Effects of heart rate variability and blood pressure on cognition in healthy and clinical cohorts

Louisa Giblin
BMedSc(Hons)

2016

Principal supervisor: Associate Professor Sara Lal (UTS)
Co-supervisors: Associate Professor Roderick Clifton-Bligh (RNSH)
Associate Professor Christopher Zaslavski (UTS)

Submitted in partial fulfilment of the requirements for the degree of Doctorate of Philosophy (Science) at the University of Technology Sydney.
Declaration

Certificate of original authorship

I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature:

Date: 22/05/2016

Louisa Giblin
Acknowledgments

Firstly, I would like to thank my principal supervisor, Associate Professor Sara Lal. I am enormously grateful for the opportunity to have undertaken a PhD as your student. Your insight, guidance, feedback, and support has been invaluable throughout my candidature. Thank you for your energy and enthusiasm for human research; our meetings always inspired and motivated me. I hope we collaborate again in the future.

I would also like to thank my co-supervisors, Associate Professor Roderick Clifton-Bligh and Associate Professor Christopher Zaslawski, for your feedback and intellectual input, and for allowing me to work autonomously. And thank you Professor David Sibbritt, for your expert advice on the statistical analysis.

I would like to express my sincere gratitude to my partner, Josh Chalkley, who has not only supported me with positive encouragement, kept me company during late nights, and made me many cups of tea, but also spent countless hours proof-reading and editing this thesis. Thank you for your kindesses.

Thank you also to my friends and colleagues in the Neuroscience Research Unit at UTS, in particular, Taryn Chalmers, Ty Lees, Jaymen Elliott, and Leon Rothberg. Thank you for being there to discuss ideas, troubleshoot problems, and for your words of encouragement.

My sincere thanks go to all the generous participants who volunteered their time to be part of this research. Thank you to Diabetes NSW and Alzheimer’s Australia, who advertised this study to help with recruitment.

Thank you also to Alzheimer’s Australia Dementia Research Foundation for providing a top-up scholarship.

Thank you to Budi Jap, who designed the software and analysis for the heart rate variability data used in this study. Thank you for providing the data quickly and accurately.
My warmest thanks go to my family and friends for their endless support and understanding throughout this year. Thank you also for being both participants in this research and helping to recruit others.

Finally, I would like to thank the markers, for reading, reviewing, and accepting this thesis.
Table of contents

Declaration .. i
Acknowledgments ... ii
Table of contents .. iv
List of tables .. xiv
List of figures ... xxvii
List of abbreviations ... xxx
List of publications and presentations .. xxxii
List of publications .. xxxii
List of presentations .. xxxii
National conferences.. xxxii
International conferences .. xxxiii
Abstract ... xxxiv

1. **Introduction** ... 1
 1.1 Cognitive function .. 1
 1.1.1 Mild cognitive impairment (MCI) .. 2
 1.1.2 Dementia ... 3
 1.1.2.1 Alzheimer’s disease (AD) .. 5
 1.1.2.2 Vascular dementia (VaD) .. 8
 1.1.2.3 Other types of dementia ... 9
 1.2 Risk factors for cognitive impairment ... 11
1.2.1 Age .. 11
1.2.2 Sex and hormones ... 15
1.2.3 Genetics and ethnicity ... 18
1.2.4 Pathologies .. 20
 1.2.4.1 Hypertension .. 21
 1.2.4.2 Diabetes mellitus (DM) ... 23
 1.2.4.2.1 Type 1 DM .. 23
 1.2.4.2.2 Type 2 DM .. 24
 1.2.4.3 Depression ... 26
1.2.5 Lifestyle ... 28
1.3 Heart rate variability (HRV) ... 29
 1.3.1 Frequency domain HRV ... 32
 1.3.2 Time domain HRV .. 37
 1.3.3 HRV and cognitive function ... 39
 1.3.4 Blood pressure (BP) and cognitive function ... 45
2. Basis for research ... 51
 2.1.1 Hypotheses .. 52
 2.1.2 Aim .. 53
 2.1.2.1 Specific aims .. 53
3. Methodology ... 54
 3.1 Participants .. 54
3.2 Consent ... 54
3.3 BP exclusion criteria ... 55
3.4 Lifestyle exclusion criteria ... 57
3.5 Electrocardiogram (ECG) and HRV data ... 57
3.6 Psychometric tests .. 62
 3.6.1 Mini-Mental State Examination (MMSE) .. 62
 3.6.2 Cognistat ... 65
 3.6.3 Cognitive domains and scoring weight ... 69
3.7 Final BP measurements .. 71
3.8 Experimental protocol summary ... 71
3.9 Statistical analysis .. 73
3.10 Statistical methods .. 74
 3.10.1 Power analysis ... 74
 3.10.2 Dependent and independent sample t-tests ... 74
 3.10.2.1 Wilcoxon signed rank test ... 74
 3.10.2.2 Mann-Whitney U test .. 74
 3.10.3 Bivariate Pearson’s correlation ... 75
 3.10.3.1 Spearman’s rank-order correlation .. 75
 3.10.4 Partial Pearson’s correlation .. 76
 3.10.4.1 Partial Spearman’s rank-order correlation .. 76
 3.10.5 Comparison of correlations between groups .. 76
3.10.6 Bonferroni correction ... 77
3.10.7 Regression analysis .. 77
3.10.8 Multiple analysis of variance (MANOVA) 78
 3.10.8.1 Kruskal Wallis H test ... 78
3.10.9 Multiple analysis of covariance (MANCOVA) 78

