
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 
all other uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 



 

Abstract— Gait Initiation Failure (GIF) is one of the most 

disabling gait disturbances seen in advanced Parkinson’s 

disease (PD). Gait Initiation is a complex motor task that 

requires motor and cognitive processing to enable the correct 

selection, timing and scaling of movement. Failure to initiate 

the first step often precipitates falls and leads to significant 

morbidity. However, the brain mechanisms underlying GIF 

remain unknown. This study utilized an ambulatory 

electroencephalography (EEG) technique to investigate the 

brain dynamic changes underlying GIF and aims to detect the 

occurrence of GIF in four PD patients. We sought to determine 

whether episodes of GIF might be associated with a 

characteristic brain signal that could be detected by surface 

EEG. This preliminary investigation analyzed the EEG signals 

through power spectra density (PSD) and centroid frequency 

(CF) to show that the GIF episodes were associated with 

significant increases in the high beta band (21-38Hz) across the 

central, frontal, occipital and parietal EEG sites. By 

implementing PSD and CF as input features with two-layer 

Back Propagation neural networks as a classifier, the proposed 

system was able to detect GIF events with a classification 

performance of 84.27% sensitivity and 84.80% accuracy. This 

is the first study to show cortical dynamic changes associated 

with GIF in Parkinson’s disease, providing valuable 

information to enhance the performance of future GIF 

detection that could be translated into clinical practice. 

I. INTRODUCTION 

Gait Initiation Failure (GIF) or “start hesitation” is a sub-
type of Freezing of Gait (FOG) seen in PD. Patients with GIF 
are frequently unable to initiate their first step effectively in 
order to start walking. GIF is a common form of FOG, with 
over 20 percent of all FOG episodes recorded as being a GIF 
[1]. Gait initiation is a complex motor task requiring both 
motor and cognitive processing to enable the correct 
selection, timing and scaling of movement [2]. Gait initiation 
in PD patients with FOG can be affected by emotion, 
attention and dopaminergic therapy, suggesting the existence 
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of a complex pathophysiological process that not only 
involves the locomotor networks, but also differing cortical 
areas and the basal ganglia system [2]. However, little 
objective evidence exists regarding the brain mechanisms 
underlying GIF and there are no clinically useful approaches 
for its treatment [3]. 

Our research group has recently demonstrated that EEG 
techniques can be used to identify and detect FOG episodes 
in PD due to their temporal ability to track the dynamic 
physiological changes throughout the brain during and even 
prior to the occurrence of any motor disturbances [4, 5]. An 
early detection algorithm for FOG has already been 
developed by analyzing energy power, entropy, correlation 
and brain connectivity of EEG signals, providing valuable 
insights into the underlying brain mechanism of FOG, which 
are progressing the development of novel treatments [4, 5]. 
However, these previous studies have focused on episodes of 
freezing in general without classifying subtypes of FOG, 
potentially limiting its clinical accuracy. 

To the best of our knowledge, there is currently no 
implementation of EEG techniques to investigate and detect 
GIF in PD patients. In this study, we therefore used a non-
invasive EEG system to study four PD patients who 
experienced multiple episodes of GIF during several 
standardized Timed Up and Go (TUG) assessments [1].  In 
this paper, the method of GIF detection is based on Back 
Propagation neural networks with the input features being 
Power Spectral Density (PSD) and Centroid Frequency (CF) 
[4, 5].  

Based on the notion that gait initiation requires both 
motor and non-motor features (e.g. cognitive and limbic 
processes), we aimed to investigate neural changes associated 
with GIF. We hypothesized that there would be a detectable 
change in high beta CF and PSD across the central and 
frontal regions when comparing GIF with effective starts as 
high beta frequencies from the frontal lobe have been 
proposed to act as “a stopping signal” that might prevents the 
central motor area‟s from initiating the first step [6]. We were 
also keen to explore whether the classification results could 
be detected using only two channels; which would contribute 
to the feasibility of making real-time devices for clinical 
application. 

II. METHODS

A. Subjects and Task 

EEG data were obtained from four Parkinson‟s disease 
patients (3 males, 1 female) with clinically confirmed FOG. 
They were recruited from the Parkinson‟s disease Research 
Clinic at the Brain and Mind Centre, The University of 
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Sydney. This study was approved by The Human Research 
and Ethics Committee from the University of Sydney. They 
were assessed in their practically-defined „off‟ state following 
overnight withdrawal of dopaminergic therapy for more than 
12 hours. All subjects demonstrated multiple episodes of GIF 
during a structured series of video-recorded TUG tasks. The 
distribution of GIF among the patients was not equal: 3 
patients had less than 15 events and 1 patient experienced 
more than 15 events. As such, we randomly selected 15 GIF 
events from this subject to be used in further analyses. The 
EEG data were acquired using a 32 Ag/AgCl scalp electrodes 
of a Biosemi ActiveTwo system. Only data from 9 electrodes 
positioned in the location of interest were processed: F3, Fz, 
F4 (motor planning and working memory), Cz (motor 
execution), P3, Pz, P4 (sensory integration), O1 and O2 
(visual area). References were taken by averaging from 
electrodes placed on each ear lobe. The recording was 
segmented into 1-second durations and digitized at 512 Hz. 

