tions. Bu t this is not in fact the case. T he figures shm\· t hat 

t he H parameter is a lmost independent of the total number of connections. T his 

is t rue fo r both 2001. 2003 and ewn fo r the 2005 traces where t he Internet usage 

is much higher. T his confirms t hat most of the traces are self-similar. F ig G.5 

also shows the same two rogue values wi th H > 1 as F ig 6. 1 fo r 2005. 
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R Parameter vs Total No Of Connections (2001 Traces) 
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R Parameter vs Total No Of Connections (2005 Traces) 
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Figures 6.6. 6. 7 and 6.8 a re plots of the R parameter agai nst the total number 

of connect ions for 2001. 2003 and 2003 traces. It is e\·ideut that gen eral!~- t hr 

R value is higher for traces with a larger number of connect ions for 2001 and 

2003 traces. Another observat ion follows from the smumar»' table in Appendix 

G that , a 2003 trace has a highr r number of connect ions than a trace from 2001 

with similar ut ilizat ion. For example . a 2001 trace \\·ith 3-1 ,976 connections has a 

utilization of 5.98%. On the other hand. a trace from 2003 has 66.129 connections 

wi t h a ut ilization of 5.56o/c. A possible explanation is that 2003 traces ha,·e 

quite a large number of UDP connect ions indicating the characte ristics of traffic. 

especially transport protocol dist ribution is changing. The bvte count of t hese 

UDP connections is generallv smaller t han TCP connect ions. Figure 6.8 shows 

rather inconsistent R Yalues as a function of the total number of connect ions 

for t he 2005 traces. This indicates t hat the relat ionship between number of 

connections and queue length shmrn in Fig 6.6 for 2001 traces and 6. 7 for 2003 

traces no longer holds t rue. In other words. in case of 2005. a traffic trace with a 

smaller number of connections can have longer queues than a trace " ·ith a larger 

number of connections (it will be seen in experiment 2 that higher R value require 
a longer queue). 

99 



CHAPTER 6. TRAFFIC ANALYSIS USING OUR PROPOSED TRAFFIC 
.UODEL 

6.2.3.5 H and R values as a function of link ut ilization 
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The next set of graphs represent H and R rnlues against link utilization. Figure 

6.9 shows the H parameter appears to be independent on the link utilization 
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for the 2001 and 2003 traces. Apart from the two traces with the hint of non-
stationarity (traces with H > 1), His almost independent of the link utilization 
for the 2005 traces. This was unexpected, as it might be thought that traffic would 
become smooth as the link utilization increases (section 2.7). Other research also 
suggests that H would increase with link utilization [79). This is because degree 
of self-similarity increases as the link utilization is increased. But this is not the 
case for the 2001 and 2003 Auckland traces and for the A1IP 2005 traces. As 
long as the traffic is (weakly) stationary, the H value does not seem to depend 
on the link utilization. 

On the other hand, Figure 6.10 shows that the R parameter increases with link 
utilization. This is expected, as the higher utilization would cause longer queuing 
and hence R would be larger. Another observation is that the 2005 trace have 
higher R values than 2003 traces with similar utilization. That is, a 2005 trace 
is likely to have longer queues than a 2003 trace although they have the same 
utilization. A reason for this could be that the nature of traffic is changing. 

6.3 Experiment 2: Analysis of Trace-Driven Queu-
. 1ng 

In experiment 2, the queuing performance of nine real traces and two generated 
traces is analyzed. The aim of the analysis is to study the relationship between 
the H or R values with queuing performance. The queuing is simulated using 
csim18 (113). The C language function that was used to implement the queue is 
shown in Appendix E. 

For the simulation purpose traces in formats similar to the one used for calculating 
the Hurst parameter (a time series of byte counts aggregated in 10 millisecond 
time bins) are used. Using this time bins significantly reduces the number of 
computations without affecting the result (since bin size is small enough). A bin 
size of 10 milliseconds appears to be a reasonable choice as this value is used in 
several other trace driven queuing studies [92, 102). 

6.3.1 Generating Self-Similar Traffic 

In this experiment, to simulate the queuing of generated self-similar traffic, an 
FARI:r..IA process (section 2.5.2.2) is used. Equation (2.14) was used to generate 
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the self-similar series. In this equation, it can be noted that, for the n-th sample, 
n multiplications/additions are needed. In order to study the self-similar nature 
of such a process a large number of sample points are needed. As the number 
of multiplications/additions required to generate then-th sample is proportional 
to n, a large memory and huge processing power is needed to generate such a 
process of large sample points. A Compaq proliant 7000 server with quad Xeon 
550 processor (2 M L2 cache on each processor) and 2.5G of RAM were used to 
generate 60,000 points. It took about 1 hour to generate these sample points. 
Assuming a sample point is the number of packets arriving in a 10 millisecond 
time bin, the time series of 60,000 points is equivalent to a traffic trace of 10 
minutes long. 

The generated self-similar traffic that is used in experiment 2 is a FARIMA(O,d,O) 
process, where d is the fractional difference parameter (section 2.5.2.2). Two 
series: FARIMA(0,0.2822,0) and FARIMA(0,0.4639,0) are generated. That is, the 
value of dis chosen to be 0.2822 and 0.4639 respectively. They are so chosen that 
the two generated series have H parameter of 0.7822 and 0.9639. The queuing 
performances of the generated self-similar traffic with H = 0. 7822 is compared 
with a real traffic trace having the same H value. A similar comparison is also 
made for H = 0.9639. These comparisons give an indication of whether the two 
traces (one real and one generated) \vi th similar H values have similar queuing 
performance or not. 

6.3.2 The Trace-Driven Queue Simulator 

The simulation of queuing of a given trace is known as trace-driven queuing 
simulation (108). Suppose a traffic trace is represented as {Xi, i = 1, 2, 3, ... N} 
aggregated at 10 millisecond time-bins. That is, X 1 is the byte count in the 
first 10 millisecond interval, X 2 is the byte count in the second 10 millisecond 
interval and so on. Let this traffic arrive at the router with a service rate of S 
bytes per 10 milliseconds and infinite buffer space. After the first 10 milliseconds, 
the queue length will be X 1 - S if X1 > S; or \Vill be zero if X1 < S. That is, 
Q 1 = AI AX(X1 - S, O). This is the standard Lindley Recursion Formula (81]. 
According to this formula, the queue size at the n-th time interval is given by, 

Qn = .l\JAX[(Qn-1 + Xn - S), O] withQo = 0 and n = 1,2, ... N (6.3) 
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P(Q(t))>L, the Complementary Cumulative Distribution Function (CCDF) of 
Q is drawn against L, where, Lis the queue length in bytes. The CCDF of Q(t) 
for LRD or self-similar traffic should have "\Yeibull-like" decay [69]. On the other 
hand, as a Poisson process is memoryless, the CCDF of a Poisson process should 
have a sharper and faster decay. The longer the tail of the distribution, the more 
buffer space is required in a router to serve the traffic without dropping a packet. 

The aim of experiment 2 is to study and compare the queuing behavior of traffic 
traces of different networks collected in different years. Equation (6.3) cannot be 
applied directly to simulate these traces, as the router service rate, Sis unknown. 
An arbitrary value of S cannot be used, as router hardware might be different 
on different networks. A value of S that might be appropriate for a 2001 trace 
might not be appropriate for a 2005 trace, simply because 2005 traces have higher 
means and variance. A value of S that is reasonable for a 2001 data flow can lead 
to an unstable queue (p > 1) for the higher 2005 data flows. 

\Ye want to compare queuing performances of different traces at the same utiliza-
tion level. In equation (6.3), S is defined as the maximum amount in bytes that 
the router can serve in 10 milliseconds. That is, if the utilization is 1, the router 
serves S bytes data in 10 milliseconds. Sand utilization are related as: 

E[Xi] 
p= s (6.4) 

where p is the utilization. For a given traffic. trace, E [Xi] is known. Hence, 
substituting the value of p into equation (6.4), S can be determined. In these 
experiments, for the trace-driven queuing simulation p values of 0.5, 0.7 and 0.9 
are used. Setting p to be 0. 7 means, the router service rate is "scaled" so that all 
the traces have utilization of 0.7 [107, 108]. This chapter represents the results for 
p value of 0.7. Queuing performances of other values of pare given in AppendLx. 
D. 

6.3.3 Experimental Results and Discussion 

In this experiment trace-driven queuing simulation of nine real traces and two 
simulated traces are studied. For this study three real traces from each of 2001, 
2003 and 2005 are chosen. The traces along with their H and R values are shown 
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in Table 6.2. The traces are chosen so that traces of the same year have different 
H values but similar R values. This is because the main focus in this experiment 
is to study the queuing performance of traces with different H values. 

Table 6.2: Traces Used to Studv Queuino-. b 

Trace Name Trace Source/Year H R 
Auck0105 Auckland IV/ 2001 0.96 0.021 
Auck0106 Auckland IV/ 2001 0.89 0.026 
AuckOll 7 Auckland IV / 2001 0.96 0.026 
Auck0315 Auckland VIII / 2003 0.81 0.074 
Auck0319 Auckland VIII / 2003 0.77 0.075 
Auck0316 Auckland VIII / 2003 0.92 0.079 
Ai\IP26 AMPI I 200.5 1.02 0.362 
Ai\IP33 Ai\IPI I 2005 1.05 0.3613 
Ai\IP22 Ai\IPI I 2005 0.80 0.309 

The Complementary Cumulative Distribution Function (CCDF) of queue length 
(i.e., P(Q(t)) > L) in 10 base logarithmic scale is drawn against the queue length. 
The shape of the graph is an indication of how much queuing should happen on a 
real router (section 6.3.2). Short queue lengths indicate little queuing delay and 
superior performance of the router. On the other hand a longer tail indicates 
a substantial amount of queuing and even some congestion indicating degraded 
performance. 

Table 6.2 shows that the 2001 traces have higher H values than the 2003 and 
2005 traces. The queuing simulation of the 2003 and the 2005 traces is of interest 
as both the Auck0315 and Ai\IP22 traces have similar H values. According to 
the characteristics of self-similarity (section 2.5.2), the higher the value of H, the 
longer the tail of the CC DF graph. Theoretically, traces with similar H values 
should have similar queuing performances. 

6.3.3.1 H as an indicator of queuing performance 
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F igure 6. 12: Queuing simulat ion of 2003 Auckland traffic 

Figures 6.11 , 6. 12 and 6. 13 show the CCDF of Q as a function of queue length 
fo r 2001 , 2003 and 2005 t races respectiw ly. T he figures show that , although the 
2001 traces ha,·e higher H values than the 2003 traces, their CCDF haYe smaller 
tails than the 2003 traces . One of t he 2005 traces (A ~IP22) has similar H Yalues 
as to the 2003 Auck0315 trace . But t he CCDF cun-e of Ai\ IP22 has longer tail 
t han that of Auck0315 trace. 
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Figure 6.13: Queuing Simulation of the 2005 AMP Traffic 

105 



CHAPTER 6. TRAFFIC ANALYSIS USING OUR PROPOSED TRAFFIC 
lHODEL 

Figure 6.14 shows the queuing simulation of the two generated self-similar traffic 
data traces. They were generated using FARIMA process (section 2.5.2.2) with d 
equal to 0.2822 and 0.4639 respectively. These values of d generates self-similar 
traffic with H values of 0.7822 and 0.9639 respectively (equation (2.13)). The 
generated self-similar traffic with d = 0.2822 (H = 0.7822) has its H value 
similar to the 2003 and 2005 traces. But the comparison of Figure 6.14 to Figures 
6.12 and 6.13 shows that although the generated trace has similar H values to 
those of the real traces, their queuing performances are not similar. Similarly, 
the generated self-similar traffic with H = 0.9639 does not have similar queuing 
performance to the real traffic with similar H values {2001 traces). These results 
indicate that a contradictory relationship exists between the H parameter and 
queuing performance. In other words, the H parameter by itself does not appear 
to be sufficient to predict queuing performance and the design of a network. 
Similar results have been found by other researchers !102, 107]. 

