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1 Introduction

In recent years interest has grown in models of asset price dynamics based on the interaction of hetero-
geneous agents, who seek to learn about the distribution of future returns using different information
sets. We cite in particular the models that have been proposed by Day and Huang (1990), Brock and
Hommes (1998), Lux (1998), Gaunersdorfer (2000), Chiarella and He (2001, 2003), Chiarella et al.
(2002), and Fernandez-Rodriguez et al., (2002). These models in general consider a financial market
with one risky asset and one risk-free asset and explore the effect of agents’ heterogeneous beliefs
about expected return and volatility of the risky asset on the dynamics of asset prices. They show
how the interaction between the heterogeneity of the agents and the market trading mechanism can,
even in the absence of external random events, cause sustained deviations in prices away from their
equilibrium (fundamental) values2. Of course, the one risky/one risk-free asset model is merely a
first step to understanding price dynamics under heterogeneous agent interaction. Within a multiple-
risky-asset framework, the way agents form and update their beliefs about the variance/covariance
structure also becomes an important factor in the investors’ decision process. A number of papers
have appeared recently dealing with the multiple risky asset decision problem within the heterogeneous
agent paradigm. We cite in particular Böhm and Chiarella (2005), Böhm and Wenzelburger (2005),
Wenzelburger (2004) and Westerhoff (2004). These papers establish an overall framework and discuss
various aspects of the problem.3 The contribution of the current paper relative to these is, first, to
make use of a stylized market maker rather than the Walrasian auctioneer to set prices, second, the
updating rules of agents’ beliefs are made explicit and are more involved, especially with regard to
second moment beliefs. A natural question which arises in this context concerns the effect of asset
diversification combined with time varying beliefs about the risk-return structure. In particular, it
seems important to understand whether investors’ anticipated correlation and diversification among
multiple risky assets can have a stabilizing role, or if rather they tend to amplify the price fluctuations
which arise due to the interaction of heterogeneous agents, and to what extent portfolio diversification
causes interdependence between the price dynamics of different risky assets.

A contribution to the issues raised in the previous paragraph can be found in Chiarella et al.
(2005) who develop a discrete time model of financial market dynamics that combines the essential
elements of the interacting heterogeneous agents paradigm with the classical model of diversification
between two risky assets and a risk-free asset. In particular, a financial market with two risky assets
and a riskless asset is considered, the time evolution of which is driven by the interaction of two types
of agents, fundamentalists and chartists, together with a market maker. The main findings of the
model are that co-movements of prices and returns may arise, brought about by trend extrapolation
and time varying beliefs about variances and covariance. Furthermore, changes in beliefs about the
risk/return structure can cause volatility to spill-over from the market for one risky asset to the other.
However, the model developed in Chiarella et al. (2005) is a very stylized one, in that it considers
only two risky assets, it does not take into account the market fractions of the two groups, and the
fundamental prices of the risky assets are assumed to be exogenously given.

A sufficiently general framework, which can be generalized in the direction of a multi-asset mar-
ket, is provided by the single-risky asset dynamic framework of Brock and Hommes (1998), further
developed by Chiarella and He (2001, 2003) and He (2003). This framework is based on a one-period

2The interaction between the underlying deterministic driving dynamics and simple noise processes has been shown
to constitute one possible source of the fat tails and volatility clustering that are a key feature of asset returns in financial
markets. See e.g. Hommes (2001)

3 In particular, the setup of Böhm and Chiarella (2005) is that of a multi-asset dynamic CAPM with heterogeneous
agents - though the dynamic impact of this heterogeneity has not been analyzed in detail - and the questions addressed
in that paper are close to those addressed in the present one. In Wenzelburger (2004), this setup has been extended to
a model in which myopic agents are allowed to switch between different trading strategies similar to Brock and Hommes
(1998).
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mean-variance optimization problem of a typical investor, derives a benchmark notion of fundamental
price assuming homogeneous expectations, and then perturbs the traditional framework by introduc-
ing heterogeneity of beliefs. We follow a similar course in the current paper and derive a general
framework for a financial market with multiple risky assets; then we specialize the model to the case
of two types of agents, fundamentalists and chartists, who are assumed to have time varying beliefs
about the first and the second moments of the distribution of returns. In particular, we highlight
the joint effect of diversification and time-varying risk perceptions (via updating of beliefs about the
variance/covariance structure) on the amplitude and nature of price fluctuations of the risky assets.

The structure of the paper is as follows. Section 2 develops the general dynamic framework with
n risky assets, one risk-free asset and N agent types. In particular Section 2.1 derives the optimal
demand of agents for the risky assets in a general setting, as a function of agents’ beliefs about
future returns, under the assumption of myopic expected utility maximization with CARA utility of
wealth function. Sections 2.2 and 2.3 describe how fundamentalists and chartists form and revise
their beliefs about expected returns and the variance/covariance structure of returns, while Section
2.4 describes how demands are aggregated by a market maker via a price adjustment rule in the
market for each asset and presents the resulting dynamical system for the dynamic evolution of prices
and agents’ beliefs about asset returns. Section 3 is devoted to the dynamic behavior of the model.
In particular, it characterizes the (unique) steady state of the model (section 3.1), discusses its local
stability conditions (section 3.2), and performs numerical explorations aimed at capturing the effect of
the correlation structure on price fluctuations (section 3.3). Section 4 concludes and indicates possible
future research directions. An Appendix containing mathematical details is available on the JEBO
Web Site.