4. HRV and cognition (non-clinical groups) ... 79

4.1 Results: HRV and cognition (non-clinical groups) 79
 4.1.1 Total non-clinical group demographics (females and males) (n=223) 80
 4.1.2 18-35 years ... 85
 4.1.2.1 Females (n=41) .. 85
 4.1.2.2 Males (n=42) .. 92
 4.1.2.3 Comparison between females (n=41) and males (n=42) (18-35 years) 100
 4.1.3 36-50 years ... 104
 4.1.3.1 Females (n=37) .. 104
 4.1.3.2 Males (n=37) .. 113
 4.1.3.3 Comparison between females (n=37) and males (n=37) (36-50 years) 121
 4.1.4 51-65 years ... 124
 4.1.4.1 Females (n=42) .. 124
 4.1.4.2 Males (n=23) .. 132
 4.1.4.3 Comparison between females (n=42) and males (n=23) (51-65 years) 139
4.1.5 Females and males total sample (18-65 years) ... 142

4.1.5.1 Females 18-65 years (n=120) .. 142

4.1.5.1.1 Female age group comparison (18-35, 36-50, 51-55 years).............. 146

4.1.5.2 Males 18-65 years (n=102) .. 150

4.1.5.2.1 Male age group comparison (18-35, 36-50, 51-55 years)................. 154

4.1.5.3 Comparison between total females (n=120) and males (n=102) 156

4.2 Discussion: HRV and cognition (non-clinical groups) 159

4.2.1 18-35 years .. 159

4.2.1.1 Females (n=41) .. 159

4.2.1.2 Males (n=42) .. 161

4.2.1.3 Comparison between females (n=41) and males (n=42) (18-35 years) 162

4.2.2 36-50 years .. 164

4.2.2.1 Females (n=37) .. 164

4.2.2.2 Males (n=37) .. 165

4.2.2.3 Comparison between females (n=37) and males (n=37) (36-50 years) 167

4.2.3 51-65 years .. 169

4.2.3.1 Females (n=42) .. 169

4.2.3.2 Males (n=23) .. 171

4.2.3.3 Comparison between females (n=42) and males (n=23) (51-65 years) 172
4.2.4 Age group comparisons (18-35, 36-50, 51-65 years) in females and males 174

4.2.4.1 Females (18-35, 36-50, 51-65 years) ... 174
4.2.4.2 Males (18-35, 36-50, 51-65 years) ... 176
4.2.4.3 Comparison between total females (n=120) and males (n=102) 177

4.3 Conclusion: HRV and cognition (non-clinical groups) 179

5. HRV and cognition (clinical groups) .. 183

5.1 Results: HRV and cognition (clinical groups) 183
5.1.1 Depression (n=10) ... 186
5.1.2 Control group without depression (n=10) ... 193
 5.1.2.1 Depression (n=10) and the control group (n=10) 199
5.1.3 Type 1 DM (n=9) ... 200
5.1.4 Control group without type 1 DM (n=9) .. 207
 5.1.4.1 Type 1 DM (n=9) and the control group (n=9) 214
5.1.5 Type 2 DM (n=38) ... 216
5.1.6 Control group without type 2 DM (n=30) .. 222
 5.1.6.1 Type 2 DM (n=38) and the control group (n=30) 227
5.1.7 Hypertension (n=39) ... 232
5.1.8 Control group without hypertension (n=31) 240
 5.1.8.1 Hypertension (n=39) and the control group (n=31) 248

5.2 Discussion: HRV and cognition (clinical groups) 251
5.2.1 Depression (n=10) ... 251
5.2.1.1 Depression (n=10) and the control group (n=10) 253

5.2.2 Type 1 DM (n=9) .. 255

5.2.2.1 Type 1 DM (n=9) and the control group (n=9) 257

5.2.3 Type 2 DM (n=38) .. 259

5.2.3.1 Type 2 DM (n=38) and the control group (n=30) 260

5.2.4 Hypertension (n=39) ... 262

5.2.4.1 Hypertension (n=39) and the control group (n=31) 263

5.3 Conclusion: HRV and cognition (clinical groups) ... 265

6. **BP and cognition (non-clinical groups)** .. 270

6.1 Results: BP and cognition (non-clinical groups) .. 270

6.1.1 Total non-clinical group demographics (females and males) (n=223) ... 271

6.1.2 18-35 years .. 272

6.1.2.1 Females (n=41) .. 272

6.1.2.2 Males (n=42) .. 274

6.1.2.3 Comparison between females (n=41) and males (n=42) (18-35 years) 275

6.1.3 36-50 years .. 277

6.1.3.1 Females (n=37) .. 277

6.1.3.2 Males (n=37) .. 279

6.1.3.3 Comparison between females (n=37) and males (n=37) (36-50 years) 280

6.1.4 51-65 years .. 282
6.1.4.1 Females (n=42) ... 282
6.1.4.2 Males (n=23) .. 284
6.1.4.3 Comparison between females (n=42) and males (n=23) (51-65 years) 286

6.1.5 Females and males total sample (18-65 years) 287
6.1.5.1 Females 18-65 years (n=120) .. 287
 6.1.5.1.1 Female age group comparison (18-35, 36-50, 51-65 years) ... 288
6.1.5.2 Males 18-65 years (n=102) ... 290
 6.1.5.2.1 Male age group comparison (18-35, 36-50, 51-65 years) 291
6.1.5.3 Comparison between total females (n=120) and males (n=102) 292