6.3.3.2 Ras an indicator of queuing performance 

The R parameter appears to be a better indicator of queuing performance. Fig-
ures 6.11, 6.12 and 6.13 show that the higher the value of R, the longer the CCDF 
tail. The 2001 traces have the smallest R values and their CCDF graphs ha,·e the 
smallest tail. Similarly, the 2005 traces have the largest R values and the tails of 
CCDF graphs of these traces are the longest. Also, Figures 6.11, 6.12 and 6.13 
illustrate that the traces with similar R values have similar queuing performance. 

Appendix D shows the queuing behavior of traces from Al\1P2005 with different 
R values and utilization of 0.5, 0.7 and 0.9. As expected, there is little queuing 
at p = 0.5, somewhat more at p = 0. 7 and heavy queuing at p = 0.9. More 
importantly, the graphs which are in descending order of R values show a clear 
relationship between the distribution of queue sizes and R. 

This suggests that the R parameter is a superior candidate for predicting queuing 
performance. Hence, the R parameter can be a valuable measure for network 
design and planning. 
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6.4 Experiment 3: Analysis of Burstiness using 
Energy Plots 

In this experiment, the burstiness of six real traces from 2005 are studied by 
plotting their energy plots (section 2.10.1 ). 

6.4.1 Goal of the Experiment 

The burstiness of a traffic trace can be measured from the energy plots of the trace 
(section 2.10). In section 2.5.2, it was seen that the Hurst parameter by itself 
characterizes self-similarity. That is the value of H indicates the degree of self-
similarity. The higher the value of H, the higher the degree of self-similarity of 
a traffic trace. Therefore the H parameter would be expected to be proportional 
to the burstiness of a traffic trace. The goal of this experiment to study this 
hypothesis. Another goal of this experiment is to find any relationship of the 
burstiness of a trace with its R value. 

6.4.2 Experimental Data 

Table 6.3: Traces Used in the Studv of Burstiness . . 
Trace No Trace Name H R 

1 Al\IP05-39 0.87579 0.10166 
2 Al\IP05-38 0.88904 0.10290 
3 Al\IP0-18 0.77846 0.19630 
4 Al\IP05-25 0.78712 0.21176 
5 Al\IP05-33 1.05011 0.36130 
6 Al\IP05-26 1.02001 0.36235 

The traces used along with their H and R values are shown in Table 6.3. The 
traces are chosen in a 'vay that they have a range of R values. Traces 1 and 2 
are chosen to have similar R values. Similarly, traces 5 and 6 are chosen to have 
similar R values. This is because 've want to examine whether traces with similar 
R values have similar energy or not. Similarly trace 3 and trace 5 have similar H 
values. The energy plots of these traces should give a clear picture of relationship 
of burstiness with H and R. 
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6.4.3 Experimental Methods 
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Energy plots can be indicators of the burstiness of a traffic trace (section 2.10). 

Bursty t raffic has higher energ>' than smooth traffic. Although energy plots arc 

used mainl>' to study the behavior of traffic , in t his work energy plots are used to 
capture the burst incss of t he traffic. The energy plots arc plotted using a method 

similar to 1701 where t he magnitude of the energy of a traffic trace is computed 
and is drawn against scale j. 
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6.4.4 Results 

Figure 6.15 shows the energy plots of the six traces used. The results are discussed 
below. 

6.4.5 H as a measure of Burstiness 

According to Table 6.3, trace 3 and trace 4 have similar H values. Figure 6.15 
shows that although they have similar H values, their energy levels are different. 
Trace 4 has much higher energy than trace 3. Higher energy means burstier traffic. 
Trace 1 has higher H value than trace 4. But trace 4 has higher energy than trace 
1. Therefore, the H parameter appears not to be a measure of burstiness. 

6.4.6 R as a measure of Burstiness 

Among the traces used trace 1 and trace 2 have very similar R values (Table 6.3). 
Figure 6.15 shows that these traces also have very similar energy levels. Trace 5 
and trace 6 have very close R values. The plot shows that they also have similar 
energy levels. Trace 6 has the largest R value. It also has the highest energy. The 
R values of all 6 traces are consistent with their energy plots. The plots shows 
that, traces with similar R values have similar energy and a trace with higher 
R value has higher energy than that of traces with smaller R values. Therefore, 
the R parameter appears to be consistent with energy plots and appears to be a 
good measure of burstiness of traffic. 

6.5 Conclusion 

This chapter analyzed 84 real traces. The H and the R values of these traces were 
computed . The relationship of these values with different statistical properties 
of the traces were studied. Queuing performance and burstiness analysis using 
.MRA energy plots are also been conducted. It was found that the H parameter 
alone may not be sufficient be used to predict queuing performance. On the 
other hand, the R parameter appeared to be a reasonably accurate estimator for 
queuing performance. The R parameter also appeared to be useful for measuring 
the burstiness of a traffic. 
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Chapter 7 

Router Performance Optimization 
Using Our Proposed Traffic Model 

This Chapter focuses on how the proposed traffic models can be used for opti-
mization of a router's queuing performance. The performance of a router depends 
heavily on both buffer dimensioning and queue management. Some of the key 
buffer dimensioning issues and Active Queue ~Ianagement (AQ~l) schemes \Vere 
addressed in Chapter 3. In section 3.5, router performance optimization was 
formulated as a multi-objective optimization problem. In section 3.6 the design 
principles for an ideal AQ::\l scheme were discussed. Following these design princi-
ples, in this Chapter an AQ~I scheme is proposed. This is named Fuzzy Adaptive 
Fair Random Early Detection (FAFRED). 

7.1 FAFRED {Fuzzy Adaptive Fair Random Early 
Detection) 

FAFRED is our proposed AQ::\1 scheme based on the fuzzy state model (section 
5.2) and fuzzy group model (section 5.3). The aim of FAFRED is to provide a fair 
AQl\I scheme with optimum performance. For optimum performance, it needs 
to calculate a proper packet drop probability in a non-biased manner. The drop 
probability is computed based on the current congestion state and the current 
packet arrival rate. FAFRED does this by determining the current fuzzy state 
of the traffic using the fuzzy state model (section 5.2) . FAFRED computes 
the degrees of membership of linguistic variable STATE to the corresponding 
fuzzy states and based on these membership values, it computes the global drop 
probability r(t) at time t. 
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In order to make the packet dropping fair, FAFRED then computes the R pa-
rameter of each flow and the actual drop probability of the packet is computed 
based on the global drop probability and the R values of all the active flows as 
described below. This work calls the actual packet drop probability the packet 
drop probability. If the packet selected to be dropped is ECN capable {section 
3.3), it can be marked instead of being dropped. The packet drop probability 
of packet Pi is the actual drop probability of the packet and is denoted by rPi' 

which is expressed as a fraction. In FAFRED, a random number between 0 and 
1 is generated. If the generated number is less than or equal to r p;, packet Pi is 
dropped. The block diagram of the scheme is shown in Figure 7.1. 

Incoming packet 

·······---····· -·-·····-·-·····. . . : ,= : : c : 
: .2 u Compute Global · 

"5 ~ Drop Function 

CP Module 

Control Unit : :: z r(t) 
::) 

