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SCEM+: Real-time Robust Simultaneous Catheter
and Environment Modelling for Endovascular

Navigation
Liang Zhao, Stamatia Giannarou, Su-Lin Lee and Guang-Zhong Yang, Fellow, IEEE

Abstract—Endovascular procedures are characterised by sig-
nificant challenges mainly due to the complexity in catheter con-
trol and navigation. Real-time recovery of the 3D structure of the
vasculature is necessary to visualise the interaction between the
catheter and its surrounding environment to facilitate catheter
manipulations. State-of-the-art intra-operative vessel reconstruc-
tion approaches are increasingly relying on non-ionising imaging
techniques such as optical coherence tomography (OCT) and
intravascular ultrasound (IVUS). To enable accurate recovery of
vessel structures and to deal with sensing errors and abrupt
catheter motions, this paper presents a robust and real-time
vessel reconstruction scheme for endovascular navigation based
on IVUS and electromagnetic (EM) tracking. It is formulated as a
nonlinear optimisation problem, which considers the uncertainty
in both the IVUS contour and the EM pose, as well as vessel
morphology provided by pre-operative data. Detailed phantom
validation is performed and the results demonstrate the potential
clinical value of the technique.

Index Terms—Endovascular navigation, 3D vessel reconstruc-
tion, optimisation, intravascular ultrasound (IVUS), electromag-
netic (EM) tracking.

I. INTRODUCTION

ENDOVASCULAR interventions are increasingly used for
minimally invasive interventions to treat cardiovascular

diseases [1]–[5]. These procedures induce minimal trauma
to the patient but precise manipulation of catheters through
the fragile and complex endovascular system in the presence
of physiological motion remains a challenging task [6]–[8].
Although robotic systems have been introduced to facilitate
catheter manipulations, they still rely on 2D guidance based
on X-ray fluoroscopy and the use of contrast agents [9], [10].
The current clinical approach is to intra-operatively overlay
3D vessel models reconstructed from pre-operative imaging.
However, due to the dynamic nature of the vasculature, these
models should be updated in real-time, intra-operatively, to
reflect the deformation of the vasculature. To establish safer
endovascular procedures, knowledge of the interaction be-
tween the catheter and its surroundings is required and thus
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the 3D structure of the vasculature needs to be recovered intra-
operatively.

Recently, concerns over ionising radiation and excessive
use of nephrotoxic contrast agent have motivated the use of
intravascular ultrasound (IVUS) for imaging guidance [11].
For vessel reconstruction, the main challenge associated with
this technique is the limited field-of-view of cross-sectional
data that is dependent on the pose of the transducer at the
tip of the catheter. Initial approaches have utilised IVUS
pullback data, whereby the image sequence is recorded as
the catheter is slowly withdrawn from the vessel, but these
assumed that IVUS images are parallel to each other [12], [13].
In practice, this is not realistic in areas where the curvature of
the vessel is relatively large and the catheter moves abruptly
during pullback, causing the 3D rotation and orientation of
the catheter to change suddenly. The registration of IVUS
images to angiography data to align the images in 3D space has
been explored in [14]–[17] for vessel reconstruction but this
still depends on X-ray imaging. Furthermore, the estimation
of the 6DoF catheter pose in these approaches is not robust
and additional sensing modalities are necessary to boost the
accuracy of the vessel reconstruction. To this end, IVUS and
electromagnetic (EM) sensing data have been fused for intra-
operative vessel reconstruction in the SCEM framework [18],
[19]. However, these existing methods treated observations
from IVUS and EM as exact and their uncertainty was ignored.
This makes the method vulnerable to errors in the observations
which can affect the accuracy of the recovered vessel structure.
For instance, vessel boundaries do not always appear complete
on IVUS images and EM sensors are prone to measurement
errors [20].

In this paper, a robust real-time 3D vessel reconstruction
algorithm for endovascular catheter control and navigation
(SCEM+) is proposed based on IVUS and EM sensing as
shown in Fig. 1. To deal with the measurement errors from
both EM sensors and IVUS images, the 3D vessel recon-
struction is formulated as a nonlinear optimisation problem
based on the pre-operative data. The uncertainty in both
the IVUS contour and the EM pose are used as weights
in the optimisation process. To enable vessel reconstruction
in real-time, an approximation to the optimisation problem
is proposed in which the first order linearisation related to
solving the nonlinear optimisation can be computed a priori on
the pre-operative data. Detailed validation on phantom datasets
is performed to demonstrate the accuracy of the proposed
algorithm and its robustness to abrupt catheter motions.
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Fig. 1. The proposed SCEM+ framework: (left) the SCEM+ system components, (middle) experimental setup, and (right) the proposed improvements to the
reconstruction.

