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ABSTRACT. The use of various moving average (MA) rules remains popular with financial mar-

ket practitioners. These rules have recently become the focus of a number empirical studies, but

there have been very few studies of financial market models where some agents employ technical

trading rules of the type used in practice. In this paper we propose a dynamic financial market

model in which demand for traded assets has both a fundamentalist and a chartist component.

The chartist demand is governed by the difference between current price and a (long-run) MA.

Both types of traders are boundedly rational in the sense that, based on a fitness measure such as

realized capital gains, traders switch from a strategy withlow fitness to the one with high fitness.

We characterize the stability and bifurcation properties of the underlying deterministic model via

the reaction coefficient of the fundamentalists, the extrapolation rate of the chartists and the lag

length used for the MA. By increasing the intensity of choiceto switching strategies, we then

examine various rational routes to randomness for different MA rules. The price dynamics of

the moving average rule are also examined and one of our main findings is that an increase of the

window length of the MA rule can destabilize an otherwise stable system, leading to more com-

plicated, even chaotic behaviour. The analysis of the corresponding stochastic model is able to

explain various market price phenomena, including temporary bubbles, sudden market crashes,

price resistance and price switching between different levels.

JEL classifications: D83, D84, E21, E32, C60.

Keywords: Moving Averages, Fundamentalists, Trend Followers, Stability, Bifurcation, Evolu-

tionary Switching.
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1. INTRODUCTION

Technical analysts, also known as “chartists”, attempt to forecast future prices by the study

of patterns of past prices and a few other related summary statistics about security trading.

Basically, they believe that shifts in supply and demand can be detected in charts of market

movements. In an environment of efficient markets, technical trading rules should not be useful

for generating excess returns. However, despite all the evidence presented in academic journals

that security prices follow random walks, and consequentlythat these security markets are at

least weak-form efficient, as defined by Fama (1970), the use of technical trading rules still

seems to be widespread amongst financial market practitioners.

There have been various studies of the use and profitability of technical analysis. Taylor and

Allen (1992) document the enduring popularity of the trading rules in their survey of currency

traders in London. Of the respondents, 90% replied that technical trading rules are an important

component of short-term investment strategies. Allen and Taylor (1990) suggest that this is an

important finding given the apparent ability of exchange rates to move far from fundamentals

over protracted periods of time, as documented by Frankel and Froot (1986, 1990). Earlier

empirical literature on stock returns finds evidence that daily, weekly and monthly returns are

predictable from past returns. Pesaran and Timmermann (1994, 1995) present evidence on the

predictability of excess returns on common stocks for the S&P 500 and Dow Jones Industrial

portfolios, and examine the robustness of the evidence on the predictability of U.S. stock re-

turns. Brocket al(1992) investigate the sources of the predictability by applying the bootstrap

technique to two of the simplest and most popular trading rules, the moving average (MA) and

the trading range break rules. They find that returns obtained from buy (sell) signals are not

likely to be generated by four popular null models, the random walk, the AR(1), the GARCH-

M and the EGARCH models. They document that buy signals generate higher returns than sell

signals and the returns following buy signals are less volatile than returns following sell signals.

This asymmetric nature of the returns and the volatility of the Dow series over the periods of

buy and sell signals suggest the existence of nonlinearities in the data generating mechanism.

Recent studies, such as Loet al (2000), Boswijket al (2000) and Goldbaum (2003), have also

examined explicitly the profitability of technical tradingrules and the implications for mar-

ket efficiency. The profit generating potential of trading rules has also been scrutinised within
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the genetic programming framework by Neelyet al (1997) and by the use of artificial neural

networks by Gencay (1998) and Fernandez-Rodriguez et al (2000). Griffioen (2003) contains

extensive statistical testing of the profitability of technical trading rules, after correcting for

transaction costs and data snooping, of many stock market indices including the Dow Jones

index.

Most of the cited research has focused on empirical studies.There is also a rapidly expanding

related literature on heterogeneous agent models (HAMs) offinancial markets, see e.g. the

recent surveys by Hommes (2005) and LeBaron (2005) and many references therein. Many of

these HAMs have two groups of traders, fundamentalists versus technical analysts. However,

most of these models are either complex artificial market simulation models or stylized models

in which chartists use oversimplified technical trading rules. This paper develops a simple

behavioural HAM with a group of fundamentalists and a group of chartists using a (long-run)

MA rule similar to the rules used in financial practice. The technical analysts are assumed

to react to buy-sell signals generated by the difference between a long-run and a short-run

MA. Both types of traders are boundedly rational in the sense that, based on a fitness measure

given by realized capital gains, traders switch from strategies with low fitness to ones with high

fitness. The main objectives of this paper are to analyze the stability properties of the model,

particularly in relation to the MA trading strategies, and the potential for the model to generate

complex dynamics, and to examine the impact of the MA tradingrules on the market dynamics.

The plan of the paper is as follows. In the following section,we focus on one of the simplest

cases when the fundamentalist demand is determined by mean reversion to the fundamental

price, while the technical analyst demand is based on the difference between current price and

a MA. Based on certain fitness measures, such as observed differences in payoffs, the traders

can make an endogeneous selection of which trading strategies to use, as in Blumeet al(1994),

Brock and Hommes (1997, 1998), Brock and LeBaron (1996) and Brownand Jennings (1989).

Consequently, an adaptive heterogeneous asset pricing model with a market maker scenario

is developed. In Section 3, the existence, local stability and bifurcations of the fundamental

steady state, in terms of the reaction coefficient of the fundamentalists, the extrapolation rate of

the technical analysts, the lag lengths used for the MAs, andswitching intensity, are analyzed

when the lag lengths of the long MA are small. The analysis, combined with some results

on general window length for some special cases, gives us some important insights into the
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effect of increasing the length of the MA. In Section 4 rational routes to randomness, that is,

bifurcation routes to complicated asset price dynamics when the switching intensity increases,

induced by the MA rule are examined numerically. One of our main findings is thatan increase

of the window length of the MA rule can destabilize an otherwisestable system, leading to more

complicated, even chaotic behaviour. Section 5 introducesa stochastic fundamental price and

noise-trader demand processes, and examines the effect of these noise processes when the prices

of the corresponding deterministic system are switching between bull and bear markets. This

non-linear stochastic model illustrates a range of phenomena observed in real markets such as

temporary bubbles, sudden market crashes, price switchingbetween different levels and price

resistance. Section 6 concludes the paper.