~ v 
. Q(t)<~ ~ ~ Q(t) < ,8 : Q(t)= ,8 

::: 0 ....__ ·z :E Compute Packet 
~~~ 

·::: r- Drop Probability 
:2~ 

PD Module 
Low Probability High Probability 

Enqueue 
Packet 

Drop 
Packet 

Figure 7.1: Block diagram of FAFRED. The CP module predicts congestion by 
monitoring traffic state and computes global drop function r(t). The PD module 
does the actual dropping. 
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In FAFRED, dropping a packet involves two steps: i) calculation of the global 
drop probability and ii) calculation of the packet drop probability. These two 
are handled by the two sub-modules. The Congestion Prediction (CP) module 
calculates the drop probability and the Packet Drop (PD) module calculates the 
packet drop probability and does the actual dropping. 

The Congestion Prediction ( CP) Module 

The CP module monitors continuously the arrival of packets. Based on a fuzzy 
IF-THEN rule-base it computes the global drop probability r(t). The rule-base 
used in this work is shown in Table 7.1. The CP module constantly computes 
and monitors the instantaneous queue length, Q(t) and the variable STATE (as 
described in section 5.2). \Vhenever it matches any of the rules of Table 7.1, it 
calculates the global drop probability and passes this value to the PD unit. If 
there is no match to a rule, the drop probability remains unchanged. Similarly 
to SRED (equation (3.6)), FA.FRED uses a step drop function. That means, the 
drop probability can increase or decrease only in steps. In FA.FRED, the global 
drop probability can increase (or decrease) in steps only by amount T/ or E. These 
are the two initial parameters of FA.FRED. The procedure to adjust the \-alues 
of T/ and t is described later in this section. 

Table 7.1: Rule-base used by the CP module to compute the global drop proba-
bility. 

No Condition r(t) 
1 Q(t) < ;!; 0 
2 Q(t) = /3 1 
3 STATE is QUIET 0 
4 STATE is BURST min(l, r(t - 1) + 7J) 
5 STATE is UP\VARD ALARM min(l, r(t - 1) + E) 
6 STATE is ALAR\1 min(l, r(t - 1) + E) 
7 STATE is GREEDY min(l, r(t - 1) + 7J) 
8 STATE is DO\VN\VARD ALARl\1 min(l, r(t - 1) - t) 
g STATE is DO\VN\VARD QUIET 0 
10 STATE is CONSTANT r(t - 1) 

In Table 7.1, f3 is the buffer capacity, m is a positive integer and r(t) is the 
global drop probability. The first rule says, if the current queue length is less 
than #i, no packet is dropped. Rule 2 says, if the queue is full, then drop the 
incoming packet. According to rule 3, if the STATE is QUIET, the global drop 
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probability is zero. This means FAFRED does not drop any packet when the 
STATE is QUIET. Similarly, according to rule 4 and rule 5, the drop probability 
is increased by amount TJ when STATE is BURST and the drop probability is 
increased by an amount€ when the STATE is UP\VARD ALARM. 

The Packet Drop (PD) Module 

The PD module receives the global drop probability from the CP module. The 
PD module computes and maintains the R values of all the active flows. These 
R values are stored in a table. This work calls this table the "R Table". Suppose 
at time t, a packet Pi of flow Ji arrives at the router. The drop probability rp; of 
the packet Pi is computed as: 

(7.1) 

where Rf; is the R value of the flow fi and E(R1) is the average of the R values 
of all the active fimvs. If Pi is dropped, the value of Rf; is equated to zero and 
the corresponding entry in the R Table is updated. 

Algorithm 1 Algorithm for the PD 1\Iodule 
IF r(t) = 0 

Enqueue Pi 
ELSE 

COMPUTE packet drop probability rPi 

Generate a random number between 0 and 1 
IF the random number is greater than r Pi 

Enqueue Pi 
SET Rf;= 0 

ELSE 

END IF 
END IF 

Drop Pi 
COMPUTE RJ; 

UPDATE Rf; in R Table 

The algorithm for the PD module is shown in algorithm 1. The PD module 
drops a packet only when the global drop probability, r(t) is greater than zero. 
Equation (7.1) shows that the packet drop probability for packet Pi, rp; is 
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proportional to the Rf;. That is, a packet from a flow with a high R value is 
more likely to be dropped than a packet from a flow with a small R value. 

7.2 Discussion of FAFRED 

Ideally an AQ11 should be as fair as possible and exhibit optimum performance 
according to the properties of l, q, u and v (Section 3.5.2). FA.FRED tries to 
maintain a smaller queue length by dropping the minimum number of packets. 
Equation (7.1) shows that the drop probability for the packet Pi is directly pro-
portional to R1;- According to the characteristics of the R parameter, a flow with 
a higher R value is likely to cause more queuing in the router. Thus selecting a 
packet for dropping from a flow with the highest R value should lead to the queue 
length being maintained to a smaller level by dropping the minimum number of 
packets. 

Once the packet Pi is dropped, R /; is set to zero. As the drop probability for the 
packet Pi is proportional to R 1;, this equates the drop probability for the packets 
of flow fi to zero. The other flows have non-zero R values and hence a higher 
drop probability. \Vhen the next packet is dropped, it is likely that a packet from 
another flow is selected for dropping. In this way, FA.FRED achieves fairness. 

7.2.1 Discussion on Setting up Parameters for FAFRED 

FA.FRED requires 3 initial parameters: m, € and 'IJ· In Table 7.1, {3 is the buffer 
capacity, m is an integer and Q(t) is the current queue length. 

The objectives for our AQU are to minimize l, q, (-p) and v (Section 3.5.2). 
In this work the aggregating approach (Section 4.2.3.1) is used, where multiple 
objectives are combined into a single objective function by means of aggregation 
or addition. Applying the aggregating functions method (equation ( 4.5)) and 
using Ji (x) = l, f2(x) = q, f3(x) = -p and f4(x) = v, the optimization of an 
AQtvl performance requires minimizing the following objective function: 

(7.2) 
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Equation (7.2) shows that to optimize the performance of the router we need to 
minimize F which is a function of l, q, p and v. The parameters l, q, p and v 
depend on r(t) and r(t) is computed based on m, € and TJ (Table 7.1). That is, 
l, q, p and v are themselves (unspecified) function of m, € and TJ. Therefore, no 
mathematical formulae on howl, q, p and v depends on m, TJ and €can be written. 
In other words, F in equation (7.2) is a complex nonlinear function of m, TJ and 
€. An approach to optimizing nonlinear functions is to use a Genetic Algorithm 
(GA) as it does not require any mathematical function or derivative to optimize as 
required by other methods [53). Hence a GA is sued to find the optimum value of 
m, TJ and€ for which Fis minimum. As l, q, p and v are themselves (unspecified) 
function of m, € and TJ, the objective function of equation (7.2) becomes 

Previous research works are studied to determine m. The original RED does not 
drop any packets when buffer occupancy is less than Alf Nth (equation (3.5)). In 
[101], Ott showed that an optimum value for Af INth is~' where f3 is the buffer 
capacity. Similarly to RED, SRED starts to drop packets when the buffer reaches 
~· Therefore, in the case of a simple network m = 6 can be assumed. For more 
complex live networks, it may be necessary to explore other values of m in search 
of the optimum result. 

According to Table 7.1, r(t) is increased by amount TJ when the traffic is in BURST 
and is increased by amount € when the traffic state is ALA.Rl\I or UP\VARD 
ALARM. As the drop probability in the BURST state should be higher than the 
drop probability in the ALARl\I state, it is logical to set the condition T/ > €. In 
the fuzzy group model, the membership functions of band B (Figure 5.11) are 
constructed in such a way that the core of the LARGE fuzzy set is 3 times the 
core of the SMALL fuzzy set. The original RED also suggests that Af AXt1i be 
approximately 3 times Alf Nth· Therefore, it is decided in this work to use T/ = 3€. 
Floyd, the author of the original RED showed that for optimum performance, 
the queue drop probability should not exceed 23 (45, 46). Therefore, 'TJ can be 
restricted to be less than 0.02 (i.e., € < 0.0067). 
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Assuming m = 6 and fl= 3E, the GA can be simplified to find the value of€ for 
which Fis minimum. Hence, in this special simplified case FAFRED requires, 

minimize F(E) 
subject to, 

€ < 0.0067 
fl= 3t: 
m=6 

(7.4) 

Equation (7.4) shows that setting up the parameter for FA.FRED requires setting 
up a GA to get a value of E for which the solution of equation (7.4) is Pareto 
optimal. The assumptions m = 6 and fl = 3t: reduce the complexity of GA, but 
they might not give the optimum performance in a real complex network. In a 
complex network, the GA should be set up to find the optimum values form, fl 

and E though this is out of the scope of this research. However, a simple GA to 
find a feasible solution of equation (7.4) in the FAFRED simulation study is set 
up (section 7.3.4). 

The weights, wi depend on the performance goal of the network. For example, if 
the design goal is to achieve higher utilization, w3 can be set higher than other 
weights. 

7.3 Simulation ofFAFRED and Other AQM Schemes 

source sink 

Figure 7.2: Topology Used in the Simulation of various AQl\I scheme. 

The simulation package J-Sim [95] is sued to simulate FAFRED and to compare 
its performance with other AQl\I schemes. The throughput vs time, the TCP 
sequence number vs time and the queue length vs time are plotted for each of 
RED, FRED, SRED, drop-tail and FA.FRED. The fairness index for each of these 

117 



CHAPTER 7. ROUTER PERFOR~MANCE OPTLMIZATION USING OUR 
PROPOSED TRAFFIC AfODEL 

AQM schemes are also computed. The results are discussed in section 7.3.5. The 
pseudocode for the simulation using FAFRED is shown in Appendix E. 

7.3.1 Topology Used 

The simple topology of Figure 7.2 is used for the simulation. The network consists 
of three sources (hO, hl and h2), three sinks (h5, h6 and h7) and two routers (nO 
and nl). The three sources and the three sinks are connected to the routers by 
10 Mbps (10x220 bytes per second) links. The link between the routers nO and 
nl is a 10 Mbps bottleneck link with a buffer for 20 packets. A bottleneck link is 
an overloaded link that can be congested. 

7.3.2 Simulation Setup 

To run the simulation, three TCP connections are established in sequence. For 
each AQM, the simulation runs for 1200 seconds. Let the connections between hO 
and h5, hl and h6 and h2 and h7 be labeled J0 , ft and J 2 respectively. At t = 0, 
J 0 is established and remains the only active flow until t = 50. At t = 50, J1 is 
established. Both J 0 and ft are active until t = 100. At t = 100, h is established. 
During t = 100 to t = 600, all three connections are active. At t = 600, Jo stops. 
Both J1 and h are actiw from t = 600 to t = 1000. At t = 1000, J1 stops. From 
t = 1000 to t = 1200, f3 is the only active flow (Table 7.2). A J-Sim built in 
flow generation method that produces the same packet distributions all the time 
is used. That is, the same network and the same traffic conditions are used to 
study all the AQ~I schemes. 

7.3.3 Initial Parameters 

Simulation of all the AQM schemes requires the buffer size {3. In this simulation, 
for all the AQM schemes, f3 = 20 packets is used. That is the buffer can queue 

Table 7.2: Active Connections During FAFRED Simulation 
I Time I Active Connections I 

0-50 Jo 
50-100 Jo, Ji 
100-600 Jo, fit h 
600-1000 Ji,h 
1000-1200 h 
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up to 20 packets. 

J-Sim has built in classes for each of RED, SRED, FRED and drop-tail. Each 
built-in class has a default value for all the initial parameters. In this simulation, 
apart from {3, these default values for each of these AQ:\1 schemes are used. 

For each AQl\1 the simulation ran for 20 minutes. 

