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Abstract 

In this research, the role of plants in improving microorganism growth conditions in 

subsurface flow constructed wetland (CW) microcosms was determined. In particular, 

microbial abundance and community were investigated during summer and winter 

in Phragmites australis-planted CW microcosms (PA) and unplanted CW microcosms 

(control, CT). Results revealed that the removal efficiencies of pollutants and microbial 

community structure varied in winter with variable microbial abundance. During summer, PA 

comprised more dominant phyla (e.g., Proteobacteria, Actinobacteria, and Bacteroidetes), 

whereas CT contained more Cyanobacteria and photosynthetic bacteria. During winter, the 

abundance of Proteobacteria was >40 % in PA but dramatically decreased in CT. Moreover, 

Cyanobacteria and photosynthetic bacterial dominance in CT decreased. In both seasons, 

bacteria were more abundant in root surfaces than in sand. Plant presence positively affected 

microbial abundance and community. The potential removal ability of CT, in which 

Cyanobacteria and photosynthetic bacteria were abundant during summer, was more 

significantly affected by temperature reduction than that of PA with plant presence. 

 

Keywords 

Constructed wetland, summer, winter, microbial abundance, microbial community 



2 
 

Introduction 

Constructed wetlands (CWs) are inexpensive, easy to operate, consume low energy, and can 

be applied for treating various wastewaters (Zhi and Ji 2012). CWs have been applied to 

numerous wastewater treatment processes over the last 4 decades since their first application 

in Germany in the 1960s. CWs have been established as a means of treating domestic 

wastewaters globally (Bilgin et al. 2014). CW systems usually fall into two categories, 

namely, subsurface flow systems (SSF CWs) and free water surface flow system (SF CWs) 

(Dan et al. 2011). Designed with land saving and efficient wetland technology, SSF CWs 

have been successfully and widely applied in China and Europe (Perfler et al. 1999; Zhang et 

al. 2009; Wu et al.2011a). 

The pollutant removal efficiencies in SSF CWs depend on oxidation–reduction 

conditions (Kadlec et al. 2000), which have been demonstrated for removing contaminants, 

such as organic contaminants and ammonium via microbial oxidation (García et al. 2005; 

Wiessner et al. 2005). However, the oxygen in SSF CWs is mainly eliminated via microbial 

oxidation from influent (Wen et al. 2010). Oxygen diffusion through water is approximately 

104–106 times slower than that through air (Drew et al. 1979). Oxygen in SSF CWs can be 

obtained much faster from plants by internal transfer via the air spaces in plants 

(Armstrong 1978; Brix 1997). Therefore, the strong oxygen gradients within SSF CWs have 

been linked to the presence of plants (Shelef et al. 2013). 

Microorganisms are considered responsible for the transformation and mineralization 

of pollutants in CWs; plants, one of the primary CW components, have a strong functional 

linkage with microbial biomass, diversity, and activity (Collins et al. 2004; Truu et al. 2009). 

Plants can provide microorganisms with attachment surfaces, plant–media oxygen, and 

carbon sources from root leakage (Brix 1997; Stottmeister et al. 2003; Faulwetter et al. 2013). 

Consequently, organic pollutants have high removal efficiency via several bacterial groups 

that favor oxygen (Braeckevelt et al. 2007). Plant roots improve oxygen conditions, thereby 

supporting the aerobic processes in CWs at flooded conditions (Sundberg et al. 2007). 

However, some studies posited that plants do not statistically affect the microbial community 

structure (Ahn et al. 2007; Baptista et al. 2008). Thus, the effects of plants on microbial 

groups, particularly in SSF CWs, must be further explored. 

Plant growth and physiological status are extremely diverse in different seasons, so 

the effects of plant presence on the microbial community at different seasons must be 

investigated. In this study, we aimed to investigate the role of plant presence in CWs by 
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comparatively evaluating microbial abundance and community during summer and winter, 

during which distinct differences in plant growth and physiological status were observed. 

CWs were either planted with Phragmites australis (PA) or left unplanted (CT, control). 

Quantitative polymerase chain reaction (qPCR) and 454 high-throughput pyrosequencing 

were conducted to analyze the 16S rRNA gene of total bacteria for elucidating the role of 

plants in CWs from a microbial aspect. 