II. VESSEL MODELING IN SCEM

Simultaneous catheter and environment modeling (SCEM),
as described in [18], proposes a reconstruction of the vas-
culature based on data fusion from intravascular ultrasound
(IVUS) and electromagnetic (EM) tracking. In this framework,
anatomical information is extracted by segmenting the contour
of the inner vessel wall CI from the IVUS images which
consists of a set of boundary points and is defined as:

CI = [cT1 , . . . , c
T
m]T (1)

where each boundary point can be presented as

cj = [xj , yj , 0]T , j = 1, . . . ,m. (2)

Here, the boundary point extracted from the IVUS image
[xj , yj ]

T is padded with a 0 as the z coordinate to make cj a
3D point in the IVUS coordinate frame. The pose PE captured
by the EM sensor attached to the tip of the IVUS catheter is
used to transform the IVUS contour CI to a global coordinate
system by:

C = RT
ECI + TE (3)

where RE and TE can be computed as the Kronecker product:

RE = Im ⊗RE =

RE · · · 0
...

. . .
...

0 · · · RE


TE = 1m ⊗ TE = [TT

E , . . . ,T
T
E ]T

(4)

where RE is the 3 × 3 rotation matrix and TE is the 3 × 1
translation vector of the EM pose PE , Im is m×m identity
matrix, 1m is m×1 vector with all elements equal to 1 and ⊗
is the Kronecker product. C is the IVUS contour transformed
into the global coordinate frame. Thus, the reconstruction of
the vessel is obtained by transforming and combining all the
IVUS contours extracted during vessel scanning to a common
global coordinate system.
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Fig. 2. The results from the original SCEM framework [18] show that the
errors from IVUS/EM are directly transferred into the 3D vessel reconstruc-
tion.

However in SCEM, both the measurements from IVUS and
EM are considered as exact, and any error associated with
the measurements will transfer into the vessel reconstruction
(see Fig. 2). The EM poses and IVUS contours are always
associated with significant measurement errors which should
not be ignored for accurate vessel reconstruction. For instance,
the IVUS data is noisy and the vessel boundaries do not
always appear complete on IVUS images, making the contour
extraction challenging.

III. METHODS

In this paper, both the vessel contours from IVUS and the
catheter poses from EM are considered as measurements with
errors and uncertainties and are combined with the vessel
structure provided by pre-operative data to formulate a nonlin-
ear optimisation problem. The proposed vessel reconstruction
framework and the improvements to the reconstruction are
shown in Fig. 1.
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A. Optimisation based on the Pre-operative Data

The proposed nonlinear optimisation estimates the opti-
mised catheter pose P̂ that will recover an accurate vessel
structure. In the optimisation, the IVUS contour CI and the
EM pose PE are considered as observations with uncertainties
defined by the covariance matrices ΣI and ΣE (to be discussed
in Section III-B) respectively, and the catheter pose P =
[α, β, γ, x, y, z]T is defined as the state vector, where [α, β, γ]
are the Z-Y-X Euler angles of the rotation and T = [x, y, z]T

is the translation vector. The nonlinear least squares problem
can then be mathematically formulated as:

argmin
P
‖CI − f(P)‖2

Σ−1
I

+ ‖PE − P‖2
Σ−1

E

(5)

where

‖CI − f(P)‖2
Σ−1

I

= [CI − f(P)]T Σ−1
I [CI − f(P)] (6)

denotes the weighted 2-norm of the residual vector of the
IVUS contour CI − f(P) with the given covariance matrix
ΣI , where

f(P) = R(CT − T ) (7)

and R and T are constructed similarly to (4) by using the
rotation matrix R and the translation vector T of the catheter
pose P. R is computed from the Euler angles [α, β, γ]. The
contour CT is extracted from the pre-operative data as the
cross section of the pre-operative CT model M and the plane
defined by the catheter pose P. Here, PE , CT and the state
vector P are all in the global coordinate frame while the IVUS
contour CI is in the IVUS coordinate frame. The function
f(·) transforms CT from the global into the IVUS coordinate
system.

The first term in (5) aims to minimize the difference
between the contour CI from the IVUS image and the contour
f(P) calculated from the pre-operative data, weighted by the
uncertainty of the IVUS contour ΣI . The second term in (5)
minimizes the difference between the catheter pose P and the
pose PE obtained from EM, weighted by the uncertainty of
the EM pose ΣE .

