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ABSTRACT. This paper studies the dynamics of the traditional cobwedehwith
risk averse heterogeneous producers who seek to learnstiibuliion of asset prices
using geometric decay processes (GDP)—the expected meavagance are esti-
mated as a geometric weighted average of past observatiwits-either finite or
infinite fading memory. With constant absolute risk avemsithe dynamics of the
nonlinear model can be characterized with respect to thgthesf memory window
and the memory decay rate of the learning GDP. The dynamsabf heterogeneous
learning processes and the capacity of the producers todeadiscussed. It is found
that the interaction of heterogeneity, risk aversion, menuzcay rate and window
length of the GDP play a complicated role on the price dynaroicthe nonlinear
cobweb model. In general, an increase of the memory decaylays a stabilizing
role on the local stability of the steady state price whemtieenory length is infinite,
but this role becomes ambiguous when the memory is finite.
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1. INTRODUCTION

Recent years have seen a great deal of research into the idgnafhreconomies
populated by boundedly rational heterogeneous agentsayand Huang (1990)),
Brock and Hommes (1997)). In this paper, we introduce bodiydational hetero-
geneous agents into the traditional cobweb model. In pdaticwe analyze the in-
teraction of heterogeneity, agents’ risk aversion and tgtempts to learn from past
time series of prices. We show that, on the one hand, heteeoges learning can help
agents to learn the rational equilibrium in some cases, @wotier hand, such learning
can lead to market instability and to periodic, or even cicaptice fluctuations.

For the well-known cobweb model with linear supply = ag; + b and demand
pr = aq; + 1, where,q, andp, are quantities and prices, respectively, at petigd
is the price expected at timebased on the information at— 1, anda, b, u (> 0)
anda < 0 are constants, it is well known that, under the naive expectacheme
P = pi_1, the price either converges to the market equilibrium (Whefu| < 1)
or explodes (whena/a| > 1). To obtain more realistic, bounded oscillatory, price
time paths, the literature has introduced non-linearitiés the cobweb model. Such
nonlinearities can come from either nonlinear supply or @edncurves, risk aversion
(discussed in what follows), or agents’ heterogeneitynoleadl rationality and various
learning processes.

When the producers are homogeneous, it has been shown #émis’agxpectations
and non-linearities in the supply or demand curves may leadcobweb model to
exhibit both stable periodic and chaotic behavior (e.gtséin (1983), Jensen and Ur-
ban (1984), Chiarella (1988), Holmes and Manning (1988)mhh@s (1991, 1994,
1998), Puu (1991) and Day (1992)). These authors considariety of backward
looking mechanisms for the formation of the expectatiphsanging across the tra-
ditional naive expectatiop; = p; |, learning expectations (e.g., learning by arith-
metic meanp; = (p,—1 + --- + p,—1)/L) and adaptive learning expectatiph =
pi o+ w(pr1 —p§ ) with0 < w < 1. Assuming bounded rationality of agents,
Hommes (1998) even shows that such simple expectation gsheam be consistent
with rational behaviour in the nonlinear cobweb model.

When producers are somewhat uncertain about the dynamthe economic sys-
tem in which they are to play out their roles and exhibit baahdationality, they
need to engage in some learning scheme to update theirdoefigfong various pos-
sible learning schemes, the properties of recursive legrprocesses under homo-
geneous expectations have been studied extensively Beay.,(1982, 1983), Evans
and Ramey (1992), Balasko and Royer (1996), Evans and Hohfa1994, 1995,
1999), Barucci (2000, 2001)). In Bray (1982, 1983) and ExaartsHonkapohja (1994,
1995), the agent’s expectation is computed as the aritoraegirage of all the past ob-
servations with full memory (the same weight is employeddach observation). In
Balasko and Royer (1996), agents’ expectations are updgtdidite recursive least
squares processes (using a moving average of thehparstes) and it is found that
an equilibrium which is stable under learning with finite nagn/ is also stable for a
finite memoryh’ with o’ > h. Their results are extended further in Chiarella and He
(2003) to more general finite recursive processes with nonnegateights and it is
found that the stability of equilibrium depends on the wéigghvector and that com-
plicated dynamics can be generated. In Barucci (2000, 2@@&nts’ expectations are
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computed as a weighted average of all the past observatitimaevfull memory. The
weights of the average are described by a geometric progtsa vatio smaller than 1
and therefore, the weights for older observations are smalhn the weights for recent
observations. As pointed by Barucci (p.234, 2001), theawifes of a fading memory
learning mechanism ar@ppealing because...the assumption of a constant weaght f
past observations is not fully plausible from a behaviomahpof view. As a matter of
fact, agents do not stop to learn as time goes on and the\etfagmote observations”.
For a class of nonlinear deterministic forward-looking m@mmic models under fading
memory learning, Barucci shows that the decay rate of the angwf the learning
process plays a stabilizing role—an increase of the memecgaylrate enlarges the
local stability parameter region of the perfect foresightisnary equilibria.

Brock and Hommes (1997) study heterogeneity in expectétionation by intro-
ducing the concept addaptive rational equilibrium dynamics (AREDO)hey consider
a cobweb model in which agents choose a predictor from a fseitef expectations
functions of past information and update their beliefs divee according to a publicly
available ‘fitness’ measure. They demonstrate the so cedliéahal route to random-
ness This framework has been extended further to the heteragsneobweb model
by allowing more types of agents(e.g. Branch (2002) and @kicat al (2000, 2003))
and various learning among heterogeneous agents (e.gelldni@and He (2008)).

Nonlinearity can also come from considerations of risk asl aversion, as dis-
cussed in Boussard and Gerard (1991), Burton (1993) andsBaii§1996). Boussard
(1996) points out that with risk averse producers, the tiaal linear cooweb model
becomes nonlinear. By assuming that the actual prids uncertain so that; has
meanp, and variancey;, Boussard (1996) shows that, under the simplest learning
schemey; = p andy, = (p,_1 — p)? with constanp, the nonlinear model may result in
the market generating chaotic price series, and marketéiand therefore the source
of risk is the risk itself (p.435, Boussard (1996)). Consayly, the studycasts a new
light on expectations. Not only are expectations pertginmean values important
for market outcomes. Those pertaining to variability carjusg as crucial’(p.445,
Boussard (1996)).

Apart from Boussard (1996), the focus in the expectationsébion literature has
been on schemes for the mean, with very little attentiondpaid to schemes for the
variance. Chiarella and He (2000) extend Boussard’s fraomein a way that takes ac-
count of the risk aversion of producers and allows them tionegé both the mean and
variance via an arithmetic learning procesd. ). They show that the resulting cob-
web dynamics form a complicated nonlinear expectationdlfaek structure whose
dimensionality depends upon the length of the window of pases (the lag length)
used to estimate the moments of the price distributions. fliund that an increase of
the window length can enlarge the parameter region of thed kiability of the steady
state and, at the crossover from local stability to localahsity, the dynamics exhibit
resonance behavior which is indicative of quite complidatgnamical behavior, and
even chaos (for the model with constant elasticity suppty@mand functions).

Motivated largely by the above literature in heterogenemysectations and learn-
ing, this paper aims to study the dynamics of the cobweb mwidlerisk averse hetero-
geneous producers who adopt fading memory learning prese¥ge first extend the
homogeneous model in Chiarella and He (2000) to incorpdretierogeneous agents.
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By allowing the heterogeneous producers to follow geometeicay (learning) pro-
cessesGDP, see Section 2 for definition), we then study the role of thenory
decay rate on the price dynamics. It is found that, when thmaong is infinite, an
increase of the memory decay rate plays a stabilizing rolnerocal stability of the
steady state price, as also found in Barucci (2000, 2001 hvegents are homoge-
neous. However, the effect of the memory decay rate becoasssclear when the
memory is finite. The heterogeneity has a double edged effethie price dynamics
in the sense that heterogeneous learning can stabilizéhannase unstable dynamics
in some cases and destablize an otherwise stable dynanotisencases as well. It
is shown that (quasi)periodic solutions and strange (on etaotic) attractors can be
created through Neimark-Hopf bifurcations when the meni®igfinite and through
flip bifurcations as well when the memories are finite. In &ddi it is found that the
source of risk is the risk itself, as pointed out in Boussd@Pg), in the sense that the
behaviour of producers in response to risk can generateatnfailure.