The EEG data of GIF events was taken according to the 
time of onset and offset as scored on the video when the 
patients tried to take a first step but failed to do so. In 
addition, the EEG data from Good Starts (GS) was taken 
from 2-second periods after the patients were able to take an 
effective first step in a normal start during the TUG tasks.  

B.  Feature Extraction  

In this study, 61 GIF EEG and 61 GS EEG samples data 
were collected from four patients and analyzed using 
EEGLab toolbox. The EEG signals were filtered using a non-
linear IIR band-pass filter with a cut-off frequency lower than 
1 Hz and higher than 50Hz to remove artifacts. The 
amplitude spectrum of each data sample in the time domain 
was transformed into the frequency domain using Fast 
Fourier Transform; which resulted in the power spectrum P 
(fi). It has been proposed that beta band activity can be further 
subdivided into low and high frequency, with high beta 
frequencies being affected differently in response to FOG [7]. 
Therefore, in this study, Welch‟s method with a 256 points 
FFT with 55% overlapping was used to analyze four 
frequency sub-bands, namely theta (4-8Hz), alpha (8-13Hz), 
low beta (13-21 Hz) and high beta (21-38Hz) (Fig. 1).  

The PSD and CF of each frequency band were estimated 
and chosen as the main parameters for further analyses. The 
non-parametric Wilcoxon Sum Rank Test with an alpha of 
0.05 was used to investigate the PSD and CF differences 
between GS and GIF episodes. These features were then used 
as inputs of classifier for the detection of GIF. 

Fig.1 shows the amplitude spectra of representative raw 
EEG data of one patient that were tracked in the time domain. 
Overall, decomposition of the EEG data into theta, alpha and 
low-high beta bands demonstrated that GIF was associated 
with high amplitude within a range from 4 to 8 Hz (theta) and 
21 to 38 Hz (high beta). In addition, GS was typically 
characterized by regularly decreased amplitude in these two 
sub-bands within different brain regions.  

C.  Classification  

In this paper, we utilized a two-layer feed-forward neural 
networks with 2 to 12 hidden nodes to classify the pattern 
into two categories: GIF and GS. The input  of  this  classifier  

 

Figure 1.  The comparison of amplitude and frequency of raw EEG data 

between GS, Stand, GIF and Break (Breaking GIF) in one PD patient. 

included PSD and CF features extracted from the EEG 
signals. The desired output was set at 1 in cases of GIF and 0 
in cases of GS (Fig. 2). 

The output of the neural networks was computed as 
follows: 
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where  f1, f2 is the activation function, x presents the input 
vector, W is the weight matrix vector; wji is the weight of the 
link between the i-th hidden node and the j-th input;  ̅kj is the 
weight of the link between i-th hidden node and the output, bk 
and bj are the biases; m is the number of outputs; n is the 
number of inputs and the tan sig function was assigned as the 
activation function of the hidden layer.  

For the classification purpose, 122 EEG data (including 
61 GS and 61 GIF) from 4 PD patients were fed into our 
classifier. Levenberg-Marquardt algorithm was chosen as 
training method for its speed and stability. To avoid 
overtraining, our classification system utilized early stopping 
strategy that helped preventing over-fitting and improved 
generalization. The data set was separated randomly into 
training set, validation set and test set with the ratio of 34%, 
33% and 33%, respectively. The prediction of sensitivity, 
specificity and accuracy were measured based on 50 times 
trials.  

III. RESULTS 

A.  EEG Power Spectral Density  

  Statistical results of extracted PSD of EEG signal at each  

 

Figure 2.  Neural Networks Structure 



  

single channel are presented in Table I, with the most 

significant features (p<0.001) being reported in italic bold. 

Direct comparison of EEG frequency band power during 

two conditions showed that the strongest significant 

differences were found in the beta band, especially high beta 

in the occipital areas O1 and O2 (p<0.0001). In addition, the 

results revealed that the parietal areas P3 and P4 were 

significantly affected by GIF in the high beta frequency band 

(p<0.001). We also observed a significant increase in both 

low and high beta power during GIF in the central Cz and 

frontal Fz areas. 

