
A Recent-Biased Dimension Reduction
Technique for Time Series Data

Yanchang Zhao, Chengqi Zhang and Shichao Zhang

Faculty of Information Technology, University of Technology, Sydney, Australia
{yczhao, chengqi, zhangsc}@it.uts.edu.au

Abstract. There are many techniques developed for tackling time se-
ries and most of them consider every part of a sequence equally. In many
applications, however, recent data can often be much more interesting
and significant than old data. This paper defines new recent-biased mea-
sures for distance and energy, and proposes a recent-biased technique
based on DWT for time series in which more recent data are considered
more significant. With such a recent-biased technique, the dimension of
time series can be reduced while effectively preserving the recent-biased
energy. Our experiments have demonstrated the effectiveness of the pro-
posed approach for handling time series.

1 Introduction

Analyzing time series is a challenging topic in the field of data modelling and
mining. In many applications, such as stock market, one concerns more about
the recent data than what happened long ago. Besides the global trend, the
recent data are very important to judge the similarity between time series and
more significant to predict and make decisions than the detail of old data. For
example, for a stockbroker, the long-term (say, six years) trend of stock price
and the detailed variances in the last month of a stock are important, but the
variance in a certain month four years ago is of little significance. In such kind of
scenarios, a mechanism which favors the recent is called for. Nevertheless, most
of the techniques for time series give equal significance to all data in the series.
In this paper, we design a recent-biased technique to tackle the above problem.
With our method, recent data are given more significance and kept with finer
resolution, while old data with coarser resolution. Weights for DWT coefficients
are derived from a decaying function, and then the coefficients with the largest
k weights are chosen as the representation of the time series. Our technique
is different from SWAT [1] in that the largest k coefficients are kept with our
method while only a single coefficient is maintained at each level with SWAT.
Our technique is also different from the traditional method of keeping the largest
k coefficients and the RAM-DS algorithm [8], because with our technique the
largest k coefficients are obtained from the weights only and has nothing to do
with specific time series. However, the subsets of largest coefficients are different
for different time series with both the tradition method and RAM-DS. The same
subset of coefficients for all time series is used in [6], but the subset of coefficients
are obtained from all time series without weighting.



2 Related Work

In this section, related work on similarity measures, dimension reduction and
recent-biased techniques for time series data will be introduced. Euclidian Dis-
tance and other Lp-norms are popular to measure the distance between time
series. Another measure, DTW (Dynamic Time Warpping), is designed to han-
dle time series with some time shifts.

Because time series is usually of very high dimension, the dimension has to
be reduced to improve the efficiency of computation. Popular techniques include
PCA, DFT (Discrete Fourier Transform), DWT (Discrete Wavelet Transform)
[6], Landmark [7], major minima and maxima [4], PIP [3], PAA [5], etc. With
DWT, a time series can be represented by a rough sketch by keeping only the first
coefficients. Some researchers propose to use the largest coefficients to preserve
the optimal amount of energy, or to choose the same subset of the coefficients
for all time series for the ease of computing similarity [6].

As to recent-biased techniques, Bulut et al designed a structure named SWAT
[1] to process queries over data streams that are biased towards the more recent
values. A time weighting function is defined in [8] so that the old data values
are with lower weights, and then more resources can be utilized to explore more
recent data with finer granularities. Cohen et al uses decay functions to maintain
time-decaying stream aggregates [2].

3 A Recent-Biased Technique for Dimension Reduction

Fig. 1. An Example of
Time Series

Our idea comes from the observation that recent
data are usually more important than ancient data.
Considering the time series shown in Figure 1, which
pair of S1S2 and S1S3 is more similar? In many
applications, we care more about recent data than
ancient data, then S1 and S3 is more similar than
S1 and S2, since the difference between S1 and S3

happened long ago. However, the Lp-norm distance
between S1 and S2 is 1 , while that between S1

and S3 is also 1. So the two pairs are of the same
similarity according to Lp-norm distance. If using
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8 , 1), as the weights, the distance

between S1 and S2 is 0.75, while that between S1 and S3 is 0.25. Therefore, S1

is more similar to S3 than to S2 when a biased distance measure is used.
Since old data become less significant as time goes by, a bias can be given

to recent data. A simple idea is to give larger weights to more recent data.
Actually, decaying functions are used widely for processing time series data.
For example, exponential decaying functions are used for time series to find
recent frequent itemsets adaptively, and to explore temporal and support count
granularities in data streams [8]. In addition to exponential functions, polynomial
and ployexponential decaying functions are also considered to maintain time-
decaying stream aggregates [2]. Similarly, we define a recent-biased function as



follows to help keep more recent data at finer scales. Recent-biased function B =
b(t), t ≥ 0 is a monotonously decreasing function with b(0) = 1 and b(+∞) = 0,
where t is the time elapsed till now.