The paper is organised as follows. A general cobweb moddél eterogeneous
producers is established in Section 2. The heterogeneausejac decay (learning)
processes (GDP) is introduced, and the existence of st&atky{rational equilibrium)
is also discussed. Section 3 considers the dynamics of teedgeneous model with
standard arithmetic learning process (ALP) as a specia chthe GDP with finite
memory. Then the dynamics of the model with heterogeneous f8Dboth finite and
infinite memories are analyzed in Sections 4 and 5, resgti®ection 6 concludes
the paper.

2. CoBWEB MODEL WITH HETEROGENEOUSPRODUCERS

This section sets up a cobweb model in which therehapeoducers who are het-
erogeneous in their risk attitudes and in their formulatbthe expected mean and
variance. In the case of linear supply and demand functtbesnodel may be written
as

Supply: p§, =aigi;+0b;, (i=1,2,---,h); 2.1)
Demand: p;, =ag+p (o <0), '

whereg; is the aggregate supply;; andp;, are the quantity supplied and price ex-
pected of producerat timet based on the information settat 1, andp, is the market
price, andu;, b;, 1 (> 0) anda < 0 are constants.

From the perspective of their information set at 1, the pricep, is uncertain so the
heterogeneous producers trggtas a random variable drawn from a normal distribu-

tion whose mean and variance they are seeking toearn

2.1. Market Clearing Price and Heterogeneous Model. Let p,, andv;, be, respec-
tively, the subjective mean and variance of expected pricef producer: formed at
time ¢ based on the information settat 1, andg; be quantity at time. With constant
absolute risk aversiod;, the marginal revenue certainty equivalent of producisr

L1t would of course be preferable (and more in keeping with ei®df asset price dynamics in continu-
ous time finance) to treaf , as log-normally distributed. However this would then moseout of the
mean-variance framework so we leave an analysis of thisoagprto future research.
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given by
Dit = Dig — 240145z (2.2)
Assume a linear marginal cost, as in (2.1), so that the sugapigation, under marginal
revenue certainty equivalence, becomes
Pit = Qi + b;. (2.3)
Equating (2.2) and (2.3) determines the supply for produesr
Dit — b;
= ———. 2.4
it a; + 2A1"(_)Z-’t ( )
Denote byn, the proportion of type producerd then the market clearing price is
determined b¥

pzt_b
; 2.5
,u+aZn ot A (2.5)

In the rest of this paper, the S|mplest heterogeneous mattetwo types of produc-
ers is considered. Then the population of heterogeneowkipeos can be measured

by a single parameter = n; — n,, which is the proportional difference between the
two types. Correspondingly, equation (2.5) can be rewritie

Do — bo
ag + 2A579,

Dt — b

—_ 2.6
a; + 24,014 (26)

= p+ S (1 +w) + 50w

2

2.2. Heterogeneous L earning Processes. The heterogeneous model (2.6) is incom-
plete until producers’ expectations are specified. In thisgn,geometric decay pro-
cesse$GDP) with either finite and infinite memory are assumed. More igedy, for
typei producers, the GDP with finite memory is defined by assumiagttie condi-
tional mean and variance of the price follows a geometribabdity distribution with
decay rate od, over a window length of;, that is,

_ o - ,] 1
Pig =mig—1 = DB, Z] 1 53 lpt—ja , 2.7)
Byt 8 ey — mag ],

whereB; = 1/(1 4 6; + 62 4+ --- + 6X 1), L; > 1 are integers, and; € [0,1] are
constants for = 1, 2. Two special cases of the GDP are of particular interest. Whe
41 = 4y = 0, the expectation of the mean follows the naive expectatjon= p;_,

Vit = Vi1

2With constant absolute risk aversiah, we assume the certainty equivalent of the receipts pq is
R(gt) = pi,,qt — Aivi¢qi. Then maximisation of this function with respectgoleads to the marginal
revenue certainty equivalepf = g—£ = Piy — 24;0;,:q;. We recall that this objective function is
consistent with producers maximising the expected utilftyeceipts functiod/; (r) = —e =47,

3In general, the proportion; is a function of timet, that is,n; ¢+, which can be measured by a cer-
tain fithess function and discrete choice probability, aBriack and Hommes (1997). Because of the
complexity of the analysis, we consider only the case withdiproportions and leave the changing
proportion case for future work.

“From (2.1) and (2.4), the aggregate supply is giveqby 3 nigit = (pr — p) /e, from which (2.5)
follows upon use of (2.4).
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andv;; = 0. Whend, = é, = 1, the GDP (2.7) is reduced to the standardhmetic
learning process (ALP)

L; L
1 1 9

_1' - — s _1‘ = — _1‘ — D4l 2.8

Dit Li;pt j Vj ¢ L ;[p bt Pt ]] ( )

As memory becomes infinite, that is, As — oo, it is shown (see Appendix A) that,
as a limiting process of GDP with finite memory, the GDP witfinite memory has
the form ( )
Mig = 0imyy—1 + (1 —0;)py
: ’ ’ 2.9
{ Vig = Oivig 1+ 0i(1 — &) (pe — miy 1) (2.9)

2.3. Existence of the Unique Steady State Price. Denote byp* the state steady price
of the GDP model with finite memory. It is found from (2.6) thatsatisfies

o b= 5l +w)gt + (1 —w)g]
P T T e+ w) i+ (1—w)i]

az

(2.10)

For the GDP model with infinite memory, the state steady is@iy (p:, mi+, vii) =
(p*,p*,0).

In the following sections, the dynamics of the heterogesenadel (2.6) are studied
first when agents update their estimates of both the mean anahee by using the
ALP (2.8). The analysis is then generalised to the GDP (2iff fimite memory and
(2.9) with infinite memory .

3. DYNAMICS OF THE HETEROGENEOUSCOBWEB MODEL WITH ALP

As a special case of the heterogeneous model with finite GiddPséction focuses
on the case where producers have full finite memory aboutigter of prices, that
isd; = 69 = 1. Correspondingly, the GDP is reduced to ALP, which has basied
in the recent literature (e.g. Balasko and Royer (1996) dmdr€lla and He (2003).
Without loss of generality, we assunie < L, and denote. = max{L, Ly} =
L,. Because of the dependence of the subjective npeamd variances;, on price
laggedL periods, equation (2.6) is a difference equation of oidésee system (B.2)
in Appendix B).

The local stability of the unique steady state= p* is determined by the eigenval-
ues of the corresponding characteristic equation (equéli) in Appendix B), which
is difficult to analyze in general. The following discussitinst focuses on the case
whenL,; = L, = L and then some special cases wlher# L, andLq, L, = 1,2, 3, 4,
in order to gain some insights into the effect of differing langths on the regions of
stability and the types of dynamic behaviour that may oc@s.indicated from the
following results, the local stability of the steady stagpdnds on various parameters,
including those from supply and demand functiensas, «, the proportional differ-
ence parameter, and the window lengthg, andZ, used by the heterogeneous pro-
ducers. The discussion here focuses on two different asp@ct the one hand, for a
fixed window length combination df.,, L,), we consider how the demand parameter
« and the proportional differenee of producers affect the local stability of the steady
state and bifurcation. On the other hand, for a set of fixedrpaters, we examine
how these results on the local stability and bifurcationadfected by different combi-
nations of the window lengths. It is found from the followidgscussion that both the
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local stability region and bifurcation boundary are geaioelly easy to construct by
using parameters, andp3,, defined by
(0%

B = (1+w), By =

2@1

(6]

20, (1—w), (3.1)
instead ofw and«. However, the one-one relation (3.1) betwden«) and (3, ()
makes it possible to transform the results between therdifteset of parameters and
to preserve the geometric relation of the local stabilityioas between the two sets
of parameter. In the following discussion, for the reason just stated, rémilts are
formulated in terms of3;, /3;), although some of the stability regions are also plotted
using(w, ).

3.1.Case 1: L = Ly, = L. When both types of producer use the same window
length, thatid., = L, = L, using the Lemma in Chiarella and He (2@)3 relatively
complete result on both the local stability region of theadiestate and the types of
bifurcation for general lag length can be stated as follows.