2 The Model

Following the asset pricing dynamic framework of a financial market with one risk-free asset and
one risky asset developed by Brock and Hommes (1998), Chiarella and He (2001, 2003) and He
(2003), as well as two risky assets studied in Chiarella et al. (2005) under heterogeneous beliefs, we
consider a general asset pricing model with one risk-free asset and multiple risky assets when agents’
beliefs are heterogeneous. The asset demands are derived from the standard one-period CARA utility
maximization. The major difference is that we assume that agents are boundedly rational by allowing
agents to have heterogeneous beliefs about the distribution (in terms of the mean and (co)-variance)
of future prices and to update their beliefs dynamically according to certain learning processes based
on observed prices, though for simplicity a switching between beliefs is not considered here.4

We consider a financial market with n risky assets, indexed by i = 1, 2, ..., n, and a risk-free asset,
andN types of traders, denoted with the superscript h = 1, 2, ...,N . For the risky asset i (i = 1, 2, ...n),
we denote by pi,t the price at time t, and by yi,t+1 the dividend in the trading period (t, t+1). We also
denote by r the annual risk-free rate, byK the trading frequency so that R := (1+r/K) represents the
gross risk-free return in the trading period (of length 1/K). The quantity Ri,t+1 := pi,t+1+yi,t+1−Rpt
represents the excess return per share in (t, t+ 1). Using n−dimensional column vector notation, the
above quantities correspond to pt (prices), yt+1 (dividends) and Rt+1 := (pt+1+yt+1−Rpt) (excess
returns).

Denote byWh
t the wealth of agent-type h at time t, by zhi,t the number of shares of risky asset i held

by agent h in (t, t+1), and by Eht , V ht , Covht the “beliefs” of agent h, conditional upon information at
time t, about expectation, variance and covariance respectively. The “portfolio” of agent h in (t, t+1)

4A switching mechanism between beliefs could be easily introduced, though it would increase further the dimension
of the resulting dynamical system. In addition both the local and global dynamic behavior may change.
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is expressed by the vector zht = (zh1,t, zh2,t, · · · , zhn,t)�, where � stands for the transpose. Given the
portfolio of risky assets and the risk-free asset, the wealth of type-h agent evolves according to

Wh
t+1 = RWh

t + zh�t Rt+1 = RWh
t + zht �(pt+1 + yt+1 −Rpt).

Accordingly, the conditional expectation and variances/covariances are given by

Eht (Wh
t+1) = RWh

t + zh�t mh
t , V ht (Wh

t+1) = zh�t Vh
t zht ,

where mh
t := Eht (Rt+1) is the vector of expected excess returns and Vht := [Covht (Ri,t+1, Rj,t+1)],

i, j = 1, 2, ...n, denotes type-h agent’s conditional variance/covariance matrix (assumed to be positive
definite) of the excess returns (per share).

2.1 Asset Demand

Assume that type-h agent has utility function uh(W ) = − exp(−ahW ), where ah represents the
constant absolute risk aversion (CARA) coefficient. Assume the portfolio zht of type-h agent is selected
to maximize the expected utility of wealth at time t+ 1,

max
zht
Eht [− exp(−ahWh

t+1)] .

As is well known, under the assumption of conditional normality of returns, this is equivalent to solving

max
zht

{
Eht (Wh

t+1)−
ah
2 V

h
t (Wh

t+1)
}
,

which may be expressed as

max
zht

{
RWh

t + zh�t mh
t −

ah
2 z

h�
t Vht zht

}
.

It follows from the first order conditions of the foregoing optimisation problem that the demand
functions (in terms of the optimal number of shares) for the risky assets are given by

zht =
1
ah (V

h
t )−1mh

t . (1)

Equation (1) indicates that demand functions will be different across agents according to their “beliefs”.
We consider two types of agents, fundamentalists, who have some information on the fundamental
values of the risky asset and who believe that prices will return to their fundamental values in the
future, and trend chasers or chartists, who may have no information on the fundamental values of the
risky asset and who extrapolate the past trends of the historical prices into future price movements.
These two types of agents are the most common and popular ones in the literature on heterogeneous
agent based models.
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2.2 Fundamentalists
We assume that the fundamentalists have some (private) information or estimate on the fundamental
values, say p∗t , of the risky assets and they expect the future prices of the risky assets to evolve
according to

Eft [pt+1] = p∗t + α(pt − p∗t ) , (0 ≤ α ≤ 1), (2)
where (1 − α) represents the expected speed of adjustment of the prices towards their fundamental
values. The fundamentalists are not completely rational in the sense that they do not have perfect
foresight on the future price. In reality the fundamentalists would base their estimate of the funda-
mentals on a detailed analysis of dividends and earnings forecasts, the outlook for key macroeconomic
and political factors, and so forth. However to keep the analysis simple and to focus purely on the
impact of speculative behavior in a multi-asset framework we assume that the fundamentalists merely
base their estimate of the fundamentals on the expected dividend stream, as is assumed in a great
deal of the asset-pricing literature. Brock and Hommes (1998) adopt a similar approach. Here we
assume in particular that the fundamental prices are those that would prevail in the economy with
homogeneous beliefs about the first and second moments of the cum-dividend price processes, and
which become the steady state price vector of the dynamical system describing the heterogeneous
agent interaction. From this perspective the fundamental price vector should be interpreted as a kind
of anchor about which the fluctuations, due to the heterogeneous interactions, occur and which is
imposed exogenously as part of the beliefs of the fundamentalists.5 As stated earlier this assumption
allows us to focus the analysis on the dynamics arising purely from speculative behavior. Of course
future research needs to consider the impact of endogenously determined fundamentals using some
sort of filtering methodology to learn it.

The following Lemma (the proof of which can be found in Appendix A1, available on the JEBO
Web Site) states the main assumptions and results about the fundamental price vector.