 

Materials and methods 

Site description and experimental design 

The studied CWs are located in the Shan Dong Normal University in Jinan, China. This area 

has a warm monsoon climate, cold and dry winter, and hot and wet summer and is 

characterized by a mean annual precipitation of 670.7 mm and average temperature of 

14.3 °C. Microcosm wetland systems were designed and constructed in SSF style for 

domestic wastewater treatment on 12 March 2013. The microcosms comprised six individual 

polyvinyl chloride columns. Three of the microcosms were planted with P. australis, whereas 

the remaining three were unplanted for the control (CT). Each column was 48 cm in depth 

and 30 cm in diameter. The outlet at the bottom of the column was filled with a three-layer 

filter with 19 cm deep gravel (5 − 7 cm in diameter) at the bottom, 15 cm deep gravel 

(2 − 4 cm in diameter) in the middle, and 10 cm deep washed sand (particle size <2 mm) on 

top. A perforated pipe (30 mm in diameter) was inserted into the center of the system to 

measure the physical and chemical parameters in situ. P. australis was transplanted from the 

Nansi Lake in Shan Dong Province. After 10 days of cultivation, healthy plants of similar 

sizes were transplanted into the microcosms (PA treatment). Plant density was 15 

rhizomes/cell. The microcosms were placed in a greenhouse with a glass roof, and the 

temperature control system was closed to obtain natural temperature variations at different 

seasons. 

The microcosms were fed with synthetic wastewater to primarily simulate the treated 

domestic wastewater (Table 1). Sequencing fill-and-draw batch mode was used to operate the 

CW microcosms. The wetlands were saturated with wastewater for treatment, drained after an 

experiment cycle, and immediately refilled with synthetic wastewater again after drainage at 

the start of the next cycle. A total of 4 L of influent was manually filled into the microcosms 

to maintain the water level below the sand surface. Each microcosm was manually drained 

through a valve at the bottom after one cycle. Evapotranspiration loss was estimated and 
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compensated by adding deionized water during the experiment. Each wetland microcosm was 

operated in a batch with a hydraulic retention time of 7 days. Before the experiments, the 

wetlands had been pre-cultured for 4 months. Recent studies showed that microbial 

communities can be stabilized after a period of 75–100 days during the start-up process of 

CW microcosms. After 4 months, the bacterial community in the microcosms was believed to 

be stable (Truu et al. 2009; Weber and Legge 2011). 

Table 1 Characteristics of influents from the wetland microcosm units (mean ± SD, n = 10) 

Influents composition Parameter Summer Winter 

Sucrose 50 mg/L COD(mg/L) 60.3 ± 0.54 60.84 ± 0.79 

(NH4)2SO4 56.29 mg/L NH4-N(mg/L) 15.65 ± 0.62 15.60 ± 1.06 

KH2PO4 17.5 mg/L NO3-N(mg/L) 10.18 ± 0.32 12.18 ± 1.03 

MgSO4 10 mg/L NO2-N(mg/L) 0.012 ± 0.00 0.003 ± 0.00 

FeSO4 10 mg/L DO(mg/L) 6.91 ± 1.21 12.24 ± 1.37 

CaCl2 10 mg/L Temperature(°C) 26.90 ± 3.2 4.60 ± 2.4 

 

Water sampling and analysis 

Both influent and effluent were sampled every 7 days to evaluate the changes in organic 

components and nitrogen during summer (from 12 July to 9 August) and winter (9 December 

to 6 January). The water samples were analyzed in the laboratory for chemical oxygen 

demand (COD) and ammonium (NH4 
+-N). All parameters were determined according to the 

standard methods (APHA 2001). COD was measured with a HACH DR 2800TM 

spectrophotometer (USA) using the potassium dichromate method. The NH4 
+-N 

concentrations were determined with a UV–vis spectrophotometer (Shimadzu Instrument Co. 

Ltd., UV-2450, Japan) using Nessler’s reagent colorimetry. Meanwhile, dissolved oxygen 

(DO) was gauged in situ using DO electrodes (HQ30d 53LEDTM, HACH, USA). 