Proposition 3.1. For the nonlinear system (2.6), assume producers follow Ah&
L, = L, = L. Then the steady stage is locally asymptotically stable (LAS) if

, ie., 0<pB1+ 0y < L. (32)

Furthermore, the boundary; + 3, = L defines a : (L + 1) resonance bifurcatiof.

In terms of the effect of lag length on the local stability region of the steady state,
an analysis on the stability boundaty+ 3, = L leads to the following Corollary (see
Chiarella and He (20G8 for more discussion).

Corollary 3.2. For the nonlinear system (2.6), assume producers follow &idP., =
L, = L. Then, in terms of the parametatisand w, increasingL can stabilise the
otherwise unstable steady state.

To illustrate the periodicity of different resonance bdations, typical time series
for L = 2,5 and10 are plotted in Figure 3.1. Similar plots (not reported hare)also
found wheru; # as.

5Note that the determinant of the Jacobian of the transfoomé3.1) does not change the sign, implying
the preservation of the transformation.

8Resonance bifurcations occur when the eigenvalues lie @mitit circle. When3; + 8. = L, the
eigenvalues are given by, = e?*#7 with = 1/(L+1). Geometrically, the. eigenvalues correspond
to the L + 1 unit roots distributed evenly on the unit circle, excludikg= 1. WhenL = 1, a flip or
period-doubling bifurcation occurs. Whdh = 2, according to Kuznetsov (1995), the bifurcation is
known as a 1:3 strong resonance, leading to two sets of peénied cycles with one set stable and other
set unstable (see Chiarella and He (2000) for more det&its)L > 2, according to Sonis (2000), the
bifurcation is given byl : L + 1 periodic resonances. Fdrn, = L, = L = 3,4, instability of the
steady state leads to 1:4 and 1:5 periodic resonance hifomsarespectively, and similar dynamics to
1:3 resonance bifurcation are also found. Theoreticalyaigafor such types of bifurcation of higher
dimensional discrete systems can be exceedingly comgtiGaid not yet completely understood, (see
Example 15.34 in Hale and Kocak (pp. 481-482, (1991)))



8 CHIARELLA, HE AND ZHU

B

10
> o
-10

zo

o

-zo

—ao

o

-so
=9

-100

_1so " " " s
asso0 aosa acas t asoz= acooe soo00

FIGURE 3.1. Time series plots of the nonlinear system (2.6)Ifot
2, a = —2 (the upper panel)l. = 5, « = —4.5 (the middle panel); and
(c) L =10,a = —9 (the lower panel). Heré = 11,a; =a; =1, A =
0.005,w = O,bl =by=0 andL1 =L, =L=2.

3.2.Case 2. Ly # L. ForL; < L, = L, comparing with the case df; = L,

the local stability regions of the steady state and bifiocaboundaries for different
combination of lag lengths have less clear features andcethbecome very compli-
cated and difficult to analyse in general. A detailed analgsithe stability conditions
and types of bifurcations fok; = 1,2,3,4 (i = 1,2) can be found in Chiarella, He
and Zhu (2003) and the stability results are illustratedigufe 3.2. Denote by, 1,

the local stability region in terms of parametérs, 5;). In general, an increase of
window length (eithet.; or L,) enlarges the parameter region of the local stability of
the steady state in general (el®y,, C D13 C D14 C Doy, Doy C Dsy). However, this

is not always true, such &3> ¢ Di3, D1o € Do, D3y € Daa.

Pa o
D
3 r___li_ -—q 4
\ D2% \ D5
\ : NS
28351 N
\\\\Dlgl : D 2 \\ D44
Y | ” D4|D, "\
1 \\ \I‘\ | \\
\J N\ | \
D\ \\: AN

FIGURE 3.2. The local stability regionBy,, 1, of the steady state and
bifurcation boundaries for varioug.;, L,) with L; < L, = 1,2, 3.

Types of bifurcationFor (L,, L,) = (1,2),(1,4), (2,3) and(3, 4), the steady state
becomes unstable through either a flip or Hopf bifurcationwelver, for(L,, Ly) =
(1, 3), the stability region is bounded by the flip bifurcation bdary only, while for
(L1, Ly) = (2,4), the stability region is bounded by the Hopf bifurcation bdu
ary only. The variety of types of bifurcation and complexdl the dynamics is
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FIGURE 3.3. The local stability regions of the steady state of the
nonlinear system (2.6) for (&)L, L) = (1,2) and (b) (L, Ly) =
(1,3) in (a, w) plane with parameters = 11,a; = 0.8,a, = 1, A =
0.005,b; = by = 0.

(p7q) P (ﬂlaﬂ?) (w,a)
1,2 2 @,2) (-0.43,-2.8)
1,3) -1 0, 2) (-1,-2)

(2,5),(3,5)| -1.618 | (0.618,2) | (-0.60357, -2.49)
0=12 -1.7164| (0.7164, 2)| (-0.554517, -2.57

TABLE 1. Parameter values for various resonance and quasi-
periodic bifurcation along the Hopf bifurcation boundaoy ALP with
(Ll,LQ) = (1, 2) anda1 =0.8,as = 1.

demonstrated through the cade, L,) = (1,2) in the following discussion (for the
case(Ly, L) = (2,3), see Chiarella, He and Zhu (2003) for more details.). For
(L1, Ly) = (1,2), the stability regionD,, = {(51,52);0 < f < 1,0 < [y < 2},
which can be transformed to the parameter sgacev), indicated in Figure 3.3(a).
Along the boundarys; = 1,8, € [0,2], one of the eigenvalues i = —1, im-
plying that a flip bifurcation occurs along this boundary.oAd the other boundary
By = 2, € [0,1], the two eigenvalues, , = > satisfyingp = \; + Ay =
2cos(2m0) = —(B1 + (2/2), A2 = (/2 = 1, and hence, the Neimark-Hopf bi-
furcation boundary is defined byi = —1 — p, 5, = 2. It follows from 5, € [0, 1]
thatp € [—-2, —1]. The nature of the Neimark-Hopf bifurcation are determibgdhe
value off and hence op. Foré = p/q, a rational fraction, the so-called: ¢-periodic
resonance occurs. #fis an irrational number, then one obtains quasi-perioditsr
Table 1 sets up some of the corresponding parameter valyes a@f which give dif-
ferent types of resonance orbits (with ¢) = (1, 2), (1,3), (2,5), (3,5), (1,5), (4, 5)),
and one quasi-periodic orbit (with= v/2).

The above local bifurcation analysis and the variety of $ypEbifurcation along
the Neimark-Hopf boundary are demonstrated by our numesioaulations of the
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FIGURE 3.4. The time series (the left panel) and phase plots (the
right panel) of periodic resonances of the nonlinear sys&6) with
(p,q) = (1,3) and (2, 5), and quasi-periodic resonance With /2 for
Li=1,Ly=2andf =11,a; =0.8,a5 =1, A = 0.005,b; = by = 0.

nonlinear cobweb system (2.6) when the parameter valuesbaeted as indicated by
Table 1. Pointd), B andC' in Figure 3.3(a) correspond fio: 3 and2 : 5 resonances,
and quasi-periodic closed orbit, respectively. For ih@ues near the steady state,
the corresponding time series converge to the three tinnessalotted in the left panel
in Figure 3.4. Corresponding to poift and B, (p,q) = (1,3) and(2,5) or (3,5),
respectively, and the periodicity of the cycles of the timdes are clearly identified
by the time series (on the left panel) and phase plot (on gt panel) in Figure 3.4.
In fact, for the pointB, the phase plot indicates clearly two sets of period 5 cyétes
the pointC, § = v/2, solutions with initial values near the steady state caywén the
quasi-periodic time series, on the bottom left panel. Thesgperiodicity of the time
series is identified by the closed orbit of the phase plot,henbiottom right panel in
Figure 3.4.