7.3.4 Setting up the GA for FAFRED Optimization 

Initially the router operates in training mode to get the optimum value for E. 

Before running the GA we have to scale l, q, p and v and set up the weights of 
the aggregating function F (Section 4.3). In the case of this simple simulation v 
can be ignored. This is because small values of q and l, will keep v to an acceptable 
minimum value. Although, again in the case of a complex real network it might 
be unwise to ignore v. 

Section 4.3 discussed the scaling and setting up of weights of an optimization 
problem. In this simulation the weights are scaled in a way that all the objectives 
can have values between 0 and 1. 

The range of l is set to be (0, 0.02]. That is, a packet loss rate of 0.02 or higher is 
equivalent to l' = 1, where l' is the scaled value of l. A loss rate of 0 is equivalent 
to l' = 0. A loss rate between (0, 0.02) has the scaled value o.~2 • 

In this simulation the buffer capacity is assumed to be 20 packets. That is, q can 
be in [O, 20J. The scaled value of q is given by q' = :R,. 

Utilization p can have values in [O, 1). However, a utilization of < 0.7 could 
considered to be too low for this simple simulation where there can a ma..-ximum 
of three active connections. Hence the threshold of p is set to be [0.7, l]. A 
utilization of 0. 7 has the scaled utilization p' = 0 and a utilization of 1 has a 
scaled value of 1. Any value of pin (0.7, lJ has the scaled value p' = e~-~1 • 

Once the scaling is performed, FAFRED requires the optimization of the following 
function 

(7.5) 
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The next step is to set up the weights wi, w2 and w3 • As mentioned in section 4.3, 
setting up proper weights depends on the network. In the case of this simulation, 
no particular objective is dominant. Therefore, it is assumed that w1 = w2 = 
W3 = 0.33. 

The next step is to set up the GA parameters and run the GA. In this step at 
first it is required to encode E on a chromosome. A chromosome is chosen to be 
a random bit string of length 10. It is assumed E to be in (0, 0.0067] (Section 
7.2.1). Therefore, a bit string 1111111111 is equivalent to E = 0.0067 and a 
bit string of 0000000000 is equivalent to E = 0. For other values, E is encoded 
as decimal value 0~1~he chromosome x 0.0067. In the case of training FA.FRED for this 
simple simulation we have assumed the following GA parameters: 

• Population size = 4 

• Crossover rate = 0.7 

• Number of crossover point = 1 

• Crossover type = one point crossover 

• 1lutation rate = 0.1 

• ~laximum number of generation = 5 

The training follows a procedure similar to Appendix C. Each chromosome of the 
initial population is a candidate solution for the value of E. For each candidate 
value of E, the router operates using FAFRED for a specific amount of time and 
calculates the fitness of equation (7.5). After each generation, new population 
is formed and the router continues to operate using FA.FRED with a candidate 
value of E. Once the termination condition (5 generations) is met, the value for E 

is found. 

The GA parameters that used here are too simple to be applied on a real network. 
But as the router being trained is to operate in a simple topology where there 
can be a maximum of three flows, these parameters might just be sufficient to 
produce a non-dominant solution. 
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The topology of Figure 7.2 ran in training mode for 100 minutes. Each generation 
ran for 20 minutes. After 5 generations, the training stopped. The value for E for 
the topology of Figure 7.2 was found to be 0.00513. That is, for FAFRED, the 
parameters are: 

m=6 
E = 0.00513 
T/ = 0.01539 
{3 = 20 packets 

(7.6) 

Once the initial parameters are found, the simulation ran for 20 minutes using 
FAFRED. 

7.3.5 Analysis of the Results 

7.3.5.1 The throughput vs time plots 

Figures 7.3 and 7.4 show the throughput of bytes per second of all the AQMs 
studied. Between t = 100 to t = 600, when all three flows are active, FAFRED 
has the highest and the most stable throughput. There are some sharp drops of 
throughput in RED and in FRED indicating the utilization is not close to the 
maximum. FAFRED avoided such a drop during the entire period when all 3 
flows were active. Drop-tail also has very high throughput. 
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Figure 7.3: Throughput (in bytes per second) vs Time (in second) Plots of (a) 
RED(b)FRED 
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7.3.5.2 Queue length vs time 

Figures 7.5 and 7.6 show the queue length vs time plots of the AQl\1 schemes. 
For RED, FRED and FAFRED, the y axis is in bytes and for drop-tail the y 

axis is in the number of packets. The Drop-tail graph is plotted in this way to 
visualize that it drops all the packets when the buffer is full. In this simulation, 
the buffer space is for 20 packets. The drop-tail graph shows that it drops all the 
packets when the queue has 20 packets. In Figures 7.5(a), 7.5{b) and in 7.6(c), 
the red line is the average queue length and the blue line is the instantaneous 
queue length. The figures show that FAFRED has the most stable queue length. 
Its average queue length is the smallest among all schemes. 
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average queue length and the blue lines are the instantaneous queue length. 

126 

x10 3 

x10 3 



CHAPTER 7. ROUTER PERFORMANCE OPTL\IIZA.TION USING OUR 
PROPOSED TRAFFIC _\IODEL 

7.3.5.3 TCP Sequence Number vs Time 
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The TCP sequence number vs time plot reflects another important performance 
criteria. It provides information about packet dropping and retransmission. If 
congestion occurs and a packet is dropped, another packet with the same sequence 
number as the dropped one is retransmitted. That is, the sequence number does 
not increase with time. In that case, the sequence number vs time graph has a 
small horizontal section. For optimum performance under TCP, this graph should 
not have any horizontal sections. Figures 7.7 and 7.8 show the sequence number 
vs time graphs of the AQ~I schemes. Drop-tail has many horizontal sections, 
indicating a large number of retransmissions. The performance of RED is also 
poor. FAFRED has the least number of horizontal sections among all the studied 
AQMs. 

7.3.5.4 Fairness 

Table 7.3: Fairness Index of Various Queue i\Ianagement Schemes. 
I RED I Drop-Tail I FRED I FAFRED I 
I o.so I o.66 I o.93 I o.94 I 

The last performance index studied is fairness. The fairness index is computed 
using equation (3.3). Ideally we \Yant the fairness index to be close to 1 as a 
totally fair system has a fairness index of 1. In our simulation, the fairness index 
is computed based on the individual throughput of the flows when all the three 
flows are active (t = 100 to t = 600). 

Table 7.3 shows the fairness indices of all the studied queue management schemes. 
As expected drop-tail has a small fairness index. This is because, when the buffer 
is full, it drops all the incoming packets. It can happen that all the packets from 
one flow are dropped. The fairness index of RED is higher than drop-tail. FRED 
is fairer than RED. FAFRED also has a high fairness index. 

7.4 Conclusion 

In this chapter the developed fuzzy logic based traffic models \Vere used to build 
FAFRED, a fair AQi\1 scheme. Several performance indices of FAFRED were 
compared to other AQi\1 schemes. The results showed promise. By using a ge-
netic algorithm, the FAFRED makes itself adaptive. It maintains a high through-
put keeping its queue small and without dropping a large number of packets. 
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FAFRED does not use any complex mathematical computation and hence can 
be implemented within the framework of a router without significantly increasing 
the router load. 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

Our work has hrn major aspects. Firstly, a fuzzy logic based traffic modelling 
and analysis methodology was developed. This included two traffic models, fuzzy 
group state model and fuzzy group model (Chapter 5). In the fuzzy group model, 
a traffic parameter, R, is defined which can be used in traffic analysis and queuing 
performance prediction. Secondly, we proposed and developed Fuzzy Adaptive 
Fair Random Early Detection (FA.FRED), a router queue management scheme 
based on our proposed traffic models (Chapter 7). FAFRED is found to be 
a promising Active Queue ~Ianagement (AQ~I) scheme which provides a fair 
service and performs well. 

The following indicates how the research objectives set out in Chapter 1 are ad-
dressed. Along with the practical significance of the R parameter and FAFRED, 
this research makes the following contributions to the field of traffic engineering. 

Fuzzy Logic Based Traffic modelling. Existing statistical traffic models rely heav-
ily on complex mathematical computation and extensive measured data. As the 
speed of networks increases, gathering the necessary quantity of data is becoming 
more and more difficult. This difficulty may indicate that it is not appropriate 
to model current or future network traffic using current statistical models. Fuzzy 
logic based models are capable of modelling a system characterized by imprecise 
data and require considerably less computation than statistical models. Hence 
this research proposes a new approach - fuzzy logic based traffic modelling and 
analysis techniques (objective 2). 

131 



CHAPTER 8. CONCLUSIONS AND FUTURE \YORK 

The R parameter that is proposed in the fuzzy group model is simple to calcu-
late. Furthermore, R can be estimated off-line for analysis of previously collected 
traffic traces or on-line for a live traffic stream. For traffic analysis of real traces 
(objective 5), R was computed for off-line traces using a Perl script. An example 
is given in Appendix E. In FAFRED, we computed R in real time for (simulated) 
live traffic flows. The R parameter is estimated using a simple defuzzification 
method (equation (4.3)). In theory, R can be computed for an off-line trace or 
a live stream with any number of T-groups. That is, unlike the H parameter, 
estimation of R does not require a huge data set (objectives 1 and 5). 

Indicator of Queuing Performance. A queuing performance indicator is an in-
valuable tool for network administrators for capacity planning and designing a 
network. The Hurst parameter which is a property only of self-similar traffic is 
believed to be an indicator of queuing performance. But as network traffic has 
recently shown hints of non-stationarity and hence non self-similarity, the Hurst 
parameter may not be appropriate for all networks. Experimental results show 
that the H parameter by itself might not be an accurate indicator of queuing 
performance (Section 6.3). On the other hand, the R parameter, which does not 
rely on self-similarity or any other assumption appears to be useful as a queuing 
performance indicator for any network (Section 6.3). Additionally, the R param-
eter is relath·ely easy to compute and does not require a huge data set ( objectiYes 
1 and 5). 

kfeasure of Burstiness. Theoretically, the H parameter can be a measure of 
burstiness (Section 2.10) but only under the strict condition that the traffic is 
self-similar and originates from a high level of aggregation of users or sources. But 
in modern networks, a burst can arise from even a single user application. Also, 
experimental results show that a contradictory relationship exists between the 
H parameter and burstiness (Section 6.4). On the other hand, the R parameter 
appears to be a reasonably accurate mathematical measure of burstiness of a 
traffic stream (Section 6.4). The R parameter is based on fuzzy logic and can 
adapt to diverse traffic conditions (objective 3). 