2. AN ASSETPRICING MODEL WITH A MARKET MAKER

Following the framework of Brock and Hommes (1998), this section sets up an asset pricing

model with different types of heterogeneous traders who trade according to different trading

rules, such as fundamental analysis and technical analysis. The market price is arrived at via

a market maker scenario in line with Beja and Goldman (1980), Day and Huang (1990) and

Chiarella and He (2003b) rather than the Walrasian scenario used in Brock and Hommes (1998)

and Chiarella and He (2002). Whilst the market maker and Walrasian auctioneer mechanisms

are highly stylized accounts of how the market price is arrived at, the former may be closer to

what is going on in real markets. To focus on the price dynamics of the trading rules, we mo-

tivate the excess demand functions of different types of traders by their trading rules directly,

rather than deriving the demand functions from utility maximization of their portfolio invest-

ment with both risky and risk-free assets (as for example in Brock and Hommes (1998) and

Chiarella and He (2002, 2003b)).

Consider an asset pricing model with only one risky asset. LetPt be the price (cum dividend)

per share of the risky asset at timet. Let nh,t be the market fraction of typeh traders at time

t with h = 1, 2, · · · , H and
∑H

h=1 nh,t = 1. Let the excess demand for the risky asset of

representative trader from typeh at time t beDh
t . Then the population weighted aggregate

excess demand at timet is given byDt =
∑H

h=1 nh,tD
h
t . We assume that prices are set period by

period via a market maker mechanism and adjusted according to the aggregate excess demand
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Dt, i.e.

Pt+1 = Pt[1 + σǫǫt] + µDt = Pt[1 + σǫǫt] + µ

H
∑

h=1

nh,tD
h
t , (2.1)

whereǫt ∼ N (0, 1) captures a random excess demand process either driven by unexpected news

about fundamentals, or representing noise created bynoise traders, σǫ ≥ 0 is a constant and the

parameterµ > 0 measures the speed of price adjustment (or the aggregate risk tolerance) of the

market maker to the excess demand.

For simplicity, we assume throughout this paper that there are only two types of traders:

fundamentalists and technical analysts, who in fact are themost widespread types of traders in

financial markets and whose trading strategies and excess demand functions are specified in the

following discussion. Let the market fraction of fundamentalists and technical analysts at time

t be given by, respectively,nf,t andnc,t. The population weighted aggregate excess demandDt

at timet is then given byDt = nf,tD
f
t + nc,tD

c
t , whereDf

t andDc
t are the excess demands (to

be defined below) of the representative fundamentalist and technical analyst, respectively. Set

mt = nf,t − nc,t, so thatnf,t = (1 + mt)/2 andnc,t = (1 − mt)/2. Using (2.1), the market

price of the risky asset is then determined by

Pt+1 = Pt[1 + σǫǫt] +
µ

2
[(1 +mt)D

f
t + (1 −mt)D

c
t ]. (2.2)

Fundamentalists—The fundamentalists believe that the market price should be given by the

fundamental price that they have estimated based on varioustypes of fundamental information,

such as earnings, exports, general economic forecasts and so forth. They buy/sell the stock

when the current price is below/above the fundamental price. For simplicity, we first assume

that1 the fundamental price is a positive constantP ∗ and the average excess demand of the

fundamentalists is given byDf
t = α(P ∗ − Pt), where the parameterα > 0 is a combined

measure of the aggregate risk tolerance of the fundamentalists and their reaction to themis-

pricing.

Technical Analysts—Unlike the fundamentalists, the technical analysts tradebased on chart-

ing signals generated from the costless information contained in the history of the price, such

1A constant fundamental price is assumed for our stability and bifurcation analysis of the deterministic model,
while a random walk fundamental price will be introduced in Section 5 for the stochastic version of the model.
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as MAs and various other technical trading rules used in financial markets. The technical ana-

lyst average excess demand is here assumed to be based on signals generated by MAs2. More

precisely, a MA of lengthL at timet is defined asmaLt = (1/L)
∑L−1

i=0 Pt−i whereL ≥ 1 is a

positive integer. A trading signal is defined as the difference between the current price3 and a

MA maLt , namely,ψLt = Pt −maLt . For the technical analysts, their average excess demands

are assumed to be governed byDc
t = h(ψLt ), where the functionh has the general properties

h(0) = 0, h′(x) > 0, xh′′(x) < 0. This corresponds to one of the very popular technical trad-

ing rules whereby technical analysts wish to be long (short)when the current price is above

(below) the MA. In this paper, we selecth(x) = tanh(ax) and assumea = h′(0) > 0. Note

that this form of technical analyst excess demand function has been used in the literature (e.g.

Chiarella(1992)) and it allows us to capture some elements ofthe filtered MA rules. This is so

since, whena is small, the technical analysts initially react cautiously to the long/short signals,

in a sense waiting to confirm the maintenance of the change in sign of the signal. In this way

they minimize the costs incurred if the signal changes frequently in a short time period. Also,

the fact that−1 < h(x) < 1 captures the limited long/short positions, risk averting behaviour

and traders’ budget constraints.

Fitness Measure and Population Evolution—In order to introduce the adaptive behaviour of

agents, we follow the mechanism of Brock and Hommes (1998) anddefine the fitness functions

πf,t, πc,t as their realized net profit:

πf,t = Df
t−1(Pt − Pt−1) − Cf , πc,t = Dc

t−1(Pt − Pt−1) − Cc, (2.3)

whereCf , Cc ≥ 0 are the costs of their strategies. When the number of agents ineach group

tends to infinity, the population fractions are then updatedby the well known logit model prob-

abilities (e.g. Manski and McFadden (1981))

nf,t =
eβUf,t

eβUf,t + eβUc,t
, nc,t =

eβUc,t

eβUf,t + eβUc,t
, (2.4)

where

Uf,t = πf,t + ηUf,t−1, Uc,t = πc,t + ηUc,t−1, (2.5)

2There is a large practitioner literature on the way MA rules are used to generate buy/sell signals. See for instance
Pring (1991) and Neely (1997).
3More generally, the current price can be replaced by a short-run MA maS

t . For mathematical tractability, we
consider the caseS = 1 only in this paper and leave the study of the general caseS > 1 to future work.
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andη ∈ [0, 1] measures the memory of the cumulated fitness function andβ ≥ 0 is the intensity

of choice measuring how quickly agents switch between the two strategies. In particular, if

β = 0, there is no switching between strategies, while forβ = ∞ all agents immediately switch

to the best strategy. See Brock and Hommes (1998) for a more extensive discussion of this

switching mechanism.