For fixeda = —2.494 and(L,, L,) = (1,2) and(1, 3), bifurcation diagrams with
respect to the proportional population difference parametre plotted in Figure 3.5.
For (L, Ly) = (1, 3), the local stability region of the steady state of the nadirsys-
tem (2.6) is shown in Figure 3.3(b). In this caseyancreases, instability of the steady
state leads to a flip type of bifurcation for a wide range of paeameter, as indi-
cated in the upper panel of Figure 3.5. However,(for, L,) = (1,2), asw decreases
(from w = —0.5), instability of the steady state leads to more complicatedi richer
dynamics, indicated by the bifurcation diagram over thgeaofw € (—1,—0.6) in
the lower panel of Figure 3.5.

In summary, for the nonlinear cobweb model with ALP, an iaseof lag lengths
plays a stabilizing role and the steady-state can becomahlaghrough Hopf bifur-
cations only when both lags are the same. However when bgshaliee different, the
stabilizing role becomes less clear and more complicateld &ither flip and Hopf
bifurcation possibly occurring. Thus we may conclude thetelogeneity can stabi-
lize an otherwise unstable dynamics in some cases and destaln otherwise stable
dynamics in other cases.
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FIGURE 3.5. Bifurcation diagrams for fixed = —2.494 and (a)
(Ll,LQ) = (1,3), (b)(Ll,LQ) = (1,2), wheref = 11,a; = 0.8, a5 =
1,A == 0005,61 == bg = 0.

4. DYNAMICS OF THE HETEROGENEOUSMODEL WITH FINITE MEMORY GDP

This section focuses on the dynamics of the nonlinear cobwetbel (2.6) when
producers follow the GDP with finite memory and different danv lengths’;. In the
following discussion, we consider the cage= L, = L first and then the cask, #
L,. Because of the advantage of being able to easily displayethdts graphically,
the analysis is again formulated in termg 6f, /32).

4.1. Casel: L, = L, = L. Consider first the case when both types of producer use
the same window length, thatis = L, = L, but different decay rate@;, J,).

4.1.1. Local Stability and Bifurcation AnalysisThe simplest case af = 1 can be
treated as special case of GDP when the decaydrate 0, that is, agents use the
traditional naive expectation, taking the latest price lasrtexpected price for the
next period. In this case, the condition for local stabilgy) < 5, + 82 < 1 (see
Proposition 3.1) the steady state becomes unstable th@élighbifurcation, leading
to a two-period cycle of two prices, one is above and one isvbé¢he steady state
price.
In the casd. = 2, the following result can be stated.

Proposition 4.1. For L; = L, = 2, the local stability regionDs, (51, ;) of the state
steady is defined bfys = {(51, f2) : A1 < 1, Ay < 1}, where

0 o _1-46 1—96

“Tae 0 T T e A2_1+51ﬂ1+1+52ﬂ2'
Furthermore, a flip and Neimark-Hopf bifurcation occurs adpthe boundary\; = 1
andA; = 1, respectively.

Ay

Proof. See Appendix C.1. O
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Comparing with the case df = 1, the parameter (in terms ¢f;, 5;)) region on
the local stability of the steady state is enlarged.ascreases fronl. = 1to L = 2.
Hence agents can learn the steady state price over a widmregparameters as they
follow the GDP with, = 2. However, as we shall see, these learning process, can
generate far more complicated dynamics when the stea@dysiae becomes unstable.
To understand the effect of parametgtsand d; (i = 1,2) on the stability of the
state steady and types of bifurcation, we now undertake & metailed analysis by
considering various cases in terms of the parameters.).

5 I';: Flip curve
3=+ 1 ! I',: Hopf curve
2b——— L T

N[ —— = = —
[

1
3

FIGURE 4.1. Stability region and bifurcation boundaries for =
L2:2,61:(52:(5andﬁ:ﬁ1+ﬁ2.

The casé; = J, = ¢: In this case, from Proposition 4.1, the stability regiortrod
state steady can be characterized by two paramgtarglé with Doy = {(51, B2) :
0<B=p+p<Blandf = fors < land3 =1 for§ > L. Inthis case, a
flip bifurcation occurs along the boundary

I :B=(1+0)/(1-9), §€[0,1/2],
and a Neimark-Hopf bifurcation occurs along the boundary
[y: = (1+0)/9, § € (1/2,1], p=—1/6 € (-2, —1].

The stability regionD,, is plotted in Figure 4.1, indicating various effects on sta-
bility of the decay rate:

(i) for 6 € [0, 5], the stability regionD,, in terms of the parametgt is enlarged
aso increases, and the steady state price becomes unstahlghitadlip bifur-
cation (implying a two-period cycle).

(ii) for o € [%, 1], the stability regionDs, in terms of the parametet is enlarged
aso) decreases, and the steady state price become unstablghladieimark-
Hopf bifurcation, which in turn generates either periodycles or aperiodic
orbits.

(i) for 6 = 0, we have the smallest parameteregion for local stability:0 <
B < 1; while for § = 1/2, we have the largest parameteregion for the local
stability: 0 < g < 3.

Note that functiong (z) = L g(x) = 122 satisfy f' > 0, f > 0,9’ < 0,9” > 0.




COBWEB MODEL; BOUNDEDLY RATIONAL HETEROGENEOUS PRODUCERS 13

o Ba
1+4-46: 1
15, . 1+3
flip curve Hopf curve
149 A il B
6, 1+ o1

(@) 01 # 02,0 < 01,05 < %

2 I3
1 146
1+ 32 1751

- Hopf curve

(€)1 # 02,01 < %752 >%

(b) 61 %52,% < 01,00 <1

_flip curve

~flip curve ~Hopf curve
140 ﬁl 1 ﬁl
=5, 1+35

(d) 61 # 09,01 > %,52 <%

FIGURE 4.2. Stability region and bifurcation boundaries for ax
01,02 < 1/2; (D) 1/2 < 61,02 < 1;(€) 0 < 6y <1/2 < 4y < 15 and (d)
0< (52 < ]_/2 < (52 <1, whereA : (/61,/62) = ((1-2(52)(1‘}‘(51)/((51 —
82), (1 —261)(1 4 d2) /(82 — 7).

The casé) < 61,0, < 1/2 andéd; # §,. In this case, it follows from Proposition
4.1 that the steady state becomes unstable through a fligcéifon only, as indicated
in Figure 4.2(a). Furthermore, as eithgror J, increases, the local stability region
Dy, of the state steady with respect to parametérs/,) is enlarged, as indicated in
Figure 4.3(b) where the stability region (i, 51, ,) is plotted for fixedds = 1/3.

The cas&),,d, > 1/2 andd, # 6. In this case, it follows from Proposition 4.1
that the steady state becomes unstable through a NeimarkHifarcation, as indi-
cated in Figures 4.2(b) and 4.3(a) where the stability megmo(d;, 51, 52) is plotted
for fixed 6, = 2/3. Along the bifurcation boundary, the nature of the bifuimatis
characterised by which satisfies (see Appendix C for the detajisE 2 cos(270) €
(—1/ min(él, 62)7 —]_/ max(él, (52))

The case eitheb < §; < 1/2,0, > 1/2 0r0 < 6, < 1/2,6; > 1/2. In this
case, the stability region is bounded by two bifurcationrmtaries, the flip bifurcation
boundaryA, = 1 and the Neimark-Hopf bifurcation boundaty = 1, as indicated in
Figures 4.2(c), (d) and 4.3(a)-(b). Also, the local st&pilegion in(5;, f2) is enlarged
as eithen, increases and, decreases a¥, increases andl, decreases.

Proposition 4.1 seems to indicate that/amcreases from 1 to 2, on the one hand,
the stability region is enlarged and, on the other handaimkty leads to a more com-
plicated price dynamics through either flip or Hopf bifuroat One may expect a
similar effect to occur a& increases from 2 to 3. However, the following Proposition
4.2 indicates that this may not be the case.
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Do
Neimark-Hopf bifurcation surface
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! | | |
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Do
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// ,/

———————————————— Neimark-Hopf bifurcation
(b) surrface

A

FIGURE 4.3. Stability region and bifurcation boundary surfaces fo
(@)d, = 2/3,and (b)j, = 1/3.

Proposition 4.2. For L; = L, = 3, the local stability regionD;3(5;, ;) of the state
steady is defined bfs; = {(/51, f2) : A3z < 1}, where

1=+ ¢ 1—62+6§5
146, + 62 1+0; 463 &
Furthermore, a flip bifurcation boundary occurs whag = 1.