Lemma. Assume that:-

(H1) Agents are homogeneous in their risk aversion coefficients, and their beliefs with respect to mean
and (co)-variance of the excess return Rt+1:

ah := a, Eht (Rt+1) :=mt, Vh
t = V ≡




σ21 ρ12σ1σ2 · · · ρ1nσ1σn
ρ12σ1σ2 σ22 · · · ρ2nσ2σn

...
... . . . ...

ρ1nσ1σn ρ2nσ2σn · · · σ2n


 , (3)

where σi and ρij , i, j = 1, 2, ..., n, denote, respectively, the standard deviation of the excess
return (per share) of asset i and the correlation between excess returns i and j.

(H2) Agents have common beliefs about the dividend process, which is i.i.d. with Et[yt+k] = y
(k = 1, 2, ...).

(H3) The fundamental solution satisfies the transversality (no-bubbles) conditions

lim
k→+∞

Et[pi,t+k]/Rk = 0, i = 1, 2, ..., n.

5Note also the coincidence of the “fundamental solution” derived in the present section with the Böhm and Chiarella
(2005) case under homogeneous expectations.

5



Then the unique fundamental price is given by

pt = p∗ :=
y#
R− 1 =

1
R− 1(y− aVz

s), (4)

where zs := [zsi ] (i = 1, 2, ...n) is the supply (column) vector, whose i-th element zsi is the total stock
of asset i per investor, and y# := y− aVzs denotes the risk-adjusted dividends.

The above Lemma gives a clear idea of how the constant fundamental price of each asset is affected
by the variance/covariance matrix and by the supply of all the other assets.

The fundamentalists are also assumed to have the same constant beliefs about the variance/covariance
structure of the excess returns with Vf

t = V, that is, for i, j = 1, 2, ..., n,

Covft [Ri,t+1, Rj,t+1] = ρijσiσj , V ft [Ri,t+1] = σ2i .

Then
mf
t := E

f
t [Rt+1] = E

f
t [pt+1 + yt+1 −Rpt] = (α−R)pt + (1− α)p∗ + y. (5)

In order to obtain a model suitable for eventual calibration to real data, we need to take into
account the “trading period” dividend and relate the variance/covariance estimates to the trading
frequency. To keep the model mathematically tractable, we assume that fundamentalists6 form their
beliefs about variances and covariances of excess returns Ri,t+1 = pi,t+1+yi,t+1−Rpi,t in the “trading
period”, in the following way. Given the annual standard deviation (s.d.) of the price of asset i,
which we denote by σ̃i, the estimated s.d. of the price of asset i per “trading period” is σi := σ̃i/

√
K,

so that V ft (pi,t+1) = σ2i ≡ σ̃2i /K. In order to include the effect of the “trading period” dividend,
we assume that agents compute the s.d. of the “cum-price” in proportion to the s.d. of the price,
which can be expressed in general by assuming7 V ft (Ri,t+1) = q2i V

f
t (pi,t+1), Cov

f
t [Ri,t+1, Rj,t+1] =

qiqjCovft [pi,t+1, pj,t+1]. Thus

σ2i := V
f
t [Ri,t+1] = V

f
t [pi,t+1 + yi,t+1] = q2i

σ̃2i
K = q2i σ2i ,

Covft [Ri,t+1, Rj,t+1] = qiqj
ρijσ̃iσ̃j
K = qiqjρijσiσj,

or with vector notation
Vf
t ≡ V = Q�VQ, (6)

where

V = 1
K




σ̃21 ρ12σ̃1σ̃2 · · · ρ1nσ̃1σ̃n
ρ12σ̃1σ̃2 σ̃22 · · · ρ2nσ̃2σ̃n

...
... . . . ...

ρ1nσ̃1σ̃n ρ2nσ̃2σ̃n · · · σ̃2n


 (7)

and Q ≡ diag(q1, q2, ..., qn) = Q�.

6A similar assumption will be made for chartists
7 In particular, for calibration purposes agents would set qi = 1+gi/K, (i = 1, 2, ..., n) where gi represents an estimate

of the average (per annual) dividend yield of asset i, or alternatively qi = R = 1 + r/K. For real daily data r/K is of
the order of 10−4 so in our numerical examples we will assume qi = 1 for simplicity.
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2.3 Chartists
We assume that the chartists’ expected prices are computed according to

Ect [pt+1] = pt + β(pt − ut),

where β ≥ 0 is the price extrapolation parameter (for simplicity assumed constant across all assets)
and ut = [ui,t], i = 1, 2, ..., n, is a (column) vector of sample means. Then, under assumption (H2),

mc
t := Ect [Rt+1] = Ect [pt+1 + yt+1 −Rpt] = (1 + β −R)pt − βut + y. (8)

The beliefs of the chartists about the variance/covariance matrix of prices in the trading period
(denoted by Bt) are assumed to consist of a constant component and a time varying component and
so may be written as

Bt = V+ Ξt .
Here we assume for simplicity that the constant component is equal to the fundamental component
given by (7). Furthermore the time varying component is assumed to be updated in each period as a
function of deviations of prices from sample means. The matrix

Ξt :=




γ11v1,t γ12k12,t · · · γ1nk1n,t
γ12k12,t γ22v2,t · · · γ2nk2n,t
...

... . . . ...
γ1nk1n,t γ2nk2n,t · · · γnnvn,t


 (9)

contains the time-varying components which are assumed proportional, through the sensitivity coeffi-
cients γij ≥ 0, to the sample variances/covariances based on historical volatility and correlation. We
also denote by Σt the matrix of such time-varying sample variances/covariances, so that 8

Σt :=




v1,t k12,t · · · k1n,t
k12,t v2,t · · · k2n,t
...

... . . . ...
k1n,t k2n,t · · · vn,t


 .