 

Microbial sampling 

Sand and root samples for DNA extraction were obtained from each microcosm on 2 July, 23 

July, and 9 August during summer, and on 16 December, 28 December, and 6 January during 

winter. Initially, the water in each microcosm was completely drained through the bottom 

valve. Sand from a depth of 5 to 10 cm was collected at five different locations (four corners 

and the center of the microcosms) (Calheiros et al. 2010; Wu et al. 2013) in each parallel and 
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then mixed into a composite sample. The sand samples from the three parallel microcosms 

were subsequently combined into a composite sample before DNA extraction. For root 

samples, the plants were first removed from the column. Residue was then removed from the 

plants by shaking them in a container with sterile water. The roots (approximately 0.5–1 mm 

in diameter) near the root tips (Faulwetter et al. 2013) were aseptically excised from the 

plants. The sand and root samples were stored in 5-mL aseptic Eppendorf tubes, which were 

immediately placed on ice and then stored at −80 °C before microbial analysis. 

 

Genomic DNA extraction 

DNA was extracted from the previously frozen biomass using a MOBIO PowerSand™ DNA 

kit (MOBIO, Carlsbad, CA) according to the manufacturer’s instructions. DNA yields were 

measured with an ND-1000 UV-Vis spectrophotometer (NanoDrop Technologies, 

Wilmington, DE, USA), and integrity was evaluated via 1.5 % of agarose gel electrophoresis. 

DNA products were then stored at −20 °C before analysis. 

 

qPCR analysis 

A Roche LC-480 real-time PCR system (CH) was used to quantify the 16S rRNA genes with 

the primer Eub341F/Eub534R (Muyzer et al. 1993) and SYBR® Premix Ex Taq™ (TaKaRa, 

Japan). Template DNA was diluted 100 times before amplification (Di et al. 2010). The total 

amount of the reaction mixture was 20 μL, which comprised 10.0 μL of SYBR® Premix Ex 

Taq™, 2 μL of template DNA (1–10 ng), 0.4 μL of forward and reverse primers (10 μM), and 

7.2 μL of nuclease-free water. The qPCR cycling conditions were as follows: 30 s at 95 °C 

and 40 cycles of 10 s at 95 °C, 15 s at 60 °C, and 20 s at 72 °C. The abundance of the targeted 

genes in each sample was determined by Abs Quant/2nd Derivative Max from Roche LC-480 

Install on the basis of parallel qPCR of different dilutions of the standards. The threshold 

cycles (Ct) obtained in each PCR run were compared with those of the known standard DNA 

concentrations. Standard curves were obtained following the procedure described by Di et al. 

(2010). 

 

Pyrosequencing and data analysis 

Numerous studies have realized the pyrosequencing of 16S rRNA V3 hypervariable regions 

of the bacteria in CWs for quantifying bacterial populations and characterizing microbial 
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community diversity using PCR-DGGE technique or 454 sequencing platform with 

wastewater treatment (Zhong et al. 2014; Faulwetter et al.2013; Dong and Reddy 2010). In 

the current study, the 16S rDNA hypervariable V3 region was amplified through PCR with 

the universal bacterial primers 341f (Watanabe et al. 2001) and −518r (Muyzer et al. 1993). 

The prepared DNA samples were sequenced on the 454 Genome Sequencer FLX Titanium 

platform according to the procedure detailed by Gong et al. (2013). Pyrosequencing was 

performed in the Chinese National Human Genome Sequencing Center (Shanghai), and 

calculations were performed by Mothur analysis (Schloss et al. 2009). The sequences were 

assigned to phylogenetic taxonomy using the Ribosomal Database Project classifier (Wang et 

al. 2007). 

 

Results 

Performance of wetlands 

The influent characteristics are described in Table 1. The average temperature and DO 

concentration in summer were 26.90 ± 3.2 °C and 6.91 ± 1.21 mg/L, respectively (Table 1). 

COD removal was measured based on the data collected from 12 July to 9 August. The 

overall COD removal efficiency was 70.62 ± 3.83 % in PA and 67.92 ± 6.4 % in CT (Fig. 1). 

The difference in COD removal between the planted and unplanted CW units during summer 

was not remarkable. 

The removal and transformation mechanisms of nitrogen in CWs are mainly via 

assimilation into biomass and sediment, followed by removal through microbial nitrification 

and denitrification (Jamieson et al. 2003). Reinhardt et al. (2006) discovered that 

denitrification contributes 94 % to nitrogen removal but only 6 % in sediments. In the current 

research, after 4 months, the sorption of ammonia by gravel/sand in the columns was 

observed, but it was not the primary means for removing ammonia. Therefore, the sorption of 

ammonia by gravel/sand was not determined in this study. Figure 1 shows that high NH4 
+-N 

removals were achieved in both types of wetlands (91.02 ± 1.36 % for PA and 88.81 ± 3.14 % 

for CT). 