The second part of this research focused on router performance optimization. The 
idea of using genetic algorithms in the field of network performance optimization 
is introduced. In particular, this research has made the following contributions 
to the field of network management. 
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Representation of a network optimization problem as a Multi-Objective Optimiza-
tion (MO) Problem. Router performance optimization is a major network opti-
mization problem. In this work the router performance optimization problem 
is formulated as a multi-objective optimization problem. This lead us to ap-
ply multi-objective evolutionary algorithms (l\10EA.) to router performance opti-
mization. This approach appears to be successful and the author of this research 
believes that l\lOEA is a useful approach for solving other network optimization 
problems with multiple objectives (objective 4). 

FAFRED - A Fair and Adaptive Queue .Management Scheme. Experiments using 
FA.FRED, the scheme that is developed in this work, show that FA.FRED appears 
to maintain a small router queue and avoid congestion without sacrificing overall 
throughput. But the main strength of FA.FRED is its adaptability. By using the 
aggregating approach to construct the objective function, multiple performance 
objectives may be achieved by adjusting the weights in equation (7.2). This 
approach makes FA.FRED more flexible than other AQl\Is. 

In the simulation of FA.FRED (Section 7.3), a genetic algorithm is used to find 
the optimum value off, the FA.FRED input parameter. This approach can also 
be used to find optimum parameters for other A.Ql\I schemes (such as Pmar in 
RED). In general, a complex nonlinear relationship exists between the input 
parameter(s) of an AQ1I scheme and the router performance objecth·e. A GA 
approach can be particularly suitable for such cases (objective 4). 

8.2 Future Research 

This research proposed fuzzy logic based traffic modelling techniques. Traffic 
models have a ·wide range of application in the vast area of computer networks. 
Unfortunately this work was able to cover only a small fraction of such applica-
tions. 

There are t\vo major parameters that some traffic models generate: packet size 
distribution and packet inter-arrival distribution. Our proposed fuzzy logic based 
models do not yet generate either. Generating the packet size distribution is 
relatively simple. Existing models of packet sizes have been shown to be valid 
and accurate. Generating packet inter-arrival distribution is much more difficult. 
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How our fuzzy logic based models can be extended to generate packet inter-arrival 
distributions should be pursued further in a separate research effort. 

Traffic synthesis is an important requirement for any network simulation. A traffic 
model should be able to synthesize traffic that resembles real network streams. 
At this point, our proposed models are not capable of traffic synthesis. Future 
research should explore how a traffic stream can be synthesized for a given value 
of R. 

The use of the fuzzy group model in buffer dimensioning deserves a separate 
research effort. The group model is developed in a way that the value of R is 
dependent on buffer capacity. Proper sizing of the router buffer of a network 
could be computed from the R value of the incoming traffic. Research should be 
conducted to find a relationship bet\"i:een R and the optimum buffer size. 

In developing FAFRED, an aggregating approach is used to find its optimum 
input parameter. Although an aggregating approach is the simplest way to deal 
with an l\Iulti-objective Optimization problem, it might not be the most accurate 
for all situations. For a net\vork with complex and heterogeneous traffic, the 
aggregating approach might not provide optimum performance. The use of other 
l\IOEA techniques, such as Vector Evaluated Genetic Algorithms {Section 4.2.3.1) 
to determine the optimum input parameter(s) for FAFRED is a major topic for 
future research. 

During our FAFRED experiments, a feature of J-Sim was used to add attacks to 
the input traffic stream. It was noticed that the value of R changed immediately. 
Further exploration may indicate that another valuable use of R is as an on-line 
detector or perhaps indicator of network attacks. 

The validation of a FL system requires stability analysis and robustness analysis 
with some analytic tool. In FAFRED, the network is trained to get optimum 
values for the input parameters. In other words inference rules (7.1) are dynamic 
with some feedback from the previous state. That is the inference rule is dynamic 
and dependent on the previous states. Existing analytic tools such as FL toolbox 
[68)that are used to study the validation a FL system are not suitable for such a 
dynamic system, because FL toolbox requires a static matrix for the inferencing 
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rulebase. Future research should explore to develop an analytic tool that can 
study the stability and robustness of a dynamic FL system like FAFRED. 
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Appendix A 

Glossary 

bandwidth 

burst-within-burst 

channel capacity 
chromosome 

circuit-s\vitched network 

communication media 

conditional probability 

APPENDIX A. GLOSSARY 

Active Queue Management. A technique of preventing 
congestion in packet-switched networks. 

The maximum speed at which data can be transferred 
between the sender and receiver once transmission has 
begun. 
A burst within another burst. This phenomenon is 
observed in self-similar traffic. 
same as bandwidth. 

An data structure by which an individual is 
represented. Generally this is a string of bi ts { 0, 1}. 
A network where a dedicated channel (circuit) is 
established for the entire duration of transmission of a 
conversation. 
The actual physical (or wireless) path over which the 
electrical or optical signal travels. The most common 
communication media are twisted-pair cable, coaxial 
cable and fiber optic cable. 

The conditional probability, denoted by P(BIA), is the 
probability of B occurring given that A has occurred. 
The conditional probability P(BIA) is defined as, 
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P(BIA) = P(A, B) 
P(A) 



congestion 

crossover 

datagram 
defuzzification 

delay 

encapsulation 

filter(s) 
firewall 

fuzzification 

Gaussian 'Vhite Noise 
gene 

good put 

jitter 

latency 

Markov chain 
l\larkov property 

membership function 

APPENDIX A. GLOSSARY 

The situation, when incoming traffic is so heavy that 
router buffer overflow occurs. 
A genetic operator where two chromosomes exchange 
their genes. 
An IP layer PDU. 
The mechanism for converting the output fuzzy sets of 
a inference engine into nonfuzzy or crisp values. 
The amount of time taken by a packet to be 
transmitted from source to destination. 

The process of adding headers to the user data in each 
layer in a layered protocol system. 
A set of rules that define a firewall. 
A hardware or software that prevents unauthorized 
access to network resources. 
The method of assigning linguistic values to a variable 
using (a relatively small number of) membership 
functions. 
A white noise that has a normal distribution. 

A bit position in a chromosome. 

The amount of this useful information that is delivered 
per second to the application layer protocol 
Unwanted abrupt variation of of one or more signal 
characteristics such as delay. Jitter that is caused by 
packets arriving via different routes is called extreme 
jitter. 

Time required to transfer an empty message from 
sender to receiver. 
A stochastic process with the l\Iarkov property. 
A property where the future state of a process is 
conditionally independent of the past states. 
A graphical (or tabulated numeric) function that assigns 
a membership values between 0 and 1 to the crisp 
values of an input variable over its universe of discourse. 
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mutation 

open loop traffic 
over-provisioned link 
packet-switched network 

protocol stack 

APPENDIX A. GLOSSARY 

A process of flipping a randomly selected bit in the 
offspring. 
A congestion-free traffic. 
A link that can not be congested. 
A network where messages are divided into packets 
which are sent individually. 
A layered set of protocols that perform the entire 
communication task. The layers works together and 
each layer performs a predefined set of functions. 

protocol data unit (PDU) A unit of data that is specified in a protocol of a given 

random process 
router 

routing 

segment 
server 

sojourn time 
stochastic process 
throughput 

white noise 
wrapper 

layer in a layered protocol stack. A PDU consists of 
control information of the given layer and possibly user 
data of that layer. 
A time-indexed series of random variables. 
A device that determines proper path for a packet to 
travel between different networks. 
A process that determines the proper path for a packet 
to travel bet,veen different networks. 
A TCP layer PDU. 
An application program (or a computer running that 
application) that accepts connections in order to service 
requests by sending back responses. 
Time spent in a state. 
A time-indexed series of random variables. 

The amount of digital data per unit time that is 
delivered to a certain host in a network. 
A random process with a flat power spectral density. 
A software that contains other software or data, so that 
the content elements are disguised or hidden. 
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Appendix B 

List of Abbreviations 

AI 
AN FIS 

AQ~l 

.A.Ril\IA 
BDP 

BSCL 
CCDF 
CP 

Dl\1 
EA 
EC 
ECN 
FA FRED 
FA.RIMA 
ffim 
fGn 
FL 
FRED 
FSD 
FSD-1\IA 
FTP 
GA 
Gbps 

Artificial Intelligence 

Adaptive Network based Fuzzy Inference System 
Active Queue l\lanagement 
Auto-Regressive Integrated 11oving Average 

Bandwidth Delay Product 
Buffer Sizing of Congested Link 
Complementary Cumulative Distribution Function 

Congestion Prediction 
Decision l\laker 
Evolutionary Algorithm 
Evolutionary Computing 
Explicit Congestion Notification 
Fuzzy Adaptive Fair Random Early Detection 
Fractional Auto-Regressive Integrated l\loving Average 
fractional Brownian motion 
fractional Gaussian noise 
Fuzzy Logic 
Fair Random Early Detection 
Fractional Sum Difference 
Fractional Sum Difference - l\Ioving Average 
File Transfer Protocol 
Genetic Algorithm 
Giga bit per second 
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HTTP 
IANA 
IETF 
i.i.<l. 
LAN 
LRD 

J\IA 
110 
MOEA 
11:\'IPP 
11RA 
NAT 

PD 
PQM 
Q11 
QoS 
RED 
RTT 
SA FIS 
SC 
SIC 
SRD 
SRED 
SS 
TCP 
UDP 
VEGA 
VOIP 
\VSS 
\V\V\V 

APPENDIX B. LIST OF ABBREVIATIONS 

Hyper Text Transfer Protocol 
Internet Assigned Numbers Authority 
Internet Engineering Task Force 
independent and identically distributed 
Local Area Network 

Long Range Dependent 
Moving Average 
l\lulti-objective Optimization 
Multi-objective Optimization Evolutionary Algorithm 
J\farkov l\lodulated Poisson Process 
l\Iulti-Resolution Analysis 

Network Address Translation 
Packet Drop 
Passive Queue ~lanagement 
Queue l\Ianager 
Quality of Service 
Random Early Detection 
Round Trip Time 
Sequential Adaptive Fuzzy Inference System 
Soft Computing 
Sensitive-dependence on Initial Condition 
Short Range Dependence 
Stabilized random Early Detection 
Self Similar 
Transport Control Protocol 
User Datagram Protocol 
Vector Evaluated Genetic Algorithm 
Voice Over Internet Protocol 
\Veak-Sense Stationary 
\Vorld \Vide \Veb 
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Appendix C 

An example of a Genetic Algorithm 

Genetic algorithms operate on a initial population of potential solutions to an 
optimization problem and apply the principles of survival of the fittest to produce 
better candidates as a solution. A possible or candidate solution is called an 