B+

3

Proof. See Appendix C.1. O

Itis interesting to see that, similar to the casd.of 1, but different from the case of
L = 2, the steady state becomes unstable only through a flip bifiorcwhenL = 3.
Moreover, the parameter region for local stability is egéal as the decay ratés
increase. The stability regions are plotted in Figure 4.#(@); = 6, = 6, 5 = [1+
and Figure 4.4(b) fod; # J, and fixedd, = 1/2.
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B Ba B
1 1 N L=3
S
/: 0 : ——r=1
0 F----- %\'/5'—1 10
o 2
(a) (b) (©)

FIGURE 4.4. Stability region and bifurcation boundary (or surfgce
for L = 3 and (3)51 = (52 = (5,ﬁ = 51 —|—52, (b) 62 = 1/2, 61 € [0, 1]
(c) Comparison of the stability regions fér= 1, 2, 3.

A general comparison among = 1,2 and 3 may not be easy for variodsand
d,. However, such comparison wheén= 4, = § can lead to some insight regarding
the role of the decay rate on the price dynamics. In this dasestability regions for
L = 1,2 and 3 are plotted in Figure 4.4(c) . One can see that: (ij fer[0, 1/2], the
parametep region for the local stability of the steady state is enldrgsd increases,
L = 2 leads to the largest stability region, and the steady staterbes unstable
through a flip bifurcation; (ii) forv € (1/2,1], L = 2 gives a larger stability region
for 6 < (v/5—1)/2, while L = 3 gives a larger stability region far > (v/5 — 1)/2.

In addition, the steady state becomes unstable throughradseiHopf bifurcation for
L = 2, but a flip bifurcation for, = 3.

4.1.2. Dynamics of the Nonlinear System—Numerical Analyasillustrate the ef-
fect of the memory decay parameter on the dynamics, a bifarcdiagram with re-
spect to the parametéy is plotted in Figure 4.5 with parametets = L, = 2, a =
—25,w = —06, (51 = 015, a; = 0.8,@2 = 1,A1 = A2 = 0005,M = 11, bl = bg = 0.

In particular, ford, = 0.2 and0.88, the phase plots and the corresponding time series
are illustrated in Figure 4.6. Far = 0.2, the prices converge to a two-period cy-
cle, characterized by the flip bifurcation, while fyr= 0.88, the prices converge to a
closed orbit in the phase plot, which is characterized byNtienark-Hopf bifurcation.

It is interesting to see that the local stability conditiondébifurcation in Proposi-
tions 4.1-4.2 are independent of the risk aversion coeffisig; of the heterogeneous
agents. This is because these coefficients are associdtetheivariance, a higher
order term of the linearised system of the nonlinear systetineasteady state. In the
above simulations in Figures 4.5 and 4.6, both the risk aveefficients are small,
and hence the risk aversion and variance have no significtiménce on the price dy-
namics induced from local stability analysis. When age®eitsome more risk averse
and more closely balance both mean and variance, one wopdtethe price dynam-
ics to be stabilized in the sense that irregular price pagtesuch as quasi-periodic cy-
cles, with higher variability may become regular, such ades; with lower variability.
This can be verified (not reported here) for the case corretipg to the right panel in
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FIGURE 4.5. Bifurcation diagrams of the nonlinear systemdpwith
parametersy = —2.5,w = —0.6,0; = 0.15,a; = 0.8,a, = 1, A; =
A2 = 0005,/8: 11,[)1 - b2 - O,Ll :L2 = 2.
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P(t-1) - P(t-1)
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FIGURE4.6. Phase plot and time series of the nonlinear systemfor (a
0o = 0.2 and (b)d, = 0.88 with parameters. = —2.5, w = —0.6,; =
0.15,(11 = 0.8,(12 = ]_,Al = A2 = 0005,/1 = ll,bl = bQ = 0,L1 =

L2 - 2

Figure 4.6, in which the steady state price becomes unstatdlegh a Neimark-Hopf
bifurcation and prices converge to the aperiodic pattemaratterized by the closed
orbit on the phase plot for small risk aversion coefficiefits= A, = 0.005. As either

Aj or A, increases, the closed orbit becomes smaller (sayifoe A, = A = 0.01).
However, as4; increases further (say = 0.05) prices converge to, either aperiodic
cycles (characterised by closed orbits for the phase platk) lower variability for
initial values near the steady state price, or 3-periodasyalith higher variability for
initial values not near the steady state price. Similargodgnamics are also observed
whend;,d, > 1/2. This suggests that, when the steady state price becom&s uns
ble through a Neimark-Hopf bifurcation, an increase in isk aversion can stabilise
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otherwise unstable price patterns initially and even lgadsimple price dynamics.
However, this is not necessarily true when the steady stéate pecomes unstable
through a flip bifurcation.

40

30 -
20 - e

10 -
P({t)

o -
//////

10 -

-20 - 7

=30

T T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

FIGURE 4.7. Bifurcation diagram in parametdr= A; = A, with
parameters; = 0.15,9, = 0.02,a; = 0.8 < as = 1,w = —0.6,a =
—25,ﬂ = 11,b1 = b2 = O,Ll = LQ = 2.

For the set of parameters; = 0.15,6, = 0.02,« = —2.5,5 = 11,0y = by =
0,w = —0.6,a; = 0.8,a, = 1, local stability analysis implies that the steady state
price becomes unstable through a flip bifurcation whes small. This can be verified
for A; small (say4; = 0.005 or 0.05), as indicated by the bifurcation diagram in
parameterd = A, = A, in Figure 4.7. AsA increases, the prices converge to period-
4 cycle forA = 0.2, period-8 cycle ford = 0.35, period-16 cycle ford = 0.36, and
a strange attractor fod; = 0.5. This strange attractor and the corresponding chaotic
time series generated through such a flip bifurcatiordfoe= 0.5 are plotted in Figure
4.8.
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FIGURE 4.8. Phase plot and time series of the nonlinear system for
a=—-25w=-0.6,0; = 0.15,0o = 0.02,a; = 0.8,a3 = 1, A; =
AQ == 05,/6: 11,b1 == b2 == O,Ll = LQ == 2

Based on this analysis, one can see that, risk aversion hiffermt effect on the
price dynamics depending upon the type of bifurcation (flipgdopf) through which
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the steady state price become unstable. When the steae\pstz becomes unstable
through a Hopf bifurcation, as agents become more risk ay#rs price dynamics be-
come less complicated and the variability of the pricesdsiced. However, when the
steady state price becomes unstable through a flip biforceds agents become more
risk averse, the price dynamics become more complicatdeywagh the variability of
prices is reduced. It is in this sense that, as claimed by £0dg1996), the source of
the risk is the risk itself. Market price fluctuation and metrkailure can be generated
when agents become more risk averse. This result is unegant interesting, and it
underlines the connection between price dynamics genkbgtagents’ risk and types
of bifurcation.

4.2. Case 2. L, # L,. Consider now the case when both types of producer use the
different window lengthl,; # L, and decay rate@, d,).

4.2.1. Local Stability and Bifurcation AnalysisSiVhend; = 0, the GDP with(L,, L) =
(2,2) and(3, 3) are reduced to the GDP witli,, L,) = (1, 2) and(1, 3), respectively,
and the stability region and the bifurcation boundarie®in/s,, f,) parameters space
are plotted in Figure 4.9. FQL,, Ly) = (1, 2), the stability region is bounded by a flip
bifurcation surface fod, < 1/2 and both flip and Neimark-Hopf bifurcation surfaces
ford, > 1/2. For(Ly, Ly) = (1, 3), the stability region is bounded by a flip bifurcation
surface only.

Do

N W

44

A

(b)

FIGURE 4.9.  Stability region and bifurcation boundaries for (a)
(Lh LQ) = (15 2)’ and (b)(Lla LQ) = (17 3)

For(Ly, Ly) = (2, 3), the following result can be obtained.