A Complete Asset Pricing Model—Based on (2.2) and the above analysis, the market price

of the risky asset is determined according to

Pt+1 = Pt[1 + σǫǫt] +
µ

2

[

(1 +mt)α(P ∗ − Pt) + (1 −mt)h(Pt −maLt )
]

(2.6)

and, from (2.3)-(2.4), the difference of population fractionsmt evolves according to

mt = tanh
[β

2
(Ut − C)

]

, C = Cf − Cc ≥ 0, (2.7)

whereµ ≥ 0 measures the speed of price adjustment of the market maker based on the excess

demand, and

Ut = [Df
t−1 −Dc

t−1][Pt − Pt−1] + ηUt−1, (2.8)

with the first term representing the difference in the realized capital gains of the two strategies.

Note that we have setC = Cf−Cc which will be positive if we assume that the fundamentalists

incur greater costs than the chartists. By settingσǫ = 0, the nonlinear stochastic dynamical

system (2.6)-(2.8) becomes a nonlinear deterministic system where the price follows

Pt+1 = Pt +
µ

2

[

(1 +mt)α(P ∗ − Pt) + (1 −mt)h(Pt −maLt )

]

. (2.9)

In general system (2.7)-(2.9) is anL + 2 dimensional non-linear difference system. We seek

principally to understand how its dynamic behaviour is affected by the reaction coefficientα

of the fundamentalists, the excess demand functionh of the technical analysts, the switching

intensityβ, and in particular, the lag lengthL used for the MA rule.

3. STABILITY AND BIFURCATION ANALYSIS

In this section, we consider the local stability and local bifurcations of the deterministic

system (2.7)-(2.9). The main results are summarized in Proposition 3.1.
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Proposition 3.1. For the deterministic system (2.7)-(2.9), assumeη ∈ [0, 1). Denotem∗ :=

tanh(−βC/2), n∗
f := (1 +m∗)/2, n∗

c := (1 −m∗)/2 andᾱ := αµn∗
f , ā := aµn∗

c .

(i) There exists a unique steady state(Pt,mt, Ut) = (P ∗,m∗, 0), whereP ∗ is the constant

fundamental price.

(ii) If ᾱ = 1 + ā, then the steady state priceP ∗ is locally asymptotically stable (LAS) for

0 < ā < L. At ā = L, there occurs a1 : L+ 1 resonance Hopf bifurcation4.

(iii) A necessary condition for the steady state price to be LAS is given by0 < ā < L and

0 < ᾱ < 2 + ā for evenL and0 < ᾱ < 2 + L−1
L
ā for oddL (see Fig. 3.1).

(iv) For all L, P ∗ is LAS if(ᾱ, ā) ∈ DS(ᾱ, ā) := {(ᾱ, ā); 2ā < ᾱ < 2} (see Fig. 3.1).

(v) For sufficiently largeL, P ∗ is unstable if̄a > ᾱ (see Fig. 3.1)5.

(vi) For L = 1, P ∗ is LAS for(ᾱ, ā) ∈ D11(ᾱ, ā) := {(ᾱ, ā); 0 < ᾱ < 2, 0 < ā}. In

addition, flip and saddle-node bifurcations occur whenᾱ = 2 and ᾱ = 0, respectively

(see Fig. 3.2a).

(vii) For L = 2, P ∗ is LAS for(ᾱ, ā) ∈ D12(ᾱ, ā) := {(ᾱ, ā); 0 < ᾱ < ā + 2, 0 < ā < 2}.

Furthermore, a saddle-node bifurcation occurs whenᾱ = 0, a Hopf bifurcation occurs

whenā = 2, and a flip bifurcation occurs when̄α = ā+ 2 (see Fig. 3.2b).

(viii) For L = 3, P ∗ is LAS for(ᾱ, ā) ∈ D13(ᾱ, ā) := {(ᾱ, ā); 0 < ᾱ < 2
3
ā+2, ā(2−ᾱ+ā) <

3}. Furthermore, a saddle-node bifurcation occurs whenᾱ = 0, a Hopf bifurcation

occurs when̄a(2− ᾱ+ ā) = 3, and a flip bifurcation occurs when̄α = 2
3
ā+ 2 (see Fig.

3.2c).

(ix) For L = 4, P ∗ is LAS for(ᾱ, ā) ∈ D14(ᾱ, ā) := {(ᾱ, ā); 0 < ᾱ < 3
4
ā + 2, 0 < ā <

4, (5ā− 4ᾱ)(4 + ā)2 < ā(8 + 3ā− 4ᾱ)2} (see Fig. 3.2d).

4Resonance bifurcations occur when the complex eigenvalueslie on the unit circle. When̄a = L, the eigenvalues
are given byλk = e2kνπi with k = 1, 2, · · · , L andν = 1/(L + 1). Geometrically, theL eigenvalues correspond
to theL + 1 unit roots distributed evenly on the unit circle, excludingλ = 1. WhenL = 1, a flip or period-
doubling bifurcation occurs. WhenL = 2, the bifurcation is known as a 1:3 strong resonance, which may lead
to two sets of period three cycles with one set stable and other set unstable (e.g. Chiarella and He (2000)). For
L ≥ 2, the bifurcation is accompanied by1 : L + 1 periodic resonances (e.g. Sonis (2000)). ForL1 = L2 =
L = 3, 4, instability of the steady state leads to 1:4 and 1:5 periodic resonance bifurcations, respectively, and
similar dynamics to the 1:3 resonance bifurcation are also found. Theoretical analysis of such types of bifurcation
of higher dimensional discrete systems can be exceedingly complicated and is not yet completely understood, (e.g.
Example 15.34 in Hale and Kocak (pp. 481-482, (1991))). See Kuznetsov (2004) for an extensive mathematical
treatment of bifurcation theory.
5We would like to thank Florian Wagener for providing a proof of this result.
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A proof of Proposition 3.1 is given in the appendix. Here we discuss some underlying eco-

nomic intuition using Figures 3.1 and 3.2 illustrating the (in)stability regions and the bifurca-

tion curves. Result (i) of Proposition 3.1 assures that the fundamental price is the unique steady

state price and the population fractions of the fundamentalists and chartists at the steady-state

are given byn∗
f andn∗

c , respectively. Obviously,n∗
f = n∗

c = 0.5 whenC = 0. However, if

C > 0, that is costs for fundamentalists’ strategies exceed the costs for technical trading rules,

then there are more chartists than fundamentalists at the steady state, i.e.,n∗
c ≥ n∗

f .