individual. An individual is represented by a data structure called a chromosome. 
Generally this is simply a string of bits {0,1}. Each bit position in a chromosome 
(bit string) is called a gene. 

The starting point of a GA is to generate an initial population. The initial 
population generally contains random bit strings. Each member of this initial 
population is evaluated for its fitness. The fitness value indicates how strong an 
individual is as a solution. The genetic operators (reproduction, crossover and 
mutation) then operate on the initial population of chromosomes to generate a 
new population. These operators are modelled on their biological counterparts. 
Reproduction is a selection process where individuals are chosen for the next gen-
eration with selection probability proportional to the fitness value. Crossover is a 
method where pairs of chromosomes (parents) in the new population are selected 
at random to exchange their genetic material (bits). Crossover produces two ne\v 
chromosomes. A process of flipping a randomly selected bit in the offspring is 
called mutation. Thus with the help of these operators, a new population is 
generated and the old population is replaced by the new one. At this stage the 
GA has performed one generation. This process is repeated and the population 
evolves and another generation is produced. The new generation contains more 
and more highly fit chromosomes. This evolution continues until the convergence 
criterion is reached. 
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As an example let us consider a very simple problem of the sum of digits of a bit 
chromosome of length 10. Lf~t the following be the GA parameters: 

Population Size - 4 
Crossover Rate - 0.7 
Number of Crossover Point - 1 
i\lutation Rate - 0.1 
l\laximum Number of Generation - 5 

The first parameter Population Size indicates that the initial population consists 
of 4 chromosomes. Crossover Rate indicates whether a chromosome will be picked 
for crossover or not. For each chromosome, a random number between 0 and 1 
is generated. If this generated number is less than the crossover rate (0. 7), the 
chromosome will be selected for crossover. The third parameter indicates that 
one point crossover will be used. 

The GA starts with initial population. Let the randomly generated population 
be 

PO 0000110101 fitness= 4 
Pl 
P2 

1100010100 fitness = 4 

1111001000 fitness= 5 
P3 0101010110 fitness= 5 

(C.l) 

Once we have the initial population, genetic operators are applied to get new 
population. 

Selection 

The first genetic operator that can be applied is selection. A popular selection 
algorithm is the roulette wheel method. In this method the cumulative fitness 
( cfitness) of each chromosome is computed 

PO 0000110101, cfitness = 0.2222 
Pl 
P2 
P3 

1100010100, cfitness = 0.4444 
1111001000, cfitness = 0. 7222 
0101010110, cfitness = 1.0000 

(C.2) 

For PO, fitness is 4, hence its cfitness is 4/ ( 4+4+5+5)=0.2222. For P2, fitness is 
4 and the cfitness is (fitness of PO)+ 4+4!s+s' which equates to 0.4444. Similarly 
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to P2, cfitness of the other members of the population are computed. Then 
four (since population size is 4) random numbers between 0 and 1 are generated 
to determine ·which chromosome gets selected. The cumulative fitness values 
that bracket the random number determine the chromosome to be selected. For 
example according to equation (C.2), if the generated random number is bet\veen 
0 to 0.2222, chromosome PO is selected. A possible selection procedure for 4 
randomly generated numbers (RO to R3) is shown in equation (C.3) and the new 
population is shown in equation (C.4). 

RO 0.0752, selected = PO 
Rl 0.5479, selected= P2 
R2 0.9502, selected = P3 

(C.3) 

R3 0.6546, selected = P2 

PO 0000110101 fitness= 4 
Pl 1111001000 fitness = 5 
P2 0101010110 fitness= 5 

(C.4) 

P3 1111001000 fitness= 5 

Crossover 

In crossover two chromosomes exchange their genes. The crossoYer probability 
determines which chromosome undergoes crossoyer. For each chromosome a ran-
dom number between 0 and 1 is generated. If the number is less than the crossover 
probability, the chromosome gets picked. Each time a pair of chromosomes are 
picked for crossover. A crossover point on the parent chromosome is selected. In 
a one point crossover, all genes beyond that point are swapped bet\veen the two 
parent chromosomes. In a two point crossover, two points are selected on parent 
chromosomes. All the genes between the two points are swapped. A possible 
crossover between chromosome P2 and P3 with crossover point 7 is shown in 
equation(C.5) and the new population is shown in equation(C.6). 

01010101110 
11110011000 

is replaced by 0101010 I 000 
is replaced by 1111001I110 
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Mutation 

APPENDIX C. AN EXAl\IPLE OF A GENETIC ALGORITHl\J 

PO 0000110101 fitness= 4 
Pl 
P2 

1111000100 fitness= 5 
0101010000 fitness= 3 

P3 1111001110 fitness= 7 

(C.6) 

In mutation, one or more genes of a chromosome change. Each chromosome is 
given a chance to undergo mutation by generating a random number between 
0 and 1 for each of its genes. If the random number is less than the mutation 
probability, here 0.1, the value of the gene is flipped. A possible mutation is shown 
in equation (C.7). After mutation the new population is shown in equation (C.8). 

population= PO, gene= 4, new population= 0001110101, fitness= 5 
population = PO, gene = 6, new population = 0001100101, fitness = 5 
population= Pl, gene= 5, new population= 1111100100, fitness= 6 
population= Pl, gene= 9, new population= 1111100110, fitness= 7 (C.7) 
population= P2, gene= 9, new population= 0101010010, fitness= 4 
population= P2, gene= 6, new population= 0101000010, fitness= 3 
population= P3, gene= 6, new population= 1111011110, fitness= 8 

PO 0001100101 fitness= 4 
Pl 
P2 
P3 

1111100110 fitness= 7 
0101000010 fitness = 3 
1111011110 fitness= 8 

(C.8) 

This completes the first generation. \Ye observe that the average fitness of the 
population has increased. The evolution continues for the maximum number of 
generations or until the termination condition is met. In the final population the 
most fit population (the chromosome with the highest fitness) is the solution of 
the problem. Obviously for a given problem there may be more than one optimum 
solution. 

158 



Appendix D 

Graphs of Queuing Simulations 

Section 6.3 represented queuing performances of several traces for different rnlues 
of H and n for p = 0. 7. This appendix shows queuing performances of other traces 
for different n1lucs of p. These graphs are consistent wi th the results obtained 
in section 6.3.3. These results indicate that traces with similar R rnlues haw 
simila r queuing performances at different u t ilization lewl. 
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Figure D. l: Queuing Performance of AfdP05-26 Trace at Different Loads. 
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Figure D.2: Queuing Performance of A:dP05-33 Trace at Different Loads. 
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Figure D.3: Queuing Performance of AJ\IP05-15 Trace at Different Loads. 

160 



0 
T""" 

CX) 

0 

<D 
::::i' 
£:. 0 

a a:- -.::t" 
0 

N 
ci 

0 
0 

0 

APPENDIX D. GRAPHS OF QUEUING SIAIULATIONS 

Queuing of ampOS-01 (H=0.87404 R=0.10096) 

-- load=0.7 
- - load=0.9 \ I - - load=0.5 

\ 

---------
' 

-----------

' ' ' ' ---

------

5 10 15 20 

log2(L) 

' 

' ' \ 

25 30 35 

Figure D.4: Queuing Performance of AMP05-01 Trace at Different Loads . 
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Appendix E 

Pseudocodes and Scripts 

E.1 Pseudocode to Compute R 
GET traffic_data, duration, link_speed 
CALCULATE total_data as sum of sizes of all packets 
DETERMINE total_packets as total number of packets 
CALCULATE utilization=(total_data)/(durationxlink_speed) 
CALCULATE threshold_tgroup=(durationxutilization)/total_packets 
DEFINE SMALL, MEDIUM and LARGE fuzzy sets for groupData 
DEFINE SMALL, MEDIUM and LARGE fuzzy sets for groupTime 
DEFINE SMALL, MEDIUM and LARGE fuzzy sets for R 
SET numerator:=O 
SET denominator:=O 
FOR each packet of the trace 

READ packet_arrival_time 
IF (current_packet_arrival_time-previous_packet_arrival_time< 

threshold_tgroup) 

ELSE 

IF inGroup is FALSE 
SET inGroup to TRUE 
groupStartTime:=previous_packet_arrival_time 
groupData:=previous_packet_data 

END IF 
ADD current_packet_data to groupData 

IF inGroup is TRUE 
groupTime:=groupStartTime-current_packet_arrival_time 
COMPUTE membership of groupData to SMALL, MEDIUM and LARGE 
COMPUTE membership of groupTime to SMALL, MEDIUM and LARGE 
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COMPUTE membership of R to SMALL, MEDIUM and LARGE 
COMPUTE memsmall_R as membership of R to SMALL 
COMPUTE memmedium_R as membership of R to MEDIUM 
COMPUTE memlarge_R as membership of R to LARGE 
ADD memsmall_Rxsup_small_R to numerator 
ADD memmedium_Rxsup_medium_R to numerator 
ADD memlarge_Rxsup_large_R to numerator 
ADD memsmall_R, memmedium_R and memlarge_R to denominator 
SET inGroup to FALSE 
groupData: =O 

END IF 
END IF 

END FOR 
COMPUTE R: numerator 

denominator 

E.2 Computing R Using Perl 

E.2.1 The Script 

#!/usr/bin/perl 
use Mysql; 
use List::Util qw[min max]; 
$tbname=$ARGV[O]; 
$duration=$ARGV[1]; 
$host= 11 localhost 11

; 

$db= 11 traffic 11
; 

$user= 11 user 11
; 

$pass= 11 pass 11
; 

$db=Mysql->connect($host,$db, $user, $pass); 
$rsql="select util from tracestat where trace_url 
like '%$tbname%' limit 111

; 

$rqry=$db->query($rsql) or print 11 $rsql\n11
; 

while (©rrow=$rqry->fetchrow) { 
$uti1=$rrow[O]; 

} 

$betasql="select (sum(length)*48)/count(*) 
from $tbname"; 
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$betaqry=$db->query($betasql); 
while (@betarow=$betaqry->fetchrow) { 

$beta=$betarow[O]; 
} 

print "BETA: $beta bytes\n"; 
### TauG; ### TauG=((duration)/(total packet no))*util 
$tausql="select (($duration*1000000)/count(*)) 
from $tbname"; 
$tauqry=$db->query($tausql) 

or print "$tausql\n"; 
while (©taurow=$tauqry->f etchrow) { 

$taug=$taurow[O]; 
} 

print "TauG= $taug micro seconds\n"; 
### find s (service rate) 
$ssql="select ((sum(length))/($duration*1000000)) 
/($util/100) from $tbname"; 
$sqry=$db->query($ssql) or print 11 $ssql\n"; 
while (@srow=$sqry->fetchrow) { 

$s=$srow[O]; 
} 

print "s= $s micro seconds\n"; 
## find supports for SMALL, MEDIUM and LARGE for B 
$bss=$beta/6; 
$bsm=$beta/3; 
$bs1=$beta/2; 
## find supports for SMALL, MEDIUM and LARGE for delta 
$dss=$bss/$s; 
$dsm=$bsm/$s; 
$ds1=$bsl/$s; 
$rsql="select time_sec, time_micro_sec from 

$tbname order by autoid limit 111
; 

$rqry=$db->query($rsql) or print 11 $rsql\n11
; 

while (©rrow=$rqry->fetchrow) { 
$isec=$rrow[O]; 
$ptime=$rrow[1]; 

} 
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$tn=O; 
$rsql="select time_sec, time_micro_sec, 

length, autoid from $tbname"; 
$rqry=$db->query($rsql) or print 11 $rsql\n11

; 

while (©rrow=$rqry->fetchrow) { 
$sec=$rrow[O]; 
$sec=$sec-$isec; 
$msec=$rrow[1]; 
$time=$sec*1000000+$msec; 
$autoid=$rrow[3]; 
## check time diff 
if (($time-$ptime)<$taug) { 

} 

if ($i<1) { 

} 

$i=1; 

$j=1; 
$groupstartid=$autoid-1; 
$startgroup=$ptime; 

if ($j>O) { 
#print "in group $rrow[2] ... \n"; 

if ($j>1) { $groupbytes+=$rrow[2]; } 
$j++; 

} ## end ($time-$ptime)<$taug 
else { 

if ($i>O && $j>5 ) { 
$grouptime=$ptime-$startgroup; 
$tn++; 
if ($groupbytes<=$bss) { $bsmall=1; } 
elsif ($groupbytes>=$bsm) { $bsmall=O; } 

$bsmal1=($bsm-$groupbytes)/($bsm-$bss); 
} 

if ($groupbytes<=$bsm) { $blarge=O; } 
elsif ($groupbytes>=$bsl) { $blarge=1; } 
else { 

$blarge=($groupbytes-$bsm)/($bsl-$bsm); 
} 
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if ($groupbytes<=$bss) { $bmedium=O; } 
elsif ($groupbytes>=$bsl) { $bmedium=O; } 
elsif (($groupbytes>$bss) && ($groupbytes<$bsm)){ 