Similar to He (2003) and Chiarella et al. (2005), the learning processes about the sample means,
variances and covariances (ut and Σt) are assumed to follow

ut = δut−1 + (1− δ)pt , (10)

Σt = δΣt−1 + δ(1− δ)(pt − ut−1)(pt − ut−1)� , (11)
where δ, 0 < δ < 1, represents a “memory” parameter, in the sense that the higher is δ, the higher
is the weight given to past prices in the computation of the sample means, variances and covariances.
Notice that the higher is δ, the stronger is the effect of chartist extrapolation. In fact, the processes
(10) and (11) can be considered as limiting cases of geometric decay processes when the memory lag
length tends to infinity, that is, for i, j = 1, 2, ...n, they are equivalent to

ui,t =
∞∑

s=0
(1− δ)δspi,t−s,

8 In some of the numerical experiments performed in Section 3.3 we will assume γij = γ (i, j = 1, 2, ..., n) which implies
Ξt = γΣt.
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vi,t =
∞∑

s=0
(1− δ)δs(pi,t−s − ui,t)2,

kij,t =
∞∑

s=0
(1− δ)δs(pi,t−s − ui,t)(pj,t−s − uj,t).

Using the same scaling matrix Q as the fundamentalists (since knowledge about the dividend process
is assumed to be common), the chartists then compute the conditional variances/covariances of the
excess returns (per share) according to

Vc
t= Q�(V+ Ξt)Q. (12)

2.4 The asset prices under a market maker scenario

We now specify the price setting mechanism for each asset. We assume that in each period, a market
maker 9 clears the market, by taking an offsetting long or short position, and adjusts the price of each
risky asset as a function of the excess demand.10 This is expressed by the price setting equations

pt+1 = pt + µ(nfzft + nczct − zs),

where µ > 0 is the market maker’s price adjustment parameter, nf and nc(= 1 − nf ) represent the
fractions of fundamentalists and chartists, respectively, so that the quantity (nfzft +nczct − zs) repre-
sents the average excess demand per investor. The following Proposition summarizes the asset price
dynamics under heterogeneous beliefs, assuming that agents are homogeneous in their risk aversion
coefficients.

Proposition 1. Taking account of the different beliefs (5), (6), (8) and (12), of fundamentalists and
chartists, the model results in the following nonlinear discrete-time dynamical system




pt+1 = pt + µ[nfzft + (1− nf )zct − zs],
ut+1 = δut + (1− δ)pt+1,
Σt+1 = δΣt + δ(1− δ)(pt+1 − ut)(pt+1 − ut)�,

(13)

where the fundamentalist and chartist optimal demands,

zft =
1
a(Q

�VQ)−1[(α−R)pt + (1− α)p∗ + y] ,

and
zct =

1
a(Q

�(V+ Ξt)Q)−1[(1 + β −R)pt − βut + y] ,
9A price setting mechanism based on the market maker scenario has been used by a number of authors, in particular

Day and Huang (1990) and Beja and Goldman (1980).
10More precisely, at the beginning of the trading period (time t) the market maker announces the new prices pt and

agents form their beliefs about the excess returns Rt+1 as well as their demands zft and zct (that will result in general
in positive or negative excess demand for each asset). The market maker then sets excess demands to zero by changing
his/her inventory position, and transactions take place at the prices pt. At the beginning of the next trading period
(time t+1) dividend payments are realized and the market maker announces the new prices pt+1, by adjusting the price
of each asset in the direction of the excess demand of the previous period.
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are functions of the state variables pt, ut, and Σt at time t11, while the fundamental prices are given
by

p∗ = 1
R− 1(y− aVz

s) = 1
R− 1

[
y− a(Q�VQ)zs

]
.

In order to obtain some insight into the price dynamics of the complete model,12 we will focus on
the case with two risky assets in the following discussion.

3 Price Dynamics of the Complete Model
In this section, we present first a result on the existence of the unique steady-state of the complete
model. The local stability of the steady-state is then analyzed. Finally, an analysis of the impact of
exogenous and perceived correlations on the dynamics of the prices is conducted by use of numerical
simulations.

3.1 Existence and uniqueness of the steady-state
When the fundamental price is given by the constant vector p∗, it is interesting to know if it is also
the unique steady-state of the complete model (13) with heterogeneous agent. This is indeed the case
as is confirmed by the following Proposition, which is easily verified.

Proposition 2. The dynamical system (13) has the unique, fundamental steady state, defined by

pt = ut = p∗, Σt = 0.

Note that, at the fundamental steady state, zft = zct = zs, Vct = Vf
t = V = Q�VQ, and

Ect [Rt+1] = E
f
t [Rt+1] = aVzs.

3.2 Local stability analysis
In the case of a single risky asset, n = 1, the dynamical system (13) becomes




pt+1 = pt + µ[nfzft + (1− nf )zct − zs],
ut+1 = δut + (1− δ)pt+1,
vt+1 = δvt + δ(1− δ)(pt+1 − ut)2,

(14)

where the agents’ demand functions are defined as

zft =
(α−R)pt + (1− α)p∗ + y

aq2σ̃2/K
, zct =

(1 + β −R)pt − βut + y
aq2(σ̃2/K + γvt)

,

11Notice that the quantities pt+1 and (pt+1 −ut)(pt+1 −ut)�, which appear in the right-hand side of the second and
third equations of (13), are also functions of the state at time t.
12 In the case of n risky assets and a riskless asset, the resulting dynamical system is of dimension 3n+ (n2 − n)/2.
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and the fundamental value is given by

p∗ = y − azsq2σ̃2/K
R− 1 .