Both parameters̄α = αµn∗
f andā = aµn∗

c play an important role in determining the stabil-

ity/instability of the fundamental price. The market maker’s price adjustment speedµ shows

up as a scaling factor in(ᾱ, ā). Given this scaling factor,̄α andā are determined by thepop-

ulation weighted(at the steady state)reaction coefficientsof the fundamentalists and chartists,

respectively. Intuitively we would expect the fundamentalists to represent a stabilizing force

and the activities of the chartists to destabilize an otherwise stable market price. The results

of Proposition 3.1 describe how the (local) stability of themarket depends on the balance of

these forces (captured bȳα andā) and the lag length of the MA, as we explain in the following

discussion.

Result (ii) of Proposition 3.1 relates to the stability of thefundamental price along the line

ᾱ = 1 + ā, for generalL, as illustrated in Fig. 3.1. This line plays an important role in the

stability analysis of the model. Along this line, the stability region is proportionally enlarged

as the lag length of the MA process (L) increases. For fixed lagL, the stability line segment

ᾱ = 1 + ā for 0 < ā < L is part of the stability region in the(ᾱ, ā) parameter plane. To see the

economic intuition behind this result, let us examine the price behaviour near the fundamental

price. The linearization of (2.6) reduces toPt+1 = Pt+ᾱ(P ∗−Pt)+ā(Pt−mat), or equivalently,

in deviationsXt := Pt − P ∗ from the fundamental price

Xt+1 = [1 + ā− ᾱ]Xt −
ā

L

L−1
∑

i=0

Xt−i. (3.1)

Along the line1+ā = ᾱ, the stabilizing force from the fundamentalists (ᾱ) and the destabilizing

force from the chartists (1 + ā) just balance each other. Accordingly, along this line, equation

(3.1) becomesXt+1 = −(ā/L)
∑L−1

i=0 Xt−i and stability of the fundamental price is determined

exclusively by the MA process. In this case, the stability region of parameter̄a is enlarged as



A DYNAMIC ANALYSIS OF MOVING AVERAGE RULES 11

the lag for the MA increases. More precisely, local stability is achieved when̄a/L < 1 (see

Chiarella and He (2000) for the mathematical proof of this result).

Based on the above analysis, we may conjecture that the stability region is enlarged as the

lag lengthL increases. However this conjuncture is not true in general and this becomes clear

from the results forL = 1, 2, 3 and 4. Certainly, a longer MA does reduce the impact of

a single period event on chartists’ beliefs (and so stabilizes the price process), however the

contained price information becomes less significant as thelag length increases. Hence, when

both the stable and unstable forces are balanced, as we have just discussed, the stability of

the market price is maintained. However, when such forces become unbalanced, particularly

with large ā, sudden shifts in demand can trigger an unstable fundamental price, leading to

price overshooting, as the lag length increases. This observation is basically the underlying

mechanism involved in the change of the local stability region as the lag length of the MA

increases.6

ᾱ

ā

ᾱ = 2 + āā = L
ᾱ = 2 + ā(L− 1)/L

1

1 2

ᾱ = 1 + ā

ᾱ = ā

DS

FIGURE 3.1. The common stability regionDS for general lag lengthL and
necessary stability boundariesā = L, ᾱ = 2 + ā for even lagL and ᾱ =
2 + ā(L − 1)/L for odd lagL. On the horizontal (vertical) axis we have the
population weighted reaction coefficient of the fundamentalists (chartists) at the
steady state, i.e.̄α := αµn∗

f , ā := aµn∗
c .

Given the mathematical difficulty in determining the local stability conditions for general

lag lengthL in the ᾱ and ā parameter space, it is useful to have some information aboutthe

potential unstable regions and common stable regions for all lags. Result (iii) in Proposition

3.1 give us necessary conditions for stability. In other word, the fundamental price is unstable

outside the regions that are bounded on the right by the two dotted lines and above bȳa = L in

Fig. 3.1. Result (iv) give us sufficient conditions for the stability in terms ofā andᾱ for general

6The authors would like to thank an anonymous referee to bringing this point to our attention.
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lag lengthL, and the common stability regionDS is illustrated in Fig. 3.1. It indicates that,

for all lag lengthL, the fundamental price is stable when the population weighted coefficients

of fundamentalists and chartists are balanced and bounded (i.e. 2ā < ᾱ < 2). On the other

hand, when the coefficient of the chartists exceeds that of the fundamentalists, result (v) shows

that increasing the lag lengthL in the end destabilizes the system and this is a more interesting

result. The intuition for this instability result is the following. Chartist demand depends on the

difference between the long-run MA and the current price. AsL increases, the MA becomes

smoother and more sluggish. Whenā > ᾱ, the relative effect of chartists at the steady state

is bigger than that of fundamentalists, a small change in theprice leads to a relatively large

increase of chartists demand destabilizing the price.

ForL = 1, 2, 3, 4, Proposition 3.1 describes explicitly the regions of LAS inthe(ᾱ, ā) plane

and the bifurcation behaviour at the boundaries of those regions where local asymptotic stability

turns to instability. These regions are illustrated in Fig.3.2.

ForL = 1, the technical analysts have no impact on the market price. We go back to the set

up of the model and letmt = 1. Consequently, the price equation is simplified toPt+1 − P ∗ =

[1 − αµ](Pt − P ∗). Hence the stability condition is given by0 < ᾱ < 2, whereᾱ = µα is

the product of the speed of the price adjustment of the fundamentalists towards the fundamental

price (α) and the speed of price adjustment of the market maker (µ). Thus the stability of the

steady state priceP ∗ is maintained only when the under(over)-reaction from the fundamentalists

is balanced by the over (under)-reaction from the market maker. The over-reaction from both

may lead to price overshooting, through a flip bifurcation whenᾱ = 2.

ForL = 2, the stability regionD12 and bifurcation boundaries are plotted in Fig. 3.2(b) in

the(ᾱ, ā) parameter plane. The Hopf bifurcation boundary is defined byā = 2 andᾱ ∈ (0, 4).

For L = 3, the stability regionD13 and the bifurcation boundaries are plotted in Fig. 3.2(c).

Different from the previous two cases, the Hopf bifurcationnow depends on both parametersᾱ

andā. ForL = 4, the stability regionD14 is plotted in Fig. 3.2(d).

For comparison all stability regionsD1L for L = 1, 2, 3 and 4 are plotted in Fig. 3.2(e). The

changes of the local stability regions asL increases are in line with our previous discussion

concerning the stability near the line1 + ā = ᾱ. AsL increases, sudden shifts in demand can

trigger an unstable price when the reaction speeds are unbalanced.
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FIGURE 3.2. Stability regions and bifurcation boundaries for (a)L = 1, (b)L =
2, (c) L = 3, (d) L = 4 and (e) comparison of stability regions and bifurcation
boundariesD1L for L = 1, 2, 3, 4. On the horizontal (vertical) axis we have the
population weighted reaction coefficient of the fundamentalists (chartists) at the
steady state, i.e.̄α := αµn∗

f , ā := aµn∗
c .