In Table II, the comparison of CF during the two 

conditions (e.g. GS vs GIF) showed that CF high beta stood 

out as the only affected sub-band during GIF regardless the 

position of the EEG channel. More specifically, the CF high 

beta increased significantly in almost 8 channels during GIF 

episodes. This pattern indicated that GIF may be related to a 

change in the oscillatory high beta frequency within the 

subthalamic nucleus and may also support the suggestion 

that GIF is related to excessive paroxysmal cortical beta 

synchronization [7]  

Overall, in this finding, we proposed that the changes of 

oscillatory rhythms during GIF reflected an increase in 

conflict processing underlying cognitive control (theta) and 

“stopping” network operating (high beta) within the motor 

planning and execution in the centers of the brain [5, 7, 8]. 

TABLE I.  POWER SPECTRAL DENSITY BETWEEN GIF AND GS 

Lead band GS GIF p-value 

F3 θ 0.130 ± 0.15 0.162 ± 0.13 0.0313 

Fz 

θ 0.129 ± 0.11 0.191 ± 0.15 ≤0.001 

α 0.057 ± 0.05 0.063 ± 0.04 0.0425 

lβ 0.030 ± 0.03 0.036 ± 0.02 0.0161 

hβ 0.025 ± 0.03 0.033 ± 0.03 0.0471 

Cz 

θ 0.128 ± 0.13 0.172 ± 0.14 0.0132 

lβ 0.032 ± 0.02 0.044 ± 0.03 0.0245 

hβ 0.032 ± 0.03 0.049 ± 0.04 ≤0.001 

P3 

θ 0.130 ± 0.15 0.162 ± 0.13 0.0328 

lβ 0.034 ± 0.03 0.046 ± 0.03 ≤0.001 

hβ 0.043 ± 0.05 0.069 ± 0.07 ≤0.001 

P4 

lβ 0.036 ± 0.03 0.048 ± 0.03 0.0101 

hβ 0.044 ± 0.04 0.073 ± 0.06 ≤0.001 

Pz 

θ 0.132 ± 0.14 0.171 ± 0.14 0.0377 

lβ 0.034 ± 0.03 0.044 ± 0.03 0.0090 

hβ 0.035 ± 0.03 0.055 ± 0.06 0.0100 

O1 

α 0.056 ± 0.05 0.072 ± 0.05 0.0139 

lβ 0.045 ± 0.04 0.069 ± 0.05 ≤0.001 

hβ 0.077 ± 0.08 0.134 ± 0.10 ≤0.0001 

O2 

θ 0.094 ± 0.10 0.110 ± 0.08 0.0280 

α 0.059 ± 0.05 0.089 ± 0.06 ≤0.001 

lβ 0.046 ± 0.04 0.083 ± 0.06 ≤0.0001 

hβ 0.081 ± 0.08 0.139 ± 0.12 ≤0.0001 

TABLE II.  CENTROID FREQUENCY  BETWEEN GIF AND GS 

Lead band GS GIF p-value 

F3 hβ 25.826 ± 1.94 26.461 ± 1.92 0.0307 

Fz hβ 25.682 ± 1.81 26.247 ± 1.89 0.0428 

Cz hβ 25.858 ± 2.05 26.585 ± 1.82 0.0166 

P3 hβ 26.287 ± 2.15 27.168 ± 2.06 0.0107 

P4 hβ 26.219 ± 2.14 27.041 ± 1.97 0.0158 

Pz hβ 26.383 ± 2.29 27.182 ± 1.94 0.0211 

O1 hβ 26.596 ± 2.23 27.658 ± 2.03 0.0300 

O2 hβ 26.826 ± 2.41 27.591 ± 1.94 0.0258 

 

B. Classification  

The classification result displays consistent values   are 

shown in Fig. 3. The classification percentages shows 

consistent values in all fifty running times confirmed the 

ability of the optimization process to provide the optimal 

solution in each of the regions. The number of hidden nodes 

was varied from 2 to12 per training session of the neural 

networks for each separate location in order to find the best 

number of hidden nodes that provides the highest sensitivity 

and best accuracy.  

The mean, maximum and minimum values of PSD and 

CF of the 4 frequency bands in each electrode‟s location 

were taken as inputs of the classifier to evaluate their 

strength in detecting GIF. The sensitivity, specificity and 

accuracy results of our classification system are shown in 

Table III-IV. The reported results were the best performance 

(highest sensitivity and best accuracy) between 2 and 12 

hidden nodes and the mean of 50 times trials. We also 

studied the performance of the detection of GIF using the 

combination of these different channels. The neural 

networks were developed with inputs corresponding to 

significant data (p<0.05) from one, two, four and nine EEG 

channels.  

The classifier system using input from single locations 

was represented in Table III. The result showed that 

occipital regions provided the best location data for 

detecting GIF events with classifier using data from channel 

O2 obtained 70.90% sensitivity and 74.44% accuracy. 