6.2 Discussion: BP and cognition (non-clinical groups) 294
6.2.1 18-35 years ... 295
 6.2.1.1 Females (n=41) .. 295
 6.2.1.2 Males (n=42) .. 296
 6.2.1.3 Comparison between females (n=41) and males (n=42) (18-35 years) 296
6.2.2 36-50 years ... 297
 6.2.2.1 Females (n=37) .. 297
 6.2.2.2 Males (n=37) ... 299
 6.2.2.3 Comparison between females (n=37) and males (n=37) (36-50 years) 299
6.2.3 51-65 years ... 300
 6.2.3.1 Females (n=42) .. 300
6.2.3.2 Males (n=23)...301

6.2.3.3 Comparison between females (n=42) and males (n=23) (51-65 years) 302

6.2.4 Age group comparisons (18-35, 36-50, 51-65 years) in females and males 303

6.2.4.1 Females (18-35, 36-50, 51-65 years)...303

6.2.4.2 Males (18-35, 36-50, 51-65 years)...304

6.2.4.3 Comparison of BP and cognition between total females (n=120) and males (n=102)...305

6.3 Conclusion: BP and cognition (non-clinical groups)306

7. BP and cognition (clinical groups) ..310

7.1 Results: BP and cognition (clinical groups)..310

7.1.1 Depression (n=10)..311

7.1.2 Control group without depression (n=10)..314

7.1.2.1 Depression (n=10) and the control group (n=10)316

7.1.3 Type 1 DM (n=9)...317

7.1.4 Control group without type 1 DM (n=9)...319

7.1.4.1 Type 1 DM (n=9) and the control group (n=9).................................321

7.1.5 Type 2 DM (n=38)..322

7.1.6 Control group without type 2 DM (n=30)...324

7.1.6.1 Type 2 DM (n=38) and the control group (n=30).........................325

7.1.7 Hypertension (n=39)...327

7.1.8 Control group without hypertension (n=31)...329
7.1.8.1 Hypertension (n=39) and the control group (n=31) 330

7.2 Discussion: BP and cognition (clinical groups) ... 332

7.2.1 Depression (n=10) ... 332

7.2.1.1 Depression (n=10) and the control group (n=10) 333

7.2.2 Type 1 DM (n=9) .. 334

7.2.2.1 Type 1 DM (n=9) and the control group (n=9) 336

7.2.3 Type 2 DM (n=38) .. 337

7.2.3.1 Type 2 DM (n=38) and the control group (n=30) 338

7.2.4 Hypertension (n=39) ... 340

7.2.4.1 Hypertension (n=39) and the control group (n=31) 341

7.3 Conclusion: BP and cognition (clinical groups)... 342

8. Conclusions, limitations and future directions ... 347

8.1 Conclusions .. 347

8.2 Limitations and future directions.. 349

9. Appendices .. 352

9.1 Consent form – No chronic illness (non-clinical group)............................. 352

9.2 Consent form – Chronic illness (clinical group) .. 353

9.3 Emergency protocol ... 354

9.4 Disease State Questionnaire ... 356

10. References ... 360
List of tables

Table 1.1 Clinical criteria used to diagnose mild cognitive impairment 3
Table 1.2 Clinical criteria used to diagnose dementia ... 4
Table 1.3 Common types of dementia ... 10
Table 1.4 Sex-specific differences in cognitive performance 16
Table 1.5 Common pathological risk factors for cognitive impairment 20
Table 1.6 Modifiable risk factors for cognitive impairment 28
Table 1.7 Autonomic space model ... 35
Table 1.8 Summary of studies comparing HRV between females and males 36
Table 1.9 Frequency and time domain HRV parameters 38
Table 1.10 Summary of studies examining HRV and cognitive function 44
Table 1.11 Studies assessing BP and increased risk of cognitive impairment 50
Table 3.1 BP inclusion and exclusion thresholds .. 56
Table 3.2 Description of time domain HRV parameters 61
Table 3.3 MMSE normative data by age and years of education 63
Table 3.4 Comparison of MMSE sensitivity and specificity research 64
Table 3.5 Cognistat cognitive profile grading ... 67
Table 3.6 Cognistat normative data by age and years of education 68
Table 3.7 Cognitive domains examined by the MMSE and Cognistat 69
Table 3.8 Comparison of scoring weight (maximum) and cognitive impairment thresholds for the MMSE and Cognistat ... 70
Table 3.9 Step summary of experimental protocol .. 72

Table 4.1 Mean demographics for the total non-clinical group (n=223) 81

Table 4.2 Mean cognitive scores from the MMSE and Cognistat for the total non-clinical
group (n=223) .. 82

Table 4.3 Mean frequency domain HRV values for the total non-clinical group (n=223)
... 83

Table 4.4 Mean time domain HRV values for the total non-clinical group (n=223) 84

Table 4.5 Mean sample demographics for females 18-35 years (n=41) 85

Table 4.6 Mean cognitive scores from the MMSE and Cognistat for females 18-35 years
(n=41) .. 86

Table 4.7 Mean frequency domain HRV values for females 18-35 years (n=41) 87

Table 4.8 Mean time domain HRV values for females 18-35 years (n=41) 88

Table 4.9 Dependent sample t-test between baseline and active HRV states for females
18-35 years (n=41) .. 89

Table 4.10 Pearson’s correlation coefficients between cognitive scores and HRV in
females 18-35 years (n=41) .. 90

Table 4.11 Partial Pearson’s correlation coefficients between cognitive scores and HRV
in females 18-35 years (n=41) .. 91

Table 4.12 Mean sample demographics for males 18-35 years (n=42) 92

Table 4.13 Mean cognitive scores from the MMSE and Cognistat for males 18-35 years
(n=42) .. 93

Table 4.14 Mean frequency domain HRV values for males 18-35 years (n=42) 94

Table 4.15 Mean time domain HRV values for males 18-35 years (n=42) 95
Table 4.16 Dependent sample t-test between baseline and active HRV states for males 18-35 years (n=42) ...96

