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Abstract— Nowadays portable devices with more number of 

sensors are used for gait assessment and monitoring for elderly 

and disabled. However, the problem with using multiple 

sensors is that if they are placed on the same platform or base, 

there could be cross talk between them, which could change the 

signal amplitude or add noise to the signal. Hence, this study 

uses wavelet PCA as a signal processing technique to separate 

the original sensor signal from the signal obtained from the 

sensors through the integrated unit to compare the two types of 

walking (with and without an exoskeleton). This comparison 

using wavelet PCA will enable the researchers to obtain 

accurate sensor data and compare and analyze the data in 

order to further improve the design of compact portable 

devices used to monitor and assess the gait in stroke or 

paralyzed subjects. The advantage of designing such systems is 

that they can also be used to assess and monitor the gait of the 

stroke subjects at home, which will save them time and efforts 

to visit the laboratory or clinic. 

I. INTRODUCTION 

Robotic exoskeleton has been gaining popularity and has 
helped many paralyzed subjects or stroke subjects to walk 
normally again through various training methods. Research 
carried out using robotic exoskeleton has also proved that 
regaining mobility through proper training can be achieved 
over a period of time. One of such robotic exoskeleton 
(ALEX), developed at the University of Delaware has been 
useful in training stroke subjects and after few weeks of 
training, the stroke subjects seem to start walking normally 
[1, 2]. Although such robotic exoskeleton have the advantage 
of reducing the physical burden on clinical staff, however, 
while training the stroke subjects, they have to be physically 
attended by experts in order to use the robotic exoskeleton. 
The robotic exoskeleton could be bulky and needs to be 
attached to the waist or lower trunk in the correct manner so 
as not to cause discomfort to the subject. While such training 
is essential, once the subjects has regained a close to normal 
gait, they need continuous gait monitoring and assessment 
carried out regularly in order to make sure that they retain a 
normal heel-toe walking pattern.  

To carry out gait assessment and monitoring in the 
laboratories, for such subjects, it becomes very difficult as 
they have to visit the clinic regularly in order to be assessed. 
Hence monitoring and assessing their gait at home or 

Ganesh R. Naik, and Hung Nguyen are with Centre for Health 

Technologies, Faculty of Engineering and Information Technology (FEIT), 

University of Technology Sydney (UTS), NSW 2007, Australia. (e-mail: 
ganesh.naik@uts.edu.au and hung.nguyen@uts.edu.au).  

Gita Pendharkar is with Electrical and Computer Systems Engineering 

Monash University, Melbourne, Australia. (e-mail: gita@monash.edu.au).  

remotely would be useful for the stroke subjects. Currently 
there is lot of research carried out in designing compact 
portable devices using accelerometers, gyroscopes or 
pressure sensors to assess and monitor their gait remotely. 
Literature review reveals that there is a lot of research carried 
out on gait analysis using wearable sensor system and 
identifying the various gait phases[2-5]. Inertial measurement 
unit (IMUs) are becoming more popular and commonly used 
for gait analysis in a number of applications [6, 7]. Some 
systems using multiple sensors such as a combination of 
IMUs and pressure sensors are also useful as they provide lot 
of information on different gait parameters being sensed. 
However, the problem with using multiple sensors in one 
system is that if they are placed on the same platform or base, 
there could be cross-talk between them which could change 
the signal amplitude or add noise to the signal. 

In order to preserve the clinically valid information the 
signals must be well maintained during denoising process. A 
multivariate technique such as principal component analysis 
(PCA) is extensively used for such tasks. PCA has been 
applied for several engineering applications [7, 8]. For 
biomedical signals, a robust extension of classical PCA by 
utilising wavelets also known as multiscale PCA (MSPCA) is 
suggested [9-11]. This process has been successfully used for 
data reduction, classification and feature extraction [8, 12].   

Firstly, the purpose of this research study was to look at 
the differences in the gait signals obtained using a multi 
sensor system (attached to the shoe) designed with IMU’s of 
6 degree of freedom (which integrates 3 axis accelerometers 
and 3 axis gyroscopes) and additionally four pressure sensors 
on the sole, when walking normally on a treadmill and 
walking with the robotic exoskeleton attached to the lower 
body as described in [1].  