Proposition 4.3. For L; = 2, L, = 3, the stability regionD,3(;, 32) of the steady
state is defined bpgg = {(ﬁl,ﬁg) : A7 < 1} for (51 € [O, 1/2] andD23 = {(51,52) :
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A7 < 1,Ag < 1} ford; € (1/2,1], where

1—4 1— 09+ 63
Ay = -
7 1+5151+1+62+5§52’

oy 9 0232 B (1—03)5s
Ag = _ |
e R L 1+52+5§<1+51+1+52+5§

Furthermore, foré; € [0,1/2], a flip bifurcation occurs along the boundary; =
1; while for §; € (1/2,1], both flip and Neimark-Hopf bifurcations occur along the
boundaryA; = 1 andAg = 1, respectively.

Proof. See Appendix C.2. O

Because of the nonlinearity ¢f in Ag, it is not easy to obtain a complete geometric
characterisation fof.;, = 2, L, = 3. Hence we rely on numerical simulation in the
following subsection to discuss the dynamics.

4.2.2. Dynamics of the Nonlinear System—Numerical Analy8®@.(L, L) = (2, 3),

we choose the set of parametéfs= 0.15,9, = 0.3,8 = 11,b; = by, = 0,w =
—0.6,a; = 0.8,a, = 1. Sinced; < 1/2, the steady state become unstable through a
flip bifurcation. It is found that the price behaviour gerteththrough bifurcation with
respect to the parameteris different from to that through bifurcation with respeat t
the risk aversion coefficients.

For fixed risk aversion coefficient$; = A, = 0.005, the price dynamics generated
through the bifurcation parameterare similar to the case @f.,, L,) = (1,3). That
IS, asa decreases, the steady state price becomes unstable aed poiverge to
2-period cycle, and then to aperiodic cycles (characteérisetwo coexisting closed
orbits), and then to simple periodic cycles again. In additithe variability of the
prices also increases aglecreases.

For fixeda. = —4, changing of the risk aversion coefficients can generatg nein
dynamics. For fixedd; = 0.05, the bifurcation diagram with respect to the parameter
A, is plotted in Figure 4.10. One can see that various types dkesyand strange
attractors can be generated as agents become more risk.avers

Instead ofy; = 0.15 < 1/2, we can select; = 0.6 > 1/2. In this case, the steady
state price can become unstable through either a flip or Hdpfclation. A similar
price pattern and bifurcation route to complicated pricaaiyics can be observed
(not shown here) as the risk aversion coefficients change.

5. DYNAMICS OF THE HETEROGENEOUSMODEL WITH INFINITE MEMORY GDP

From the discussion in the previous section, we can seelikdags involved in
the GDP can have different effects on the stability of thadyestate price and price
dynamics. In this section, we consider the limiting casemiath lags tend to infinity.
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FIGURE 4.10. Bifurcation diagram for parametés with parameters
(Ll,LQ) = (2,3), A1 = 0.05,& = —4,’11} = —0.6,(51 = 015,52 =
0.3, ap = 08, g = 1,/6 = ]_1, b1 = bQ =0..

Let §;, be the decay rate of ageiit memory. Then it follows from (2.9) that the
dynamics of the conditional meamn; , and variance; ; are given by

myy = o01myg—1+ (1 —61)pi1,
Mo, domao—1 + (1 —d2)pi_1,
vig = 010141+ 01(1—01)(pr — ml,t71)2a
Voy = O9Ug4—1 + 02(1 — 02)(pr — ml,t71)2-

(5.1)

Let z, = mu,ye = Moy, 2t = vig,ur = voy. Then, under the GDP with infinite
memory (5.1), the nonlinear cobweb system (2.6) is equivatethe 5-dimensional
system

bt = f(paxayazau)tfl

ry =611+ (1 — 01)pra

Y =01 + (1 — 82)pi—a (5.2)
z = 01z-1 + 01 (1 — 01)(pr — 24-1)?

up = douy1 + 0a(1 = 02)(pr — Y1),

where

.’L’—bl

) Yy —= b?
a1+ 2A,z

«
= —1(1 .
f(p7xayaz7u) /B+ 2 ( +U)) CL2+2AQZ

+(1—-—w

We can state the following result concerning local stapdid bifurcation.
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Proposition 5.1. The steady state pricg* of the nonlinear cobweb dynamics (2.6)
under GDP (5.1) is LAS if

2

8155(1 = 8) + 0o (1 — 8;) — L2 | (5.3)

+B2(1—89) + Bi(1—8y) <1+ @

Furthermore, the steady state becomes unstable throughraadeHopf bifurcation.
In particular, whens, = d, = 0, the steady state is stabledf= 3, + 8, < 1/(1 — ¢)
and becomes unstable through a Neimark-Hopf bifurcation.

Proof. See Appendix D. O

It is interesting to see that, when the memory is infinite, dteady state becomes
unstable through a Neimark-Hopf bifurcation only. It may he easy to see the effect
of the decay rates on the stability region from conditiol3)5but the condition when
), = 6 = ¢ indicates that the local stability parameter region in ®oh3 = 5, + 5
is enlarged a$ increases, as shown in Figure 5.1(a). In addition, the Istzdility
region becomes unboundedds~+ 1. This general feature also holds wh&n# ¢,
and this can be verified by numerical plots of the bifurcatsoimface (not reported
here). Hence in general it seems that the stability regienliarged as the decay rates
increase.

v v \ b—L=+tc

|

3 3t : S oA—L =

2 21—/ -~ L=
|

1 1 : L=1
|

) — 5
(51:(52:6 2
(a) (b)

FIGURE 5.1. (&) Stability region and bifurcation boundary for GDP
with L = oc andd; = d, = 4; (b) Comparison of stability regions for
Ll :LQ =L = 1,2,3,00and61 :62 =J.

Foré; = 6, = 6, a comparison betweely, = L, = L = 1,2,3 andL = oc is dis-
played in Figure 5.1(by.One can see that, for small memory decay fatbe stability
region may not be enlarged asncreases from finite values to infinity. However, this
is indeed the case as the memory decay f¢aseclose to 1. Therefore, loosely speak-
ing, a high decay rate with long memory can improve the stgluf the steady state
price.

Numerical simulations can be used to show various price myceawhen the steady
state price becomes unstable and indicate that the pricanags are more dependent

8TheL = 1,2, 3 cases are reproduced from Figure 4.4(c).
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on the decay rates, rather than the risk aversion coeffgidhdr the set of parame-
ters: 8 = 11,w = 0,a; = 0.8,a, = 1,by = by = 0, we have made the following
observations. When both the decay rates are high$:say0.6,d, = 0.9, the steady
state price becomes unstable when the demand slapesmall, sayn = —8. As«
decreases further, prices oscillate quasi-periodicaligracterised by closed orbits in
the phase plot, with high variability, indicated by Figur@@). Also, for fixeda, a
sufficient highd; (close to 1) can lead otherwise unstable price dynamicsneerge
to the steady state price, as indicated by the above lodalistanalysis.

16 40 -
12
ol 20 |
—~ 4
T 0r
41 20t
8 (@)
12 ‘ ‘ ‘ 40 ‘ ‘ ‘ ‘
12 -4 4 12 40 20 0 20 40
P(t-1) P(t-1)

FIGURE 5.2. Phase plot of the nonlinear system for GDP with infinite
memory andd; = A, = 0.05,w = 0,9, = 0.9,a; = 0.8,a, = 1,5 =
11,b; = by = 0, and (@)a = —20, 6, = 0.6; (b) @ = —10, 4, = 0.2.

For fixeda = —10,6; = 0.2,6, = 0.9 and A; = 0.05, prices converge to some
strange attractors for a wide range 4f (say A, € (0.05,2)), as shown in Figure
5.2(b) for A; = 0.05. However, for fixedA,, say A, = 0.05, asA; increases from
0.05 up to 2, prices in the phase plane converge to strangetaiis forA; small (say,
Ay € (0.05,0.8)), and then to a 5-period cycle fot; = 1.2, and then to a strange
attractor forA; = 1.5. The bifurcation diagram with respect to the parameteis
plotted in Figure 5.3. This indicates that when agents hafreiie memory, the risk
aversion coefficient has no significant influence on the pdiggamics when agents
have a high decay rate (and in particular, when agents havesafull memory over
the whole history of prices). However the effect of the riskrgion coefficient can be
significant when agents have a low decay rate.