Table 4.17 Partial Pearson’s correlation coefficients between cognitive scores and HRV in males 18-35 years (n=42) ...97

Table 4.18 Hierarchical multiple regression between total Cognistat score and HRV variables in males 18-35 years (n=42) ...99

Table 4.19 Independent sample t-test with covariates of cognitive scores between females (n=41) and males (n=42) aged 18-35 years ...101

Table 4.20 Independent sample t-test with covariance of HRV values between females (n=41) and males (n=42) aged 18-35 years ..102

Table 4.21 Correlation comparisons using Z scores between females (n=41) and males (n=42) aged 18-35 years ..103

Table 4.22 Mean sample demographics for females 36-50 years (n=37) 104

Table 4.23 Mean cognitive scores from the MMSE and Cognistat for females 36-50 years (n=37) .. 105

Table 4.24 Mean frequency domain HRV values for females 36-50 years (n=37) 106

Table 4.25 Mean time domain HRV values for females 36-50 years (n=37) 107

Table 4.26 Dependent sample t-test between baseline and active HRV states for females 36-50 years (n=37) ...108

Table 4.27 Pearson’s correlation coefficients between cognitive scores and HRV in females 36-50 years (n=37) ...109

Table 4.28 Partial Pearson’s correlation coefficients between cognitive scores and HRV in females 36-50 years (n=37) ..110

Table 4.29 Multiple regression between naming (Cognistat) and HRV variables in females 36-50 years (n=37) ...111
Table 4.30 Multiple regression between total Cognistat score and HRV variables in females 36-50 years (n=37)..112

Table 4.31 Mean sample demographics for males 36-50 years (n=37).........................113

Table 4.32 Mean cognitive scores from the MMSE and Cognistat for males 36-50 years (n=37)..114

Table 4.33 Mean frequency domain HRV values for males 36-50 years (n=37)..............115

Table 4.34 Mean time domain HRV values for males 36-50 years (n=37).....................116

Table 4.35 Dependent sample t-test between baseline and active HRV states for males 36-50 years (n=37)..117

Table 4.36 Pearson’s correlation coefficients between cognitive scores and HRV in males 36-50 years (n=37)..118

Table 4.37 Partial Pearson’s correlation coefficients between cognitive scores and HRV in males 36-50 years (n=37)..119

Table 4.38 Hierarchical multiple regression between judgment score (Cognistat) and HRV variables in males 36-50 years (n=37)..120

Table 4.39 Independent sample t-test with covariance of HRV values between females (n=37) and males (n=37) aged 36-50 years ...123

Table 4.40 Mean sample demographics for females 51-65 years (n=42).....................124

Table 4.41 Mean cognitive scores from the MMSE and Cognistat for females 51-65 years (n=42)..125

Table 4.42 Mean frequency domain HRV values for females 51-65 years (n=42)......126

Table 4.43 Mean time domain HRV values for females 51-65 years (n=42).................127

Table 4.44 Dependent sample t-test between baseline and active HRV states for females 51-65 years (n=42)...128
Table 4.45 Pearson’s correlation coefficients between cognitive scores and HRV in females 51-65 years (n=42) ... 129

Table 4.46 Partial Pearson’s correlation coefficients between cognitive scores and HRV in females 51-65 years (n=42) ... 130

Table 4.47 Multiple regression between naming (Cognistat) and HRV variables in females 51-65 years (n=42) ... 131

Table 4.48 Mean sample demographics for males 51-65 years (n=23) 132

Table 4.49 Mean cognitive scores from the MMSE and Cognistat for males 51-65 years (n=23) ... 133

Table 4.50 Mean frequency domain HRV values for males 51-65 years (n=23) 134

Table 4.51 Mean time domain HRV values for males 51-65 years (n=23) 135

Table 4.52 Wilcoxon signed rank test between baseline and active HRV states for males 51-65 years (n=23) ... 136

Table 4.53 Spearman’s correlation coefficients between cognitive scores and HRV in males 51-65 years (n=23) ... 137

Table 4.54 Spearman’s partial correlation coefficients between cognitive scores and HRV in males 51-65 years (n=23) ... 138

Table 4.55 Mann-Whitney U Test comparing cognitive scores between females (n=42) and males (n=23) 51-65 years ... 140

Table 4.56 Mann-Whitney U Test comparing HRV values between females (n=42) and males (n=23) 51-65 years ... 141

Table 4.57 Mean sample demographics for total females 18-65 years (n=120) 142

Table 4.58 Mean cognitive scores from the MMSE and Cognistat for total females 18-65 years (n=120) ... 143

Table 4.59 Mean frequency domain HRV values for total females 18-65 years (n=120) ... 144
Table 4.60 Mean time domain HRV values for total females 18-65 years (n=120).....145

Table 4.61 ANOVA comparing cognitive scores between female age groups 18-35 (n=41), 36-50 (n=37), and 51-65 (n=42) years ..147

Table 4.62 ANCOVA comparing cognitive scores between female age groups 18-35 (n=41), 36-50 (n=37) and 51-65 (n=42) years ..148

Table 4.63 ANOVA comparing HRV values between female age groups 18-35 (n=41), 36-50 (n=37), and 51-65 (n=42) years ...149

Table 4.64 Mean sample demographics for total males 18-65 years (n=102)........150

Table 4.65 Mean cognitive scores from the MMSE and Cognistat for total males 18-65 years (n=102) ...151

Table 4.66 Mean frequency domain HRV values for total males 18-65 years (n=102)152

Table 4.67 Mean time domain HRV values for total males 18-65 years (n=102).......153

