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Market Efficiency and Learning in an Endogenously Unstable Environment 

1. Introduction 

 The noise trader is a construct that has become a mainstay of financial market 

modeling.  Features of the rational expectations and efficient markets equilibria, such as no-

trade and zero profit solutions, often stand in contrast to a market phenomena that a 

researcher is attempting to explain.  Inserting noise traders into the market is the standard 

tool for disrupting the equilibria.  Grossman and Stiglitz (1980) first introduced the noise 

trader to hamper uninformed traders using the price to free-ride on the efforts of informed 

traders engaging in fundamental research.  This paper disrupts the efficient markets equilibria 

in a Grossman and Stiglitz (hereafter GS) based environment without resorting to noise 

traders. 

 The GS paradox of the impossibility of informationally efficient markets is created in 

a dynamic setting in which the asset is infinitely lived and has a dividend that follows a 

random walk.  GS assumes two types of traders in fixed proportions.  One group receives a 

common private signal on the value of a risky terminal asset.  The other group is uninformed 

about the private information but attempts to extract it indirectly through observation of the 

market price.  GS also assumes a rational expectations equilibrium in which the uninformed 

traders know the correct relationship between the observed price and the private information.  

GS find that there is no population proportion at which profits are equal.  A population 

proportion at which traders are content with their strategy only exists if the price imperfectly 

reflects value, thus the impossibility of an informationally efficient market. 

 One of the introduced dynamics requires that the uninformed traders learn the 

relationship between price and value.  The analysis shows that the rational expectations 
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equilibrium (REE) to the modeled learning process exists, but it can be unstable.  Another 

dynamic process allows traders to switch between the fundamental and market-based 

information producing a fluid population proportion.  The two dynamic processes ensure that 

the market remains in the region producing the unstable REE.  Simulations characterize the 

behavior of the market in the unstable region.  The instability of the REE endogenously 

produces a noisy non-revealing price. 

 A number of useful precedents have been established for modeling a dynamic version 

of GS.  Bray (1982) and Routledge (1999) create a multiperiod version of GS with Bray 

employing IID terminal values at the end of each period and Routledge using an asset with an 

IID dividend process.  Bray (1982) proposes a least-squares learning process for a fixed 

population of uninformed traders learning to extract information from the price, and 

examines its convergence properties.  In general, Bray finds convergence in the learning 

process to the correct model.  The learning traders' strategy matches that employed by the GS 

rational uninformed traders.  The convergence occurs with and without a random supply.  

Bray's analysis supports the GS assertion that traders can learn the relationship between price 

and payoff through observation and that the assumption of full rationality on the part of the 

uninformed is reasonable. 

 In Routledge (1999), the dual acts of learning and of choosing between being 

informed and uninformed are embodied in the single act of imitation.  Modeled with noise 

introduced through a random supply, a long-run stable REE exists.  The process generally 

converges to the REE. 

 For this paper, the learning process is based on least-squares learning in the nature of 

Marcet and Sargent (1989a, 1989b).  Both the Hussman (1992) and Timmerman (1996) 
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papers employ least-squares learning in a financial market setting, but differ from this 

examination by considering a stationary AR(1) dividend process. 

 The population dynamic in the choice of information is based on replicator dynamics.  

The replicator dynamic has its origins in the study of population evolution based on 

reproduction as employed by Taylor and Jonker (1978).  Adaptations to learning in a game 

setting include Börgers and Sarin (1997), Cheung and Friedman (1998), Hopkins (2002), and 

Droste et al (2002).  For this paper, replicator dynamics are used to describe the dynamics of 

a population choice.  Sethi and Franke (1995) and Branch and McGough (2003) employ the 

replicator dynamics for the same purpose.  Within a population governed by replicator 

dynamics, strategies that produce superior payoffs attract adherents away from inferior 

strategies.  An interior fixed point exits at a proportion producing equal payoffs.  At the 

boundaries, an inferior strategy has been driven out by a strictly superior strategy. 

 Other relevant papers that examined the information content of market-based 

information include Grundy and McNichols (1989), Brown and Jennings (1989), Blume, 

Easily and O'Hara (1994), and de Fontnouvelle (2000).  Brock and LeBaron (1996), and 

Brock and Hommes (1998) provide important foundations for considering population 

dynamics in a financial market setting. 

 Section 2 establishes the market and the participants.  Section 3 finds the solution for 

the fixed point to the learning process.  Instability in the fixed point provides the basis for the 

endogenously noisy price.  The analysis of the population process demonstrates that if the 

market is constrained to the fixed point of the learning process then there is no fixed point to 

the population process, reflecting the same paradox highlighted by GS.  Simulations 

examined the interaction between learning and the population processes.  In Section 4 the 
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division in the trader population is removed as traders are allowed to employ fundamental 

and market information simultaneously rather than having to choose between the two.  

Section 5 concludes. 

2. Model 

2.1 The market 

 A large but finite number of agents, indexed by i = 1, ..., N, trade a risky asset and a 

risk-free bond.  The risk-free bond, with a price of one, pays R.  The risky asset is purchased 

at the market determined price, pt, in period t.  In t+1, it pays a stochastic dividend dt+1, and 

sells for the market determined price pt+1.  The market participants are aware that the 

stochastic dividend follows a random walk: 

  11 ++ ε+= ttt dd , with ),0(~ 2
1 ε+ σε IIDNt . (1) 

While a natural choice, modeling dividends as a random walk is an important departure from 

the standard multiperiod adaptations of the GS model that tend to use an IID end of period 

payoff, IID dividends, or a stationary AR process to model dividends over time.  The traders’ 

accommodation of the nonstationarity affects the stability of the fixed point under learning, 

as the developed model reveals. 

 In each period, each myopic trader maximizes a negative exponential utility function on 

one period ahead wealth conditional on his individual information set (to be developed 

below).  This produces the now familiar demand for the risky asset, 

  )( tit pq  = ))(( 1 ttitit RpzE −θ +  (2) 

with ttt dpz += , itθ  = 1/ 2
itγσ , 2

itσ  = )(var 1+tit z  indicating the conditional variance, and γ is 

the coefficient of absolute risk aversion. 