During winter, the temperature in the influent decreased to 4.60 ± 2.4 °C, whereas the 

DO concentration increased to 12.24 ± 1.37 mg/L. In this season, the differences between the 

planted and unplanted units were apparent (P < 0.05) at low temperature. The COD 

reductions in PA and CT were 42.09 and 23.22 %, respectively. Between December and 



7 
 

January, the removals of NH4 
+-N were 70.38 and 49.72 % in the PA and CT units, 

respectively. 

 

 

Fig. 1 The COD and NH4 
+-N removal rates in PA and CT during summer (July 12 to August 

9) and winter (December 9 to January 6). Error bars represent standard error (n = 3). 
*P < 0.05 (statistical analysis was performed by use of a SPSS statistics program) 

 

Given that the COD and NH4 
+-N removals in all wetlands decreased with declining 

temperature, the performance of wetlands was affected by the season. Meanwhile, 

considering that the reduction in NH4 
+-N removal efficiency during winter was significantly 

lower in PA than that in CT, the seasonal effect on NH4 
+-N removal was more significant in 

unplanted wetlands. 

 

Microbial abundance 

We detected microbial abundance using qPCR with the gene of 16S rRNA at different 

seasons. Paired sample t test was performed to evaluate the statistical differences of microbial 

abundance between PA and CT at different seasons (shown in Supplementary Material 

Table 3). The abundance of the total bacteria (including those in plant roots) in PA and CT is 

demonstrated in Fig. 2. During summer, the amount of bacteria in plant roots 
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(1.85 × 106 copies/g roots) was significantly higher than that in sand. However, the 

differences between PA (1.54 × 105 copies/g sand) and CT sand (1.48 × 105 copies/g sand) 

were not obvious (P = 0.846, Supplementary Material Table 3). During winter, the abundance 

of the total bacteria was 2.09 × 105 copies/g on the roots of the plants and was obviously 

higher than that in sand. In the same season, the copies of 16S rRNA in sand were higher in 

PA (7.60 × 104 copies/g sand) than those in CT (2.76 × 104copies/g sand, P = 0.024, 

Supplementary Material Table 3). For the two types of wetlands, the total bacterial 

abundance on the root surfaces and sands decreased from summer to winter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The abundances of total bacteria by gene of 16S rRNA copies per gram on roots of 
plant and in sands of PA and CT in summer and winter. Error bars represent standard error 
(n = 3) 

 

Microbial community 

Microbial communities can be stabilized after 75–100 days during the start-up process of CW 

microcosms (Truu et al. 2009; Weber and Legge 2011). The establishment of denitrifying 

bacteria populations within 75 days and ammonium- and nitrite-oxidizing bacteria within 

95 days has been reported in reactors with sand filters (Pell and Nyberg 1989). After a 4-

month study period, we sampled the sand and roots in the microcosms to detect the microbial 

community using pyrosequencing. 



9 
 

The microbial composition structure of the total bacteria in wetlands is shown in 

Fig. 3. A total of 25 phyla were identified during summer, in which Proteobacteria, 

Actinobacteria, Bacteroidetes, and Cyanobacteria comprised the largest proportion. 

Table 2 describes the relative sequence abundance of different phyla in wetlands and presents 

the overall increase or decrease of the microbial composition from summer to winter. During 

summer, the order of prominent phyla in planted wetlands was Proteobacteria > 

Actinobacteria > Bacteroidetes > Cyanobacteria (Table 2). This finding differed from that in 

unplanted wetlands. The prominent phyla in unplanted wetlands was in the order of 

Proteobacteria > Cyanobacteria > Actinobacteria > Bacteroidetes. PA generally contained 

more Proteobacteria, Actinobacteria, and Bacteroidetes than CT. However, the relative 

sequence abundance of Cyanobacteria was significantly higher in CT (29.62 %) than that in 

PA (7.26 %). 