A detailed bifurcation analysis of a three-dimensional, single-risky-asset dynamic model very similar to
(14), has been performed by He (2003). In particular, for the model analyzed by He (2003), as well as
for the system (14), local stability analysis of the steady state and numerical simulation show that the
fundamental equilibrium may become unstable, through a Neimark-Hopf bifurcation, for high trend
chaser extrapolation rate (β), high trend chaser fraction (nc = 1−nf ), high price adjustment coefficient
(µ), and high “memory” parameter (δ). In a similar vein we find in the numerical experiments reported
below evidence that the Neimark-Hopf bifurcation is of supercritical type, so that an attracting closed
curve is created when the parameters cross the bifurcation boundary. However, in the presence of
a high fundamentalist fraction (nf ) or strong fundamentalist reaction (i.e. low α) the steady state
may become unstable through a flip-bifurcation. Moreover, chaotic dynamics are likely to occur
under parameter regimes where strong chartist extrapolation is associated with strong fundamentalist
reaction.

We henceforth focus our attention on the case of two risky assets, n = 2. For simplicity, in the
following analysis and in the numerical simulations it is assumed that γ11 = γ22 := γ.13 We also set
γk := γ12 = γ21, k := k12 = k21, ρ := ρ12 = ρ21. The model (13) then becomes the seven-dimensional
dynamical system





pi,t+1 = pi,t + µ[nfzfi,t + (1− nf )zci,t − zsi ], (i = 1, 2)
ui,t+1 = δui,t + (1− δ)pi,t+1, (i = 1, 2)
vi,t+1 = δvi,t + δ(1− δ)(pi,t+1 − ui,t)2, (i = 1, 2)
kt+1 = δkt + δ(1− δ)(p1,t+1 − u1,t)(p2,t+1 − u2,t),

(15)

while the fundamental prices turn out to be given by

p∗1 = y1 − a(zs1q21σ̃21/K + zs2ρq1q2σ̃1σ̃2/K)
R− 1 ,

p∗2 = y2 − a(zs1ρq1q2σ̃1σ̃2/K + zs2q22σ̃22/K)
R− 1 ,

and the demand functions can be rewritten as the sum of a direct demand and a hedging demand

zf1,t =
(α−R)p1,t + (1− α)p∗1 + y1

aq21(1− ρ2)σ̃
2
1/K

− ρ[(α−R)p2,t + (1− α)p
∗
2 + y2]

aq1q2(1− ρ2)σ̃1σ̃2/K
,

zf2,t =
(α−R)p2,t + (1− α)p∗2 + y2

aq22(1− ρ2)σ̃
2
2/K

− ρ[(α−R)p1,t + (1− α)p
∗
1 + y1]

aq1q2(1− ρ2)σ̃1σ̃2/K
,

zc1,t =
(1 + β −R)p1,t − βu1,t + y1
aq21(1− ρ

(c)2
t )(σ̃21/K + γv1,t)

− ρ(c)t [(1 + β −R)p2,t − βu2,t + y2]

aq1q2(1− ρ(c)2t )
√
(σ̃21/K + γv1,t)(σ̃22/K + γv2,t)

,

13This assumption has no effect on the local stability conditions, that are independent of the parameters γij . See
Appendix A2.
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zc2,t =
(1 + β −R)p2,t − βu2,t + y2
aq22(1− ρ

(c)2
t )(σ̃22/K + γv2,t)

− ρ(c)t [(1 + β −R)p1,t − βu1,t + y1]

aq1q2(1− ρ(c)2t )
√
(σ̃21/K + γv1,t)(σ̃22/K + γv2,t)

,

where the estimated chartist correlation at time t is given by

ρ(c)t = ρσ̃1σ̃2/K + γkkt√
(σ̃21/K + γv1,t)(σ̃22/K + γv2,t)

. (16)

Because of the higher dimension of the system, the local stability of the fundamental steady-state
and bifurcation analysis of the portfolio with two risky assets is rather difficult in general. However,
when the “exogenous” correlation coefficient of the excess returns ρ, which is a commonly held belief
among the agents, is zero, the local stability and bifurcation of the dynamic portfolio model with two
risky assets is actually determined by that of two portfolios each with a single risky asset.14 More
precisely, we have the following result the proof of which can be found in Appendix A2 (available on
the JEBO Web Site).

Proposition 3. Assume ρ = 0 and set σ2 ≡ min
{
σ21,σ22

}
. The fundamental steady-state is locally

asymptotically stable (LAS) if either

µ < 2aσ2/(R− α), nfNH(β) < n
f ≤ 1,

or
µ ≥ 2aσ2/(R− α), nfNH(β) < n

f < nfF (β),
where

nfNH(β) :=
1 + β −R− (1− δ)aσ2/(δµ)

1 + β − α
and

nfF (β) :=
2aσ2 + 2µβδ/(1 + δ)− µ(R− 1)

µ[(1− α) + 2βδ/(1 + δ)] .

In addition, a Neimark-Hopf bifurcation occurs when nf = nfNH(β) and a flip bifurcation occurs when
nf = nfF (β).

Note that the local bifurcation curves nfNH(β) and n
f
F (β) are independent of the sensitivity coef-

ficients γ, γk that scale the sample variances/correlation. As one can easily check, the local stability
conditions are exactly the same as in the case (14) of a single risky asset with σ2 ≡ min

{
σ21,σ22

}
.