The most common used decay function is exponential function, bt = dt, where
t is the time elapsed, and d is the decay factor, 0 < d < 1, α > 0. Linear decay
can be get with linear function bt = n−t

n , where 0 ≤ t ≤ n and n is the length
of time series. Based on the above recent-biased function, the recent-biased Lp-
norm distance with bias on recent is defined in the following.

Definition 1 (Recent-Biased Distance & Energy). The recent-biased dis-
tance between time series S and S′ is defined as

Dist(S,S′) =
‖(S− S′) •B‖

‖B‖ (1)

where ′•′ stands for the operator of inner product, ′‖ · ‖′ denotes Lp-norm, and
B is a recent-biased vector. If L2-norm is used, the recent-biased energy of S is
defined as

E(S) =
‖S •B‖2
‖B‖2 (2)

3.1 Recent-Biased Dimension Reduction

In this paper, Haar wavelet transform is used because it is very simple and
widely used and is of linear time complexity. For Discrete Wavelet Transform,
there are two different ways for choosing coefficients, the first k or the largest k
coefficients. If the first k coefficients are selected, the global trend and variation
can be preserved. With the largest coefficients kept, the parts of large energy are
preserved and the energy is better kept, which is better for compressing a single
signal. Nevertheless, when dealing with multiple time series, more storage space
is required to keep the positions of coefficients and the distance computations is
more complex. To keep more detail for recent data and preserve the recent-biased
energy, a recent-biased technique based on DWT is designed in the following.
Instead of keeping the largest or the first coefficients, the largest recent-biased
coefficients are kept, which are computed from the weights only.

Fig. 2. Coefficients of DWT

The DWT coefficients for a time series with 8
values are shown in Figure 1. We can make the
average to be zero by normalizing the time series,
so the average C0 is zero and is not considered
here. Suppose that the time series are normalized
that the average is zero. The original time series is
S=(−C11−C21−C31, −C11−C21 +C31, −C11 +
C21 − C32, −C11 + C21 + C32 C11 − C22 − C33,
C11−C22 +C33, C11 +C22−C34, C11 +C22 +C34)
from recent data to old data. Assume that B =
b(t), t ≥ 0 is the bias function, so the recent-biased
energy of S is
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In order to preserve the energy as large as possible, the coefficients with largest
weights will be kept, and other coefficients are set to zero. It is difficult to
tell which Cij is of the greatest importance from Formula (3). To make it
easy, we only consider C2

ij while ignoring those Ci1j1Ci2j2 , where i1 6= i2 or
j1 6= j2. Then, the question becomes to choose Ci with the largest coefficients
in C2
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wij =
∑
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k=(j−1)·2L−i+1b

2
k, 1 ≤ i ≤ L, 1 ≤ j ≤ 2i, L = dlog2 ne (4)

where n is the length of time series. Since bi is a recent-biased function, it is
monotonously decreasing with the increase of i. Therefore, C11 is of the largest
coefficient,

∑7
k=0 b2

k, and it is the first one to choose. The second one is C21, whose
weight is

∑3
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k. The third one will be C22 (or C31) if
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k. Different bias functions will probably lead to different sets

of the largest k coefficients. Given the specific bias function, the weight of DWT
coefficients can be calculated immediately with Formula (4) and ready for use
for all time series. With our method, only the weighted function is used to decide
which coefficients to keep, so the same subset of coefficients are chosen for all
time series, which is different from the traditional method of keeping different
subsets of the largest coefficients for different time series.

The Euclidean distance between the extracted k coefficients is used as the
similarity between time series and the recent-biased Euclidean distance and en-
ergy are calculated with the following formulae.