Secondly, this study uses wavelet PCA (MSPCA) as a 
signal processing technique to compare the two types of 
walking (with and without an exoskeleton) in order to 
separate the original sensor signal from the signal obtained 
from the sensors through the integrated unit. This comparison 
will enable the researchers to further improve the design of 
compact portable devices used to monitor and assess the gait 
in stroke or paralyzed subjects by implementing the correct 
gait features through software used to process the pressure 
and accelerometer data. The advantage of designing such 
systems is that they can also be used to assess and monitor 
the gait of the stroke subjects at home, which will save them 
time and efforts to visit the laboratory or clinic. 
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II. THEORY 

The Wavelet PCA or MSPCA combines the ability of 
PCA to decorrelate the variables by extracting a linear 
relationship, with that of wavelet analysis to extract 
deterministic features.  MSPCA implements PCA to wavelet  

Figure 1.  The overall schematic of  Wavelet PCA 

coefficients at each scale to filter the unwanted components 
[13, 14].  

Wavelet PCA technique uses two major steps; the first 
one is wavelet decomposition of the individual sensors on a 
selected family of wavelets into approximations and details 
coefficients at different scales. In the second step, every 
sensor data from each scale are gathered as separate matrices 
and then, PCA is performed on the matrices of details of 
different levels and interesting simplified signals are 
reconstructed by retaining the numbers of principal 
components (PCs). Wavelet PCA is a powerful tool for 
monitoring autocorrelated measurements, and the method not 
only selects and monitors the significant signal information 
but also conforms to the nature of the signal [12-14]. The 
overall schematic of Wavelet PCA is shown in Figure 1. 

III. METHODOLOGY 

A.  Subjects 

The University Human Research Ethics Committee 
approved the experimental protocol for this study. A pilot 
study was carried out on healthy subjects. Data from four 
pressure sensors and three axis accelerometers was collected 
while walking normally on a treadmill with and without the 
exoskeleton attached. The error such as drift in 
accelerometers was minimized to zero. The data were 
collected using the robotic exoskeleton developed at the 
Department of Mechanical Engineering at the University of 
Delaware [1]. The subjects who volunteered to participate for 
the study were healthy and had no neurological, physical or 
vestibular disorders, which would affect their gait. The data 
were collected for five minutes of walking with and without 
the exoskeleton from five different subjects.  

B. Study design 

Pressure and accelerometer data were collected using a 
compact system made of IMU of six degrees of freedom (3 
axis accelerometer, 3 axis gyroscopes) and four separate 
pressure sensors (placed on the sole). This compact system 
was interfaced to an Arduino Fio microcontroller as shown in 
Figure 2. The microcontroller was wirelessly interfaced to the  
receiver on a laptop which had Arduino Duo to carry out the 
basic sensor signal processing and stored the required 
information on the laptop for further signal processing. 
Safety standards were maintained while using the compact 
system on body. 

C. Experimental Setup and Data analysis 

The compact system was attached carefully on top of the 
shoe and tightened with the laces when the subject walked on 
the treadmill as shown in the Figure 3. There were two sets of 
experiments carried out using this compact system. For the 
first set of experiments, the subject walked on the treadmill 
for 5 minutes. The walking speed was chosen to be 
comfortable walking speed of 2.4m/hr. For the second set of 
experiments, along with the compact system, the subject was 
attached to the robotic exoskeleton as shown in Figure 4 and 
walked at a speed of 2.4m/hr. Before beginning each walking 
test, the subject was asked to stand still for one minute and 
the sensors were reset using the software. 

 

 

 

 

 

 

 

 

 

Figure 2.  Compact System using Sensors 

 

 

 

 

 

 

 

 

 

Figure 3.  Walking on the treadmill with the compact sytem 

 

 

 

 

 

 

 

 

 

Figure 4.  Walking with compact system and exoskeleton on treadmill       
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Figure 5.  Accelormeter signals when walking normally with compact 

system. 
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Figure 6.  Accelrometer signals when walking with Exoskeleton and 

compact system.    

The three accelerometer signals (x-mediolateral 
acceleration, y-horizontal or anterior-posterior acceleration, 
z-vertical or downwards acceleration) and four pressure 
signals (heel, toe, Lball, Mball) data were analyzed using 
custom Matlab software (Math Works, version 7.1). The 
vertical, and anterior-posterior, acceleration data were 
sampled at 40Hz and then low pass filtered using 6th order 
Butterworth filter at 10Hz cut-off frequency using a digital 
filter in Matlab. 