Central locations provided similar strength as an indicator of 

GIF with Cz detected GIF with 68.29% sensitivity and 

74.44% accuracy. The best performance of classifier using 

single channel from frontal and parietal locations  was  when  

 

 

Figure 3.  Mean of accuracy versus number of hidden nodes.  



  

TABLE III.  CLASSIFICATION RESULTS OF PROPOSED 
FEATURES USING BACK PROPAGATION NEURAL NETWORKS  

Lead H 
Training set Testing set 

Sens Spec Acc Sens Spec Acc 

F3 10 70.37 76.42 73.26 67.78 69.72 68.89 
Fz 12 78.84 84.32 81.63 72.22 72.89 73.33 

Cz 7 74.99 85.61 80.00 68.29 79.55 74.44 

P3 2 71.72 82.16 76.51 69.84 69.70 70.00 

P4 3 72.21 71.01 71.63 69.29 68.55 68.89 
Pz 9 71.70 84.92 77.91 68.29 72.88 71.11 

O1 9 75.36 85.27 80.23 70.95 72.16 72.22 

O2 6 76.63 93.69 84.65 70.90 77.06 74.44 

H=number of hidden nodes; Sens= sensitivity; Spec = 

specificity; Acc= accuracy;  

using Fz and Pz with 72.22% and 68.29% sensitivity, 

respectively. These two locations achieved 73.33% (Fz) and 

71.11% (Pz) accuracy in detecting GIF. 

CzO2 appeared at the best combination of two channels to 

detect GIF with sensitivity 76.88% and accuracy 78.89%, 

followed by FzO2 with sensitivity of 71.67% and accuracy 

of 78.89%. The combination of four best channels 

FzCzPzO2 obtained with 78.50% sensitivity and 82.22% 

accuracy when detecting GIF. The best performance of the 

classification system was 84.27% sensitivity and 84.80% 

accuracy in using a combination of nine channels (Table 

IV). 

IV. DISCUSSION 

Abnormal beta band frequencies were found underlying 

GIF. This finding is consistent with previous research 

showing that beta frequencies are likely to operate the neural 

communications in a stopping network in which the beta 

power increases when the prohibiting of movement is 

needed [8]. In addition, a relationship between freezing and 

high-beta oscillations in the subthalamic nucleus has been 

suggested with maximal coherence in high beta activity 

being located across the supplementary motor cortex (SMA), 

cingulate and leg area of SMA [7]. Finally, our research 

group recently found that beta frequencies are the most 

significant features of EEG signals underlying the transition 

from walking to FOG [4, 5].  

Overall, these results are closely aligned with our current 

finding, suggesting that the high beta oscillations observed 

over central and frontal regions (Cz-Fz) of the cortex could 

represent inhibitory signals from the basal ganglia and its 

output nuclei, which are likely to be associated with the 

inability to start walking during GIF in PD patients [7, 8]. 

TABLE IV.  CLASSIFICATION RESULTS OF COMBINATION OF 
CHANNELS 

Lead H 
Training set Testing set 

Sens Spec Acc Sens Spec Acc 

FzCz 2 71.14 91.20 80.93 67.62 80.81 75.56 
FzPz 5 76.81 85.88 80.93 70.56 74.56 73.33 

FzO2 11 76.87 94.64 85.35 71.67 84.46 78.89 

CzPz 11 74.87 88.51 81.86 71.16 74.98 73.33 
CzO2 8 80.26 96.57 88.37 76.88 81.92 78.89 

PzO2 7 70.96 96.22 83.49 68.95 87.07 78.89 

FzPzCzO2 12 81.78 97.14 89.07 78.50 85.38 82.22 

FCPO 10 94.85 87.75 90.34 84.27 85.02 84.80 

FCPO: F3Fz-Cz-P3PzP4-O1O2 

The classification results suggest that central-occipital 

(CzO2) cortex regions are the two optimal locations for 

detecting GIF in PD patients. This indicates that the PD 

patients are „over-relying‟ on visual information during a 

GIF. Especially during a period of GIF, due to the 

inadequate input from motor regions (Cz), the response of 

the muscle and joints in PD patients are different than what 

they are expected. Therefore, these freezers might need to 

use more of their visual system (O2) to gain the information 

about what is happening in order to break GIF by getting Cz  

(primary motor regions) to activate again [9]. 

V. CONCLUSION 

This study revealed that high beta frequency band stood 

out as the most effected sub-band underlying GIF behaviour 

in PD patients. The classification showed that central-

occipital might be the most two impaired regions during the 

GIF episode. Results also showed the episode of GIF can be 

detected using only two channels with average accuracy 

above 75%. Future studies using larger sample sizes that 

compare other multiple electrode sites are now required to 

confirm our proposed methodology. In addition, future 

studies are encouraged to continue to pursue the 

development of a real-time device that can efficiently predict 

GIF events to alert PD patients when GIF is detected. 
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