Table 4.68 Independent sample t-test with covariance of cognitive scores between females (n=120) and males (n=102) aged 18-65 years ...157

Table 4.69 Independent sample t-test with covariance of HRV values between females (n=120) and males (n=102) aged 18-65 years ..158

Table 4.70 Summary of significant correlations between HRV and cognitive domains in females (n=41) and males (n=42) aged 18-35 years ...180

Table 4.71 Summary of significant correlations between HRV and cognitive domains in females (n=37) and males (n=37) aged 36-50 years ...181

Table 4.72 Summary of significant correlations between HRV and cognitive domains in females (n=42) and males (n=23) aged 51-65 years ...182

Table 5.1 Distribution of participants with one or more chronic illnesses185

Table 5.2 Mean sample demographics for subjects with depression (n=10)186
Table 5.3 Mean cognitive scores from the MMSE and Cognistat for subjects with depression (n=10)...188

Table 5.4 Mean frequency domain HRV values for subjects with depression (n=10).189

Table 5.5 Mean time domain HRV values for subjects with depression (n=10).........190

Table 5.6 Wilcoxon signed rank test between baseline and active HRV states in subjects with depression (n=10)...191

Table 5.7 Spearman’s correlation coefficients between cognitive scores and HRV in subjects with depression (n=10)...192

Table 5.8 Mean sample demographics for the control group without depression (n=10)..193

Table 5.9 Mean cognitive scores from the MMSE and Cognistat for the control group without depression (n=10) ..194

Table 5.10 Mean frequency domain HRV values for the control group without depression (n=10)..195

Table 5.11 Mean time domain HRV values for the control group without depression (n=10)..196

Table 5.12 Wilcoxon signed rank test between baseline and active HRV states in the control group without depression (n=10)..197

Table 5.13 Partial Spearman’s correlation coefficients between HRV and cognitive scores in the control group without depression (n=10)..198

Table 5.14 Mean sample demographics for subjects with type 1 diabetes (n=9).......200

Table 5.15 Mean cognitive scores from the MMSE and Cognistat for subjects with type 1 diabetes (n=9)...201

Table 5.16 Mean frequency domain HRV values for subjects with type 1 diabetes (n=9)...202

Table 5.17 Mean time domain HRV values for subjects with type 1 diabetes (n=9) ...203
Table 5.18 Wilcoxon signed rank test between baseline and active HRV states in subjects with type 1 diabetes (n=9) ..204

Table 5.19 Spearman’s correlation coefficients between cognitive scores and HRV in subjects with type 1 diabetes (n=9) ..205

Table 5.20 Partial Spearman’s correlation coefficients between cognitive scores and HRV in subjects with type 1 diabetes (n=9) ...206

Table 5.21 Mean sample demographics for the control group without type 1 diabetes (n=9) ...207

Table 5.22 Mean cognitive scores from the MMSE and Cognistat for the control group without type 1 diabetes (n=9) ..209

Table 5.23 Mean frequency domain HRV values for the control group without type 1 diabetes (n=9) ..210

Table 5.24 Mean time domain HRV values for the control group without type 1 diabetes (n=9) ..211

Table 5.25 Spearman’s correlation coefficients between cognitive scores and HRV in the control group without type 1 diabetes (n=9) ...212

Table 5.26 Partial Spearman’s correlation coefficients between cognitive scores and HRV in the control group without type 1 diabetes (n=9) ...213

Table 5.27 Mann-Whitney U test comparing HRV values between subjects with type 1 diabetes and the control group ..215

Table 5.28 Mean sample demographics for subjects with type 2 diabetes (n=38)216

Table 5.29 Mean cognitive scores from the MMSE and Cognistat for subjects with type 2 diabetes (n=38) ..217

Table 5.30 Mean frequency domain HRV values for subjects with type 2 diabetes (n=38) ...218

Table 5.31 Mean time domain HRV values for subjects with type 2 diabetes (n=38) . 219
Table 5.32 Dependent sample t-test between baseline and active HRV states for subjects with type 2 diabetes (n=38) ... 220

Table 5.33 Partial Pearson’s correlation coefficients between cognitive scores and HRV in subjects with type 2 diabetes (n=38) ... 221

Table 5.34 Mean sample demographics for the control group without type 2 diabetes (n=30) .. 222

Table 5.35 Mean cognitive scores from the MMSE and Cognistat for the control group without type 2 diabetes (n=30) .. 223

Table 5.36 Mean frequency domain HRV values for the control group without type 2 diabetes (n=30) .. 224

Table 5.37 Mean time domain HRV values for the control group without type 2 diabetes (n=30) .. 225

Table 5.38 Dependent sample t-test between baseline and active HRV states for the control group without type 2 diabetes (n=30) .. 226

Table 5.39 Independent sample t-test with covariates of cognitive scores between the subjects with type 2 diabetes and the control group .. 229

Table 5.40 Independent sample t-test of HRV values between subjects with type 2 diabetes and the control group .. 230

Table 5.41 Independent sample t-test with covariates of HRV values between subjects with type 2 diabetes and the control group .. 231

Table 5.42 Mean sample demographics for subjects with hypertension (n=39) .. 232

Table 5.43 Mean cognitive scores from the MMSE and Cognistat for subjects with hypertension (n=39) .. 233

Table 5.44 Mean frequency domain HRV values for subjects with hypertension (n=39) .. 234

Table 5.45 Mean time domain HRV values for subjects with hypertension (n=39) .. 235
Table 5.46 Dependent sample t-test between baseline and active HRV states in subjects with hypertension (n=39) ... 236

Table 5.47 Pearson’s correlation coefficients between cognitive scores and HRV in subjects with hypertension (n=39) ... 237