The mathematical and economic insight of this result is fairly intuitive. Given ρ = 0, the risky
assets are only related by the sample correlation coefficient kt which is updated by the chartists.15
In the linearized equation for kt, the higher order terms disappear and the remaining linear terms
will stabilize kt to zero, leading to un-correlated portfolios each with a single risky asset. Hence,
the fundamental steady-state of the market with two risky assets is locally stable only if both the
fundamental steady-states of the markets with a single risky asset are locally stable.16 This remark
also holds for the general case of n risky assets. Of course this is only a local result for the particular
14A similar remark holds for the general case of multiple risky assets when the correlation coefficients ρij are zero.
15Or by the sample coefficients kij,t in the case of multiple risky assets.
16When one of the two markets is unstable (in the single-risky-asset model) then the steady state of the two-risky-assets

model is no longer asymptotically stable, though it may occur in this case that one of the two prices converges to its
equilibrium value, see Section 3.3.
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case ρ = 0. In general, due to the presence of kt and ρ in the dynamical system (15), when agents
spread their investment among several risky assets, or markets, the resulting time evolution of prices
may be quite different from the case where agents specialize in a single asset, or market. In particular,
the parameter ρ affects the local stability conditions, while obviously both ρ and kt affect the global
dynamics of the system. The impact of the anticipated correlation on the price dynamics, and the
role of diversification, compared with the single risky asset case, will be investigated in Section 3.3.

For fixed values of the parametersR, µ, α, δ, a, σ2, Fig. 1 represents, in the space of the parameters
(β, nf ), β > 0, 0 ≤ nf ≤ 1, the region of local asymptotic stability of the fundamental steady state17.
Fig. 1a represents the qualitative case µ < 2aσ2/(R−α), where the market maker reaction coefficient µ
is small enough, or the fundamentalist reaction coefficient (1−α) is sufficiently low, i.e. α is sufficiently
high. In this case the steady state is locally stable for any fundamentalist fraction nf provided that
the chartist extrapolation rate β is sufficiently low, while for sufficiently high β the steady state
becomes unstable, through a Neimark-Hopf bifurcation, when nf falls below the level determined by
the Neimark-Hopf curve of equation nf = nfNH(β). Numerical evidence suggests that the Neimark-
Hopf bifurcation is supercritical, in that soon after the crossing of the curve nf = nfNH(β) in the space
of the parameters, we observe convergence to a stable closed invariant curve in the phase-space. The
economic intuition behind the (quasi-)periodic orbits generated from the Hopf bifurcation is that they
are due to the lagged response of the trend extrapolated by the chartists to the market price. Fig. 1b
represents the opposite qualitative case µ > 2aσ2/(R − α) (strong market maker or fundamentalist
reaction) where the steady state may become unstable also through a Flip-bifurcation, when nf falls
above the threshold determined by the Flip curve of equation nf = nfF (β). The Flip-bifurcation leads
the market price to either jump up and down alternately relative to the fundamental price level or
to explode. The economic intuition behind the flip bifurcation comes from the over-reaction of the
fundamentalists and market maker. When the market price mean reverts strongly to the fundamental
price due to the fundamentalists’ behaviour, this over-reaction, together with high speed of the price
adjustment of the market maker towards the excess demand (which in this case is dominated by the
fundamentalists), pushes the price to over adjust to the fundamental price level, leading it either to
fluctuate around the fundamental price or to explode.

Moreover, other dynamic phenomena due to global bifurcations can be observed when parameters
are ‘far’ from the local bifurcation boundaries. Among these, the transformation of a regular attracting
closed curve into a torus can sometimes be observed for sufficiently high values of δ,18 that is, when
the weight attached to past history in the computation of sample means is sufficiently high; also, the
emergence of chaotic dynamics is associated in general with regimes with high β and low α, which
occur when trend followers extrapolate strongly and fundamentalists overreact.

Fig. 1 approximately here

3.3 The impact of the correlation on the price dynamics
The previous section has provided a bifurcation analysis with respect to the key parameters of the
model. This analysis has been carried out in the particular case ρ = 0, where the Jacobian matrix of
the dynamical system (15) is merely a double copy of that of the single-risky-asset case (14). The goal
of the present section is to perform sensitivity analysis with respect to the correlation structure between
17 In our numerical simulations, the parameters are selected from the stability region corresponding to the qualitative

case 2aσ2 < µ(R− α) in Fig. 1
18This can be observed for instance under the following parameter set: α = 0.75, γ = γk = 0.5, β = µ = 0.5, nf = 0.25,

a = 0.05, r = 0.05, K = 250 (so that R = 1 + r/K = 1.0002), σ21 = 0.5, σ22 = 2.5, ρ = 0, zs1 = zs2 = 1, y1 = 0.055,
y2 = 0.155 which imply p∗1 = p∗2 = 150. For simplicity the parameters q1 and q2 are set equal to 1. A torus bifurcates
from the existing closed curve when δ is increased starting from δ = 0.55.
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the two risky assets. Indeed, anticipated correlation establishes a connection between two separate
one-risky-asset markets, via the agents’ portfolio allocation. The correlation structure is captured in
two different ways within the present model. In the first, the coefficient ρ is the “exogenous” correlation
coefficient, which represents the common belief about the equilibrium correlation structure of the two
assets, related to the dividend processes. In the second, the model generates endogenously another
kind of “perceived” correlation (considered for simplicity only on the part of the chartists) which comes
from the historical co-movements of the prices, observed during fluctuations out-of-equilibrium. The
impact of this second component is captured by the parameter γk, which represents the sensitivity to
the sample covariance (see equation (9)). A natural question which arises is whether the perceived
correlation and its updating mechanism tends to dampen, or to amplify, the price movements which
arise from the interaction of heterogeneous traders. Another closely related question concerns the
joint impact of the two components, exogenous and perceived correlations, and which of the two has
a dominating effect. It turns out that perceived correlation is not always able to act as a stabilizing
force in the presence of endogenous price fluctuations; moreover, one cannot conclude that one of the
two components dominates the other one, in general, in that the impact of the correlation structure
may change substantially depending on the qualitative behavior of the underlying single-risky-asset
markets. In order to study the role of correlation, we express the coefficient γk as a fraction of the
sensitivity γ to historical volatility by setting γk = ϕγ, ϕ ≥ 0, with γk = 0 for ϕ = 0 and γk = γ for
ϕ = 1. The chartist anticipated correlation at time t is thus defined as

ρ(c)t = ρσ̃1σ̃2/K + ϕγkt√
(σ̃21/K + γv1,t)(σ̃22/K + γv2,t)

.