A solution P̂ of (5) can be obtained with the Gauss-Newton
method [21], starting with an initial estimate P0 and iterating
with Pk+1 = Pk + ∆k. The vector ∆k is the solution to:

(JT Σ−1
I J + Σ−1

E )∆k = JT Σ−1
I (CI − f(Pk))

+ Σ−1
E (PE − Pk)

(8)

where J is the linear mapping represented by the Jacobian ma-
trix ∂f/∂P evaluated at Pk. Here, P can be simply initialised
by using the EM pose P0 = PE . Given that CT (P) is not
constant but a function of P, the Jacobian J can be computed
by using the product rule for derivatives which first considers
CT as constant, then considers R, T in (7) as constant and
only CT as a function of P as:

J =
∂fCT

∂P
+R∂CT

∂P
(9)

where ∂fCT
/∂P is the Jacobian with respect to P when

considering CT as constant. Since the pre-operative CT model
M is discretized as triangle mesh, CT is not an analytic
function. Thus, the Jacobian of CT with respect to the pose

P can be computed numerically on the pre-operative data by
using the finite difference method [22]

∂CT

∂P
≈ CT (P + ∆)− CT (P−∆)

2∆
(10)

where ∆ is a small change on the state vector P.
After an optimal solution of (5) is obtained, the uncertainty

of the estimated catheter pose P̂ is given by the covariance
matrix ΣP which can be computed by

Σ−1
P = JT Σ−1

I J + Σ−1
E . (11)

Then, the 3D vessel shape can be recovered by transforming
CI to the global coordinate frame using the optimised P̂, with
reconstruction uncertainty ΣC :

C = R̂TCI + T̂ , ΣC = JCΣJT
C (12)

where
JC =

[
∂C

∂P
∂C

∂CI

]
(13)

is the Jacobian of C with respect to the catheter pose P and
IVUS contour CI respectively evaluated at P̂ and CI , and

Σ =

[
ΣP

ΣI

]
. (14)

B. Uncertainty Estimation

To deal with the errors in the IVUS and EM measurements,
the terms in the optimisation in (5) are weighted with the
uncertainties ΣI and ΣE . The uncertainty of the EM pose
ΣE can be directly obtained from the position and orientation
accuracy of the EM system. To estimate the uncertainty of the
IVUS contour ΣI , as the contour is represented as a set of
boundary points cj , j = 1, . . . ,m, the covariance matrix of
CI can be computed as:

ΣI =

Σ1 · · · 0
...

. . .
...

0 · · · Σm

 , where Σj = δ−1
j I. (15)

where I is the identity matrix. Here, the points of the contour
are assumed to be independent, hence ΣI is block diagonal.
The covariance matrix of each point Σj is computed by the
weight of the point δj . The covariance matrix computed in
this way is spherical.

In this paper, the intensities of the points around the
extracted contour on the IVUS image are used to compute
the weights δj . The contour points cj are first transformed
from the Cartesian coordinates to polar coordinates (ρj , φj)
in the image coordinate frame. Afterwards, the intensities of
all the image points on the direction φj within a distance n
from ρj in the polar coordinate system are accumulated. The
weight δj can be computed as:

δj =

{
1, if γj ≥ t
γj/t, if γj < t

(16)

where

γj =

n∑
l=0

V ( (ρj + l) cosφj , (ρj + l) sinφj ) . (17)
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Here V is the IVUS image. According to (16), if γj is greater
than a threshold t, the point cj is considered to lie on the
vessel wall and its weight is set to 1. We assume that if a
point has no high intensity neighbours, it does not belong to
the vessel wall and its weight is set to 0. An example of the
estimation results of the uncertainty of the IVUS contour is
shown in Fig. 9(b) and 9(c).

C. Real-time Implementation

To enable vessel reconstruction in real-time, the original
objective function of the proposed optimisation scheme can
be modified by left multiplying RT to CI − f(P) in the first
term in (5):

argmin
P
‖CT − g(P)‖2

Σ−1
I

+ ‖PE − P‖2
Σ−1

E

(18)

where
g(P) = RTCI + T . (19)

Here CI is transformed and compared with CT in the global
coordinate frame. The above objective function is an ap-
proximation to our nonlinear optimisation (5) because the
covariance matrix which should be used to weight the first
term in (18) (which is the uncertainty of the IVUS contour in
the global coordinates) cannot be directly computed since it
requires the catheter pose P which is the state vector. For that
reason, ΣI is used to approximate it.