 Assume K strategies for estimating payoffs.  In a Walrasian equilibrium, the market 
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price equates supply and demand for the asset.  Without loss of generality, set fixed net 

supply of the risky asset to zero.3  Let Nk be the total number of traders employing 

information kI .  Let k
tq  be the per capita demand for the risky security among group k 

traders, ∑
=

=
kN

i
tit

k
t

k
t pq

N
pq

1
)(1)( .  Let kn , 10 ≤≤ kn  be the proportion of the trader 

population employing strategy k, 1=∑ kn .  The price pt clears the market by solving 

  ∑
=

=
K

k
t

k
t

k pqn
1

)(0 . (3) 

2.2 Information 

 For the convenience of discussion and analysis, consider a division of information into 

three non-overlapping categories: fundamental information, market information, and public 

information.  Fundamental information consists of exogenous information that is useful for 

estimating the value of an asset.  Fundamental information is not generally observable but 

traders can access the information through research.  In the context of the model, 

fundamental analysis provides the individual trader with a noisy private signal of the value of 

next period's dividend. 

 Market information is based on endogenous market generated data.  In the context of 

this model, the current and past prices are the only pertinent market information, but it could 

also include other market generated information such as volume and volatility. 

 Public information is exogenous to the model and observable to all market participants.  

In the context of this model the public information includes current and past dividends. 

 In Sections 2 and 3 traders supplement public information with either fundamental or 

                                                 
3 S > 0 lowers the market clearing price by a constant term that is a function of the risk aversion parameter and 
the conditional variance terms.  S = 0 removes the impact of the risk aversion coefficient from price 
determination, but does not change the model dynamics. 
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market information, but not both.  A common argument in support of this division is to claim 

constraints on resources or bounded rationality on the part of the agents (see Hong and Stein; 

1999, and Barberis and Shleifer; 2003).  The constrained traders are able to process one of 

the two information sources in a given period.  An argument can also be made in support of 

the division on philosophical grounds.  The traders are not so much constrained or bounded 

to using just one type of information, but rather decide which of two mutually exclusive 

states, one favoring fundamental research and the other favoring the market information, 

currently describes the market.  Such a characterization of the market will, in fact, be loosely 

consistent with the asymptotic behavior of the model.  Finally, the division is also convenient 

for direct comparison to GS. 

 In GS, the market information is weakly inferior to fundamental information.  The 

objective of the uninformed traders is to use the market information to obtain the knowledge 

possessed by the informed traders without having to pay the associated cost of acquisition.  

In Brock and Hommes (1998), the traders employing market-based inferior information 

benefit from the (near) zero profit condition at (or near) the REE produced by the superior 

perfect foresight traders, again benefiting from the savings of not performing costly research. 

 The noisy private signal used in the present model creates the possibility that market 

information is superior to fundamental research, a situation that does not arise in GS or Brock 

and Hommes (1998).  The fact that the market provides superior information at (and near) the 

REE relative to fundamental research removes the necessity of including a cost on 

conducting research to induce traders to employ market data.  Thus, while it is intuitively 

reasonable to model fundamental research as a costly process, imposing such a cost serves no 

purpose and does not alter the characteristics of the solution.  In practice, many traders who 
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employ market-based analysis do so based on the belief that it offers superior returns, and not 

necessarily to reduce the cost of analysis. 

2.2.1 The Fundamental Trader 

 The estimate of the future payoff is in the nature of Hellwig (1980).  Trader i’s private 

research indicates the fundamental value of the risky security captured by a signal based on 

dt+1 that is subject to idiosyncratic error, 

  ),0(~ with , 2
1 eitittit IIDNeeds σ+= + . (4) 

 A linear projection of dt+1 onto the information set produces the fundamental investor's 

mean squared error minimizing forecast 

  ),|( 1 ittti sddE +  = (1-β)dt + βsit (5) 

where the weight β is known based on the traders' knowledge of the dividend and 

information processes, 

  β ≡ cov(dt+1,sit)/var(sit) = 22

2

eσ+σ
σ

ε

ε . 

 The "fundamental" price prevails in a market populated exclusively by fundamental 

investors.  Using the estimate (5) in (2), derive the fundamental price, 

  tt
F

t
FF

t dbdbp ν++= +121 , (6) 

∑−
β

=ν
i

itt e
NR
1

1
.  Price is a function of the current private and public information.  

Advancing (6) one period, substituting it into the demand (2) and using the market clearing 

condition (3), the price coefficients solve to 
1

1
1 −

β−
=

R
b F  and 

12 −
β

=
R

b F . 

 For large N, the impact of the idiosyncratic signal noise on the price is negligible.  
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Assume a sufficiently large N such that the tν  term can be dropped.4  The price reflects the 

next period’s dividend, dt+1, because it is a common component of each trader’s private 

information.  The price fails to fully reflect the private information (β < 1) due to the limited 

extent that each individual trader incorporates his private signal into his own demand 

function. 

 Fundamental traders rely on (6) in forming demand.  Plug (6) back into (2) to solve for 

the average demand of the group of fundamental traders, 

  F
tq  = )))1((

1
( 1 ttt

F
t Rpdd

R
R

−β+β−
−

θ + . (7) 

2.2.2 Regression traders 

 The regression traders model the relationship between the payoff, ttt dpz += , and the 

market observables, the current and past prices and dividends.  To accommodate the random 

walk in dividends the analysis is based on innovations rather than levels.  Let ∆ indicate the 

difference operator such that ∆zt = zt – 1−tz .  A derivation demonstrating that the traders 

appropriately estimate 

  tttt dcpcz ζ+∆+∆=∆ −− 1211  (8) 

is included in the appendix. 

 The traders employ least-squares learning to update the parameters of their model.  The 

learning process is self-referential with an endogenous state variable, ∆pt-1, included as a 

regressor.  Let xt' = [∆pt ∆dt].  The regression traders update the coefficients, Ct = [c1t c2t], 

using the standard recursive updating algorithm for least-squares learning: 

  txCzxQCC ttttttt /))'(( 2112
1

1 −−−−
−

− −∆+= , (9) 

                                                 
4 Formally, νt is o(1). 
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  tQxxQQ ttttt /)( 1
'

111 −−−− −+= , 

given (C0, Q0).  The regression traders all rely on the same public information, and thus all 

employ the same forecast, )|( 1 tt xzE + .  Per capita demand among regression traders is thus 

  R
tq  = ))(( ttttt

R
t RpdpxC −++θ . (10) 

2.3 Price Formation 

 With K = 2, let nt = F
tn , and thus (1-nt) = R

tn .  From (3), 

  0 = R
tt

F
t qnqn )1( −+  (11) 

Use (7), (10), and (11) to solve for the market clearing price.  A consistent price function 

takes the form 

  pt = tttttttt dbpbdbdb ∆+++ −+ 413121 . (12) 

See (A.4) in the appendix for the coefficients of (12) expressed as a function of the agents' 

demand parameters. 