Dist(S,S′) ≈ (
∑

ij wij(Cij − C ′ij)
2)

1
2

(
∑

ij wij)
1
2

(5)
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∑

ij wijC
2
ij∑

ij wij
(6)

where Cij is in the first k coefficients. If the bias function is set to bi = 1, i ≥ 0,
that is, there is no bias, then the weights for those coefficients in Figure 1 are 8,
4, 4, 2, 2, 2, 2 from top to bottom. So those coefficients at higher level will be
chosen first, which is the same as traditional DWT with the first coefficients.



3.2 Complexity Analysis

Assume the length of time series is n, and there are m time series. The time
complexity for computing weights from bias function are O(n) and the time
complexity for getting the largest k weights is O(kn). The time complexity of
DWT for a time series is O(n). Therefore, the total time complexity for pro-
cessing m time series is O(n + kn + mn), i.e., O((m + k + 1)n). As to space
complexity, the space requirement for keeping the positions of the largest k co-
efficients is O(k), and there are k coefficients for each time series, so the total
space complexity is O(k + mk), i.e., O((m + 1)k).

4 Experimental Results

Effectiveness of our algorithm for capturing recent details is shown in Figure 3.
The original time series (see Figure 3a) is “leleccum” from Matlab, and the first
4096 values are kept. Linear bias function b(t) = n−t

n is used, where n=4096. The
reconstructed times series after keeping the recent-biased largest k coefficients
are shown in Figure 3b-h. These figures show clearly that the more recent data
are preserved with more details while the older data kept with a coarser scale.

The Nasdaq indices from “Yahoo! Finance” (http://finance.yahoo.com/) is
used to test the accuracy of our technique in experiments. The close prices of
indices from Jun 1988 to Oct 2004 are chosen and each time series is composed of
4096 points. To evaluate the effectiveness of our technique, we design a criterion
to measure the precision of approximation after dimension reduction. Assume
that S and S′ are respectively the original and reconstructed time series. The er-
ror of approximation between S′ and S is defined as Err(S′,S) = E(S′−S)

E(S) , where
E(S) is the recent-biased energy of S defined in Formula (2). The experimental
result for accuracy is shown in Figure 4. The horizontal axis stands for k, the
number of coefficients kept, and the vertical axis stands for the error rate. The
solid line denotes the error rate of recent-biased DWT, while the dotted denotes
that of traditional DWT with the first coefficients. It is clear that the accuracy
gets improved as more coefficients are kept. Exponential bias functions are used,
and the decay factor is d = 1− 1

1+10α . From Figure 4a to 4d, the decay function
becomes less biased on recent with the increase of α. When the bias is large,
higher accuracy can be achieved with our method than with traditional DWT
with the first coefficients. When the bias is tiny (see Figure 4d), our method
becomes nearly the same as traditional DWT with the first coefficients.

5 Conclusions

We have designed a recent-biased technique for time series, which gives greater
weights to more recent data and also preserves more details of recent data. Our
experiment shows that the recent-biased technique is very efficient and effective
to handle time series. Our future work includes combining our recent-biased idea
with DFT, PIP, PAA and other dimension reduction techniques for time series
data, and extending dynamic time warpping to a recent-biased measure.
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Fig. 3. Effectiveness. The original time series is shown in (a), and the reconstructed
times series by keeping the recent-biased largest k coefficients are shown in (b)-(h).
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Fig. 4. Accuracy. The horizontal axis stands for the number of coefficients, and the
vertical axis stands for the accuracy. The solid line denotes the error rate of recent-
biased DWT, while the dotted denotes that of DWT with the first coefficients.

References
1. A. Bulut and A. K. Singh: SWAT: Hierarchical Stream Summarization in Large

Networks. Proc. of the 19th Int. Conf. on Data Engineering, Bangalore, India, 2003.
2. E. Cohen and M. Strauss: Maintaining time-decaying stream aggregates. Proc. of

the 22nd ACM Symposium on Principles of Database Systems, 2003.
3. T. Fu, F. Chung, V. Ng and R. Luk: Pattern Discovery from Stock Time Series Using

Self-Organizing Maps. Workshop Notes of KDD’01 . San Francisco, CA, USA, 2001.
4. E. Fink, K. B. Pratt, and H. S. Gandhi: Indexing of Time Series by Major Minima

and Maxima. Proc. of the IEEE Int. Conf. on Systems, Man, and Cybernetics, 2003.
5. E. Keogh, K. Chakrabarti, et al: Dimensionality Reduction for Fast Similarity Search

in Large Time Series Databases. Knowledge and Information Systems 3(3), 2000.
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