Table 5.48 Partial Pearson’s correlation coefficients between cognitive scores and HRV in subjects with hypertension (n=39) ... 238

Table 5.49 Hierarchical multiple regression between judgment (Cognistat) and HRV variables in subjects with hypertension (n=39) ... 239

Table 5.50 Mean sample demographics for the control group without hypertension (n=31) ... 240

Table 5.51 Mean cognitive scores from the MMSE and Cognistat for the control group without hypertension (n=31) ... 241

Table 5.52 Mean frequency domain HRV values for the control group without hypertension (n=31) ... 242

Table 5.53 Mean time domain HRV values for the control group without hypertension (n=31) ... 243

Table 5.54 Dependent sample t-test between baseline and active HRV states for the control group without hypertension (n=31) ... 244

Table 5.55 Pearson’s correlation coefficients between cognitive scores and HRV in the control group without hypertension (n=31) ... 245

Table 5.56 Partial Pearson’s correlation coefficients between cognitive scores and HRV in the control group without hypertension (n=31) ... 246

Table 5.57 Multiple regression between orientation (MMSE) and HRV variables in the control group without hypertension (n=31) ... 247

Table 5.58 Independent sample t-test with covariates of cognitive scores between subjects with hypertension (n=39) and the control group (n=31) ... 250
Table 5.59 Summary of significant correlations between HRV and cognitive domains in subjects with depression (n=10) .. 266

Table 5.60 Summary of significant correlations between HRV and cognitive domains in subjects with type 1 diabetes (n=9) .. 267

Table 5.61 Summary of significant correlations between HRV and cognitive domains in subjects with type 2 diabetes (n=38) ... 268

Table 5.62 Summary of significant correlations between HRV and cognitive domains in subjects with hypertension (n=39) .. 269

Table 6.1 Mean BP values for the total non-clinical group (n=223) 271

Table 6.2 Mean BP values for females 18-35 years (n=41) .. 272

Table 6.3 Significant Pearson’s correlation coefficients between cognitive scores and blood pressure values in females 18-35 years (n=41) .. 273

Table 6.4 Mean BP values for males 18-35 years (n=42) .. 274

Table 6.5 Independent sample t-test with covariance of blood pressure values between females (n=41) and males (n=42) aged 18-35 years ... 276

Table 6.6 Mean BP values for females 36-50 years (n=37) .. 277

Table 6.7 Partial Pearson’s correlation coefficients between cognitive scores and blood pressure values in females 36-50 years (n=37) .. 278

Table 6.8 Mean BP values for males 36-50 years (n=37) .. 279

Table 6.9 Independent sample t-test with covariance of blood pressure values between females and males aged 36-50 years ... 281

Table 6.10 Mean BP values for females 51-65 years (n=42) 282

Table 6.11 Pearson’s correlation coefficients between cognitive scores and BP in females 51-65 years (n=42) ... 283

Table 6.12 Mean BP values for males 51-65 years (n=23) 284
Table 6.13 Spearman’s correlation coefficients between cognitive scores and BP in males 51-65 years (n=23) ...285

Table 6.14 Mean BP values for females 18-65 years (n=120). ..287

Table 6.15 Mean BP values for males 18-65 years (n=102). ...290

Table 6.16 Independent sample t-test with covariance of BP values between total females (n=120) and males (n=102) aged 18-65 years ..293

Table 6.17 Summary of significant correlations between BP values and cognitive domains in females (n=41) and males (n=42) aged 18-35 years ..307

Table 6.18 Summary of significant correlations between BP values and cognitive domains in females (n=37) and males (n=37) aged 36-50 years ...308

Table 6.19 Summary of significant correlations between BP values and cognitive domains in females (n=42) and males (n=23) aged 51-65 years ..309

Table 7.1 Mean BP values for participants with depression (n=10) ..311

Table 7.2 Bivariate Spearman’s correlation coefficients between cognitive scores and blood pressure values in subjects with depression (n=10) ...312

Table 7.3 Partial Spearman’s correlation coefficients between cognitive scores and blood pressure values in subjects with depression (n=10) ..313

Table 7.4 Mean BP values for the control group without depression (n=10)314

Table 7.5 Bivariate Spearman’s correlation coefficients between cognitive scores and blood pressure values in the control group without depression (n=10) ...315

Table 7.6 Mean BP values for subjects with type 1 diabetes (n=9) ..317

Table 7.7 Bivariate Spearman’s correlation coefficients between cognitive scores and blood pressure values in subjects with type 1 diabetes (n=9) ..318

Table 7.8 Partial Spearman’s correlation coefficients between cognitive scores and blood pressure values in subjects with type 1 diabetes (n=9) ..318
Table 7.9 Mean BP values for the control group without type 1 diabetes (n=9) 319
Table 7.10 Partial Spearman’s correlation coefficients between cognitive scores and blood pressure values in the control group without type 1 diabetes (n=9) 320
Table 7.11 Mean BP values for subjects with type 2 diabetes (n=38) 322
Table 7.12 Partial Pearson’s correlation coefficients between cognitive scores and blood pressure values in subjects with type 2 diabetes (n=38) .. 323
Table 7.13 Mean BP values for the control group without type 2 diabetes (n=30) 324
Table 7.14 Independent sample t-test with covariance of blood pressure values between subjects with type 2 diabetes and the control group ... 326
Table 7.15 Mean BP values for subjects with hypertension (n=39) 327
Table 7.16 Partial Pearson’s correlation coefficients between cognitive scores and blood pressure values in subjects with hypertension (n=39) .. 328
Table 7.17 Mean BP values for the control group without hypertension (n=31) 329
Table 7.18 Summary of significant correlations between BP values and cognitive domains in subjects with depression (n=10) .. 343
Table 7.19 Summary of significant correlations between BP values and cognitive domains in subjects with type 1 diabetes (n=9) .. 344
Table 7.20 Summary of significant correlations between BP values and cognitive domains in subjects with type 2 diabetes (n=38) ... 345
Table 7.21 Summary of significant correlations between BP values and cognitive domains in subjects with hypertension (n=39) .. 346
List of figures