 Through repeated substitution of the lagged price, pt can be expressed as a function of 

the exogenous dividend stream: 

  pt = 1,3
1 1

1,313121 )( −−−
= =

−−−+ ∑ ∏ 







+++ ktkt

t

k

k

j
jttttttt dBbdBdBdB . (13) 

See (A.5) in the appendix for the coefficients B1t through B3t as functions of b1t through b4t. 

 

3. Analysis and simulation 

3.1 Learning under fixed n 

 Consider a fixed nt = n for all t.  Three equations describe the dynamic processes under 

a fixed n.  Equation (1) is the exogenous dividend process.  Equation (12) is the endogenous 



11 

price equation.  The coefficients of (12) depend on the beliefs of the regression traders as 

captured by (8) that evolve according to (9). 

 This section develops the solution for the fixed point to the learning process and 

explores issues related to its stability.  Simulations are employed to characterize the 

convergence properties of the learning model where the fixed point is unstable.  The failure 

of the learning process to converge is the basis for the endogenously noisy price. 

3.1.1 A fixed point solution 

 At the fixed point to the learning process the regression trader’s perceived relationship 

captured by equation (8) is consistent with the actual relationship described by (1) and (12).  

Employing L to indicate the lag operator, from (13) 

  pt = 1
1

33121 ))(1)(()()( −
−

+ −++ ttt dLnbnBdnBdnB . (14) 

See (A.6) in the appendix for the coefficients B1 through B3 as functions of b1 through b4. 

 Use the notation FP(n) = {c1(n), c2(n), b1(n), b2(n), b3(n), b4(n), B1(n), B2(n), B3(n)} to 

denote the fixed point values for the endogenous regression coefficients and price 

parameters.  For notational convenience, the dependence of the fixed point values on n will 

be implied and only included when needed for emphasis or clarification. 

 For B3 ≠ 0, the presence of the regression traders introduces lagged dependence in the 

price that is not present in the absence of the regression traders.  For convenience, establish 

Condition A. B3 = 0. 

 Proposition 1 below characterizes the fixed point solution to the learning process.  For 

consistency with GS, the fixed point will be a REE if the regression traders correctly extract 

the private information available from the price. 

Proposition 1. Under Condition A, a fixed point to the learning process exists for 0 ≤ n ≤ 1. 
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(a) The fixed point is a REE. 

(b) The parameters FP(n) are smooth continuous functions of n for 0 < n ≤ 1. 

(c) There is a discrete jump in the fixed point parameter values at n = 0. 

Part (a) of Proposition 1 is a feature of the least-squared learning process.  At the fixed point 

the regression traders have correctly identified the model, which allows them to extract dt+1 

from the observation of xt.  Parts (b) and (c) follow directly from the fixed point coefficient 

solutions (A.7) and (A.11) in the appendix.  From (A.7), as n → 0, B1 → 0 and B2 → 1/(R-1).  

From (A.11), for n = 0, B1 = 1/(R-1), and B2 = 0.  Thus, as in GS, at the fixed point, the 

regression traders are rational and there is a discrete jump in the price solution at n = 0.  As n 

→ 0, pt converges to fully reflect dt+1 but at n = 0 pt can only reflect the public information up 

to time t. 

3.1.2 Stability of the REE fixed point 

 Condition A need not hold when the market deviates from the fixed point, thus 

introducing lagged dividend terms into the price equation.  A bounded price according to 

(14) requires that the impact of the past dividends be diminishing, -1 < b3(n) < 1.  The fixed 

point to a least-squares learning process is unstable if the regression coefficients in the 

neighborhood of the fixed point solutions fail to converge.  Stationarity in the transition 

equations is a requirement for convergence in learning to the fixed point (see Marcet and 

Sargent; 1989b).  If b3(n) is outside the unit interval, then price innovations become 

nonstationary so the regression traders' )( '
tt xxE  is no longer well defined and the process 

fails to converge. 

Proposition 2. There exists a critical n, 0 < n <1, for which n > n produces a stable REE 

fixed point.  For n ≤ n, the REE fixed point is unstable. 
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Proof. From (A.10), b3(n) is a continuous smooth monotonically increasing function of n 

with b3(n) → ∞−  as n → 0 and b3(1) = 0.  Let n indicate the value of n such that b3(n) = -1.  

For n ≤ n, b3 is on or outside the unit interval, violating a requirement for convergence in 

least-squares learning. 

 The lack of stability in the fixed point at lower n results from the presence of the lagged 

price in (12).  Were the dividend process stationary, the procedure to forecasts )( 1+tzE  from 

the observed data would involve a regression based on levels rather than in differences.  In 

this case, the fixed point would be stable for all values 0 < n ≤ 1, consistent with the 

convergence found by Bray (1982). 

3.1.3 Simulation of the least-squares learning process 

 Beliefs deviate from the actual model governing the system of price determination 

during the learning process.  Equations (A.8) and (A.9) provide the variance terms for the 

forecast errors at the fixed point, but the fixed point solution is not know by the agents, nor 

are they correct when the model deviates from the fixed point.  In simulation, the traders 

need to estimate the conditional variance of the error associated with each strategy.  The 

traders use estimates of the forecast errors based on observed data.  Allow the traders to 

recursively estimate 2
Fσ  and 2

Rσ  using the least-squares algorithm to update.  The aggregate 

estimates are 

  ttzz Ft
F
ttFtFt //)ˆ)((ˆˆ 2

1
22

1
2 ξ+σ−−+σ=σ −− , (15) 

  ))1((
1 1+β+β−

−
= tt

F
t dd

R
Rz , 

  2
2

1 eR
R

σ







−
β

=ξ  and 
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  tzz Rt
R
ttRtRt /)ˆ)((ˆˆ 2

1
22

1
2

−− σ−−+σ=σ  (16) 

  1−+= ttt
R
t zxCz  

with 2
0Fσ  and 2

0Rσ  given.  The first adjustment term in (15) is the estimate of the group level 

error of the fundamental signal.  The ξ/t term captures the individual fundamental trader’s 

additional uncertainty due to the idiosyncratic noise associated with the private signal. 

 The solid line in each frame of Figure 1 plots the REE fixed point value of the 

endogenous parameter as a function of n.  Each point represents simulation output.  The 

simulation data is based on 20 independent draws of a T = 10,000 period dividend stream.  