In particular, for ϕ = 1 the trend followers use the same coefficient γ to account for sample variances
and covariances. When ϕ = 0 and in addition ρ = 0 the demand functions become (for i = 1, 2),

zfi,t =
(α−R)pi,t + (1− α)p∗i + yi

aq2i σ̃
2
i /K

, zci,t =
(1 + β −R)pi,t − βui,t + yi

aq2i (σ̃
2
i /K + γvi,t)

.

These are precisely the demand functions of the case n = 1, obtained by solving a one risky/one
riskless asset mean variance optimization problem. Put differently, the case ϕ = 0 corresponds to a
situation where the prices of the two risky assets evolve independently from each other, while in the
case ϕ = 1 investors take into consideration the observed co-movements of prices exactly as they do
with their sample volatility: even in the absence of exogenous correlation, i.e. ρ = 0, this results in
interdependent demand functions of the two assets and in prices co-evolving over time.

Let us now examine the joint impact of ϕ and ρ on the dynamics, starting from different qualitative
patterns of independent one-risky-asset markets. The following numerical examples are chosen in a
way that the two assets have equal fundamental prices. This allows us to represent on the same plane
p, u both the phase plot of asset 1 (projection onto the plane p1, u1) and that of asset 2 (projection
onto the plane p2, u2), using different shading. From a qualitative point of view, we can distinguish
between the following cases:-

Case (i): Both and ϕ and ρ have no impact on the long-run price dynamics. This happens in
general when the steady states of the two independent one-risky-asset models are locally asymptotically
stable, and the parameters are located far from the bifurcation boundaries in the parameter space. The
introduction of anticipated correlation into the demand functions has no effect on the price dynamics
of the higher dimensional two-risky-asset model, and (p1,t, p2,t) → (p∗1, p∗2) independently of ϕ and ρ.
Intuitively, this is what we would expect.

Case (ii): The exogenous correlation, rather than the perceived correlation, has a major impact on
the price dynamics. A typical situation where we get this effect is when one of the two independent
markets converges to its fundamental steady state, while the other oscillates on a stable closed curve
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(Fig. 2a). When the markets become interdependent due to positive ϕ, then the steady state of the
complete model is not locally stable, though in general one of the two assets still converges to its own
fundamental steady state (Fig. 2b). This is related to the fact that there exists a stable closed curve
belonging to an invariant submanifold of the phase-space and that ϕ has no effect on the eigenvalues
evaluated at the steady state. On the contrary, when exogenous correlation ρ is introduced, this
peculiar feature is lost and both prices display long-run fluctuations, though the amplitudes of the
fluctuations for asset 1 and asset 2 are different (Figs. 2c,d). The higher is ρ, the more similar is
the amplitude of the fluctuations of the two prices: the stronger link determined by increasing values
of ρ causes a spill-over effect from the market with wider fluctuations to the more tranquil market
(compare Figs. 2e,f, where ρ = 0.25, with Figs. 2c,d, where ρ = 0.1). Note that the role of ϕ is
irrelevant in practice in this case.

Fig. 2 approximately here

Case (iii): Both the exogenous and the perceived correlation have a substantial impact on the
price dynamics. In particular, while ρ in general has a destabilizing role, the effect of the strength
γk = ϕγ of perceived covariance may be stabilizing (case (a) below) or destabilizing (case (b) below),
depending on the qualitative nature of the starting situations with two independent portfolios.

Case (a): Fig. 3 represents a case where the role of ρ is destabilizing while that of ϕ is stabilizing.
This often occurs when the two independent markets are characterized by fluctuations of similar
amplitude on regular closed curves. While ρ destabilizes further the regular closed curves into a torus
and then into a more complex attractor (compare Fig. 3a with Fig. 3c and Fig. 3e), the perceived
correlation is able to stabilize wide fluctuations in market 2 into convergence to the fundamental price
(Fig. 3b) or into fluctuations of reduced amplitude (Fig. 3d), and in particular to change a torus (Fig.
3c) or a strange attractor (Fig. 3e) into a regular closed curve (Figs. 3d and 3f).

Case (b): Fig. 4 represents a case where both ρ and ϕ have a destabilizing impact, in that they
cause a transition to irregular fluctuations, revealed by phase plots of increasing complexity. This
often occurs when one of the two independent markets fluctuates on a strange attractor, while the
other oscillates more regularly (Fig. 4a). In this case we observe a spill-over effect from the market
characterized by complex dynamics into the more regular market, and complexity increases in both
markets due to both exogenous and perceived correlations (compare Fig. 4a with Fig. 4b, and Fig.
4c with Figs. 4d,e,f).

Fig. 3 approximately here
Fig. 4 approximately here

We have not found cases in which the parameter ϕ, rather than ρ, has a major impact on the price
dynamics. This may indicate that also from the point of view of the global dynamics19, the exogenous
correlation structure has more impact than does the perceived correlation.

The above numerical experiments lead to very similar results if a negative exogenous correlation
(e.g. ρ = −0.1 and ρ = −0.25) is used instead of a positive one, as can be checked numerically.
Moreover, the observed phenomena are quite robust with respect to changes of the parameters, and
can easily be detected with a range of other parameter constellations.