Given the large variety of MA rules used in financial markets and the difficulty of eigenvalue

analysis for high-order characteristic equations, it is not clear how different MA rules influence

the stability of the steady state price and types of bifurcation that may occur. However the

analysis has given some important insights into the fact that local asymptotic stability depends

on some subtle balance between the reaction coefficients of fundamentalists and technical ana-

lysts. Based on our analysis, we conjecture thatas the lag lengthL increases, the stability region
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tends to shrink towards, but stretch along, the lineᾱ = 1 + ā with common stability regionDS.

This conjecture is partly verified by the numerical simulations in the following section.

Our stability analysis also yields insight as to how the other parameters, the price adjustment

factorµ, the intensity of choiceβ, the cost differenceC between fundamental and technical

trading strategies and the lag lengthL affect the local stability of the fundamental steady state.

Increasing the price adjustment factorµ moves the point(ᾱ, ā) in Figs. 3.1 and 3.2 in the

North-East direction leading either to a flip bifurcation (when the population weighted reaction

coefficients of the fundamentalists is relatively large) orto a Hopf-bifurcation (when the popu-

lation weighted reaction coefficient of the chartists is relatively large). WhenC > 0, an increase

in β leads to an increase inn∗
c , the fraction using the cheap technical trading strategy. Hence,

for C > 0, an increase inβ movesā upwards and̄α downwards, so that the point(ᾱ, ā) in

Figs. 3.1 and 3.2 moves in the North-West direction and the fundamental steady state may lose

stability through a Hopf bifurcation. When there is no cost difference between fundamental and

chartist strategies, an increase inβ does not changēa andᾱ, so there is no change in the local

stability of the steady state. Furthermore increasingC is similar to increasingβ. Finally, the

fact that the stability regions become more narrow for higher lagsL suggests that an increase in

L may destabilize the system, especially whenā > ᾱ, i.e. the relative impact of chartists at the

steady state is larger than that of the fundamentalists. Theglobal dynamics, for different values

of the intensity of choice and the lag lengthL, will be investigated in section 4.

4. DYNAMICS OF THE NONLINEAR SYSTEM

In this section, we examine the global dynamics of the nonlinear system (2.7)-(2.9) by focus-

ing on the effects of the switching intensity (Subsection 4.1) and of the lag length of the MA

(Subsection 4.2).

4.1. The Effect of The Switching Intensity—Rational Routes to Randomness.Brock and

Hommes (1997, 1998) have proposed simpleAdaptive Belief Systemto model economic and

financial markets, where agents adapt their beliefs over time by choosing from different pre-

dictors or expectations functions, based upon their past performance as measured by realized

profits. Brock and Hommes (1998) show that, as the intensity ofchoice to switch to better

strategies increases, the model is able to generate the entire “zoo” of complex behaviour from

local stability to high order cycles and even chaos and this is the so-calledRational Routes to
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Randomness (RRR for short). In this section, we consider the effect of the switching inten-

sity on the price dynamics of the deterministic system (2.7)-(2.9) with two different MAs using

L = 4 andL = 100. We choose the parameter setα = 1, µ = 2, η = 0.2, a = 1, C = 1.

Note that forβ = 0, we haveᾱ = αµn∗
f = 1 and ā = aµn∗

c = 1, so that forL = 4 and

β = 0, according to Proposition 3.1 (ix) the fundamental priceP ∗ is locally stable. On the

other hand, sinceC > 0, for β = ∞, we haveᾱ = αµn∗
f = 0 andā = aµn∗

c = 2, so that for

L = 4 andβ = ∞, according to Proposition 3.1 (ix) the fundamental steady state is unstable.

As the switching intensityβ increases we therefore expect that the fundamental steady state

becomes unstable by a Hopf bifurcation. This is indeed confirmed by numerical simulations

as illustrated by the phase plots(Pt,mt), for different values ofβ = 0.2, 0.3, 0.49, 0.52, 0.555

and0.57 in Fig. 4.1. It is found that, once the fundamental priceP ∗ becomes unstable, the

solutions converge tofigure-eight shapedattractors for low switching intensity (e.g. the cases

of β = 0.2 and 0.3). Recall that forL = 4 we have a 6-dimensional system, and the figure-

eight shaped attractors are in fact 2-dimensional projections of an invariant circle around the

unstable fundamental steady state in the 6-dimensional phase space. As the switching intensity

increases, the figure-eight shaped attractor grows initially (for β = 0.3, 0.35) and then stretches

to a scissors-shapedattractor (forβ = 0.49). As the intensity increases further, the simple

attractor becomes more complicated (forβ = 0.52) and eventually leads to strange attractors

(for β = 0.555 and 0.57). One can see that the market price variation increases as the switching

intensity increases. It is interesting to note that these patterns are similar to the rational routes

to randomness studied extensively in Brock and Hommes (1997,1998).

Insert Figure 4.1 Here

FIGURE 4.1. Phase plots of(mt, Pt) for L = 4 and variousβ =
0.2, 0.3, 0.49, 0.52, 0.555 and0.57.

ForL = 100, β = 0, we haveᾱ = αµn∗
f = 1 andā = aµn∗

c = 1 and we conjectured earlier

that this point lies outside the stability region forL large and this is confirmed by numerical

simulations forL = 100. To illustrate the effect of the switching intensityβ, we include phase

plots, in terms of(Pt,mt), for different values ofβ = 0.05, 0.1, 0.2, 0.3, 0.35, 0.42, 0.45 and
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0.4652 in Fig. 4.2. Asβ increases, the (projection of the) attractor starts with narrow figure-

eight shapes(for β = 0.05 and0.1) and is then stretched (or extrapolated) by the technical

analysts towards the extreme high/low price levels (forβ = 0.2). The attractors are then broken

down to Lorenz-like attractors, similar to those of the celebrated 3-dimensional continuous

Lorenz system, see Peitgenet al(1992)) forβ between0.3 and0.35. As the switching intensity

increases further, theLorenz-likeattractors merge into one connected strange attractor (forβ =

0.42) and then to strange attractors (forβ = 0.45 and 0.4652). Also, as the switching intensity

increases, the volatility of both price and population increases.