For each dividend stream, the simulation is run with n ranging from n = 0.01 to n = 1 in 

increments of 0.01.  The exogenous parameters are set to R = 1.02, γ = 1, and σε = σe = 1 so 

that β = 0.5.  The chosen parameters produce n = 0.25.  The time t = 0 values of the 

endogenous parameters are the fixed point values given n.  The end of sample values of the 

endogenous parameters are used to compute B1T, B2T, and B3T, according to the appendix 

equation (A.6).  Figure 1 plots B1T, B2T, B3T, b3T , c1T, and c2T against n. 

  [Figure 1 about here] 

 Consistent with Proposition 2, for n > n the model converges to the REE fixed point but 

for n < n the system fails to penetrate into the region b3t < -1.  Instead, the process remains 

trapped in the neighborhood containing b3 = -1, unable to continue its convergence. 

 There are no constraints placed on any of the model parameters.  Whenever b3t drops 

below -1, the system becomes unstable.  During the learning process, the error in the 

regression traders' coefficients introduces error into the price.  Thus for b3t inside the unit 

interval, the errors dampen, allowing the learning process to converge toward correct beliefs.  

Once b3t drops below -1, pricing errors become explosive.  With the regression traders 
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themselves introducing error, the learning process cannot continue.  Figure 2 plots a 1,000 

period sample of the time series of b3t, c1t, and pt - F
tp  for n = 0.05 < n = 0.25.  The value of 

b3t oscillates across the boundary separating the stable and unstable price states.  For b3t ≤ -1, 

the nonstationarity in the price reduces the information content of the price innovations.  The 

new observations reduce c1t, causing b3t to increase, moving the model back into the stable 

region. 

  [Figure 2 about here] 

 Let *
3b  reflect the asymptotic value of b3t as a function of n,  

  )(*
3 nb  = 





<−
≥

nn
nnb

,1
,3 . 

For the given n, *
3b  defines the basin of attraction for the system.  For n > n, the basin 

contains the fixed point as its attractor.  For n < n, the basin does not contain the fixed point 

for the system.  Instead, b3t = -1 acts as an attractor though it is not a fixed point.  The 

deviation of b3t in simulation from b3 for n < n causes the remaining parameters to deviate 

from the REE fixed point solution as well.  Refer to the C*, b* and B* associated with b3 = 

*
3b  as the attractor of the model. 

 According to (A.7), the fixed point values of {B1, B2} converge towards {0,1/(R-1)} as 

n → 0.  Alternately, Figure 1 shows that as n → 0 { *
1B , *

2B } → {1/(R-1), 0} = {B1(0), 

B2(0)}.  Thus, as n → 0, the parameters that serve as the attractor for the system converge to 

reflect the n = 0 solution, producing a smooth transition for the price coefficients at n = 0 

rather than the discrete jump produced by the REE solution.  This eliminates the 

discontinuity found in the REE fixed point. 
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3.1.4 Profits 

 Let the measure of profits earned by each information source be the excess return 

realized for the risky asset multiplied by the group average demand: 

  )( 11 ttt
k
t

k
t Rpdpq −+= ++π , k = F, R. (17) 

Proposition 3. At the REE fixed point 

a) For 0 < n ≤ 1, )()( RF EE π<π . 

b) For n = 0, )()( RF EE π>π . 

Proof. From (A.12), )( RE π  > 0 for n > 0.  Substitute B2 from (A.7) into (A.12) to obtain 

)( FE π  = 0 at n = 1 and )( FE π  < 0 for 0 < n < 1.5  Part (b) follows directly from (A.13). 

 Proposition 3 embodies the GS impossibility of informationally efficient markets.  The 

success of the regression traders for n > 0 results from the fact that at the REE fixed point the 

learned regression parameters correctly extract dt+1.  At the REE the market filters out the 

idiosyncratic noise revealing the underlying value, providing better information than the 

noisy private signal obtained through fundamental analysis.  For n = 0, as with GS, in the 

absence of any trader conducting research, the price has nothing to reveal. 

 Expected profit are a function of n and of the regression coefficient tc1  from (8), 

D(n, tc1 ) = )),(()),(( 11 t
R

t
F cnEcnE π−π .6  At the REE fixed point tc1  = c1(n), allowing a 

reduced form D(n) = ))(())(( nEnE RF π−π .  For 0 < n ≤ 1, D(n) < 0 and n = 0 produces D(n) 

> 0.  Regression traders' beliefs are in error if tc1  ≠ c1(n).  Proposition 4 below characterizes 

the impact of this error on D(n, tc1 ).  Figure 3 includes the boundaries discussed in 

                                                 
5 Figure 4 below includes a plot of the REE profits. 
6 As discussed in the appendix, since the second variable in (8) is only present to control for the spurious noise 
produced by the εt term in the price innovation, c1t is the heart of the regression traders' forecast of future value. 
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Proposition 4. 

  [Figure 3 about here] 

Proposition 4. Assume Condition A, B1(c1t) + B2(c1t) = 1/(R-1), and c2t = -B2(c1t)*c1t, then for 

0 < n ≤ 1 there exists −
1c  = (R-1) < c1(n) < )(1 nc+ < )(1 nc  such that 

a) −
1c  < tc1  < )(1 nc+  produces D(n, tc1 ) < 0, 

b) the boundaries tc1  = −
1c  or tc1  = )(1 nc+  produce D(n, tc1 ) = 0, and 

c) tc1  < −
1c  or )(1 nc+  < tc1  < )(1 nc  produces D(n, tc1 ) > 0. 

d) There is an upper bound on the value of tc1  such that D(n, tc1 ) → ∞ as tc1  → )(1 nc  from 

below. 

 The proof for Proposition 4 is included in the appendix.  The three assumptions limit 

pricing error to reflect an incorrect estimate of the relationship between price and payoff.  

Condition A ensures that lagged dividends do not introduce bias.  The condition B1(c1t) + 

B2(c1t) = 1/(R-1) ensures the price reflects a proper discounting of the traders' expected future 

dividends (even if the expectation is in error).  The condition c2(c1t) = -B2(c1t)c1t ensures that 

the second term in (8) correctly cancels out the spurious tε  component of the price 

innovation.  These three conditions are all features of the fixed point solution.  Of course, 

deviations from the fixed point may include violations of these assumptions, but the behavior 

of the simulations seems to be approximately governed by the guidelines found here. 