Figure 1.1 Number of Australians aged 65 years and over, by age group, 2012-2047.....1

Figure 1.2 Functions of the brain stem, cerebellum, and brain lobes2

Figure 1.3 Expected dementia prevalence in Australia (2012-2050).........................4

Figure 1.4 Healthy brain and neuron compared to Alzheimer’s disease6

Figure 1.5 Typical progressive stages of Alzheimer’s disease8

Figure 1.6 Ischemic injury as a result of cerebral artery blockage9

Figure 1.7 Oxidative stress hypothesis of aging ...13

Figure 1.8 Dendritic spine morphology in aging ...14

Figure 1.9 Autonomic nervous system: Parasympathetic and sympathetic effector sites ...22

Figure 1.10 Factors contributing to cognitive dysfunction in type 2 diabetes24

Figure 1.11 Negative feedback of cortisol in the hypothalamus-pituitary-adrenal axis. 27

Figure 1.12 R-R interval tachogram..30

Figure 1.13 Illustration of the heart’s electrical conduction system31

Figure 1.14 Deriving frequency domain HRV data ...33

Figure 1.15 Inverted U-shaped hypothesis between blood pressure and cognitive performance ..47

Figure 3.1 Method of recording blood pressure using an automated blood pressure monitor ..55

Figure 3.2 Electrode placement (three-lead ECG) ...58

Figure 3.3 Labelled screenshot of the ECG recording59
Figure 4.1 Sample distribution per age and sex group .. 80

Figure 4.2 Mean cognitive scores (Cognistat and MMSE) for females (n=41) and males (n=42) aged 18-35 years ... 100

Figure 4.3 Mean cognitive scores (Cognistat and MMSE) for females (n=37) and males (n=37) aged 36-50 years ... 121

Figure 4.4 Mean cognitive scores (Cognistat and MMSE) for females (n=42) and males (n=23) aged 51-65 years ... 139

Figure 4.5 Mean cognitive scores (Cognistat and MMSE) for females aged 18-35 (n=41), 36-50 (n=37) and 51-65 years (n=23) ... 146

Figure 4.6 Mean cognitive scores (Cognistat and MMSE) for males aged 18-35 (n=42), 36-50 (n=37) and 51-65 years (n=42) ... 154

Figure 4.7 Mean cognitive scores (Cognistat and MMSE) for the total females (n=120) and males (n=102) aged 18-65 years ... 156

Figure 5.1 Sample distribution per clinical and control group 184

Figure 5.2 Mean cognitive scores (Cognistat and MMSE) for the depression (n=10) and control group without depression (n=10) ... 199

Figure 5.3 Mean cognitive scores (Cognistat and MMSE) for the type 1 diabetes (n=9) and control group without type 1 diabetes (n=9) ... 214

Figure 5.4 Mean cognitive scores (Cognistat and MMSE) for the type 2 diabetes (n=38) and control group without type 2 diabetes (n=30) ... 227

Figure 5.5 Mean cognitive scores (Cognistat and MMSE) for the hypertension (n=39) and control group without hypertension (n=31) ... 248

Figure 6.1 Mean BP values for the females (n=41) and males (n=42) aged 18-35 275

Figure 6.2 Mean BP values for the females (n=37) and males (n=37) aged 36-50 years .. 280
Figure 6.3 Mean BP values for the females (n=42) and males (n=23) aged 51-65 years ...286

Figure 6.4 Mean BP values for females aged 18-35 (n=41), 31-50 (n=37), and 51-65 (n=42) years ...288

Figure 6.5 Mean BP values for males aged 18-35 (n=42), 31-50 (n=37), and 51-65 (n=23) years ..291

Figure 6.6 Mean BP values for the total females (n=120) and males (n=102) (non-clinical groups) ..292

Figure 6.7 Normal BP reactivity ..295

Figure 7.1 Mean BP values for subjects with depression (n=10) and the control group without depression (n=10) ...316

Figure 7.2 Mean BP values for subjects with type 1 diabetes (n=9) and the control group without type 1 diabetes (n=9)...321

Figure 7.3 Mean BP values for subjects with type 2 diabetes (n=38) and the control group without type 2 diabetes (n=30)...325