The difference between the contours in (18) can also be
represented as ‖d‖2 = ‖CT − g(P)‖2. The distance vector d
can alternatively be computed as the shortest distances from all
the points on contour g(P) to the CT model M of the vessel
in the pre-operative data. This can be pre-computed as the
distance space D of the pre-operative data, which provides
for each point c in the global coordinate frame the shortest
distance to the pre-operative mesh M [23]

D(c) = sgn(c) min‖dist(c,M)‖ (20)

where

sgn(c) =

{
1, if c is inside M
−1, if c is outside M

(21)

And the corresponding Jacobian J ′ of d can then be computed
as:

J ′ = −∂d
∂g

∂g

∂P
. (22)

Thus, the distance vector d can be obtained directly from the
distance space D, and its partial derivative can be computed
as the gradient ∇D of the distance space D:

d = D(g(P)),
∂d
∂g

= ∇D(g(P)). (23)

Here a signed distance space D is used instead of an unsigned
one since otherwise the gradient will be incorrect if it is
evaluated at the points which are close to the mesh surface.

The optimisation function formulated above is computa-
tionally efficient and enables real-time vessel reconstruction
because the distance space D and the gradient ∇D can be
pre-calculated on the pre-operative data. This means there is
no need to compute the Jacobian and the contour differences in
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Fig. 3. A flowchart of the proposed real-time implementation of SCEM+.

(a) Plexiglas Phantom (b) HeartPrint Phantom

Fig. 4. The aortic phantoms used in the experiments: (a) Plexiglas and (b)
HeartPrint aortic phantoms.

the first term of the objective function during the optimisation,
allowing the reconstruction to be performed in real-time. The
process of solving the problem by using the proposed real-
time implementation is shown in the algorithm chart in Fig.
3.

To demonstrate the validity of the real-time implementation,
here we give a lemma:
Lemma 1: The approximated problem in (18) is equivalent
to the original problem in (5), if the covariance matrix of the
IVUS contour ΣI is spherical.
Proof: The weighted 2-norm of the first term in (18) can be
rewritten as

‖CT −g(P)‖2
Σ−1

I

= [CI−f(P)]TRΣ−1
I R

T [CI−f(P)]. (24)
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Fig. 5. The accuracy in the estimation of the catheter pose and 3D reconstruction w.r.t noise on the EM pose and extracted vessel contours.

If ΣI is spherical, RΣ−1
I RT = RRT Σ−1

I = Σ−1
I and (18) is

equivalent to (5).
As described in Section III-B, since the covariance matrix

ΣI is spherical, the approximated real-time implementation in
(18) is equivalent to the original optimisation problem defined
in Section III-A.

IV. RESULTS

A. Experimental Setup

Two aortic phantoms created by Materialise (Leuven, Bel-
gium) were used for validation, one made of plexiglas (Plexi-
glas) and the other made of HeartPrint R© material (HeartPrint)
(see Fig. 4). The two phantoms were first scanned by CT, and
the meshes of the inner walls were segmented from the CT-
scan using ITK-SNAP [24] to provide the triangular surface
meshes of the models (see Fig. 6). The distance space as well
as the gradient of the distance space were pre-calculated from
the 3D meshes. An Aurora 6DoF EM sensor (NDI, Waterloo,
Canada) was attached to the tip of a Visions PV 8.2 IVUS
catheter (Volcano, San Diego, USA) to provide its position
and orientation.

The registration between the IVUS and EM sensors on the
catheter was estimated by using a batch optimisation of the
proposed algorithm for a pre-logged dataset, by considering
all the catheter poses as well as the relative pose between the
IVUS and EM sensors in the state vector. Since the IVUS-EM
relative pose is fully correlated to all the catheter poses in the
normal equations matrix, accurate results can be achieved. To
register the CT and EM coordinate systems, CT markers (9
for Plexiglas and 13 for HeartPrint) attached to the phantoms
were used to perform rigid registration.

B. Simulation and Robustness Assessment

Simulations were first performed to assess the influence of
noise and robustness of the proposed algorithm to different
levels of noise in the data. Simulated vessel contours were
generated from one set of pre-operative data from the Plexiglas
phantom along with known EM poses. Seven different levels
of zero mean Gaussian noise were added to the EM poses and
vessel contours and the results are shown in Fig. 5.