 At −
1c  the regression traders share the belief of the average fundamental trader despite 

the different information source.  Net holdings for each group are zero.  For tc1  = +
1c , the 

resulting market price reflects fundamentals based on dt+1 so that no profits are realized 

despite differences in beliefs and holdings.  Between these two boundaries, the regression 
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traders have sufficiently accurate forecast to generate profits so that D(n, tc1 ) < 0.  Outside 

these two boundaries, the regression traders' error produces profits for the fundamental 

analysis, D(n, tc1 ) > 0 with D(n, tc1 ) → ∞ as tc1  → )(1 nc .  For tc1  ≥ )(1 nc , the regression 

traders have so overestimated the dividend innovation that their positive response to the price 

outweighs the negative response from the demand of the fundamental traders, creating an 

upward sloping aggregate demand curve for the model and an infinite price.  In simulation 

regression trader demand is curtailed by the inclusion of the current error in the variance 

estimate.  This is reasonable since in the dynamic setting, the D(n, tc1 ) → ∞ ensures that nt 

increases before 1c  is encountered.  Both 1c  and +
1c  converge towards infinity as n → 1. 

 Figure 4 plots the realized average profits from the same simulations used to create 

Figure 1.  Each point in Figure 4 is the average of the profits realized in the last 1,000 periods 

of the simulation.  The “○” points are the profits realized by the fundamental traders.  The 

“+” points are the profits realized by the regression traders.  The solid lines are the expected 

profits earn at the REE fixed point. 

  [Figure 4 about here] 

 As displayed in Figure 4, the realized simulated profits diverge from those implied by 

the REE solution for n < n.  Let n** indicate the fixed point for n at which D(n, 1c ) = 0.  

Median profits as plotted in Figure 4 suggest an n** producing D(n**,C*(n**)) = 0 at 

approximately n** = 0.12. 

3.2 Population Dynamics 

 Allow for a dynamic population proportion that responds to the difference in the 

traders' expected profits for the two information approaches.  For Section 3.2 remove the 

learning dynamics of (9) from the system and introduce a dynamic population process ((18) 



19 

below).  The population reflects expectations of profits, which evolve according to (20).  The 

analysis demonstrates that if the market is constrained to the REE of the learning process 

there is no fixed point to the population process, reflecting the same paradox highlighted by 

GS. 

3.2.1 Replicator dynamics 

 Sethi and Franke (1995) propose an evolutionary dynamic population in which "each 

period the group performing better in the recent past wins some converts" (1995, p584).  

Allow that traders base their selection of strategy on a relative measure of the expected 

profits of the two options.  A two choice version of the more general K choice replicator 

dynamic model of Branch and McGough (2003) results in the transition equation 
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Here, Fe
tπ  and Re

tπ  are the traders’ estimates of the profits earned by the fundamental and 

market-based approaches, respectively.  Their computation will be discussed below.  A 

number of different functional forms for r exist in the literature sharing the features, -1 ≤ r(x) 

≤ 1, 0)(' >xr , and r(0) = 0.  The increasing function ensures that the population flows 

towards the perceived superior strategy.  Passing through the origin ensures nt+1 – nt = 0 if 

Fe
tπ  = Re

tπ .8  The simulations that follow are based upon 

  ))2/tanh()( xxr ρ= . (19) 

                                                 
7 Formally, as a population proportion, nt is restricted to be an element of the set of rational numbers.  Allow 
that (18) produces a near approximation of nt. 
8 This is consistent with how GS envisions evolution in the population.  "If the [expected utility of the 
informed] is greater than the [expected utility of the uninformed], some individuals switch from being 
uninformed to being informed (and conversely).  An overall equilibrium requires the two to have the same 
expected utility." p394. 
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The results discussed in this paper should be robust to the selection of r.9 

 The traders rely on observed profits to indicated the expected profits for each strategy, 

  )( 111
ke
t

k
tt

ke
t

ke
t −−− π−πµ+π=π  (20) 

00 =πk , k = F, R. 

 In its reduced form, (18) implies a mapping nt+1 = f(nt).  Local stability requires 

1**|)(' <nnf t .  This can be accomplished asymptotically by employing a sufficiently long 

memory in the computation of keπ .  Setting µt = 1/t is the equivalent of producing the least-

squares estimate of the mean by placing equal weights on observed profits.  A degenerative 

function for tµ  such as µt = 1/t ensures **|)(' nnf t → 0 as t → ∞. 

3.2.2 Convergence in the population 

 Consider the evolution of the population under three behavior settings for the 

regression traders: tc1  fixed, tc1  = )(1 tnc , and tc1  = )(*
1 tnc .  It may be useful to refer to 

Figure 3.  For fixed tc1  = c > R-1, nt converges to place the system on +
1c  at which profits are 

equal.  If fixed tc1  = −
1c  = R-1, then profits are equal regardless of the value of nt.  A fixed tc1  

= c < R-1 leads to a convergence of the system to nt = +1 since the error is sufficient to 

produce positive profits for fundamental analysis regardless of nt,. 

 For tc1  = )(1 tnc  the regression traders are assigned the correct nt dependent regression 

coefficients.  The market is constrained to be at a point on the curve labeled )(1 nc  in Figure 

3.  With the regression traders earning superior profits at all points along )(1 nc , nt converges 

towards the origin.  The discontinuity arises at nt = 0 at which the fundamental analysis 

                                                 
9 Also examined was r(x) = )1 ,1min( 2/ −ρxe . 
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outperforms the regression analysis. 

 For tc1  = )(*
1 tnc  the market travels down along the )(1 nc  curve for nt > n.  For nt < n, 

Figure 1 reveals that )(*
1 nc  is biased downward relative to )(1 nc .  The bias results in )(*

1 nc  

crossing −
1c  at n = 0.02, imply that nt = n** at nt = 0.02 produces zero profits along )(*

1 tnc .  

This conflicts with the earlier finding of )(nFeπ  = )(nReπ at n = 0.12 despite both finding 

stemming from the same set of simulation output.  The difference suggests that violations of 

the assumption of Proposition 4 benefit the fundamental analysis.  The violations hampers 

the regression traders' information extraction such that they fail to earn a profit despite a 

relatively small coefficient error.  Since simulations suggest that B1( *
1c ) + B2( *

1c ) = 1/(R-1) 

and )( *
1

*
2 cc  = -B2( *

1c ) *
1c  both hold, the realization of B3 ≠ 0 is the likely culprit. 

3.3 Simulation 

 Interactions between the learning and the population processes require examination of 

the full dynamic system by simulation.  The full dynamic system is captured by the 

exogenous dividend process, (1), the endogenous price process, (12), the coefficients of 

which are determined by the regression coefficients from (8) that evolve following (9), and 

by the population proportion that follows (18) based on the expected profits following (20). 