Insert Figure 4.2 here

FIGURE 4.2. Phase plots of(mt, Pt) for L = 100 and variousβ =
0.05, 0.1, 0.2, 0.3, 0.35, 0.42, 0.45 and0.4652.
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FIGURE 4.3. Price time series forL = 100 andβ = 0.1 (a), 0.3 (b), 0.35 (c),
0.42 (d) and 0.46 (e).

The corresponding price time series are illustrated forβ = 0.1, 0.3, 0.35, 0.42 and0.46 in

Fig. 4.3. One can see that an increase of the switching intensity can generate very interesting

price patterns. With a lower switching intensity (β = 0.1), the fundamental price is unstable

and extrapolation of the price trend by the technical analysts pushes the price away from the

fundamental price. Because of their limited long/short position, their fitness or utility becomes
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smaller when they reach their limit position. This leads traders to switch back to the funda-

mental strategy, bringing price back towards the fundamental price. Because of the increase of

the fitness of the technical analysts, the price is pushed further beyond the fundamental price to

the opposite extreme. As the switching intensity increases(for β = 0.3, 0.35), such switching

from high/low extreme to low/high extreme happens very quickly. At the same time, the price

becomes more volatile. This result can be used to explain regular boom and bear markets. As

the intensity increases further, the regular switching pattern of the price between two extreme

levels is destroyed, leading to highly volatile price patterns (forβ = 0.46). This phenomenon

of the price switching between upper and lower levels gives some economic basis to the notion

of upper and lower resistance levels that are frequently discussed in the practitioner literature

on technical analysis (see e.g. Pring (1991)).

4.2. The Effect of the Lag Length—Dynamics of The Moving Average.We now consider

the effect of the lag lengthL of the MA rule on the price dynamics of the deterministic system

(2.7)-(2.9). As an illustrative example, we choose the parametersα = 1, µ = 2, β = 0.4, η =

0.2, a = 1, C = 0, for which ᾱ = 1 and ā = 1. The fundamental price is locally stable for

L = 2, 3, 4, but it is unstable forL ≥ 5. Fig. 4.4 illustrates how the phase plot (in terms of

(Pt,mt)) changes as the lag lengthL increases.

Insert Figure 4.4 here

FIGURE 4.4. Phase plots of(mt, Pt) for fixed β = 0.4 and variousL =
5, 8, 9, 10, 50, 90 and100.

ForL = 5, the (2-D projection of the) attractor is given by afigure-eight shapedclosed curve

with small price variation (about 1% of the fundamental price level) and there is a tendency

among traders to switch from fundamental analysis to technical analysis. ForL = 8, the size

of the attractor is enlarged, implying that the deviations of both price and population from the

fundamental value, which isP ∗ = 100 andn∗
c = n∗

f = 0.5, are enlarged. Hence an increase

in the MA windowL destabilizes the price dynamics. This destabilizing effect becomes more

significant whenL is increased further toL = 9, 10, 50 and the price dynamics become even

more complicated forL = 90 and 100, as indicated by the phase plots in Fig. 4.4.

In order to get more insight into these destabilizing effects of the long-run MA, let us examine

the time series of prices and corresponding MAs in Fig. 4.5. It is found that, following a cross
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FIGURE 4.5. Price time series for fixedβ = 0.4 and variousL = 5, 10, 50 and200.

over of the long run MA and the market price, both the technical analysts and fundamentalists

take the same long/short position initially, but soon afterthey take opposite positions. This helps

to accentuate either the up or the down trend, pushing the price to either a higher or a lower level

initially, but soon after, their different positions slow down the trend built up initially and bring

the price back towards its fundamental level. The time takenfor the price to return back to

its fundamental value is proportional to the lagL. When the lagL for the MA is small, the

reversion back to the fundamental happens quickly; asL increases, this reversion takes a longer

time.

The destabilizing effect of the lag lengthL holds in general for the parameters located within

regions in which the fundamental price is locally stable forlower lags and unstable for higher

lags, as discussed in the above. However, this may not alwaysbe the case. As a matter of

fact, when the reaction coefficients from both types of traders are carefully balanced (such that

ᾱ = 1+ ā), an increase of the lag length can stabilize an otherwise unstable system, as indicated

in Proposition 3.17.

7Numerical simulations (not reported here) indicate that, in this case, an increase inL can cause an explosive
system to become a (locally) stable system.
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5. TIME SERIESANALYSIS OF THE STOCHASTIC MODEL

The nonlinear dynamic model considered in the previous sections can be treated as the de-

terministic skeleton of the corresponding stochastic model. The prices observed in real markets

are presumably the outcome of the interaction of both non-linear and stochastic elements. Rig-

orous analytical tools for the analysis of non-linear stochastic dynamical system are still in a

development phase (see e.g. Arnold ((1998)) for an up-to-date account). The analytical results

that exist deal mainly with affine systems so it seems difficult at the moment to apply these tools

to our nonlinear model. In this section we attempt to gain some insights into the behaviour of

the nonlinear stochastic model through numerical simulations.

Recall from Section 2, Eq. (2.1) that we already introduced a noise termǫt representing

noise created by noise traders. In addition to noisy demand,we also introduce a random walk

fundamental price process. We assume that the fundamental price follows a random walk

P ∗
t+1 = P ∗

t [1 + σδ δt], (5.1)

whereσδ ≥ 0 is a constant measuring the volatility of the return andδt ∼ N (0, 1). Notice that

this specification ensures that relative price changes are stationary.

To illustrate a typical example, we select the parametersα = 0.5, β = 0.3, a = 1, µ = 1, η =

0.2, C = 1, L = 100, P ∗
0 = P0 = $100. To see the effect of the two noise processes on the

price dynamics of the deterministic model, we compare four different cases in terms of(σǫ, σδ):

(a) (0, 0), (b)(σǫ, 0), (c) (0, σδ) and (d)(σǫ, σδ) with σǫ = 0.5% andσδ = σ/K, σ = 5%

per annum andK = 250 (corresponding to 250 trading days per year). The comparison is

conducted over the first 500 time steps (a trading period of about 2 years). In all three noise

cases, Fig. 5.1 (panel A) compares the market pricePt, together with the fundamental price and

the long-run MA, Fig. 5.1 (panel B) compares the difference ofthe market population fractions

mt = nf,t − nc,t, and Fig. 5.1 (panel C) compares the demand functions of the fundamentalists

and the technical analysts.