In this simulation, zero mean Gaussian noise with standard
deviation σR = {0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}rad was

TABLE I
DETAILS OF THE EXPERIMENTS

Datasets Date Place* Phantom Cath/Setup† Motion‡

1-6 06/2014 Hospital Plexiglass C-1/S-1 Pul
7-11 12/2014 Hospital HeartPrint C-1/S-2 Ins/Pul
12-16 01/2015 Hospital HeartPrint C-1/S-3 Ins&Pul+Abr
17-23 01/2015 KUL HeartPrint C-1/S-4 Ins&Pul
24-25 01/2015 KUL HeartPrint C-2/S-4 Ins&Pul

*Hospital: Northwick Park Hospital, Imperial College London, KUL: Uni-
versity of Leuven. †C-1: Catheter 1, S-1: Setup-1. ‡Catheter motion:
Pul(pullback), Ins(insertion) and Abr(abrupt catheter motion).

added to the rotation, σT = {0.2, 0.5, 1, 1.5, 2, 2.5, 3}mm
to the translation of the EM poses, as well as σC =
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5}mm to the IVUS contours, and
10 independent runs of each noise level were generated to
obtain a total of 210 datasets to validate the performance
of the algorithm. For each level of noise, the mean errors
of the 10 runs for rotation, translation and reconstruction of
the results were computed and shown in Fig. 5 as red, green
and black lines, respectively. Here, the maximum noise levels
were within the range of the errors in the real EM and IVUS
systems. The maximum noise level of σR and σT in the EM
poses was defined as 0.3rad and 3mm, as the accuracy of
the 6DoF sensor reported for the Aurora EM System was
0.8mm (1.2mm 95% confidence interval (CI)) for position
and 0.012rad (0.014rad 95% CI) for orientation from the user
guide. The maximum noise level of σC was defined as 1.5mm
since the width of the high intensity vessel wall reflections in
the IVUS images was around 1.5mm which was measured
from the IVUS images.

From Fig. 5 we can see that, increasing the noise in the
rotation of the EM pose, the error in the estimation of the
translation increased from 0.027mm to 0.060mm while the
error of the 3D reconstruction only changed from 0.0246mm
to 0.0359mm. When adding noise to the translation of the
EM pose, the accuracy of the translation was more sensitive
than that of the rotation. Again, when adding noise to the
IVUS contour, as noise increased, the error of the translation
increased from 0.030mm to 0.116mm, while the error of the
rotation was not affected as much from 0.004rad to 0.021rad.
It can be seen that the accuracy of the catheter pose was still
around 0.03rad and 0.12mm even when noise of 0.3rad and
1.5mm was added to the EM pose and the IVUS contours
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(d) Uncertainty (c) SCEM+ (b) SCEM (a) 3D Mesh (e) Trajectories 

Fig. 6. The results for the Plexiglas Phantom with pullback (first row, Dataset 3) and HeartPrint Phantom with insertion and pullback (second row, Dataset
21): (a) the 3D mesh of the pre-operative data, the 3D reconstruction results by (b) SCEM and (c) the proposed SCEM+ algorithm with errors in mm, (d)
the uncertainty (log) map, and (e) the trajectories of the catheter computed by SCEM (blue) and SCEM+ (red).

(a) SCEM (b) SCEM+ (c) Uncertainty 

Figure 5. The results for the soft Phantom with sudden movement. The 3D reconstruction results by fusing 
IVUS and EM without (a) and with optimisation (b) with errors in the colour map, and the uncertainty map in 
(c). 

(d) Trajectories 

Fig. 7. The results for Dataset 14 in the HeartPrint phantom with abrupt catheter motion: (a) in the original SCEM algorithm, (b) in the proposed SCEM+
algorithm, (c) the uncertainty (log) map, and (d) the catheter trajectories.

respectively. The reconstruction accuracy was most sensitive
when noise was added to the translation of the EM pose as
well as to the IVUS contours.

C. Phantom Experiments
For the phantom experiments, a total of 25 datasets with

4 different EM-Phantom setups and 2 different IVUS-EM
catheters were collected consisting of catheter pullbacks and/or
insertions within the two phantoms. One of the setups is shown
in Fig. 1. The details of the experiments are shown in Table
I. In all the experiments, the catheters were not operated by
medical expert.