3.3.1 Convergence 

 The first two columns of data in Table 1 report summary statistics on the asymptotic 

values of the endogenous parameters, computing means and standard deviations based on the 

last 10,000 periods of a representative T = 200,000 simulation.  Parameters are set to n0 = 

0.75, ρ = 0.1, and tt /1=µ .  The simulation converges with nt → n** = 0.12.  The 

parameters Ct, bt, and Bt, converge to a neighborhood containing C*(n**), b*(n**), and 
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B*(n**). 

  [Table 1 about here] 

 Figure 5 displays the convergence of the first 20,000 periods of simulation output in a 

phase space based on nt plotted horizontally and deviations from c1(n) plotted vertically.  The 

asymptotic pair (n**, *
1c (n**)-c1) based on the data presented in Table 1 is indicated by the 

arrow pointing to the circle centered at (0.1236,-0.006). 

  [Figure 5 about here] 

3.3.2 Constant gains in expected profits 

 A sufficiently high constant gains in the updating of ke
tπ  may produce 1**|)(' ≥nnf t , 

generating local instability in the population dynamic.  The values in the second pair of 

columns of Table 1 derive from simulations with µ = 1 implying adaptive expectations based 

on the most recently realized profits, k
t

ke
t 1−π=π .  For )1/(121 −=+ RBB , the realization of a 

greater B1T as reported in Table 1 reflects the greater reliance on the fundamental information 

in the more volatile µ = 1 simulation. 

 As can be seen in the plot of the endogenous parameters and price deviations in Figure 

6, the µ = 1 model take substantial incursions into the unstable parameter region, producing 

sizable pricing errors.  The coefficients are subsequently thrown deep into the stable region.  

This generates noise in the price that detracts from the information extraction process. 

  [Figure 6 about here] 

 

4. Uniform population 

 Rather than forcing traders to choose between fundamental information and market-

based information, this section allows all traders full access to all information.  The 
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developed model is a pure learning model.  Traders share a uniform approach to analysis thus 

there is no population proportion to track. 

4.1 Learning 

 For convenience, refer to the original model based on separate groups of traders 

engaged in either fundamental or market-based analysis examined in Sections 3 as the 

"divided information" model (DI model).  Refer to the version developed below based on a 

uniform population as the "full information" model (FI model).  In the FI model, all traders 

receive an idiosyncratic signal on next period's dividend, sit.  They also attempt to incorporate 

the current price into their estimation of next period's value.  Traders employ the same 

regression analysis approach as in (8), adding the signal its  to the individual's itx .  With 

individual private signals trader i estimates the learning model, 

  ititittittitt scdcpcz ς++∆+∆=∆ −− 31211  where (21) 

  ittit es +ε= +1  with ),0(~ 2
eit IIDNe σ .10 (22) 

 Let Cit = [c1it c2it c3it] be the average of the individual regression coefficients, where xt’ 

= [ 1  +ε∆∆ ttt dp ].  Individual demand is 

  2/))(( itttttitit RpdpxCq γσ−++= . (23) 

The equilibrium price solution that sets ∑
i

itq  = 0 takes the same linear structure as in (12), 

  pt = tttttttt dbpbdbdb ∆+++ −+ 413121 , (24) 

but with 

  ∑ −θΨ= −

i
itittt cb )1( 3

1
1 , ∑θΨ= −

i
itittt cb 3

1
2 ,  

                                                 
10 Note that sit is a signal on the innovation in dt to dt+1 rather than the value of dt+1 as used in sections 2 and 3.  
The signal provides the trader with the same information, but is more consistent with its use in regression (21). 
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  ∑ −θΨ= −

i
itittt cb )( 1

1
3 , ∑θΨ= −

i
itittt cb 2

1
4 , and ∑ +−θ=Ψ

i
ititt cR ))1(( 1 . 

At the fixed point solution all traders share the same time consistent beliefs.  Repeated 

substitution of the lagged price is of the same linear structure as found in (14), 

  pt = 1
1

33121 )1( −
−

+ −++ ttt dLbBdBdB . (25) 

 The full system of dynamic equations for the FI model is thus (1), (24), and (9) based 

on the beliefs of the traders captured in (21).  This system of equations does not have a fixed 

point since B3 = 0 reduces 22
2

2
3

2
2

22
3

22
3321

3 ))1((
)1(

eBBBB
BbBB

c
σ−++σ

σ++
=

ε

ε  to zero.  This is another 

reflection of the GS impossibility of informationally efficient price.  If the learning process 

converges (as reflected in B3 = 0), then the traders will be able to perfectly extract dt+1 from 

the price.  The private signal becomes redundant information that is inferior due to the 

idiosyncratic noise.  Once c3 = 0, the price no longer contains information about dt+1. 

4.2 Simulation 

 Simulations of the FI model generate three outcomes.  The most common (about 79% 

of the simulations)11 produces a divergent price based on c1t = R, which also produces b3t = 

R.  This outcome does not represent a bubble solution as the coefficients are not fixed points 

to the learning process. 

 Both of the remaining two outcomes produce a bounded price.  About 12% of the 

simulations converge towards coefficients in a market similar to that produced by the DI 

model.  Summary statistics from a representative simulation based on N = 2 are presented in 

the last two columns of Table 1.  They show coefficients that converged to a stable small 

neighborhood containing the values {B1, B2, B3, b3} → {0, 1/(R-1), 0, -1}.  Though there is 

                                                 
11 The proportions appear consistent for N = 2, N = 10, and N = 100 traders based simulations. 
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no longer a fixed point (stable or unstable) to track, it is clear that b3 = -1 is a boundary 

defining the asymptotic behavior of these simulations in which the model switches between 

the stable and unstable conditions on either side of b3 = -1.  The value of c1t < 0.02 in the FI 

model ensures that the aggregate demand curve is downward sloping.  The realization of c3t > 

0 means that the traders incorporate their private signal into their forecast.  The traders in 

Hussman (1992) also learn to use both fundamental and market information. 

 Figure 7 reveals a consistent pattern of high and low price dispersion as the model 

moves in and out of the unstable region. 

  [Figure 7 about here] 

 A notable difference between the DI model and this particular outcome of the FI model 

is the extent to which the price reflects dt+1.  The required presence of the fundamental 

traders in the DI model makes dt a component of the price.  The DI model produces B1T > 0, 

B2T < 1/(R-1).  The failure to fully reflect dt+1 leaves an exploitable pattern in the price that 

traders cannot address without creating instability.  By contrast, the FI model produces B1T = 

0 and B2T = 1/(R-1), so that the fundamental component of the price fully reflects aggregate 

knowledge of the market.  Incorporation of the fundamental information by fully informed 

traders produces an unbiased though still noisy price. 