 

 

Fig. 3 The relative abundance of total bacterial V3 tags obtained by pyrosequencing from PA 
and CT in summer and winter, by phylum, and profiled the overall structure of bacteria 
communities 
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Table 2 The relative abundance (%) of total bacterial V3 tags for PA and CT in summer and 
winter, by phylum, and profiled the overall increase or decrease of the microbial 
compositions from summer to winter 

Phylum Summer Winter Discrepancya 

PA CT PA CT PA CT 

Proteobacteria 47.96 45.08 44.60 30.61 −3.36 −14.47 

Actinobacteria 15.60 7.85 1.71 2.67 −13.89 −5.18 

Bacteroidetes 11.36 5.04 14.85 13.65 3.49 8.61 

Cyanobacteria 7.26 29.62 14.86 22.11 7.60 −7.51 

Unclassified 4.87 3.17 16.68 5.73 11.81 2.56 

Firmicutes 3.36 3.81 1.69 4.60 −1.67 0.79 

Chloroflexi 0.71 0.36 0.38 0.65 −0.33 0.29 

TM7 2.51 0.67 1.36 14.59 −1.15 13.92 

Acidobacteria 2.27 0.98 2.42 4.37 0.15 3.40 

Gemmatimonadetes 0.89 0.41 0.33 0.12 −0.56 −0.29 

Verrucomicrobia 0.06 0.07 0.21 0.27 0.15 0.20 

Nitrospira 0.03 0.04 0.41 0.44 0.38 0.40 

Others 3.13 2.91 0.51 0.19 −2.63 −2.72 
aThe results of discrepancy were calculated by relative sequence abundance of winter minus that of 
summer 

 

Nineteen phyla were identified during winter. Proteobacteria was the predominant 

phylum in all wetlands. The relative sequence abundance of Proteobacteria was higher than 

40 % in planted wetlands, whereas their abundance in unplanted units decreased significantly 

(Table 2). Cyanobacteria in unplanted units also exhibited a similar trend. 

The abundance of different classes within Proteobacteria is presented in Fig. 4 and 

Table 3. The results showed that the wetlands with plants had abundant bacterial composition 

in all four classes during summer and winter. For the unplanted units, alpha-Proteobacteria 

decreased from summer to winter (Table 3). Meanwhile, the photosynthetic bacteria 

Rhodobacter and Catellibacterium of  Rhodobacteraceae  and 

Roseomonas of Acetobacteraceae (black spots in the red square in Fig. 4) remarkably 

decreased during winter but were highly abundant during summer. 



11 
 

 

Fig. 4 The OTUs of alpha, beta, delta, and gamma-Proteobacteria for PA and CT in summer 
and winter 

 

Table 3 The relative sequence abundance (%) of Proteobacteria for PA and CT in summer 
and winter, by class, and profiled the overall increase or decrease of the microbial 
compositions from summer to winter 

Class Summer Winter Discrepancy 

PA CT PA CT PA CT 

Alpha 11.75 21.78 10.50 6.37 −1.35 −15.41 

Beta 22.34 11.26 27.89 11.64 10.78 0.38 

Delta 7.08 8.08 2.57 4.49 −8.27 −3.59 

Epsilon 0.02 0.02 0.00 0.01 −0.59 −0.01 

Gamma 5.69 3.43 2.19 6.92 −2.64 3.49 

Unclassified 1.09 0.56 1.45 1.33 1.06 0.77 

Total 47.96 45.08 44.60 30.61 −3.36 −14.47 
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Discussion 

Role of plant presence during summer 

The temperature during summer is conducive to plant and microorganism growth (Huang et 

al. 2013). Moreover, the roots of plants can provide microbes with large attachment surfaces 

(Brix 1997; Vymazal2011). Our previous study reported that plants directly absorb nutrients 

at warm temperature (Wu et al.2011a). In the present study, plants could positively influence 

the microbial community, but their effects on microbial abundance in sand were not evident 

in summer. 

The bacterial quantity on root surfaces was ten times higher than that in sand. 

Previous studies determined that plant roots can support large surfaces for bacterial 

attachment, as well as release oxygen and exudates to provide root-attached microbes with a 

suitable environment for their survival (Münch et al. 2005; Ruiz-Rueda et al. 2009; Yang et 

al. 2001). However, the microbial abundance in sand demonstrated a marginal difference for 

planted and unplanted units (P = 0.846, shown in Supplementary Material Table 3). The 

results indicated that plants positively affected microbial abundance on root surfaces during 

summer but had relatively less effects on microbial abundance in sand. Oxygen released from 

plant roots can affect the abundance of microbial bacteria, and bacterial communities are 

grouped according to a gradient of oxygen concentration (Armstrong and Armstrong 1990; 

Luederitz et al. 2001; Ansola et al. 2014). During root respiration, oxygen from plant media 

is consumed or transported back into the atmosphere; the remaining oxygen is leaked from 

the root region to the rhizosphere through a process called radial oxygen loss (Brix and 

Schierup 1990; Tanaka et al. 2007). However, oxygen can be absorbed again by roots to 

satisfy the demands of root respiration. In this study, we discovered that root respiration was 

high during summer when plants were actively growing (Supplementary Material Table 1). 