Case (a) reduces to the corresponding deterministic case. Inthis case, the constant funda-

mental priceP ∗ = 100 is unstable and the market pricePt displays periodic switching between

bull and bear markets, as illustrated in Fig. 5.1 (A)-(a). From Fig.5.1(C)-(a), one can see that

the fundamentalists and the technical analysts take opposite (long/short) positions in most of
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FIGURE 5.1. Time series of the prices (A), population fraction differences
(B), and demand functions (C) for fixedL = 100 with (σδ, σǫ) = (0, 0) in (a);
(0, 0.5%) in (b); (5%p.a., 0) in (c) and(5%p.a., 0.5%) in (d). Hereα = 0.5, β =
0.3, µ = 1, η = 0.2, a = 1, C = 1.

the time period. Because of limits on the position the technical analysts can take8 and the sta-

bilizing role of the fundamentalists, such off-setting positions cause the price to stay bounded.

8This may be due to their short selling constraint when they hold a short position and consumption needs when
they hold a long position.
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However the market switches when both of them have the same position and such a transition

happens very quickly. In addition, the market is dominated by the technical analysts most of

the time, as indicated by the fact that the trend of the marketprice in Fig. 5.1 (A)-(a) follows

closely the demand pattern of the technical analysts in Fig.5.1 (C)-(a) and that traders tend to

switch from the steady state level to technical analysis as indicated by Fig. 5.1 (B)-(a).

Case (b) examines the effect of the noisy demand on the price dynamics. Because of this

noisy demand, the market price becomes more volatile. However, the market price (in Fig.5.1

(A)-(b)) and the demand functions (in Fig. 5.1 (C)-(b)) are still dominated by the underlying

price dynamics of the deterministic case (a), although the switching between two types of trad-

ing strategies is intensified (see Fig. 5.1 (B)-(b)), spreading betweenm = −60% andm = 60%.

Case (c) examines the effect of the noisy fundamental price onthe price dynamics. One can

see from Fig. 5.1 (A)-(c) that the market pricePt closely follows the fundamental priceP ∗
t ,

though the variation of the market price increases (becauseof the strong extrapolation of the

technical analysts). Fig. 5.1 (B)-(c) shows that traders tend to switch to fundamentalist analysis

from time to time. However, a comparison of the market price trend in Fig. 5.1 (A)-(c) and the

demand function pattern in Fig. 5.1 (C)-(c) shows that the market price is above (below) the

fundamental price when the technical analysts take long (short) position. This means the market

price is still dominated by the technical analysts althoughit follows closely the fundamental

price.

Case (d) examines the combined effect of the two noise processes on the price dynamics.

Apart from the fact that the market price becomes more volatile (because of the noisy demand),

it shares similar features as in the cases (b) and (c). That is, the market price follows the

fundamental price and the market is dominated by technical analysts.

Based on the analysis above, we observe some interesting phenomena. (i) Adding noisy

demand can increase price volatility, but it has less impacton the price pattern and the market

conditions of the underlying price dynamics. (ii) When the fundamental price follows a stochas-

tic process, the market price closely follows the fundamental price. (iii) The market is mainly

dominated by technical analysts (when they extrapolate strongly). They may be the winners

over short time periods (indicated by the traders switchingto technical analysis), however over

the whole time period they may be the losers in the sense that most of the time they buy when

the market prices are high and sell when the market prices arelow. (iv) The switching between
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bull and bear markets happens when both types of traders takethe same position, a very in-

tuitive result. Such transitions can be intensified with thehelp of the noise traders, leading to

temporary market bubbles and sudden crashes.

6. CONCLUSIONS

Within the framework of the Brock and Hommes (1998) asset pricing model with heteroge-

neous beliefs, price fluctuations are driven by evolutionary switching between different expec-

tation schemes. Various rational routes to randomness, i.e. bifurcation routes to complicated

dynamics, are observed when the intensity of choice to switch prediction strategies is high. In

their framework however, the technical trading rules are very simple and for analytical tractabil-

ity only a few lags are involved. Motivated by the popularityof MAs strategies in real markets

and empirical studies, this paper sets out to analyze the impact of long run MA rules on the

market dynamics and potentially rational routes to randomness. In our model of fundamental-

ists and technical analysts, who trade on the signals generated by the crossing of the latest price

over the long run MA, we are able to obtain some important qualitative insights into the impact

of MA rules. Intuitively one might expect that a long run MA smoothes the price dynamics

and hence an increase of the lag length of the MA might be expected to stabilize the market.

Surprisingly, our results show that, within a market maker scenario, this intuition is only true

when both the reaction coefficientα of the fundamentalists and the extrapolation ratea of the

trend followers are balanced in a certain way. In general, asthe lag lengthL increases, the MA

becomes smoother and more sluggish. When the impact between fundamentalists and chartists

is not balanced, especially when the relative impact of chartists at the steady state is larger than

that of fundamentalists, a mall change in the price leads to arelatively large increase of chartists

demand and consequently, the lag length of the MA rule can destabilize the market price. To the

best of our knowledge, this is a new result concerning marketdynamics in the presence of MA

rules. Another contribution of this paper is that for realistic MA rules with a large lag length

L, similar rational routes to randomness occur when the intensity of choice to switch strategies

increases. Finally, time series analysis of a stochastic version of our model shows the potential

to explain various market phenomena such as price volatility, bull and bear markets, temporary

bubbles and sudden crashes. In subsequent research it will be useful to study a more realistic

model of the market with a large number of different trading rules, in particular with agents
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using different MA strategies of various length, or other types of technical trading rules used in

financial practice, such as genetic algorithms and neural networks.

APPENDIX—PROOF OFPROPOSITION3.1

A1. Existence and Uniqueness of the Steady-State—Proof of Part (i). The deterministic system (2.7)-(2.9) can be written as follows:

Pt+1 = F (Xt), Ut+1 = H(Xt), mt+1 = G(Xt). (A.1)

whereXt = (Pt, Pt−1, · · · , Pt−(L−1), Ut,mt) and

F (Xt) = Pt +
β

2
[−(1 −mt)α(Pt − P ∗) + (1 −mt)h(ψ

L
t )], (A.2)

H(Xt) = [−α(Pt − P ∗] − h(ψL
t )][F (Xt) − Pt] + ηUt, (A.3)

G(Xt) = tanh[β(H(Xt) − C)/2]. (A.4)

One can easily see that, forη ∈ [0, 1), (Pt, Ut,mt) = (P ∗, 0,m∗) is the unique steady state of the system (A.1), whereP ∗ corresponds to

the constant fundamental price andm∗ = tanh(−βC/2).