Figure 7.4 Mean BP values for subjects with hypertension (n=39) and the control group without hypertension (n=31)...330
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>Analysis of covariance</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ANS</td>
<td>Autonomic nervous system</td>
</tr>
<tr>
<td>APOEε4 allele</td>
<td>Epsilon 4 allele of apolipoprotein E</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>BP</td>
<td>Blood pressure</td>
</tr>
<tr>
<td>bpm</td>
<td>Beats per minute</td>
</tr>
<tr>
<td>CR</td>
<td>Cardiac reactivity</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic blood pressure</td>
</tr>
<tr>
<td>df</td>
<td>Degrees of freedom</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>F</td>
<td>F statistic</td>
</tr>
<tr>
<td>HF</td>
<td>High frequency</td>
</tr>
<tr>
<td>HPA</td>
<td>Hypothalamic-pituitary-adrenal</td>
</tr>
<tr>
<td>HR</td>
<td>Heart rate</td>
</tr>
<tr>
<td>HREC</td>
<td>Human Research Ethics Committee</td>
</tr>
<tr>
<td>HRT</td>
<td>Hormone replacement therapy</td>
</tr>
<tr>
<td>HRV</td>
<td>Heart rate variability</td>
</tr>
<tr>
<td>IQ</td>
<td>Intelligence quotient</td>
</tr>
<tr>
<td>IQR</td>
<td>Interquartile range</td>
</tr>
<tr>
<td>LAQ</td>
<td>Lifestyle Appraisal Questionnaire</td>
</tr>
<tr>
<td>LF</td>
<td>Low frequency</td>
</tr>
<tr>
<td>LF/HF</td>
<td>Low frequency to high frequency ratio (sympathovagal balance)</td>
</tr>
<tr>
<td>LSD</td>
<td>Least significant difference</td>
</tr>
<tr>
<td>MANCOVA</td>
<td>Multiple analysis of covariance</td>
</tr>
<tr>
<td>MCI</td>
<td>Mild cognitive impairment</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetres</td>
</tr>
<tr>
<td>mmHg</td>
<td>Millimetres of mercury</td>
</tr>
<tr>
<td>MMSE</td>
<td>Mini-Mental State Examination</td>
</tr>
<tr>
<td>ms</td>
<td>Milliseconds</td>
</tr>
<tr>
<td>ms²</td>
<td>Milliseconds squared</td>
</tr>
<tr>
<td>mV</td>
<td>Millivolts</td>
</tr>
<tr>
<td>n</td>
<td>Sample size</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Non-steroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>p</td>
<td>p value</td>
</tr>
<tr>
<td>PFC</td>
<td>Prefrontal cortex</td>
</tr>
<tr>
<td>pNN50</td>
<td>Percentage of NN intervals >50ms apart</td>
</tr>
<tr>
<td>PNS</td>
<td>Parasympathetic nervous system</td>
</tr>
<tr>
<td>RMSSD</td>
<td>Root mean square of successive differences</td>
</tr>
<tr>
<td>RSA</td>
<td>Respiratory sinus arrhythmia</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SDNN</td>
<td>Standard deviation of NN interval</td>
</tr>
<tr>
<td>sec</td>
<td>Second</td>
</tr>
<tr>
<td>SNS</td>
<td>Sympathetic nervous system</td>
</tr>
<tr>
<td>t</td>
<td>t statistic</td>
</tr>
<tr>
<td>U</td>
<td>U statistic</td>
</tr>
<tr>
<td>ULS</td>
<td>Ultra low frequency</td>
</tr>
<tr>
<td>UTS</td>
<td>University of Technology</td>
</tr>
</tbody>
</table>
Sydney

VaD = Vascular dementia
VLF = Very low frequency
\(\chi^2 \) = Chi square statistic
Z = Z score
\(\downarrow \) = Decrease
> = Greater than

\(\geq \) = Greater than or equal to
\(\uparrow \) = Increase
\(< \) = Less than
\(\leq \) = Less than or equal to
% = Percentage
\(\pm \) = Plus or minus
* = Regression analyses performed
List of publications and presentations

List of publications

List of presentations

National conferences

International conferences

Abstract

Australia’s aging population has heightened demand for earlier detection and prevention methods for dementia. Studies have shown that autonomic dysfunction precedes mild cognitive impairment, a precursor to dementia (Collins et al., 2012). The present study explores the links between heart rate variability (HRV) (reflecting autonomic activity), blood pressure (BP), and cognitive function in non-clinical and clinical cohorts (depression, diabetes (type 1 and 2), and hypertension).

Participants were added to an existing database (De Leon, 2009, Smith, 2010) (n=100) to produce a cumulative sample of n=297. The experimental protocol commenced with three baseline BP measurements, the Lifestyle Appraisal Questionnaire (Craig et al., 1996) and the Disease State Questionnaire (Giblin, 2013). The participant underwent two electrocardiogram recordings for HRV analysis (10 minutes of baseline and 10 minutes of a cognitive task). Two psychometric tests were then administered: the Mini-Mental State Examination (Folstein et al., 1975) and the Cognistat (Kiernan et al., 1987). Finally, three additional BP measurements completed the study protocol.

Higher baseline parasympathetic activity was significantly correlated (p=<0.05) to better cognitive performance (e.g. memory) in females 18-50 years and males 51-65 years however this was also correlated to poorer cognitive scores (e.g. judgment) in females 36-65 years and males 36-50 years. HRV reactivity (cognitive task minus baseline) was mostly positively correlated to cognition (e.g. comprehension) in females 18-35 and 51-65 years.

Higher vagal activity was linked to higher cognitive scores (e.g. attention) in all clinical groups yet also linked to poorer cognitive scores (e.g. orientation) in the type 1 diabetes and hypertension groups. HRV reactivity was mostly positively correlated to cognition (e.g. naming) in the hypertension sample yet inversely linked to cognition in the other clinical groups.

Both clinical and non-clinical groups had positive correlations between BP reactivity and cognitive performance (e.g. attention), suggesting low BP reactivity may be a predictor for cognitive decline.
These initial findings contribute new knowledge to the field of HRV and cognition, particularly in clinical groups and the less-studied HRV and BP reactivity in clinical and non-clinical groups. By gaining a better understanding of early autonomic risk factors for cognitive impairment, preventative countermeasures (e.g. anti-hypertensive use and autonomic biofeedback) may be considered to slow or cease dementia progression. Delaying or stopping the development of dementia has the potential to reduce expected rises in government expenditure, lower the burden on carers and nursing homes, lengthen lifespans, and ultimately improve the quality of life in elderly populations.