6. CONCLUSIONS

In this paper we have introduced a heterogeneous GDP Igam@#chanism into the
traditional cobweb model with risk averse heterogeneoesi@goy allowing produc-
ers to learn both mean and variance with different geomdéoay rates and different
memory lengths. For a class of nonlinear forward-lookinglaise with homogeneous
agents, Barucci (2000, 2001) shows that, when the memoryfirgte, the memory
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P(t)

FIGURE 5.3. Bifurcation diagram of the nonlinear system for GDP
with infinite memory for parametet;, herea = —10,6; = 0.2, 05 =
0.9,A4;, =0.05,w =0,a; =0.8,a3 = 1,5 =11,b; = by = 0..

decay rate plays a stabilizing role in the sense that inocrgake decay rate of the
learning process the parameter stability region of a staty rational expectation
equilibrium becomes larger and eliminates cycles and ahadtractors are created
through flip bifurcation, but not Hopf bifurcation. We haveosvn in this paper that
the memory decay rate plays a similar stabilizing role andmgaated price dynamics
can be created through Neimark-Hopf bifurcation, not flfutmation, when memory
is infinite and agents are heterogeneous. However, when ngambnite, we show
that the decay rate of the GDP of heterogeneous producsts @l@omplicated role on
the price dynamics. When both the lag lengths are odd, isorgdhe decay rate en-
larges the parameters region of the stability of the stetaty &ind complicated price
dynamics can only be created through flip bifurcation. Hoevevwhen both the lag
lengths are not odd, there exists a critical value (betwesmddl) such that, when the
decay rate is below the critical value, the decay rate plasthilizing role and, for
the decay rate above the critical value, the decay rate plaestabilizing role in the
sense that the parameter region of local stability of thedststate becomes smaller as
the decay rate increases. In addition, (quasi)perioditesyend strange attractors can
be created through flip bifurcations when the decay ratel@bthe critical value and
through Neimark-Hopf bifurcations when the decay rate svalthe critical value. It
is also found that the source of risk is the risk itself in tease that the behaviour
of producers in response to risk can generate complicatee gynamics and market
failure.

The heterogeneous GDP considered in this paper are some sifttiplest learning
processes and the analysis has shown how they yield verglyi@mics in terms of the
stability, bifurcation and routes to complicated dynamiktss found that the market
fractions of heterogeneous agents plays an importantitol@uld be very interesting
to see how the price dynamics are changed when differens typlearning schemes
(such as naive expectation, ALP and GDP) are competing éhehand agents update
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their beliefs based on certain fitness measures, as in BratiHammes (1997). In

practice, agents revise their expectations by adaptinglétay rate in accordance
with observations. How the GDP learning affects the dynarmcahis more general

situation is a question left for future work.

Appendix A. MEAN AND VARIANCE OF GDPWITH INFINITE MEMORY

Letm; andv; be the mean and variance of the GDP with lag lergttthat is

mi—1 = Blpr—1+6pt—o+ -+ p 1],
vl = B[(Pt—1 —my—1)? + 3(pt—2 — mi—1)? (A.1)
+0%2(pr—g —mi—1)%2 + -+ (p_p — mi—1)?],

whereB = (1 —§)/(1 — §&) ford € [0,1) andB = 1/L for § = 1. The mean process; can be rearranged as follows:
my = Blps — 0"p;_ 1]+ omy_1.
Then foré € [0,1), asL — oo, the limiting mean process is given by
m¢ = (1 —8)pe + dme—1,
which can be written as
m¢ —mi—1 = (1 —)(pt — me—1), (A.2)
or
m¢ —pt = 6(mi—1 — pt). (A.3)
For the variance process, from
ve = Bl(pt —mi)® + 6(pm1 —mi)® + -+ 65 (pp_ (1) — me)?],
we have
vi —6vg—1 = Bl(pt —me)? + 0[(pi—1 — ms)? — (pr—1 — my—1)?]
+02[(pt—2 — me)® — (Pr—2 — my—1)?] + -+
+0E  (pe— =1y = mt)® = (Pe—(r—1) —mi—1)*] = 6% (pe—L —mi—1)?,
which can be rewritten as
ve—0vi_1 = B(pt —me)® — BéE(pi_p —mi_1)?
+B{0[(pt—1 — m¢) + (pt—1 — meg—1)][me—1 — my]
+02[(pt—2 — M) + (pt—2 — mi—1)][My—1 — mye] + - - -
+05 7 (Pe— (1) = mt) + (Pe—(r—1) — Mu—1)][mi—1 — me]}
= B(pt—m¢)® = B6"(pp —mi 1)
+(mi—1 — me){B[6(pt—1 — mt) + 6% (pt—2 — m1t)
oo+ 6T Dy (1) — M)
+B[6(pe—1—mi—1) + 0 (pr-2 —mi—1) + - + 65 (P -1y — )]}
= B(ps —m)? — Bé" (pr—1 — me)?
+(mi—1 — me)[~B(pe — my) — B6E (pi—p, — ma)].
Note that, fors € [0,1), asL — oo, B = (1 — §)/(1 — %) — 1 — ¢ and, using (A.3),
pi-p—m¢ = (P —mi_1) =0 (Pr_r —Mp_2) ="
= e —my_r) > 0.
Therefore the limiting variance process is given by
ve—dv—1 = (1—8)(pe —me)? + (my—1 — me)[—(1 — 8)(pt — )]
= (1 =08t — me)l(pt —me) + (mi —me—1)]
= (1 -29)(pt — mt)(pt — mi—1),
that is,
ve = 6ve—1 + (1 = 0)(pe — me)(pe — me—1). (A4)
Based on the above argument, fo€ [0, 1), the limiting process (a8 — oo) of the mean and variance are given by
{ mg dmi—1 + (1 —d)pt
vt dve—1 + (1 = 6)(pt —me)(pt — me—1) (A.5)
dvi—1 +6(1 — 8)(pt — me—1)2.
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Appendix B. GHARACTERISTICEQUATION OF THEHETEROGENEOUSGDP MODEL WITH FINITE MEMORY

When the memory is finite, the heterogeneous GDP can be mate

_ L
Dit = D ji; WijPt—js B.1
_ _ L; _ 2 ( . )
Vie = 35y wij[Pie — pe—jl?,
in which,w;; = B;0’~1 (i = 1,2andj = 1,--- , L;). Let
it = Dty
Tat = Pt—1,
x3,t = Pt—2,
Trt = DPi(L-1)s

whereL = max{L1, L2}. Then, (2.6) with finite memory GDP is equivalent to the faliog L-dimensional difference system

T1e41 = fze),
Tot41 = Tl
(B.2)
TL,t+1 =TL—-1,t
where
T1.¢—b To ¢—b

fxe) =B+50+w) s + 50 -0 3555
Xt = (T1,¢, 22,8, ,ZL,1)s
_ L;
Tig =200 wiiTt,
Tip =205 wislTie — 34)%

At the steady statp*, Z1 = T2 = p* andv; = 72 = 0. Without loss generality, it is assumed tHat < Ls and then
L = L». Evaluating functionf(x:) at the steady state, one obtains that

of «a 1 1
e S+ W)EWU +(1- w)Eij] = [w1381 + wa;B2]
forj=1,.--,0L; and% = —wyjfB2 forj = L1 +1,---, L. Therefore the corresponding characteristic equatioivéeng
J
by
Lq ) L )
INON = AL + Z[’wh‘ﬁl + w2jﬁ2]AL7‘] + Z ngﬂg/\L*J. (B.3)
j=1 j=Li+1

In particular, for the GDP, it follows fronw,; = B;67~1 with B; = (1 — 6;)/(1 — §-*), L1 < L» and (B.3) that

Ly ) ) ) L ) )
T =M+ [B1B16] " + B2Bod) AT+ DT BeBod AT =0, (B.4)
j=1 j=Li1+1

Appendix C. LOCAL STABILITY AND BIFURCATION ANALYSIS OF GDPWwWITH FINITE MEMORY

C.1. ThecaseL; = Ly = L. WhenL; = Ly = L, one can see from (B.4) that the corresponding charadteeigtiation is
given by

L
) =M+ [B1B1d] " + B2 B2s) AT =0 (C.1)
j=1
ForL = 1,T1()\) = X+ [81 + B2] = 0. Hence,|\| < 1 holds if and only if3 = 1 + B2 < 1. Furthermore) = —1
wheng = 1, which leads to a flip bifurcation.