For each IVUS image frame, contour extraction (m = 360)
was performed with a radial scan similar to [18] to identify
high intensity ultrasound reflections. To compute the uncer-
tainty of the IVUS contour, n = 25 pixels in the radial
direction from each contour point in the polar coordinate
frame are used. Here, 25 pixels were used in order to cover
the maximum width of the reflections on the IVUS images
which corresponds to the vessel wall. The performance of the
proposed reconstruction on the two phantoms was compared
to SCEM [18] in Fig. 6. The significant improvement over
the use of SCEM in the presence of sudden catheter motion
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Fig. 8. The accuracy and computational cost of the proposed SCEM+ algorithm.

Figure 6. The contours back projected from the mesh by using the poses results of the proposed algorithm. 
The cross represents the contour extracted from IVUS images, colored by the weight in (8). The green line 
represents the back projected contours. 

(a) IVUS Image 1 (b) IVUS Image 330 (c) IVUS Image 558 

330 558 

(a) 3D Contours

Figure 6. The contours back projected from the mesh by using the poses results of the proposed algorithm. 
The cross represents the contour extracted from IVUS images, colored by the weight in (8). The green line 
represents the back projected contours. 

(a) IVUS Image 1 (b) IVUS Image 330 (c) IVUS Image 558 

330 558 

(b) IVUS Image 330

Figure 6. The contours back projected from the mesh by using the poses results of the proposed algorithm. 
The cross represents the contour extracted from IVUS images, colored by the weight in (8). The green line 
represents the back projected contours. 

(a) IVUS Image 1 (b) IVUS Image 330 (c) IVUS Image 558 

330 558 

(c) IVUS Image 558

Fig. 9. Vessel contours back projected from the pre-operative mesh to IVUS images using the optimised poses from the proposed SCEM+ algorithm. The
crosses represent the contour extracted from the IVUS images, coloured by the weight in (16) (between 0 to 1). The green line represents the back projected
contours.

is highlighted in Fig. 7. The trajectories of the catheter tip
computed by the two methods are shown in Fig. 6(e) and
7(d).

Quantitative evaluation of the performance of the proposed
SCEM+ algorithm is presented in Fig. 8(a). The reconstruction
error was calculated as the distances between the recovered
structure and the pre-operative data. The mean errors for the
HeartPrint phantom are around 0.3mm, while the errors for the
Plexiglas phantom are around 0.6mm, which are significantly
lower than the errors of SCEM. The higher accuracy of the
results for the HeartPrint phantom is due to the better quality
of IVUS images within it compared to within the Plexiglas
phantom due to their different material properties.

All the experiments were run on one core of an Intel i7-
2600@3.4GHz CPU on a desktop. The computational cost of
the optimisation algorithm presented in Fig. 8(b) verifies that
the method can run in real-time. The algorithm converged in
only 2-4 iterations with around 0.3-0.6ms per iteration and the
optimisation algorithm initialised by the pose from EM never
diverged for any frame in the datasets.

To further validate the proposed vessel reconstruction, the
optimised catheter poses from the proposed algorithm were
used to obtain cross-sections of the pre-operative data which

were back projected to the original IVUS images as shown
in Fig. 9. It is clear that because of the consideration of the
uncertainty, even with incomplete IVUS contour extraction,
an accurate pose is still estimated as the corresponding vessel
contour from the pre-operative model sits on the high intensity
ultrasound reflections.

V. CONCLUSION

In conclusion, this paper presents SCEM+, a real-time
robust 3D vessel reconstruction approach, which solves a
nonlinear optimisation problem using IVUS, EM and pre-
operative data. Compared to other methods, the uncertainty
of IVUS and EM were used as weights in the proposed
optimisation algorithm to ensure that the reconstruction was
robust to contour extraction error from IVUS and sudden
motion of the catheter. It was also demonstrated that with
the proposed reformulation of the objective function, a real-
time implementation to the proposed optimisation scheme
can be achieved. Simulation and experiments with two dif-
ferent phantoms demonstrated the efficiency and accuracy of
the proposed algorithm against existing vessel reconstruction
approaches. The method simultaneously obtains the vessel
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structure, optimal catheter pose, and the 3D reconstruction
uncertainty which can be used for endovascular navigation.

This work is validated by phantom study. If in-vivo data is
used, the global deformation can be recovered using EM sen-
sors on the patient body and cardiac motion can be overcome
using ECG gated IVUS. For our future work, to reconstruct
all the deformation of the vessel, additional prior information
will be included in the current objective function [25]–[27].
Finite element modelling [28]–[31] or differential surface rep-
resentations [32]–[34] can also be combined with the current
optimisation framework to provide boundary conditions for
deformable vessels.
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