A2. Characteristic Equation of the Steady-State.The characteristic equation of the system (A.1) at the steady state is given byΓ(λ) :=

λ(λ− η)ΓL(λ) = 0 where

ΓL(λ) := λL − (1 − ᾱ)λL−1 − ā(1 −
1

L
)λL−1 +

ā

L
(λL−2 + · · · + λ+ 1) = 0. (A.5)

In fact, evaluated at the unique steady state, one can see that

∂F

∂Pt

= 1 +
µ

2
[−(1 +m∗)α+ (1 −m∗)a(1 −

1

L
)],

∂F

∂Pt−1
=

∂F

∂Pt−2
= · · · =

∂F

∂Pt−(L−1)

=
µ

2
(1 −m∗)a(−

1

L
),

∂F

∂Ut

=
∂F

∂mt

= 0,
∂H

∂Pt

=
∂H

∂Pt−1
= · · · =

∂H

∂Pt−(L−1)

= 0,

∂H

∂Ut

= η,
∂H

∂mt

= 0,
∂G

∂Pt

=
∂G

∂Pt−1
= · · · =

∂G

∂Pt−(L−1)

= 0,
∂G

∂Ut

= ηβ/2,
∂G

∂mt

= 0.

Based on these calculations, the result follows.

A3. Proof of Parts (ii) and (iii). The proofs of (ii) and (iii) follow from the following Lemma.

Lemma.(i) If ᾱ = 1 + ā, then the eigenvaluesλi of ΓL satisfy|λi| < 1 if and only if 0 < ā < L. In addition, forā = L, theλi satisfy

λi 6= 1 and(1 − λL
i )/(1 − λi) = 0. (ii) A necessary condition for|λi| < 1 for all i is 0 < ā < L and0 < ᾱ < 2 + ā for evenL and

0 < ᾱ < 2 + L−1
L
ā for oddL.

Proof. Forᾱ = 1+ ā, ΓL(λ) ≡ λL+ ā
L

(λL−1+· · ·+λ+1) = 0. It follows from Chiarella and He (2002) that|λi| < 1 iff − 1
L
< ā

L
< 1,

i.e., ā < L (sinceā > 0). In general, following from Jury’s test, necessary conditions for |λi| < 1 for all i areā/L < 1, ΓL(1) = ᾱ > 0

and(−1)LΓL(−1) = 2 − ᾱ+ ā > 0 for evenL and(−1)LΓL(−1) = 2 − ᾱ+ L+1
L
ā > 0 for oddL. �

A4. Proof of Part (iv). Letf(λ) = λL andg(λ) = −(1−ᾱ+ā)λL−1+ ā
L

[λL−1+· · ·+λ+1]. Then, on|λ| = 1, |g(λ)| < |1−ᾱ+ā|+ā

and|f(λ)| = 1. If 2ā < ᾱ < 2, then|g(λ)| < |f(λ)| on |λ| = 1. Following from Rouche’s theorem,f(λ) andΓL(λ) = f(λ) + g(λ) have

the same number of zeros inside|λ| = 1. Therefore|λi| < 1 for i = 1, 2, · · · , L.



24 CHIARELLA, HE AND HOMMES

A4. Proof of Part (v). To show that there exists at least one eigenvalueλo such that|λo| > 1 whenā > ᾱ andL is sufficiently large, we

change variables by settingλ = 1+z/L in Γ(λ) and introducef(z) = limL→∞ Γ(1+z/L). Note that for|z| bounded, the limit is uniform.

As L → ∞, we haveλL = (1 + z/L)L → ez , λL−1 = (1 + z/L)L−1 → ez and(1/L)
PL−1

i=0 λi = (1/L)(λL − 1)/(λ − 1) =

[(1+zL)L−1]/z → [ez −1]/z. Hencef(z) = (ᾱ− ā)ez + ā[ez −1]/z. Note thatf(0) = ᾱ > 0 and thatlimz→∞[(ez −1)/z]/ez = 0,

therefore the first term inf dominates the second. Sincēα − ā < 0, we see that for large values ofz the valuef(z) will be negative.

Consequentlyf will have a positive zero, andΓ will have a zero larger than one forL sufficiently large.

A5. Proof of Part (vi)-(ix). ForL = 1, Γ1(λ) ≡ λ− (1 − ᾱ) = 0. Hence|λ| < 1 iff 0 < ᾱ < 2. Alsoλ = +1 for ᾱ = 0 andλ = −1

for ᾱ = 2.

For L = 2, Γ2(λ) = λ2 + c1λ + c2 = 0, wherec1 = −(1 − ᾱ + 1
2
ā) andc2 = ā

2
. Following Jury’s test,|λi| < 1 iff π1 :=

1 + c1 + c2 = ᾱ > 0, π2 := 1 − c1 + c2 = 2 − ᾱ+ ā > 0 andπ3 := 1 − c2 = 1 − ā
2
> 0. HenceP ∗ is LAS if (ᾱ, ā) ∈ D12(ᾱ, ā).

Also,λ1 = 1 and|λ2| < 1 whenπ1 = 0, λ1 = −1, |λ2| < 1 whenπ2 = 0 andλ1,2 ∈ C, |λ1,2| = 1 whenπ3 = 0.

ForL = 3, Γ3(λ) := λ3 − [1 − ᾱ + ā(1 − 1
3
)]λ2 + ā

3
(λ + 1) = 0. Setc1 = −[1 − ᾱ + 2

3
ā], c2 = c3 = ā

3
. Then|λi| < 1 iff

π1 := 1+c1+c2+c3 = ᾱ > 0, π2 := 1−c1+c2−c3 = 2− ᾱ+ 2
3
ā > 0 andπ3 := 1−c2+c1c3−c23 = 1− ā

3
[2− ᾱ+ ā] > 0. Hence

P ∗ is LAS if (ᾱ, ā) ∈ D13(ᾱ, ā). Furthermore,π1 = 0, π2 = 0 andπ3 = 0 give the saddle-node, flip and Hopf bifurcation boundaries,

respectively.

ForL = 4, Γ4(λ) ≡ λ4 − [1 − ᾱ+ 3
4
ā]λ3 + ā

4
(λ2 + λ+ 1) = 0. Setp = −[1 − ᾱ+ 3

4
ā], q = ā

4
. Then, using Jury’s test,|λi| < 1

iff Γ4(1) = ᾱ > 0,Γ4(−1) = 2 − ᾱ+ ā > 0, ā < 4 and both the determinants of the matrices

A =

0BBBB� 1 0 q

p− 1 1 + q 0

2q − p p− 1 1 + p− q

1CCCCA , B =

0BBBB�1 0 −q

p 1 − q −q

0 p− q 1 − p

1CCCCA
are positive. It can be verified that|A| > 0, |B| > 0 iff (1 + q)2[1 + p− 2q] + q(p− 1)2 > 0 andp < 1, respectively, which leads to the

result.
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