For L. = 2, the characteristic equation has the form
Ta(A) = A2 + [B1B1 + B2B2]A + [B1B181 + B2B282] = 0,
whereB; = 1/(1 +6;) (i = 1,2). It follows from Jury’s test thath;| < 1 if and only if;

() T2(1) =1+ P14+ p2>0;
(i) Ta(=1) =1—[B1B1 + B2B2] + [B1B1d1 + B2B2d2] > 0, which can be rewritten as
1—941 1-—

ro 0 Ty

[
9 = 2 B2 < 1. (C2)
02
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(i) B1B161 + B2B2d2 < 1, which can be rewritten as

81 5
4o T T

1= B2 < 1. (C.3)
Therefore,|A\;| < 1 if and only if (C.2) and (C.3) hold. Note that2(—1) = 0 implies that a flip bifurcation occurs when
Ao = 1. Also, when\q 2 = e£2m0% e have\i Ay = B1B161 + B2B2da = Ay = 1andA; + Ao = —[B1B1 + B2B2] =
2 cos(2m0) = p, which implies thatA; = 1 leads to a Neimark-Hopf bifurcation.

When the local stability region is bounded by a Neimark-Hoiffrcation curve, the nature of the bifurcation is chaeesed
by values ofp, with different regions for different combination ¢f1, d2).

For1/2 < 61,62 < 1, the stability region is bounded only by the Neimark-Hopfulgation boundaryA; = 1. Then,
p= 71/52 for (,31,,32) = (U, [1 + (52]/52) andp = 71/(51 for (ﬂl,ﬂg) = ([1 + 51]/51,0). Hence

1 1
=2 270 - - .
P COS( g ) € < min(51,52)7 maX(51,52))

For0 < 61 < 1/2,1/2 < d2 < 1, the stability region is bounded by both flip and Neimark-Hbjfurcation boundaries.
The Neimark-Hopf bifurcation boundary corresponds to e $egment betwee# : (81,82) = (0, [1 + d2]/d2) and B which
is the interaction point betweeh; = 1 andA» = 1, leading top = —2. Therefore,

1
= 2cos(270 B . S
P cos(27) € < max(él,ég))

For L = 3, the characteristic equation has the fdrg(\) = A3 + c1A? + co X\ + 3 = 0, where
c¢1 = [f1B1 + B2B2], ca = [f1B161 + B2B2d2],
c3 = [B1B107 + f2B283],  Bi =1/[146; 4], (i=1,2).
It follows from Jury’s test thap\;| < 1 if and only if;

() T3(1) =14+p1+p2>0;
(i) (—1)*T3(—1) > 0, which is equivalent to

17(51%’(5% 17(52%’(5%
Ag = : 1. C.4
3 1+61+6%’31+1+62+65’32< (c.4
(i) e2 + e3(c3 — e1) < 1, which is equivalent to
S171 + G272 4 (8371 + 0572)[(6F — Dy + (85 — 1)2] < 1, (C.5)

_ Bi
wherey; = 155,762
(iv) c2 =d171 + a2 < 3.
It follows from 8; > 0,4; € [0,1] andd; < 1 — d§; + 5;.2 that condition (i) is satisfied and condition (ii) impliesnthitions (iii)
and (iv). Hence the only condition foh;| < 1is A3 < 1. In addition,A = —1 whenAg = 1, implying that the stability region
is bounded by the flip bifurcation boundary defineddy = 1.

C.2. TheCase(L1,Ls) = (2,3). For L1 = 2,L, = 3, the characteristic equation is given By 3(\) = A% + 1A +
c2 X + ¢z = 0, where

c=[m+nl  c=vdi+yed, =m0, mn=p/[1+a], 42 =p2/[1+d+ 5]
It follows from Jury’s test thap\;| < 1 if and only if;

(i) To3(1)=14+p1+4+pB2>0;
(i) (—1)%T2,3(—1) > 0, which is equivalent to

1—461 17524»5%
A7 = = B2 < 1. C.6
7 1+61ﬁ1+1+62+6§ﬁ9 (C.6)

(i) e2 + e3(c3 — e1) < 1, which is equivalent to

1 92 9282 ( B1 (1*53)&))
Ag = - - - - 1.
G T T e R T T et B\t e 1166

(.7

(iv) c2 =d171 + 22 < 3.

Note that sinces; > 0,6; € [0,1] andd2 < 1 — d2 + 62, one can see thak; < 1 implies condition (iv). In additio\ = —1
whenA; = 1 is satisfied and\7 < 1impliesAg < 1 ford; < 1/2.
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Appendix D. FROOF OFPROPOSITIONS. 1

Consider the system

with

Dt = fl(p7m7y727u)t717

z¢ = 0zi—1 + (1 — 81)pi—1 = fo,

yt = dyi—1+ (1 —d2)pi—1 = f3,

2zt =612¢—1 4 61(1 — 61)(pt — 2¢—1)? = fa,
ur = 6oup—1 +62(1 = 62)(pt — ye—1)% = f5,

— b1 y*bQ

o
= —[(1 —_— 1—w)————].
fl B+ 2[( +’LU)a1 + 2A12 +( w)a2+2A22}

At the unique fixed pointp:, ¢, y¢, 2¢, ut) = (p*, p*,p*, 0,0) evaluate:

9h _—
Ip )
ofi  _altw) _ g
oz 2 aj 1s
ofi _all-w) _ g,
o b 2A~(’* b1)
J1 = $(+w) R E 0 = A,
—245(p*=ba) _ A
8h = o(14uw)=2A2lrobe) 2((1’; 2) = A3,
and
g =0=9h="k=0 fh=s, Ge=o
ok s Ofs _Ots _0fs _ 0fs _
du 25 dp T Y z
The Jacobian matrif is then given by
0 1 —B2 A} A}
1-—61 01 0 0 0
J = 1— 69 0 P 0 0
0 0 0 01 0
0 0 0 0 02

27

Thus the characteristic equation is givenltjA) = |M — J| = (A — &1)(A — 62)h(N), whereh(A) = A3 + 1A% +coX +c3
andc; = —(51 + 52), ¢y = 0102 + BQ(I - 52) -I—,31(1 - (51) andcs = —51ﬂ2(1 - 52) - 52,31(1 - (51). Fordi,0o € (0, 1),
applying Jury’s test té&(A) = 0, one can see thah;| < 1 if and only if 7; > 0, where

Note that

M =1+4¢c1+c2+cs,

ma =1—c¢1+c2—c3,
w3 =1—ca+c3(e1 — c3),
co < 3.

1 >0 & (1—51)(1—52)1+ﬂ1+ﬂ2}>0,

1—941 1— 49
2 >0 & - 1,
T > {1+6B1+1+62ﬁ2}<
51+ 6272
T3>0 & [51ﬂ2(1752)+52ﬁ1(1751)+ 1;’ 2}
81 — 62)2
+ﬂ2(1752)+ﬂ1(1751)<1+¥,

andcs < 3 is implied byws > 0. Therefore, the only condition we need for local stabilgyrs > 0. Furthermore, from
h(1) = m1,(=1)3h(=1) = =2, we conclude that there is no saddle-node and flip bifuncagind the only boundary of
the stability region is given by Neimark-Hopf bifurcatiomundary, defined byrs = 0. Along the bifurcation boundary, let
Ai,2 = 279 Ny = € (=1,1). Then it follows from

M+ A2+ A2] = —[p+ 7] = —[01 + d2],
AtA2 + A1 A3+ A2 A3 =1+71p
= 0102 + B1(1 — 01) + B2(1 — d2),
AA2A3 = —r = —[0182(1 — b2 + 0281 (1 — 61)],

thatp = §1[1 — B2(1 — 62)] + 821 — B1(1 — 61)]. In particular, for§; = 2 = 4, the stability condition becoméds — 3(1 —
N[8%B(1 — &) + (1 — 6%)] > 0, which is equivalent t@ < 1/(1 — §), where = 31 + B2. Along the bifurcation boundary,
B(1 —4d) =1, and hence = 4.
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