In order to perform Wavelet PCA analysis, initially, 
appropriate wavelet parameters were set. Daubechies’ least-
asymmetric wavelet with 4 vanishing moments, “sym4” was 
used for this study [15]. In order to retain number of PCs 
Kaiser’s rule was applied, which helps in retaining the 
number of PCs associated with eigenvalues exceeding the 
mean of all eigenvalues. The MSPCA algorithm with Kaiser’ 
rules also reduce the noise and retain the PCs reflecting the 
quality of column reconstructions given by the relative mean 
square errors which are close to 100% [8]. 

IV. RESULTS AND DISCUSSIONS 

The original signals in Figure 5 and Figure 6 shows the 
mediolateral (original signal 1), vertical (original signal 2) 
and horizontal (original signal 3) acceleration signals when 
plotted w.r.t. time in Matlab. The simplified signals are the 
corresponding signals using MSPCA analysis. Figure 5 
shows accelerometer signals when walking normally without 
the exoskeleton and Figure 6 shows the accelerometer signals 
(original and simplified using MSPCA) when walking with 
the exoskeleton. 
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Figure 7.  Force signals when walking normally with the compact system 
on treadmill.   
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Figure 8.  Force signals when walking with the Exoskelton and the 

compact system on treadmill.        

Figures 7 and Figure 8 shows the force signals (in in g –
acceleration due to gravity) obtained from the pressure 
sensors plotted w.r.t. the sample numbers when walking with 
and without the exoskeleton. Signal 1 corresponds to heel 
pressure, signal 2 corresponds to toe pressure, signal 3 
corresponds to lateral ball and signal 4 corresponds to medial 
ball pressure. Figure 7 shows pressure signals when walking 
normally without the exoskeleton and Figure 8 shows the 
pressure signals (original and simplified using MSPCA) 
when walking with the exoskeleton. 



  

From the results based on comparing Figures 5 and 
Figure 6, it can be observed that there are no significant 
differences in the accelerometer signals (original signal 1) 
when walking with and without the exoskeleton in the 
original signal 1 and simplified signal 2 (using MSPCA). 
However, when comparing the simplified signal 2 (vertical 
acceleration) in Figure 5 w.r.t the simplified signal 2 in 
Figure 6, the mid stance phase seems to be slightly different 
as mentioned in [2, 16]. 

From the results based on Figures 7 and Figure 8, it can 
be observed that the peak value of the force exerted by the 
heel sensors (original signal 1) is approximately the same 
when walking with and without the exoskeleton. Although 
the heel pressure observed in simplified signal 2 (using 
MSPCA) in both the walking patterns shows few differences 
from the original signal 1, the peak amplitude of the force in 
both is the same. However, in case of the toe sensors 
(original signal 2), the peak value of the force exerted by toes 
is observed to be higher when walking with the exoskeleton 
than without the exoskeleton. This is also confirmed by 
observing the simplified signal 1 in Figure 7 and comparing it 
with simplified signal 1 from Figure 8, which is derived 
using MSPCA analysis. As all the four pressure sensors were 
placed on a single sole, there was a cross talk which was 
observed when we compare the force sensors in the original 
signal 1 & 2 with the simplified signals 1 & 2 in Figure 7 and 
Figure 8. Using MSPCA analysis on the original signal 
reduced this cross talk.  

 Derived from the normal walking acceleration signals 
from [8] we have the following equations during mid stance: 

av    g where ay   is the acceleration in vertical direction 

(original signal 2)    

     

ah   0   where ah   is the acceleration in horizontal direction 

(original signal 3)  &  g = acceleration due to gravity    

               

The vertical acceleration during the mid-stance in a gait 

cycle while walking without the exoskeleton corresponds to 

g which is observed in the simplified signal 2 in Figure 5. 

But the simplified signal 2, in Figure 6, exhibits a more 

plantar flexed foot and higher peak values when walking 

with the exoskeleton attached which could be due to the 

loading effect caused due to the exoskeleton as mentioned in 

[17]. 

V. CONCLUSION 

This study compared the two types of walking (with and 
without an exoskeleton) in order to separate the original 
sensor signal from the signal obtained from the sensors 
through the integrated unit. Wavelet PCA (MSPCA) was 
used as a signal processing tool for this task. It can also be 
concluded that the heel exerts the highest force when walking 
(with and without the exoskeleton) as compared to the toes, 
lateral and medial ball and this is because of the higher 
impact caused when the foot lands on the ground and has the 
heel contact. The peak value of the force exerted on toes was 
higher when walking with the exoskeleton (simplified signal 
2, Figure 7) as compared to the force exerted on toes when 

walking without exoskeleton can be explained due to the 
loading effect caused due to the exoskeleton [17]. 
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