 The remaining 9% of the simulations terminate (at T = 200,000) with c1t < 0 and 0 < b3t 

< 1, suggesting a contrarian strategy.  However, this outcome does not appear to be a long 

run asymptotic solution.  Allowing one simulation to run for one million periods, the 

parameters continue to make slow but steady progress in the direction of the b3 = -1 solution. 
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5. Conclusion 

 Least-squared learning is used to model the learning dynamics of investors trying to 

extract information from the market price of a financial asset.  The replicator dynamic is 

introduced to explore the dynamics of the population as individual traders choose between 

using fundamental and market information.  The model offers a new examination of the 

Grossman and Stiglitz (1980) observation that no interior solution to the population 

proportion exists unless there is noise in the price that hinders the information extraction 

efforts of the market informed traders. This model produces results that are consistent with 

the GS observation, but are obtained without the exogenous insertion of noise.  The 

endogenous noise is assured as a result of the learning environment.  The presence of the 

noise ensures a stable interior proportion of fundamental and market-based strategies. 

 Allowing all traders to access both fundamental and market information eliminates the 

population division, leaving just the learning dynamic.  No fixed point exists in this learning 

environment.  One of the three possible outcomes generated in simulations produces a market 

that behaves much like that produced by the divided information dynamic model.  Traders 

make use of both the market and fundamental information.  The price is useful because it 

reflects the aggregate belief of the trader population with the market serving to filter out 

idiosyncratic biases.  The private signal remains important because of the noise that remains 

present in the price. 

 The observed "volatility clustering" suggests that further analysis may be warranted to 

determine whether the model produces a market time-series consistent with observed market 

patterns. 
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Appendix A 

A.1 Demonstration that equation (8) is the full information regression. 

 Borrowing from Hussman (1992), a "full information" regression is one in which the 

learning agents employ all of the useful information to which they have access and no 

unnecessary variables.  With B3 = 0 at the fixed point, from (14), 

  pt + dt = 121 )1( +++ tt dBdB  (A.1) 

so that 

  ∆zt+1 = )())(1( 12211 +++ −+−+ tttt ddBddB  = 2211 )1( ++ ε+ε+ tt BB . (A.2) 

At time t, dt+1 and dt+2 (and thus εt+1 and εt+2) are yet to be observed directly, however, 

  ∆pt = )()( 1211 tttt ddBddB −+− +−  = 121 +ε+ε tt BB , (A.3) 

which is correlated with ∆zt+1 through the εt+1 term.  The innovation ∆pt is not a perfect signal 

of ∆zt+1 because it is also a function of εt.  The traders have observed εt indirectly as dt - dt-1 

so that including this term in the regression controls for the source of noise. 

A.2 Coefficients of (12) expressed as a function of the trader demand parameters. 

  b1t = 
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A.3 Coefficients B1t, B2t, and B3t in (13) expressed as functions of b1t through b4t. 

  B1t = b1t + b4t + b3tb2t-1,  (A.5) 
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  B2t = b2t, and 

  B3t = b3tb3t-1b2t-2 + (b1t-1 + b4t-1)b3t - b4t. 

A.4 Fixed point coefficients B1, B2, and B3 in (14) expressed as functions of b1 through b4. 

  B1(n) = b1(n) + b4(n) + b3(n)b2(n), (A.6) 

  B2(n) = b2(n), and 

  B3(n) = b2(n) 2
3 )(nb  + (b1(n) + b4(n))b3(n) - b4(n). 

A.5 Model's REE fixed point solution supporting Propositions 1 and 2. 

For 0 < n ≤ 0: 
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The fixed point solution for b1 through b4 follows from plugging the regression coefficient 

solutions in (A.7) into the price coefficients in (A.4).  In particular, 
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Both terms within the parenthesis are non-negative.  The first term is equal to zero at n = 1 

and is infinite at n = 0.  The second term is positive.  ∞→∂∂ →03 |/ nnb , 0|/ 13 >∂∂ =nnb , and 

0/ 2
3

2 <∂∂ nb , thus b3 is monotonically increasing in n. 
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For n = 0: 

  c1 = c2 = 0, B1 = b1 = 1/(R-1), and b2 = b3 = b4 = 0. (A.11) 

A.6 Expected profits at the REE fixed point. 
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for 0 < n ≤ 1 and (A.12) 
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Using B1 and B2 from (A.7) yields, for n > 0, 
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The solution for E(πF) is weakly negative for 0 < n ≤ 1 with E(πF) = 0 for n = 1 and E(πF) < 0 

for 0 < n < 1.  At n = 0, E(πF) > 0.  The solution for E(πR) is smooth, continuous, and 

increasing in n with E(πR) = 0 for n = 0 and E(πR) > 0 for n > 0. 

A.7 Proof of Proposition 4. 

 Solve for profits based on incorrect coefficients to the regression equation (8).  Let 1ĉ  

be the traders’ estimate of c1.  The coefficient 2B̂  = B2( 1ĉ ) = b2( 1ĉ ) as expressed in (A.4).  

Recall assumptions B3 = 0, B1(c1t) + B2(c1t) = 1/(R-1), and c2t = -B2(c1t)c1t.  From (7) and (10), 

  12 )ˆ)1/(( +ε−−βθ= t
FF BRRq  and 

  11 ))1(ˆ( +ε−−θ= t
RR Rcq . 

The assumptions produce ttt Rpdp −+ ++ 11  = 12 ))1/(1( +ε−− tBRR .  Use (17) to obtain 
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  2
22

2 )ˆ)1/(1)(ˆ)1/(()( εσ−−−−βθ=π BRBRRE FF  and 

  2
21 )ˆ)1/(1))(1(ˆ()( εσ−−−−θ=π BRRcRE RR . 

Both qF and qR equal zero at 1ĉ  = −
1c  = (R-1).  Let )(1 nc+  indicate the value of 1ĉ at which 

)ˆ)1/(1( 2BR −−  = 0.  The closed form expression is needlessly long, but )(1 nc+  is increasing 

in n as plotted in Figure 3 using parameters employed in the body of the paper. 