$bmedium=($groupbytes-$bss)/($bsm-$bss); 
} 

else { 
$bmedium=($bsl-$groupbytes)/($bsl-$bsm); 

} 

if ($grouptime<=$dss) { $dsma11=1; } 
elsif ($grouptime>=$dsm) { $dsmall=O; } 
else { 

$dsma11=($dsm-$grouptime)/($dsm-$dss); 
} 

if ($grouptime<=$dsm) { $dlarge=O; } 
elsif ($grouptime>=$dsl) { $dlarge=1; } 
else { 

$dlarge=($grouptime-$dsm)/($dsl-$dsm); 
} 

if ($grouptime<=$dss) { $dmedium=O; } 
elsif ($grouptime>=$dsl) { $dmedium=O; } 
elsif (($grouptime>$dss) && ($grouptime<$dsm)){ 

$dmedium=($grouptime-$dss)/($dsm-$dss); 
} else { 

$dmedium=($dsl-$grouptime)/($dsl-$dsm); 
} 

if (($bsmall>0)&&($dsmall>O){ 
$y= min($bsmall, $dsmall); push(©rsmall, $y); 

} 

if (($bsmall>0)&&($dmedium>O)){ 
push(©rsmall, min($bsmall, $dmedium)); 

} 

if (($bsmall>O)&&($dlarge>O)){ 
push(©rsmall, min($bsmall, $dlarge)); 

} 

if (($bmedium>0)&&($dsmall>O)){ 
push(©rmedium, min($bmedium, $dsmall)); 

} 
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if (($bmedium>O)&&($dmedium>O)){ 
push(©rsmall, min($bmedium, $dmedium)); 

} 

if (($blarge>O)&&($dlarge>O)){ 
push(©rsmall, min($bmedium, $dlarge)); 

} 

if (($blarge>O)&&($dsmall>O)){ 
push(©rhigh, min($blarge, $dsmall)); 

} 

if (($blarge>0)&&($dmedium>O)){ 
push(©rmedium, min($blarge, $dmedium)); 

} 

if (($blarge>O)&&($dlarge>O)){ 
push(©rsmall, min($blarge, $dlarge)); 

} 

$groupbytes=O; 
} ## end ($i>O && $j>3 ) 
$i=O; 
} ### end else 
$byte=$rrow[2]; 
$diff=$time-$ptime; 
$ptime=$time; 
} 

$sd=O; foreach (©rsmall) { 
$x=$_; $sn=$sn+$x*0.05; $sd=$sd+$x; 

} 

$md=O; $mn=O; 
f oreach (©rmedium) { 

$x=$_; 
$mn=$mn+$x*0.5; 
$md=$md+$x; 

} 

$hd=O; $hn=O; 
foreach (©rhigh) { 

$x=$_; #$hn=$hn+$x*0.75; 
$hn=$hn+$x*1; $hd=$hd+$x; 

} 
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$r=($sn+$mn+$hn)/($sd+$md+$hd); 
print "R: $r\n"; print "tn: $tn\n11

; 

$usql= 11 update tracestat set rparam='$r' where trace_url like '%$tbname%' 
$uqry=$db->query($usql); 

E.2.2 Runtime 

Table E.l: Time Required to Computer R for off-line traffic tarces 
Trace Name Total Packets Total Bytes Total T-groups Time Required 

amp05-39 3541707 2.61 GB 134660 43 Sec 
amp05-38 3707165 2.52 GB 146868 42 Sec 
amp05-32 6398300 3.96 GB 249612 45 Sec 
amp05-27 8668304 4.64 GB 252450 110 Sec 
amp05-01 769100 0.52 GB 3655 7 Sec 

E.3 MATLAB script to compute the Hurst Pa-
rameter 

Hurst_ wavelet 
% This script computes the Hurst parameter of a traffic trace 
% using Abry and Veitch Method. This script plots the Spectral 
% Density of a given series, which then used to compute the 
% Hurst parameter of the series. First, the traffic data is 
% loaded from a mysql database table to a text file as a 
% sequence (using a perl script). The text file is used as the 
% input file of this script. The sequence in the source is then 
% loaded into the 1-D Wavelet Analyzer, and analyzed using the 
% a Daubechies wavelet. The wavelet coefficients are computed 
% and stored. 
% After generating coefficients, I find the variance at each 
%scale and plot these variances. Then use Least Squares 
%Method to plot the slope of changing variance. This is the 
~.method described by Abry and Veitch in "Wavelet Analysis of 
%Long-Range Dependent Traff ic 11 IEEE Transactions on 
%Information Theory, vol. 44, No. 1, Jan 1998.The Hurst 
%parameter may next be calculated as H = 1/2*(slope+1). 
% The wavelet coefficients are arranged in a concatenated 

168 



APPENDIX E. PSEUDOCODES AND SCRIPTS 

%vector,indexed by a 'longs' vector. The first # in longs 
%corresponds with the indices of the averaged signal after 
%7 levels of decomposition. The next number corresponds 
%to the indices of the level 7 wavelet coefficients, etc. 
%The last number corresponds to the length of the 
% original signal, and is not present in the coeffs 
%vector. This breakdown is well explained at the bottom 
%of "Importing and Exporting Information from the 
%Graphical Interface", from the Help Menu of Wavelet Toolbox. 
% Script originally written by LT Sam Edwards on 
%21 July 2005 and is modified by A. Zia Rahman on 
%January 4, 2006. 
clear; 
load byteout_detrend_coefs; 
indices=longs; 
a7=1:indices(1); 
% Separate indices for each scale's coeffs. 
b7=indices(1)+1:sum(indices(1:2)); 
b6=sum(indices(1:2))+1:sum(indices(1:3)); 
b5=sum(indices(1:3))+1:sum(indices(1:4)); 
b4=sum(indices(1:4))+1:sum(indices(1:5)); 
b3=sum(indices(1:5))+1:sum(indices(1:6)); 
b2=sum(indices(1:6))+1:sum(indices(1:7)); 
b1=sum(indices(1:7))+1:sum(indices(1:8)); 
scalevar=zeros(1,7); 
% Calculate the variance at each scale 
scalevar(1)=var(coefs(b1)); 
scalevar(2)=var(coefs(b2)); 
scalevar(3)=var(coefs(b3)); 
scalevar(4)=var(coefs(b4)); 
scalevar(5)=var(coefs(b5)); 
scalevar(6)=var(coefs(b6)); 
scalevar(7)=var(coefs(b7)); 
%stand=zeros(1,10); 
% Now, convert to Standard Deviations at each scale 
%stand(1)=sqrt(scalevar(1)); 
%stand(2)=sqrt(scalevar(2)); 
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%stand(3)=sqrt(scalevar(3)); 
%stand(4)=sqrt(scalevar(4)); 
%stand(5)=sqrt(scalevar(5)); 
%stand(6)=sqrt(scalevar(6)); 
%stand(7)=sqrt(scalevar(7)); 
%stand(8)=sqrt(scalevar(8)); 
%stand(9)=sqrt(scalevar(9)); 
%stand(10)=sqrt(scalevar(10)); 
logvar=log2(scalevar); 
logvar=logvar'; 
scales=1:7; 
scales=scales'; 
[z1,slope] = LeastSquares(scales(1:7),logvar(1:7)); 
plot(scales,logvar,'*'); hold on; 
plot(scales(1:7),z1,'r-'); hold off; 
title(['Spectral Densities of Traffic byteout using db5 basis function, 
slope is ', num2str(slope(1))]) xlabel('Scales') 
ylabel('Log2(Spectral Densities)') 
legend('Spectral Densities','Reconstructed Line') 

Trace-Driven Queue Simulator 

II A trace-driven queuing simulator using CSIM18 traceltracel1IK 
II queue simulation.The input file is a <delta_time, pkt_len> pairs. 
II pkt_len is in bytes and delta_time is in seconds.SERVICE_RATE 
II is the router service rate in bytes per second. CAPACITY is 
II the router capacity in bytes. The script uses csim.h header file. 
II The filehandle QF holds the queue size and time-stamp of 
II instantaneous queue length Q(t). 
void queue(int pkt_len) 
{ 

create( 11 queue 11
); 

II Increment total arriving counter 
Total_count++; 
II If no space for packet, discard. (log to overflow file) 
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if (pkt_len > (CAPACITY - Bytes_buffered)) { 
Discard_count++; 

} 

fprintf(Of, 11 %f -- %9d -- %5d \n", 
(clock - Last_over_time), Total_count, pkt_len); 

Last_over_time = clock; 
return; 

II The packet got buffered, so update Bytes_buffered 
II and increment Accept 
Bytes_buff ered = Bytes_buffered + pkt_len; 
Accept_count++; 
II Reserve, hold, and release server 
reserve(Server); 
hold((pkt_len) I SERVICE_RATE); 
release(Server); 
II Update Bytes_buffered 
Bytes_buffered = Bytes_buffered - pkt_len; 
fprintf(QF, 11 %f -- %9d\n 11

, 

clock, Bytes_buffered); 
return; 

E.5 Perl Script to read 2005 AMP trace 

#!lusrllocallbinlperl; 
# 
# The script takes the filename as command line input and 
# inserts each packet parameters to a mysql database. 
# 

use Mysql; 
$host= 11 localhost 11

; 

$db= 11 traffic 11
; 

$user= 11 traffic 11
; 

$pass= 11 traffic 11
; 

$db=Mysql->connect($host,$db, $user, $pass); 
$file=$ARGV[O]; 
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$file=-s/\.tsh//; 
$tsql="drop table if exists $file 11

; 

$tqry=$db->query($tsql); 
$tsql= 11 create table $file (autoid double unsigned auto_increment 
PRIMARY KEY, time_sec varchar(32), time_micro_sec varchar(32), 
length mediumint unsigned, protocol smallint, source_address 
varchar(50), dest_address varchar(50), source_port mediumint 
unsigned, dest_port mediumint unsigned, seq_number int unsigned, 
ack_number int unsigned, window_size mediumint unsigned)"; 
$tqry=$db->query($tsql); 
## open the input AMP traffic in tsh format. 
open(infile,$ARGV[0]) I I die("Can't open input file\n 11

); 

stat($ARGV[O]); 
$s=-s · -· 
$i=O; 
read(infile,$record, $s); 
$k=$s/44; 
for($i=O; $i<$k; $i++) 
{ 

$j=$i*11; 
## time-stamp of packet 
$sec=vec($record, $j,32); 
## time-stamp of packet 
$ms=vec($record, $j+1,32); 
$intf=($ms> >24)&:0xff; 
$ms=$ms&:Oxffffff; 
$plength=vec($record, $j+2,32); 
#$intf=($ms>>24)&0xff; 
$plength=$plength&:Oxffff; ## packet length 
$protocol=vec($record, $j+4,32); ##protocol 
$protocol=($protocol>>16)&0xffff; 
$protocol=$protocol&:Oxff; 
$sa=vec($record, $j+5,32); ##source address 
$first=($sa>>24)&0xff; 
$second=($sa> >16)&:0xff; 
$third= ($sa> >8)&0xff; 
$fourth=$sa&:Oxff; 
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} 

APPENDIX E. PSEUDOCODES AND SCRIPTS 

## source IP 
$sip= 11 $first 11

•
11
\.

11
•

11 $second 11
•

11
\.

11
•

11 $third11
•

11
\.

11
•

11 $fourth11
; 

$da=vec($record, $j+6,32); 
$first=($da>>24)&0xff; 

## destination address 

$second=($da>>16)&0xff; $third=($da>>8)&0xff; $fourth=$da&Oxff; 
## destination IP 
$dip= 11 $first 11

•
11
\.".

11 $second 11
•

11
\.

11
•

11 $third11
•

11
\.

11
•

11 $fourth11
; 

$spdp=vec($record, $j+7,32); 
$sp=($spdp>>16)&0xffff; ## source port 
$dp=$spdp&Oxffff; ## destination port 
$seqno=vec($record, $j+8,32); ##TCP sequence number 
$ackno=vec($record, $j+9,32); ##TCP ack number 
$window=vec($record, $j+10,32); 
$window=$window&Oxffff; ## TCP window size 
$tsql="insert into $file values (", '$sec', '$ms', '$plength', 

'$protocol', '$sip', '$dip', '$sp', '$dp', '$seqno', 
'$ackno' , '$window') 11 

; 

$tqry=$db->query($tsql); 

E.6 Pseudocode for the Simulation of FAFRED 

INITIALIZATION 
r +-0 
Q=O 

FOR EACH packet arrival 
IF Q < ! 

ENQUE packet 
COMPUTE R 
Update R Table 

ELSIF Q = f3 

ELSE 
DROP packet 

COMPUTE ST ATE 
CASE ST ATE OF 

QUIET r=O 
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END IF 
END FOR 

APPENDIX E. PSEUDOCODES AND SCRIPTS 

BURST increase r by ~ 
UPWARD ALARM increase r by E 

ALARM increase r by E 

GREEDY increase r by ~ 
DOWNWARD ALARM decrease r by E 

DOWNWARD QUIET r=O 
CONSTANT r is unchanged 

ENDCASE 
IF r = 0 

ELSE 

ENQUE packet 
COMPUTE R 
Update RTable 

COMPUTE r +-- r x R P ai:gr 

with probability rp 
DROP the arriving packet 
SET R+- 0 

END IF 

Fixed Parameters: 
E FAFRED parameter 
~ FAFRED parameter 
rn : FAFRED parameter 
/3 : buff er size 

Other: 
Q : current queue length 
R : R parameter of the flow of arriving packet 
avgr average of the R values of all the active flows 
r global drop probability 
rp packet drop probability 
ST ATE : linguistic variable that represents traffic state 
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Appendix F 

List of Symbols 

{3 Buffer Capacity 
( Energy of a Poisson Process 
>. Arrival Rate 
/l l\Iembership Function 
p Utilization 
a2 Variance 
<; Gaussian \Vhite Noise 
TG T-Group Time-out Threshold 
Tf f-Group Time-out Threshold 

1/J Energy of a Process 
r A traffic trace 
c Link Capacity 
E Expected Value 
FI Fairness Index 
H Hurst Parameter 
Gi T-Group 
Q(t) Queue Length at Time t 
R R Parameter 
T Round Trip Time 
X(t) Stochastic Process 
iv \Vavelet Coefficient 
Z(t) Fractional Brownian Process 
r(k) Auto-correlation Function of Lag k 
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9i £-Group 
Packet Drop Rate 

p Packet Drop Probability 
q Average Queue Length 
v Average Queuing Time Variance 
Wi ith \Veight Parameter 

APPENDIX F. LIST OF SYAfBOLS 
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Appendix G 

Traces Used 
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2005 AMP Traces 

No URL Timestamp of Collection TCP UDP Rest Total Bytes Total Packets Total Connection Util H R 
amp05-01 http:/ /pma.nlanr.net/Traces/Traces/long/ apth/1/20050311 / AMP-1110523221-1.tsh.gz 1110523310 87.11 12.22 0.67 523992584 I 769100 39580 26.95 0.87404 0.10096 
amp05-02 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050311/ AMP-1110545630-1.tsh.gz 1110545720 84.37 14.605 1.025 2900093323 I 4233868 163236 24.864 0.82008 0.10942 
amp05-03 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050311/ AMP-1110564441-1.tsh.gz 1110564529 86.494 13.146 0.36 3443192926 5164425 173921 29.52 0.84816 0.12448 