Summarizing, the two correlations seem to play different roles depending on the stability, or in
general the qualitative asset price behavior, of the two separate single-risky-asset markets:

• When both assets in separate markets are stable, both correlation structures have no impact on
the price dynamics of the two-risky-asset market;

19We recall that the parameter ϕ (i.e. γk) does not affect the local dynamics, while the parameter ρ does.
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• When one of the asset prices is stable and the other fluctuates regularly, characterized by a
closed curve in the phase plot, a spill-over effect across the markets is mainly caused by the
exogenous correlation, rather than perceived correlation, among the two assets;

• When both asset prices fluctuate regularly in the separate markets, a spill-over effect across the
markets is mainly caused by the exogenous correlation, while the perceived correlation can stabi-
lize the market price from regular curves to the fundamental price, or from irregular fluctuations,
characterized by strange attractors in the phase plots, to regular fluctuations;

• When at least one of the asset prices fluctuate irregularly in the separate markets, a spill-over
effect across the markets can be caused by either the exogenous correlation or the perceived
correlation, leading to more complicated price dynamics.

4 Conclusion and further research
Starting from the single-risky-asset framework proposed by Brock and Hommes (1998) and Chiarella
and He (2001, 2003), we have developed a multi-asset dynamic model based on the interaction of
heterogeneous agents (fundamentalists and trend chasers), who allocate their wealth in each period
among several risky assets and a riskless asset, and a market maker, who adjusts the prices of the
risky assets depending on the excess demand. The model results, in general, in a high dimensional
dynamical system. The basic framework we have used to derive the demands for each risky asset is
that of the standard one-period CAPM, the major difference being that agents are allowed to have
heterogeneous beliefs about the first and second moments of the distribution of future returns and to
update dynamically these beliefs as a function of observed returns. The local stability conditions of the
‘fundamental’ steady state in the space of parameters have been derived analytically in the particular
case of two risky assets and zero “exogenous” correlation. The effect of the correlation structure
between the risky assets on the local and global dynamics has been explored by means of numerical
simulation - compared with the case where there are two separate single-risky-asset markets. It turns
out that in the presence of price fluctuations determined by fundamentalist-chartist interaction, the
investors’ anticipated correlation is not always able to stabilize the financial market, but it might even
act as a further source of complex behavior.

The framework proposed in this paper could be developed in a number of directions.
First the analysis here has focused on a deterministic dynamic model, which could be generalized

in order to include the effect of exogenous stochastic factors (e.g. the effect of randomly evolving
fundamental prices).

Second, the model here is one with fixed market fractions of fundamentalists and chartists, in the
sense that agents are not allowed to “switch” amongst different available strategies on the basis of
their realized profits (for instance according to the “adaptive belief system” introduced by Brock and
Hommes (1997, 1998)). The introduction of “switching” mechanisms and time varying proportions
would be a necessary and interesting extension of the model.

Third, it would be interesting to analyse how the CAPM relationships are modified in this dy-
namic framework. For instance, the heterogeneous interacting agent framework, combined with asset
diversification and time-varying perception of risk (dynamic updating of variances/covariances) could
provide a basis for a theory of time-varying betas, which is widely reported as an empirical fact but
poorly explained in the standard CAPM framework.
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Figure captions
Figure 1. Local stability region of the ‘fundamental’ steady state in the space of parameters

(β, nf ).
Figure 2. Joint effect of ρ and ϕ. The case where ρ plays a dominant role and has a destabilizing

effect for asset 2. The parameters are the following: α = 0.75, β = 0.25, γ = 0.5 (and γk = ϕγ),
δ = µ = 0.5, nf = 0.25, a = 0.05, r = 0.05, K = 250 (so that R = 1 + r/K = 1.0002), σ21 = 0.9,
σ22 = 1.6, zs1 = zs2 = 1, y1 = 0.071, y2 = 0.106 which imply p∗1 = p∗2 = 130 for ρ = 0, p∗1 = p∗2 = 100 for
ρ = 0.1, p∗1 = p∗2 = 55 for ρ = 0.25. The parameters q1 and q2 are set equal to 1 for simplicity.

Figure 3. Joint effect of ρ and ϕ. The case where both ρ and ϕ have a significant impact on
the dynamics of prices: ρ is destabilizing while ϕ is stabilizing. The parameters are the following:
α = 0.75, β = 0.45, γ = 0.5 (and γk = ϕγ), δ = µ = 0.5, nf = 0.25, a = 0.05, r = 0.05, K = 250
(R = 1 + r/K = 1.0002), σ21 = 0.9, σ22 = 1.6, zs1 = zs2 = 1, y1 = 0.071, y2 = 0.106 which imply
p∗1 = p∗2 = 130 for ρ = 0, p∗1 = p∗2 = 100 for ρ = 0.1, p∗1 = p∗2 = 55 for ρ = 0.25. The parameters q1 and
q2 are set equal to 1 for simplicity.

Figure 4. Joint effect of ρ and ϕ. Case where both ρ and ϕ have a significant, destabilizing
impact on the dynamics of prices. The parameters are the following: α = 0.3, β = 2, γ = 0.5 (and
γk = ϕγ), δ = µ = 0.5, nf = 0.25, a = 0.05, r = 0.05, K = 250 (R = 1 + r/K = 1.0002), σ21 = 0.9,
σ22 = 1.6, zs1 = zs2 = 1, y1 = 0.071, y2 = 0.106 which imply p∗1 = p∗2 = 130 for ρ = 0, p∗1 = p∗2 = 100 for
ρ = 0.1, p∗1 = p∗2 = 55 for ρ = 0.25. The parameters q1 and q2 are set equal to 1 for simplicity.
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