 Also needlessly complex to include are the first and second derivatives of D(n,c1) taken 

with respect to c1.  Dc(n, 1ĉ ) < 0 at 1ĉ < c1, Dc(n, 1ĉ ) = 0 at 1ĉ = c1, and Dc(n, 1ĉ ) > 0 at c1 < 

1ĉ < 1c . Dcc(n, 1ĉ ) > 0 for all c1.  D(n,c1) → ∞ as c1 → 1c . 

 



31 

References 

Barberis, N., Shleifer, A., 2003. Style investing. Journal of Financial Economics 68, 191-199. 

Blume, L., Easley, D., O’Hara M., 1994. Market statistics and technical analysis: The role of 

volume. The Journal of Finance 49(1), 153-181. 

Börgers, T., Sarin, R., 1997. Learning through reinforcement and replicator dynamics. 

Journal of Economic Theory 77, 1-14.  

Branch, W., McGough, B., 2003. Replicator dynamics in a cobweb model with rationally 

heterogeneous expectations, working paper. 

Bray, M., 1982. Learning, estimation, and the stability of rational expectations. Journal of 

Economic Theory 26, 318-339. 

Brock, W.A., Hommes, C.H., 1998. Heterogeneous beliefs and routes to chaos in a simple 

asset pricing model. Journal of Economic Dynamics and Control 22, 1235-1274. 

Brock, W.A., LeBaron, B., 1996. A dynamic structural model for stock return volatility and 

trading volume. The Review of Economics and Statistics V#, 94-110. 

Brown, D.P., Jennings, R.J., 1989. On technical analysis. The Review of Financial Studies 

2(4), 527-551. 

Cheung, Y.W., Friedman, D., 1998. A comparison of learning and replicator dynamics using 

experimental data. Journal of Economic Behavior and Organization 35, 263-280. 

de Fontnouvelle, P., 2000. Information dynamics in financial markets. Macroeconomic 

Dynamics 4, 139-169. 

Droste, E., Hommes C.H., Tuinstra, J., 2002. Endogenous fluctuations under evolutionary 

pressure in Cournot competition. Games and Economic Behavior 40, 232-269. 

Grossman, S.J., Stiglitz, J.E., 1980. On the impossibility of informationally efficient markets. 



32 

The American Economic Review 70(3), 393-408. 

Grundy, B.D., McNichols, M., 1989. Trade and revelation of information through prices and 

direct disclosure. The Review of Financial Studies 2(4), 527-551. 

Hellwig, M.F., 1980. On the aggregation of information in competitive markets. Journal of 

Economic Theory 22, 477-498. 

Hong, H., Stein, J.C., 1999. A unified theory of underreaction, momentum trading, and 

overreaction in asset markets. The Journal of Finance 54(6), 2143-2184. 

Hopkins, E., 2002. Two competing models of how people learn in games. Econometrica 

70(6), 2141-2166. 

Hussman, J.P., 1992. Market efficiency and inefficiency in rational expectations equilibria. 

Journal of Economic Dynamics and Control 16, 655-680. 

Marcet, A., Sargent, T.J., 1989a. Convergence of least squares learning mechanisms in self-

referential linear stochastic models. Journal of Economic Theory 48, 337-368. 

Marcet, A., Sargent, T.J., 1989b. Convergence of least-squares learning in environments with 

hidden state variables and private information. The Journal of Political Economy 97(6), 

1306-1322. 

Routledge, B.R., 1999. Adaptive learning in financial markets. The Review of Financial 

Studies 12(5), 1165-1202. 

Sethi, R., Franke, R., 1995. Behavioural heterogeneity under evolutionary pressure: 

Macroeconomic implications of costly optimisation. The Economic Journal 105, 583-600. 

Taylor, P.D., Jonker, L.B., 1978. Evolutionary stable strategies and game dynamics. 

Mathematical Biosciences 40, 145-156. 

Timmermann, A., 1996. Excess volatility and predictability of stock prices in autoregressive 



33 

dividend models with learning. Review of Economic Studies 63, 523-557.



34 

Table 1. Asymptotic behavior in simulation 

Simulation duration is T = 200,000 with ρ = 0.1.  The population means and standard 

deviations for the endogenous parameters are estimated from the last 10,000 observations 

of the simulation. 

Coefficient Mean Std Dev Mean Std Dev Mean Std Dev
c 1 0.0581 0.0004 0.1722 0.0003 0.0098 0.0001
c 2 -0.5114 0.0077 -1.5973 0.0061 -0.0033 0.0073
c 3 --- --- --- --- 0.5080 0.0049
B 1 8.8080 0.7745 10.9712 8.0724 0.0309 0.9518
B 2 41.1945 0.3860 39.0224 4.8968 49.8176 0.6455
B 3 0.0031 0.7749 0.6507 8.1448 0.2982 1.0869
b 3 -0.9874 0.0219 -0.6346 0.2216 -0.9615 0.0264
n 0.1236 0.0014 0.4150 0.0826 --- ---

µ = 1/t µ = 1 Full Information
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Figure 1:  Comparison of the REE predicted values (solid black lines) to the terminal values of endogenous price parameters from 
simulation with 10,000 periods (data points).  For b3, a line at –1 is also included.  The simulations consist of 20 random draws of a 
dividend series.  Each series is examined for 0 < n ≤ 1 using an incremental step size of 0.01. 
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Figure 2:  Time series reflecting model behavior at b3 = –1 boundary.  n = 0.05 < n, b3 = -2.0938, c1 = 0.0372.  Top frame b3t, middle 
frame c1t, bottom frame pt - pt

F. 
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Figure 3: The phase space for the two processes, nt (population) and c1t (learning).  E(∆ tc1 )=0 at c1t = c1(n).  E(∆nt)=0 at c1t = −

1c and 
c1t = +

1c .  Above 1c  is the infeasible region.  For n < n the learning process is unstable at the REE fixed point. 



38 

 
Figure 4:  Plot of REE fixed point )( FE π  and )( RE π  (solid black lines) and simulation average realizations of Feπ  (○) and Reπ  (+) 
computed from the last 1,000 periods of 20 10,000 period simulations.  Each series is examined for 0 < n ≤ 1 using an incremental step 
size of 0.01. 
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Figure 5: Phase plot in (nt, c1t – c1(n)) space.  Sample convergence of a simulation towards (n**, *

1c (n**)-c1) = (0.1236,-0.006).  
Starting value n0 = 0.75, and µt = 1/t. 
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Figure 6: Final 5,000 observations of a T = 600,000 simulation.  Starting value n0 = 0.75, µ = 1, ρ = 0.1. 
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Figure 7: Traders access both fundamental and market information.  Final 5,000 observations of T = 200,000. 