The high root respiration rate on the oxygen content in the rhizosphere decreased the oxygen 

support from plant–media transfer. Reports claim that microbial abundance is related to 

pollutant removal (Ge et al. 2011). In the current research, the marginal difference in 

microbial abundance between PA and CT indicated the lack of advantageous effects of plant 

on microbial abundance in sand for pollutant removal compared with the unplanted ones 

during summer. 

The effect of plants on the microbial community was also investigated. The method of 

454 high-throughput sequencing was employed to elucidate the diversity and composition 

structure of microorganisms (Ye et al.2011; Zhang et al. 2011). The total numbers of 
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operational taxonomic units (OTUs) obtained using a Chao estimator were 3056 and 2451 in 

PA and CT, respectively (Supplementary Material Table 2), with infinite sampling at 3 % 

distance. The Shannon diversity index was used to characterize the diversity, abundance, and 

uniformity of the species present (Ma et al. 2013). The results revealed that the Shannon 

index of PA (6.30) was higher than that of CT (5.08) (Supplementary Material Table 2). 

Higher Chao estimator and Shannon diversity index inferred that more microbial species 

diversity and abundance were present in planted microcosms with uniform distribution than 

those under unplanted conditions. The CW ecosystem function is the sum of all processes 

provided by a given ecosystem (Hooper et al. 2005). Given that some studies suggested that 

diversity positively affects the ecosystem functions, the higher bacterial diversity in planted 

wetland may indicate more ecosystem functions beneficial for the removal processes (Ansola 

et al.2014). Moreover, the dominant phyla in wetlands (Proteobacteria, Actinobacteria, and 

Bacteroidetes) were more abundant in planted wetlands than that in unplanted ones. The 

Proteobacteria phylum displays a remarkably high level of bacterial metabolic diversity 

related to global carbon, nitrogen, and sulfur cycling, such as Methylophilales, 

Nitrosomonadales, and Desulfuromonadales, which play important roles in pollutant removal 

(Kersters et al. 2006; Ansola et al. 2014). The aforementioned findings implied that the 

planted wetland microcosms could maintain a stable and satisfactory removal efficiency with 

abundant ecosystem functions and high levels of metabolic bacterial groups in summer. 

However, the COD and ammonia removal efficiency of unplanted microcosms was 

high in summer. During this period, the unplanted microcosms also contained a large 

proportion of Proteobacteria (45.08 %), but this proportion was lower than that in the planted 

ones (47.96 %). This result revealed that the unplanted microcosms also had good pollutant 

removal potential. The second large proportion in the unplanted microcosms was the 

Cyanobacteria. The presence of Cyanobacteria can enhance the transformation of pollutants 

by bacteria rather than individual microorganisms (Subashchandrabose et al. 2011). 

Moreover, Rhodobacter and Catellibacterium 

of  Rhodobacteraceae  and  Roseomonas  of  Acetobacteraceae were remarkably abundant 

during summer, among which Rhodobacteraceae are photosynthetic bacteria (Garrity et 

al. 2006) and exhibit significant potential for wastewater treatment (Barbosa et al. 2001; Ike 

et al. 1997; Sasaki et al. 2005). Cyanobacteria and photosynthetic bacteria provide the 

pollutant-degrading heterotrophic bacteria with the key electron acceptor (oxygen); this 

relationship further supported the photoautotrophic growth of their partners by providing 
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them with carbon dioxide and other stimulatory agents (Subashchandrabose et al. 2011). The 

photosynthetic bacteria, heterotrophic bacteria, and Cyanobacteria might maintain a stable 

ecological relationship with one another in the absence of plants. Therefore, the unplanted 

wetland microcosms demonstrated potential removal ability during summer when the 

microcosms contained a large proportion of Proteobacteria, as well as an appropriate amount 

of Cyanobacteria and photosynthetic bacteria. The presence of photosynthetic organisms 

depends on the amount of available sunlight. This research demonstrated that the plants did 

not provide complete shade, and some areas of sand were exposed. Some photosynthetic 

bacteria were also observed in the planted microcosms, but their proportions were lower than 

the unplanted ones without plant shading. 