amp05-04 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050311/ AMP-1110577446-1.tsh.gz 1110577537 82.09 17.71 0.2 2259430219 3562988 199675 19.371 0.78728 0.08614 
amp05-05 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050312/ AMP-1110586282-1.tsh.gz 1110586372 83.887 15.875 0.238 2551632858 3849280 192619 21.876 0.83066 0.09916 
amp05-06 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050312/ AMP-1110608691-1.tsh.gz 1110608782 82.069 17. 762 0.169 2260299700 3365418 151318 19.378 0.82632 0.08451 
amp05-07 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050312/ AMP-1110631100-1.tsh.gz 1110631185 77.623 22.185 0.192 2101430825 3237514 154610 18.016 0.79223 0.08992 
amp05-08 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050312/ AMP-1110653509-1.tsh.gz 1110653600 77.964 21.771 0.266 1851495597 2748334 68710 15.874 0.80991 0.0882 
amp05-09 http:/ /pma.nlanr.net/Traces/Traces/long/apth/1/20050312/ AMP-1110662915-1.tsh.gz 1110663000 70.783 28.974 0.244 1391937984 2227360 86244 11.934 0.73258 0.0673 
amp05-10 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050313/ AMP-1110675351-1.tsh.gz 1110675442 81.623 18.199 0.178 2212237085 3384193 158100 18.966 0.82472 0.09475 
amp05-11 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050313/ AMP-1110707167-1.tsh.gz 1110707258 70.671 29.165 0.164 1303605930 10002842 86604 11.176 0.72236 0.08079 
amp05-12 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050313/ AMP-1110716571-1.tsh.gz 1110716662 57.894 41.609 0.497 1091931459 9454903 87867 9.362 0.69053 0.07686 
amp05-13 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050313/ AMP-1110729576-1.tsh.gz 1110729662 70.353 29.491 0.156 1256851439 10139421 153307 10.775 0.71241 0.08811 
amp05-14 http://pma.nlanr.net/Traces /Traces /long/ apth/ 1 /20050313 / AMP-1110738981-1. tsh.gz 1110739072 75.022 23.819 1.159 1667377741 /, 8598129 49708 14.295 0.80634 0.09703 
amp05-15 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050313/ AMP-1110748385-1.tsh.gz 1110748476 74.484 25.125 0.391 1993003128 6132624 68502 17.087 0.84865 0.12596 
amp05-16 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050314/ AMP-1110760823-1.tsh.gz 1110760909 80.268 19.588 0.143 1668658522 4174476 158635 14.306 0.85936 0.10288 
amp05-17 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050314/ AMP-1110770227-1.tsh.gz 1110770318 76.949 22.795 0.257 2104833361 5313018 111960 18.046 0.81893 0.11512 
amp05-18 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050314/ AMP-1110783232-1.tsh.gz 1110783323 86.168 13.069 0.763 3029393345 7992868 124808 25.972 0.77846 0.1963 
amp05-19 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050314/ AMP-1110792637-1.tsh.gz 1110792725 95.382 3.545 1.073 2991029863 8881071 151132 25.643 0.79794 0.25431 
amp05-20 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050314/ AMP-1110802041-1.tsh.gz 1110802131 84.303 5.824 9.872 2944264079 I 9609340 168655 25.242 0.84194 0.25133 
amp05-21 http:/ /pma.nlanr.net/Traces/Traces/long/apth/1/20050314/ AMP-1110815046-1.tsh.gz 1110815133 93.02 5.242 1.738 2787262063 I 8165544 155367 23.896 0.77516 0.22053 
amp05-22 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050314/ AMP-1110824452-1.tsh.gz 1110824542 68.734 2.83 28.435 3284660008 \ 10439397 129744 28.161 0.80621 0.30928 
amp05-23 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050315/ AMP-1110855697-1.tsh.gz 1110855787 86.468 8.352 5.18 2914744580 6725337 66122 24.989 0.8538 0.13338 
amp05-24 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050315/ AMP-1110868702-1.tsh.gz 1110868793 95.449 3.192 1.358 3228204398 8393379 104827 27.677 0.76692 0.19352 
amp05-25 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050315/ AMP-1110878107-1.tsh.gz 1110878191 84.321 15.528 0.151 4307070911 7240151 272167 36.926 0.78712 0.21176 
amp05-26 http:/ /pma.nlanr.net/Traces/Traces/long/apth/1/20050315/ AMP-1110891112-1.tsh.gz 1110891202 61.804 5.119 33.077 4787087734 I 10881325 124115 41.042 1.02001 0.36235 
amp05-27 http://pma.nlanr.net/Traces/Traces/long/ apth/1 /20050315 / AMP-1110900517-1.tsh.gz 1110900605 80.245 2.392 17.363 4638400527 8668304 123145 39.767 0.77436 0.27649 
amp05-28 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050315/ AMP-1110909919-1.tsh.gz 1110910009 57.815 7.739 34.445 4850718509 I 6834647 101437 41.587 0.68033 0.17491 
amp05-29 http:/ /pma.nlanr.net/Traces/Traces/long/ apth/1 /20050316/ AMP-1110931762-1.tsh.gz 1110931849 64.275 10.313 25.411 4046320730 5280534 75709 34.691 0.68338 0.13068 
amp05-30 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050316/ AMP-1110944767-1.tsh.gz 1110944857 77.72 22.053 0.227 1883610729 2793144 62857 16.149 0.82602 0.06707 
amp05-31 http:/ /pma.nlanr.net/Traces/Traces/long/ apth/1 /20050316/ AMP-1110954170-1.tsh.gz 1110954261 87.479 12.413 0.107 3549393391 4975222 122790 30.43 0.82822 0.11498 
amp05-32 http://pma.nlanr.net/Traces/Traces/long/ apth/1 /20050316 / AMP-1110967176-1.tsh.gz 1110967259 85.107 14.617 0.275 3962675522 6398300 192637 33.974 0.85638 0.15624 
amp05-33 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050316/ AMP-1110976581-1.tsh.gz 1110976671 67.639 7.257 25.104 4583061503 10752787 135026 39.292 1.05011 0.3613 
amp05-34 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050316/ AMP-1110985986-1.tsh.gz 1110986077 62.734 2.164 35.102 3689570883 4730322 95291 31.632 0.68354 0.13367 
amp05-35 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050317 / AMP-1111052646-1.tsh.gz 1111052735 55.356 44.494 0.15 5276665038 8163524 138514 45.239 0.68727 0.27868 
amp05-36 http:/ /pma.nlanr.net/Traces/Traces/long/apth/1/20050317 / AMP-1111062051-1.tsh.gz 1111062140 56.042 21.102 22.856 4829964040 9332058 293331 41.409 0.69795 0.29962 
amp05-37 http:/ /pma.nlanr.net/Traces/Traces/long/apth/1/20050317 / AMP-1111075055-1.tsh.gz 1111075146 97.414 2.251 0.335 4655009627 6510191 133821 39.909 0.77797 0.17375 
amp05-38 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050317 / AMP-1111084460-1.tsh.gz 1111084545 96.236 3.618 0.146 2527818492 3707165 101407 21.672 0.88904 0.1029 
amp05-39 http://pma.nlanr.net/Traces/Traces/long/apth/1/20050317 / AMP-1111093864-1.tsh.gz 1111093954 98.238 1.596 0.166 2606063926 3541707 90719 22.343 0.87579 0.10166 

Table 1: 2005 AMP Traces. A 10 days collection of randomly sampled 10 minute IP header traces collected at AMPATH, Miami, FL, in March 2005 . 



2003 Auckland Traces 

No 
Auck0301 
Auck0302 
Auck0303 
Auck0304 
Auck0305 
Auck0306 
Auck0307 
Auck0308 
Auck0309 
Auck0310 

, Auck0311 
Auck0312 
Auck0313 
Auck0314 
Auck0315 
Auck0316 
Auck0317 
Auck0318 
Auck0319 
Auck0320 
Auck0321 
Auck0322 
Auck0323 
Auck0324 
Auck0325 
Auck0326 
Auck0327 
Auck0328 

Trace URL TCP UDP Rest Util Packets/sec Total Connections 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031208-000000.gz 76.33 23.30 0.36 7.88 1191 72015 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031208-060000.gz 76.23 23.51 0.26 2.62 598 28956 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031208-120000.gz 68.52 31.1 0.38 19.01 4199 161976 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031208-180000.gz 87.79 12 0.21 16.92 2812 11993 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031202-000000.gz 83.59 16.06 0.35 6.38 923 68734 
http://pma.nlanr.net/Traces /Traces /long/ au ck/ 8 /20031202-060000.gz 78.26 21.43 0.31 2.12 399 25879 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031202-120000.gz 74.05 25.63 0.32 15.01 4008 142980 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031202-180000.gz 89.78 9.98 0.24 13.97 2451 109976 
http://pma.nlanr.net/Traces /Traces /long/ au ck/ 8 /20031203-000000.gz 71.32 28.35 0.33 5.56 1008 66129 
http:/ /pma.nlanr.net/Traces/Traces/long/auck/8/20031203-060000.gz 70.61 29.13 0.26 2.77 429 16723 
http:/ /pma.nlanr.net/Traces/Traces/long/auck/8/20031203-120000.gz 83.88 15.74 0.38 18.01 3887 147987 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031203-180000.gz 68.09 31.79 0.12 14.03 2398 107871 
http:/ /pma.nlanr.net/Traces/Traces/long/auck/8/20031204-000000.gz 79.07 20.81 0.12 6.77 911 77899 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031204-060000.gz 74.41 25.43 0.16 2.11 469 18225 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031204-120000.gz 79.67 20.22 0.11 15.98 3788 143993 
http:/ /pma.nlanr.net/Traces/Traces/long/auck/8/20031204-180000.gz 85.05 14.84 0.11 14.99 2187 103912 
http:/ /pma.nlanr.net/Traces/Traces/long/auck/8/20031205-000000.gz 83.55 16.18 0.27 6.01 991 59897 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031205-060000.gz 68.20 31.46 0.34 2.12 487 25125 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031205-120000.gz 88.08 11.66 0.26 19.87 12190 148653 
http:/ /pma.nlanr.net/'.fraces/Traces/long/auck/8/20031205-180000.gz 83.54 16.21 0.25 15.12 13185 113343 
http:/ /pma.nlanr.net/Traces/Traces/long/auck/8/20031206-000000.gz 75.42 24.32 0.26 2.99 821 46124 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031206-060000.gz 88.23 11.65 0.12 1.21 349 11545 
http:/ /pm~.nlanr.net/Traces/Traces/long/auck/8/20031206-120000.gz 68.38 31.51 0.11 11.02 1761 99767 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031206-180000.gz 78.08 21.75 0.17 10.34 1209 85120 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031207-000000.gz 84.14 15.57 0.29 3.33 602 51201 
http:/ /pma.nlanr.net/Traces/Traces/long/auck/8/20031207-060000.gz 85.2 14.54 0.26 1.12 298 12498 
http://pma.nlanr.net/Traces /Traces /long/ au ck/ 8 /20031207-120000.gz 82.64 17.22 0.14 11.66 1518 97012 
http://pma.nlanr.net/Traces/Traces/long/auck/8/20031207-180000.gz 73.27 26.49 0.24 12.21 1674 I' 87024 

Table 2: 2003 Traces. The original traces are 24 hour long. The statistics are for truncated traces of 20 mih long. 

 

H R 
0.89 0.048 
0.84 0.045 
0.84 0.072 
0.85 0.074 
0.86 0.046 
0.76 0.043 
0.83 0.071 
0.91 0.082 
0.78 0.059 
0.84 0.036 
0.87 0.062 
0.79 0.073 
0.87 0.055 
0.82 0.040 
0.81 0.074 
0.92 0.079 
0.88 0.066 
0.87 0.056 
0.77 0.075 
0.81 0.063 
0.87 0.019 
0.87 0.012 
0.77 0.042 
0.84 0.057 
0.85 0.012 
0.82 0.015 
0.89 0.065 
0.88 0.049 



2001 Auckland Traces 

No Collection Time TCP UDP Rest Util Pacets/Sec Total Connections H R 
Auck0101 MonOO 94.53 5.28 0.19 1.88 412 15093 0.98 0.( 13 
Auck0102 Mon06 98.35 1.34 0.31 2.02 367 18956 0.92 0.( 14 
Auck0103 Mon12 98.29 1.34 0.37 6.01 1423 36897 0.92 0.( 52 
Auck0104 Mon18 91.13 8.77 0.10 5.42 1576 37993 0.86 o. 33 
Auck0105 TueOO 92.74 7.15 0.11 1.88 379 8734 0.96 0.021 
Auck0106 Tue06 93.18 6.70 0.12 1.12 511 5879 0.89 O.Q26 
Auck0107 Tue12 91.78 7.93 0.29 4.01 1789 32980 0.87 0.041 
Auck0108 Tue18 95.21 4.64 0.15 5.98 1820 34976 0.89 0.047 
Auck0109 WedOO 91.53 8.24 0.19 3.56 423 6129 0.84 o.~21 
Auck0110 Wed06 97.18 2.55 0.27 1.77 310 6723 0.84 O.GH6 
AuckOlll Wed12 92.53 7.34 0.13 6.01 1412 27987 0.87 0.042 
Auck0112 Wed18 97.17 2.51 0.32 3.03 1457 35871 0.93 0.033 
Auck0113 ThuOO 95.65 4.14 0.21 1.77 398 11899 0.88 0.011 
Auck0114 Thu06 93.22 6.63 0.15 2.11 422 8222 0.89 o.~21 
Auck0115 Thu12 94.75 4.99 0.26 5.98 1456 33898 0.93 o.~44 
Auck0116 Thu18 94.47 5.32 0.21 4.99 1477 36765 0.95 0.054 
Auck0117 FriOO 94.89 4.85 0.26 2.01 455 9897 0.96 0.026 
Auck0118 Fri06 98.49 1.39 0.12 1.12 467 18125 0.93 o.p36 
Auck0119 Fri12 95.82 4.07 0.11 4.87 1398 38656 0.89 0.045 
Auck0120 Fri18 90.10 9.76 0.14 5.12 1423 35783 0.88 0.053 
Auck0121 SatOO 98.74 0.94 0.32 0.99 488 6124 0.96 0.911 
Auck022 Sat06 95.79 4.09 0.12 1.01 564 6545 0.89 0.011 

Auck0123 Sat12 94.51 5.13 0.36 4.02 1498 24767 0.85 0.018 
Auck0124 Sat18 93.37 6.40 0.23 5.34 1378 25120 0.87 o.p11 
Auck0125 SunOO 94.40 5.49 0.11 0.83 321 7201 0.89 0.012 
Auck0126 Sun06 93.72 6.07 0.21 0.72 345 6498 0.87 0 01 
Auck0127 Sun12 96.53 3.37 0.10 4.66 1189 23452 0.94 0.031 
Auck0128 Sun18 95.30 4.44 0.26 5.21 1209 24988 0.89 o.p24 

Table 3: 2001 Traces. The original traces are 24 hour long. The statistics are for truncated traces of 20 mih long. 
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