 

Role of plant presence during winter 

During winter, low temperature is the primary factor that negatively impacts the activity of 

plants and microbial bacteria (Huang et al. 2013). Direct absorption is also weakened during 

the dormancy period of plants throughout the cold season (Harper et al. 1987). In the present 

study, the effects of temperature on the removal efficiency in unplanted wetlands were more 

apparent than those in planted wetlands, which was consistent with other studies. Taylor et al. 

(2011) determined that COD removal decreases at low temperatures in controls but displays 

limited seasonal variations in planted microcosms. Moreover, Allen et al. (2002) found that 

the differences in CW performance among plant species were remarkably greater at 4 °C 

during plant dormancy than those at 24 °C during the plant growing season. However, 

previous studies primarily analyzed the pollutant removal efficiency but did not specify any 

data on the bacterial groups. In the present study, we examined the pollutant removal, 

microbial abundance, and microbial community and found differences between the planted 

and unplanted wetlands during winter in terms of their microbial abundance and microbial 

community. 

Microbial abundance on root surfaces was higher than that in the sand, and the 

amount of bacteria in the sand of planted wetlands was higher than that of the unplanted ones 

(P = 0.024, shown in Supplementary Material Table 3). The findings indicated that microbial 

abundance was positively associated with the presence of plants during winter. The total 

number of OTUs estimated according to the Chao estimator was 2599 and 3156 for PA and 

CT, respectively, thereby suggesting that microbial abundance was not superior in planted 

wetlands. The Shannon index of PA (4.77) was much lower than that of CT (5.61) 
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(Supplementary Material Table 2), which implied that the OTUs in the planted community 

were no more uniformly distributed than those under the unplanted conditions during winter. 

However, the dominant phylum Proteobacteria remained at a high level in planted units 

(44.6 %) but markedly decreased in unplanted units (30.61 %). We also observed that the 

amount of released oxygen and root respiration decreased during winter (Supplementary 

Material Table 1). Considering that the plant roots remained active even when the 

aboveground was dormant, more oxygen and other exudates (not detected in this work) from 

plants might be obtained during winter than during summer because of the decrease in the 

demands of the plants (Stein and Hook 2005). Previous studies reported that the high oxygen 

and root exudates in wetlands provide satisfactory conditions for microbial processes (Jensen 

et al. 2007; Wu et al. 2011b). Our previous work demonstrated that the plant–media oxygen 

transfer significantly affects microbial abundance and activity during winter, thereby 

enhancing pollutant removal compared with the microcosms with removed plants (Wang et 

al. 2014). In the present study, we inferred that the presence of plants during winter could 

also increase microbial abundance and affect the microbial community through the resources 

derived from the roots to maintain stable removal efficiency. 

The removal efficiency in the unplanted units significantly decreased compared with 

that in the planted ones because of low microbial abundance, which corresponded with the 

effluent removal efficiency (Truu et al.2009). The proportion of Proteobacteria, 

particularly Rhodobacteraceae of alpha-Proteobacteria, in unplanted microcosms decreased 

in winter. Similarly, Cyanobacteria decreased during this period. Hence, the stable ecological 

relationship among photosynthetic bacteria, heterotrophic bacteria, and Cyanobacteria was 

destabilized by temperature reduction. Overall, the removal efficiency in unplanted wetland 

microcosms could not maintain the same level as that in planted wetland microcosms during 

the cold season. 

 

Conclusion 

For low-concentration domestic wastewater treatment, no obvious differences were 

determined between planted and unplanted wetland microcosms during summer. By contrast, 

the differences were great in winter, during which the removal efficiency of both wetland 

microcosms (PA and CT) decreased. The presence of plants positively affected both 

microbial abundance and community even in cold weather when the aboveground parts of the 

plants were dormant. The unplanted wetlands also exhibited their potential removal ability 



16 
 

during summer when the microcosms contained a large proportion of Proteobacteria and an 

appropriate amount of Cyanobacteria and photosynthetic bacteria. However, the removal 

ability of unplanted wetlands could be greatly affected by temperature reduction compared 

with that of the planted ones. 
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